1
|
Ge MK, Zhang N, Xia L, Zhang C, Dong SS, Li ZM, Ji Y, Zheng MH, Sun J, Chen GQ, Shen SM. FBXO22 degrades nuclear PTEN to promote tumorigenesis. Nat Commun 2020; 11:1720. [PMID: 32249768 PMCID: PMC7136256 DOI: 10.1038/s41467-020-15578-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 03/16/2020] [Indexed: 01/05/2023] Open
Abstract
Nuclear localization of PTEN is essential for its tumor suppressive role, and loss of nuclear PTEN is more prominent than cytoplasmic PTEN in many kinds of cancers. However, nuclear PTEN-specific regulatory mechanisms were rarely reported. Based on the finding that nuclear PTEN is more unstable than cytoplasmic PTEN, here we identify that F-box only protein 22 (FBXO22) induces ubiquitylation of nuclear but not cytoplasmic PTEN at lysine 221, which is responsible for the degradation of nuclear PTEN. FBXO22 plays a tumor-promoting role by ubiquitylating and degrading nuclear PTEN. In accordance, FBXO22 is overexpressed in various cancer types, and contributes to nuclear PTEN downregulation in colorectal cancer tissues. Cumulatively, our study reports the mechanism to specifically regulate the stability of nuclear PTEN, which would provide the opportunity for developing therapeutic strategies aiming to achieve complete reactivation of PTEN as a tumor suppressor. Loss of nuclear PTEN is associated with aggressive cancers. Here the authors show that nuclear PTEN is more susceptible to ubiquitin-mediated proteasomal degradation than cytoplasmic PTEN, and identify FBXO22 ubiquitinates and degrades nuclear PTEN to promote tumorigenesis.
Collapse
Affiliation(s)
- Meng-Kai Ge
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, State Key Laboratory of Oncogenes and Related Genes and Chinese Academy of Medical Sciences Research Unit (NO.2019RU043), Shanghai Cancer Institute, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Na Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, State Key Laboratory of Oncogenes and Related Genes and Chinese Academy of Medical Sciences Research Unit (NO.2019RU043), Shanghai Cancer Institute, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Li Xia
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, State Key Laboratory of Oncogenes and Related Genes and Chinese Academy of Medical Sciences Research Unit (NO.2019RU043), Shanghai Cancer Institute, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Cheng Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, State Key Laboratory of Oncogenes and Related Genes and Chinese Academy of Medical Sciences Research Unit (NO.2019RU043), Shanghai Cancer Institute, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Shuang-Shu Dong
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200025, Shanghai, China
| | - Zhan-Ming Li
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, State Key Laboratory of Oncogenes and Related Genes and Chinese Academy of Medical Sciences Research Unit (NO.2019RU043), Shanghai Cancer Institute, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Yan Ji
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200025, Shanghai, China
| | - Min-Hua Zheng
- Department of Gastrointestinal Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Sun
- Department of Gastrointestinal Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guo-Qiang Chen
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, State Key Laboratory of Oncogenes and Related Genes and Chinese Academy of Medical Sciences Research Unit (NO.2019RU043), Shanghai Cancer Institute, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
| | - Shao-Ming Shen
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, State Key Laboratory of Oncogenes and Related Genes and Chinese Academy of Medical Sciences Research Unit (NO.2019RU043), Shanghai Cancer Institute, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
| |
Collapse
|
2
|
Edge C, Gooding C, Smith CWJ. Dissecting domains necessary for activation and repression of splicing by Muscleblind-like protein 1. BMC Mol Biol 2013; 14:29. [PMID: 24373687 PMCID: PMC3880588 DOI: 10.1186/1471-2199-14-29] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 12/16/2013] [Indexed: 01/06/2023] Open
Abstract
Background Alternative splicing contributes to the diversity of the proteome, and provides the cell with an important additional layer of regulation of gene expression. Among the many RNA binding proteins that regulate alternative splicing pathways are the Muscleblind-like (MBNL) proteins. MBNL proteins bind YGCY motifs in RNA via four CCCH zinc fingers arranged in two tandem arrays, and play a crucial role in the transition from embryonic to adult muscle splicing patterns, deregulation of which leads to Myotonic Dystrophy. Like many other RNA binding proteins, MBNL proteins can act as both activators or repressors of different splicing events. Results We used targeted point mutations to interfere with the RNA binding of MBNL1 zinc fingers individually and in combination. The effects of the mutations were tested in assays for splicing repression and activation, including overexpression, complementation of siRNA-mediated knockdown, and artificial tethering using MS2 coat protein. Mutations were tested in the context of both full length MBNL1 as well as a series of truncation mutants. Individual mutations within full length MBNL1 had little effect, but mutations in ZF1 and 2 combined were more detrimental than those in ZF 3 and 4, upon splicing activation, repression and RNA binding. Activation and repression both required linker sequences between ZF2 and 3, but activation was more sensitive to loss of linker sequences. Conclusions Our results highlight the importance of RNA binding by MBNL ZF domains 1 and 2 for splicing regulatory activity, even when the protein is artificially recruited to its regulatory location on target RNAs. However, RNA binding is not sufficient for activity; additional regions between ZF 2 and 3 are also essential. Activation and repression show differential sensitivity to truncation of this linker region, suggesting interactions with different sets of cofactors for the two types of activity.
Collapse
Affiliation(s)
| | | | - Christopher W J Smith
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK.
| |
Collapse
|
3
|
Gooding C, Edge C, Lorenz M, Coelho MB, Winters M, Kaminski CF, Cherny D, Eperon IC, Smith CWJ. MBNL1 and PTB cooperate to repress splicing of Tpm1 exon 3. Nucleic Acids Res 2013; 41:4765-82. [PMID: 23511971 PMCID: PMC3643581 DOI: 10.1093/nar/gkt168] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Exon 3 of the rat α-tropomyosin (Tpm1) gene is repressed in smooth muscle cells, allowing inclusion of the mutually exclusive partner exon 2. Two key types of elements affect repression of exon 3 splicing: binding sites for polypyrimidine tract-binding protein (PTB) and additional negative regulatory elements consisting of clusters of UGC or CUG motifs. Here, we show that the UGC clusters are bound by muscleblind-like proteins (MBNL), which act as repressors of Tpm1 exon 3. We show that the N-terminal region of MBNL1, containing its four CCCH zinc-finger domains, is sufficient to mediate repression. The same region of MBNL1 can make a direct protein-to-protein interaction with PTB, and RNA binding by MBNL promotes this interaction, apparently by inducing a conformational change in MBNL. Moreover, single molecule analysis showed that MBNL-binding sites increase the binding of PTB to its own sites. Our data suggest that the smooth muscle splicing of Tpm1 is mediated by allosteric assembly of an RNA–protein complex minimally comprising PTB, MBNL and their cognate RNA-binding sites.
Collapse
Affiliation(s)
- Clare Gooding
- Department of Biochemistry, University of Cambridge, CB2 1QW, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Kafasla P, Mickleburgh I, Llorian M, Coelho M, Gooding C, Cherny D, Joshi A, Kotik-Kogan O, Curry S, Eperon IC, Jackson RJ, Smith CWJ. Defining the roles and interactions of PTB. Biochem Soc Trans 2012; 40:815-20. [PMID: 22817740 DOI: 10.1042/bst20120044] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PTB (polypyrimidine tract-binding protein) is an abundant and widely expressed RNA-binding protein with four RRM (RNA recognition motif) domains. PTB is involved in numerous post-transcriptional steps in gene expression in both the nucleus and cytoplasm, but has been best characterized as a regulatory repressor of some ASEs (alternative splicing events), and as an activator of translation driven by IRESs (internal ribosome entry segments). We have used a variety of approaches to characterize the activities of PTB and its molecular interactions with RNA substrates and protein partners. Using splice-sensitive microarrays we found that PTB acts not only as a splicing repressor but also as an activator, and that these two activities are determined by the location at which PTB binds relative to target exons. We have identified minimal splicing repressor and activator domains, and have determined high resolution structures of the second RRM domain of PTB binding to peptide motifs from the co-repressor protein Raver1. Using single-molecule techniques we have determined the stoichiometry of PTB binding to a regulated splicing substrate in whole nuclear extracts. Finally, we have used tethered hydroxyl radical probing to determine the locations on viral IRESs at which each of the four RRM domains bind. We are now combining tethered probing with single molecule analyses to gain a detailed understanding of how PTB interacts with pre-mRNA substrates to effect either repression or activation of splicing.
Collapse
|
5
|
Webby CJ, Wolf A, Gromak N, Dreger M, Kramer H, Kessler B, Nielsen ML, Schmitz C, Butler DS, Yates JR, Delahunty CM, Hahn P, Lengeling A, Mann M, Proudfoot NJ, Schofield CJ, Böttger A. Jmjd6 catalyses lysyl-hydroxylation of U2AF65, a protein associated with RNA splicing. Science 2009; 325:90-3. [PMID: 19574390 DOI: 10.1126/science.1175865] [Citation(s) in RCA: 311] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The finding that the metazoan hypoxic response is regulated by oxygen-dependent posttranslational hydroxylations, which regulate the activity and lifetime of hypoxia-inducible factor (HIF), has raised the question of whether other hydroxylases are involved in the regulation of gene expression. We reveal that the splicing factor U2 small nuclear ribonucleoprotein auxiliary factor 65-kilodalton subunit (U2AF65) undergoes posttranslational lysyl-5-hydroxylation catalyzed by the Fe(II) and 2-oxoglutarate-dependent dioxygenase Jumonji domain-6 protein (Jmjd6). Jmjd6 is a nuclear protein that has an important role in vertebrate development and is a human homolog of the HIF asparaginyl-hydroxylase. Jmjd6 is shown to change alternative RNA splicing of some, but not all, of the endogenous and reporter genes, supporting a specific role for Jmjd6 in the regulation of RNA splicing.
Collapse
Affiliation(s)
- Celia J Webby
- Chemistry Research Laboratory and Oxford Centre for Integrative Systems Biology, University of Oxford, 12 Mansfield Road, Oxford, Oxon OX1 3TA, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Gromak N, Talotti G, Proudfoot NJ, Pagani F. Modulating alternative splicing by cotranscriptional cleavage of nascent intronic RNA. RNA (NEW YORK, N.Y.) 2008; 14:359-366. [PMID: 18065715 PMCID: PMC2212250 DOI: 10.1261/rna.615508] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Accepted: 10/24/2007] [Indexed: 05/25/2023]
Abstract
Cotranscriptional cleavage mediated by a hammerhead ribozyme can affect alternative splicing if interposed between an exon and its intronic regulatory elements. This has been demonstrated using two different alternative splicing systems based on alpha-tropomyosin and fibronectin genes. We suggest that there is a requirement for intronic regulatory elements to be covalently attached to exons that are in turn tethered to the elongating polymerase. In the case of the alternatively spliced EDA exon of the fibronectin gene, we demonstrate that the newly identified intronic downstream regulatory element is associated with the splicing regulatory protein SRp20. Our results suggest that targeted hammerhead ribozyme cleavage within introns can be used as a tool to define splicing regulatory elements.
Collapse
Affiliation(s)
- Natalia Gromak
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, United Kingdom
| | | | | | | |
Collapse
|
7
|
Identification of cis-acting elements involved in acetylcholinesterase RNA alternative splicing. Mol Cell Neurosci 2008; 38:1-14. [PMID: 18313329 DOI: 10.1016/j.mcn.2008.01.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Revised: 12/21/2007] [Accepted: 01/07/2008] [Indexed: 01/10/2023] Open
Abstract
The 3' end of Acetylcholinesterase (AChE) pre-mRNA is processed by a complex mechanism of alternative splicing. Three different transcripts are generated and called R, H and T according respectively to the intron (intron 4') or exons (5 or 6) retained in the mature RNA. The relative expression of the specific transcripts depends on cell type, developmental stage or pathophysiological conditions. The aim of our study was to identify sequences involved in AChE pre-mRNA splicing choices. For this purpose, we constructed a minigene in which the constitutive exons were fused and followed by the entire alternative domain without 3' UTR. We transfected the wild-type or minigene mutated in the alternative domain in muscle or COS-7 cells and identified the splicing products by RPA, RT-PCR and sedimentation coefficients of the enzymatic molecular forms. We find that the alternative splicing domain contains most of the necessary signals to control splicing choices in skeletal muscle cells with the coding sequences of the domain having little effect on the splicing outcome. A branch point at an unusual location 278 nt from the 3' acceptor site of exon 6 is characterized. We further identify several regulatory sequences in the non-coding sequence of exon 5 that regulate the splicing pattern. Sequences that control the splice to exon 5 and those which influence intron 4' retention or splicing to exon 6 appear to be distinct.
Collapse
|
8
|
Gooding C, Smith CWJ. Tropomyosin exons as models for alternative splicing. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 644:27-42. [PMID: 19209811 DOI: 10.1007/978-0-387-85766-4_3] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Three of the four mammalian tropomyosin (Tm) genes are alternatively spliced, most commonly by mutually exclusive selection from pairs of internal or 3' end exons. Alternative splicing events in the TPM1, 2 and 3 genes have been analysed experimentally in various levels ofdetail. In particular, mutually exclusive exon pairs in the betaTm (TPM2) and alphaTm (TPM1) genes are among the most intensively studied models for striated and smooth muscle specific alternative splicing, respectively. Analysis of these model systems has provided important insights into general mechanisms and strategies of splicing regulation.
Collapse
Affiliation(s)
- Clare Gooding
- Department of Biochemistry, University of Cambridge, CB2 1GA, UK
| | | |
Collapse
|
9
|
Lahmann I, Fabienke M, Henneberg B, Pabst O, Vauti F, Minge D, Illenberger S, Jockusch BM, Korte M, Arnold HH. The hnRNP and cytoskeletal protein raver1 contributes to synaptic plasticity. Exp Cell Res 2007; 314:1048-60. [PMID: 18061163 DOI: 10.1016/j.yexcr.2007.10.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Revised: 10/26/2007] [Accepted: 10/31/2007] [Indexed: 12/18/2022]
Abstract
Raver1 is an hnRNP protein that interacts with the ubiquitous splicing regulator PTB and binds to cytoskeletal components like alpha-actinin and vinculin/metavinculin. Cell culture experiments suggested that raver1 functions as corepressor in PTB-regulated splicing reactions and may thereby increase proteome complexity. To determine the role of raver1 in vivo, we inactivated the gene by targeted disruption in the mouse. Here we report that raver1-deficient mice develop regularly to adulthood and show no obvious anatomical or behavioral defects. In keeping with this notion, cells from raver1-null mice were indistinguishable from wild type cells and displayed normal growth, motility, and cytoskeletal architecture in culture. Moreover, alternative splicing of exons, including the model exon 3 of alpha-tropomyosin, was not markedly changed in mutant mice, suggesting that the role of raver1 for PTB-mediated exon repression is not absolutely required to generate splice variants during mouse development. Interestingly however, loss of raver1 caused significantly reduced plasticity of synapses on acute hippocampal slices, as elicited by electrophysiological measurements of markedly lower LTP and LTD in mutant neurons. Our results provide evidence that raver1 may play an important role for the regulation of neuronal synaptic plasticity, possibly by controlling especially the late LTP via posttranscriptional mechanisms.
Collapse
Affiliation(s)
- Ines Lahmann
- Cell and Molecular Biology, Institute for Biochemistry and Biotechnology, Technical University of Braunschweig, Braunschweig, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Crawford JB, Patton JG. Activation of alpha-tropomyosin exon 2 is regulated by the SR protein 9G8 and heterogeneous nuclear ribonucleoproteins H and F. Mol Cell Biol 2006; 26:8791-802. [PMID: 17000773 PMCID: PMC1636816 DOI: 10.1128/mcb.01677-06] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The inclusion of exons 2 and 3 of alpha-tropomyosin is governed through tissue-specific alternative splicing. These exons are mutually exclusive, with exon 2 included in smooth muscle cells and exon 3 included in nearly all other cell types. Several cis-acting sequences contribute to this splicing decision: the branchpoints and pyrimidine tracts upstream of both exons, UGC-repeat elements flanking exon 3, and a series of purine-rich enhancers in exon 2. Previous work showed that proteins rich in serine-arginine (SR) dipeptides act through the exon 2 enhancers, but the specific proteins responsible for such activation remained unknown. Here we show that a 35-kDa member of the SR protein family, 9G8, can activate the splicing of alpha-tropomyosin exon 2. Using RNA affinity chromatography and cross-linking competition assays, we also demonstrate that the heterogeneous nuclear ribonucleoproteins (hnRNPs) H and F bind to and compete for the same elements. Overexpression of hnRNPs H and F blocked 9G8-mediated splicing both in vivo and in vitro, and small interfering RNA-directed depletion of H and F led to an increase in exon 2 splicing. These data suggest that the activation of exon 2 is dependent on the antagonistic activities of 9G8 and hnRNPs H and F.
Collapse
Affiliation(s)
- J. Barrett Crawford
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235
| | - James G. Patton
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235
- Corresponding author. Mailing address: Department of Biological Sciences, Box 1820 Station B, Vanderbilt University, Nashville, TN 37235. Phone: (615) 322-4738. Fax: (615) 343-6707. E-mail:
| |
Collapse
|
11
|
Gooding C, Clark F, Wollerton MC, Grellscheid SN, Groom H, Smith CWJ. A class of human exons with predicted distant branch points revealed by analysis of AG dinucleotide exclusion zones. Genome Biol 2006; 7:R1. [PMID: 16507133 PMCID: PMC1431707 DOI: 10.1186/gb-2006-7-1-r1] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2005] [Revised: 09/21/2005] [Accepted: 11/28/2005] [Indexed: 01/19/2023] Open
Abstract
Exons with predicted branch points were identified from a large dataset of human exons and the importance of these branch points for splicing was verified. Background The three consensus elements at the 3' end of human introns - the branch point sequence, the polypyrimidine tract, and the 3' splice site AG dinucleotide - are usually closely spaced within the final 40 nucleotides of the intron. However, the branch point sequence and polypyrimidine tract of a few known alternatively spliced exons lie up to 400 nucleotides upstream of the 3' splice site. The extended regions between the distant branch points (dBPs) and their 3' splice site are marked by the absence of other AG dinucleotides. In many cases alternative splicing regulatory elements are located within this region. Results We have applied a simple algorithm, based on AG dinucleotide exclusion zones (AGEZ), to a large data set of verified human exons. We found a substantial number of exons with large AGEZs, which represent candidate dBP exons. We verified the importance of the predicted dBPs for splicing of some of these exons. This group of exons exhibits a higher than average prevalence of observed alternative splicing, and many of the exons are in genes with some human disease association. Conclusion The group of identified probable dBP exons are interesting first because they are likely to be alternatively spliced. Second, they are expected to be vulnerable to mutations within the entire extended AGEZ. Disruption of splicing of such exons, for example by mutations that lead to insertion of a new AG dinucleotide between the dBP and 3' splice site, could be readily understood even though the causative mutation might be remote from the conventional locations of splice site sequences.
Collapse
Affiliation(s)
- Clare Gooding
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Francis Clark
- Advanced Computational Modelling Centre, and ARC Centre for Bioinformatics, University of Queensland, Australia
| | - Matthew C Wollerton
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | | | - Harriet Groom
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Christopher WJ Smith
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| |
Collapse
|
12
|
Robinson F, Smith CWJ. A splicing repressor domain in polypyrimidine tract-binding protein. J Biol Chem 2005; 281:800-6. [PMID: 16282332 DOI: 10.1074/jbc.m510578200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Polypyrimidine tract-binding protein (PTB) is an hnRNP with four RRM type domains. It plays roles as a repressive alternative splicing regulator of multilple target genes, as well as being involved in pre-mRNA 3' end processing, mRNA localization, stability, and internal ribosome entry site-mediated translation. Here we have used a tethered function assay, in which a fusion protein of PTB and the bacteriophage MS2 coat protein is recruited to a splicing regulatory site by binding to an artificially inserted MS2 binding site. Deletion mutations of PTB in this system allowed us to identify RRM2 and the following inter-RRM linker region as the minimal region of PTB that can act as splicing repressor domain when recruited to RNA. Splicing repression by the minimal repressor domain remained cell type-specific and dependent upon other defined regulatory elements in the alpha-tropomyosin test minigene. Our results highlight the fact that splicing repression by PTB can be uncoupled from the mode by which it binds to RNA.
Collapse
|
13
|
Lin JC, Tarn WY. Exon selection in alpha-tropomyosin mRNA is regulated by the antagonistic action of RBM4 and PTB. Mol Cell Biol 2005; 25:10111-21. [PMID: 16260624 PMCID: PMC1280272 DOI: 10.1128/mcb.25.22.10111-10121.2005] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2005] [Revised: 07/05/2005] [Accepted: 08/19/2005] [Indexed: 12/26/2022] Open
Abstract
RNA-binding motif protein 4 (RBM4) has been implicated in the regulation of precursor mRNA splicing. Using differential display analysis, we identified mRNAs that associate with RBM4-containing messenger RNPs in vivo. Among these mRNAs, alpha-tropomyosin (alpha-TM) is known to exhibit a muscle cell type-specific splicing pattern. The level of the skeletal muscle-specific alpha-TM mRNA isoform partially correlated with that of RBM4 in human tissues examined and could be modulated by ectopic overexpression or suppression of RBM4. These results indicated that RBM4 directly influences the expression of the skeletal muscle-specific alpha-TM isoform. Using minigenes, we demonstrated that RBM4 can activate the selection of skeletal muscle-specific exons, possibly via binding to intronic pyrimidine-rich elements. By contrast, the splicing regulator polypyrimidine tract binding protein (PTB) excluded these exons; moreover, RBM4 antagonized this PTB-mediated exon exclusion likely by competing with PTB for binding to a CU-rich element. This study suggests a possible mechanism underlying the regulated alternative splicing of alpha-TM by the antagonistic splicing regulators RBM4 and PTB.
Collapse
Affiliation(s)
- Jung-Chun Lin
- Institute of Biomedical Sciences, Academia Sinica, 128 Academy Road Section 2, Nankang, Taipei 11529, Taiwan
| | | |
Collapse
|
14
|
Spellman R, Rideau A, Matlin A, Gooding C, Robinson F, McGlincy N, Grellscheid SN, Southby J, Wollerton M, Smith CWJ. Regulation of alternative splicing by PTB and associated factors. Biochem Soc Trans 2005; 33:457-60. [PMID: 15916540 DOI: 10.1042/bst0330457] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PTB (polypyrimidine tract-binding protein) is a repressive regulator of alternative splicing. We have investigated the role of PTB in three model alternative splicing systems. In the alpha-actinin gene, PTB represses the SM (smooth muscle) exon by binding to key sites in the polypyrimidine tract. Repressive binding to these sites is assisted by co-operative binding to additional downstream sites. SM exon splicing can be activated by CELF proteins, which also bind co-operatively to interspersed sites and displace PTB from the pyrimidine tract. Exon 11 of PTB pre-mRNA is repressed by PTB in an autoregulatory feedback loop. Exon 11-skipped RNA gets degraded through nonsense-mediated decay. Less than 1% of steady-state PTB mRNA is represented by this isoform, but inhibition of nonsense-mediated decay by RNA interference against Upf1 shows that at least 20% of PTB RNA is consumed by this pathway. This represents a widespread but under-appreciated role of alternative splicing in the quantitative regulation of gene expression, an important addition to its role as a generator of protein isoform diversity. Repression of alpha-tropomyosin exon 3 is an exceptional example of PTB regulation, because repression only occurs at high levels in SM cells, despite the fact that PTB is widely expressed. In this case, a PTB-interacting cofactor, raver1, appears to play an important role. By the use of 'tethering' assays, we have identified discrete domains within both PTB and raver1 that mediate their repressive activities on this splicing event.
Collapse
Affiliation(s)
- R Spellman
- Department of Biochemistry, University of Cambridge, 80, Tennis Court Road, Cambridge CB2 1GA, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Chong A, Zhang G, Bajic VB. Information for the Coordinates of Exons (ICE): a human splice sites database. Genomics 2005; 84:762-6. [PMID: 15475254 DOI: 10.1016/j.ygeno.2004.05.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2004] [Accepted: 05/21/2004] [Indexed: 12/01/2022]
Abstract
We present a comprehensive database, Information for the Coordinates of Exons (ICE), of genomic splice sites (SSs) for 10,803 human genes. ICE contains 91,846 pairs of donor acceptor sites, supported by the alignment of "full-length" human mRNAs (including transcript variants) on human genomic sequences. ICE represents the largest collection of human SSs known to date and provides a significant resource to both molecular biologists and bioinformaticians alike. A user can visualize and extract genomic sequences around SSs of the donor acceptor pairs and can also visualize the primary structure of individual genes. We list in this article the 22 most frequently found canonical and noncanonical splice sites. The top four most represented donor acceptor pairs (GT-AG, GC-AG, AT-AC, and GT-GG) accounted for 99.16% of our data set. In addition, we calculated the SS matrix models for the three most common donor acceptor pairs. The database is focused on providing SSs and surrounding sequence information, associated SS and sequence characteristics, and relation to overall transcript structure. It allows targeted search and presents evidence for the gene structure.
Collapse
Affiliation(s)
- Allen Chong
- Institute for Infocomm Research, 21 Heng Mui Keng Terrace, Singapore 119613, Singapore.
| | | | | |
Collapse
|
16
|
Ellis PD, Smith CWJ, Kemp P. Regulated Tissue-specific Alternative Splicing of Enhanced Green Fluorescent Protein Transgenes Conferred by α-Tropomyosin Regulatory Elements in Transgenic Mice. J Biol Chem 2004; 279:36660-9. [PMID: 15194683 DOI: 10.1074/jbc.m405380200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mutually exclusive exons 2 and 3 of alpha-tropomyosin (alphaTM) have been used as a model system for strictly regulated alternative splicing. Exon 2 inclusion is only observed at high levels in smooth muscle (SM) tissues, whereas striated muscle and non-muscle cells use predominantly exon 3. Experiments in cell culture have shown that exon 2 selection results from repression of exon 3 and that this repression is mediated by regulatory elements flanking exon 3. We have now tested the cell culture-derived model in transgenic mice. We show that by harnessing the intronic splicing regulatory elements, expression of an enhanced green fluorescent protein transgene with a constitutively active promoter can be restricted to SM cells. Splicing of both endogenous alphaTM and a series of transgenes carrying regulatory element mutations was analyzed by reverse transcriptasePCR. These studies indicated that although SM-rich tissues are equipped to regulate splicing of high levels of endogenous or transgene alphaTM RNA, other non-SM tissues such as spleen, which express lower amounts of alphaTM, also splice significant proportions of exon 2, and this splicing pattern can be recapitulated by transgenes expressed at low levels. We confirm the importance in vivo of the negatively acting regulatory elements for regulated skipping of exon 3. Moreover, we provide evidence that some of the regulatory factors responsible for exon 3 skipping appear to be titratable, with loss of regulated splicing sometimes being associated with high transgene expression levels.
Collapse
Affiliation(s)
- Peter D Ellis
- Department of Biochemistry, Tennis Court Road, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | | | | |
Collapse
|
17
|
Flanagan M, Liang H, Norton PA. Alternative splicing of fibronectin mRNAs in chondrosarcoma cells: role of far upstream intron sequences. J Cell Biochem 2004; 90:709-18. [PMID: 14587027 DOI: 10.1002/jcb.10687] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The fibronectin (FN) gene encodes multiple mRNAs through the process of alternative splicing, and production of certain isoforms is characteristic of a given cell type. Chondrocytes produce FNs that completely lack alternative exon EIIIA, and loss of inclusion of the exon is tightly linked to chondrogenic condensation of mesenchymal cells. The inclusion of a second exon, EIIIB, is high in embryonic cartilage, but declines with age. Multiple exons are omitted to produce the (V + C)-form that is highly specific for cartilage and chondrocytes. A rat chondrosarcoma cell line, RCS, was identified that preserves key features of the cartilage-specific splicing phenotype. RCS cells, which exclude exon EIIIA, and HeLa cells, which include exon EIIIA similar to mesenchymal cells, were used to assess the contribution of intron sequences flanking exon EIIIA to splicing regulation. Deletion of most of the intron downstream of the exon had little effect on splicing in either cell type. However, deletions within upstream intron 32-A reduced inclusion of the alternative exon in both cell types. The sequences involved lie more than 200 nucleotides away from the exon, but could not be localized to a single region by deletion mapping. These intronic sequences contribute to the efficiency of exon EIIIA recognition, but not to cell-type specific regulation. The normally inhibitory factor polypyrimidine tract binding protein promotes exon EIIIA inclusion in a manner that is partially dependent on the regulatory sequences within intron 32-A.
Collapse
Affiliation(s)
- Matthew Flanagan
- Jefferson Center for Biomedical Research and Department of Biochemistry and Molecular Pharmacology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | | |
Collapse
|
18
|
Gromak N, Rideau A, Southby J, Scadden ADJ, Gooding C, Hüttelmaier S, Singer RH, Smith CWJ. The PTB interacting protein raver1 regulates alpha-tropomyosin alternative splicing. EMBO J 2003; 22:6356-64. [PMID: 14633994 PMCID: PMC291850 DOI: 10.1093/emboj/cdg609] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2003] [Revised: 09/19/2003] [Accepted: 10/13/2003] [Indexed: 01/09/2023] Open
Abstract
Regulated switching of the mutually exclusive exons 2 and 3 of alpha-tropomyosin (TM) involves repression of exon 3 in smooth muscle cells. Polypyrimidine tract-binding protein (PTB) is necessary but not sufficient for regulation of TM splicing. Raver1 was identified in two-hybrid screens by its interactions with the cytoskeletal proteins actinin and vinculin, and was also found to interact with PTB. Consistent with these interactions raver1 can be localized in either the nucleus or cytoplasm. Here we show that raver1 is able to promote the smooth muscle-specific alternative splicing of TM by enhancing PTB-mediated repression of exon 3. This activity of raver1 is dependent upon characterized PTB-binding regulatory elements and upon a region of raver1 necessary for interaction with PTB. Heterologous recruitment of raver1, or just its C-terminus, induced very high levels of exon 3 skipping, bypassing the usual need for PTB binding sites downstream of exon 3. This suggests a novel mechanism for PTB-mediated splicing repression involving recruitment of raver1 as a potent splicing co-repressor.
Collapse
Affiliation(s)
- Natalia Gromak
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Gromak N, Matlin AJ, Cooper TA, Smith CWJ. Antagonistic regulation of alpha-actinin alternative splicing by CELF proteins and polypyrimidine tract binding protein. RNA (NEW YORK, N.Y.) 2003; 9:443-56. [PMID: 12649496 PMCID: PMC1370411 DOI: 10.1261/rna.2191903] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2002] [Accepted: 01/14/2003] [Indexed: 05/21/2023]
Abstract
The alpha-actinin gene has a pair of alternatively spliced exons. The smooth muscle (SM) exon is repressed in most cell types by polypyrimidine tract binding protein (PTB). CELF (CUG-BP and ETR3-like factors) family proteins, splicing regulators whose activities are altered in myotonic dystrophy, were found to coordinately regulate selection of the two alpha-actinin exons. CUG-BP and ETR3 activated the SM exon, and along with CELF4 they were also able to repress splicing of the NM (nonmuscle) exon both in vivo and in vitro. Activation of SM exon splicing was associated with displacement of PTB from the polypyrimidine tract by binding of CUG-BP at adjacent sites. Our data provides direct evidence for the activity of CELF proteins as both activators and repressors of splicing within a single-model system of alternative splicing, and suggests a model whereby alpha-actinin alternative splicing is regulated by synergistic and antagonistic interactions between members of the CELF and PTB families.
Collapse
Affiliation(s)
- Natalia Gromak
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | | | | | | |
Collapse
|