1
|
Takagi Y, Kuwabara N, Dang TT, Furukawa K, Ho CK. Crystal structures of the RNA triphosphatase from Trypanosoma cruzi provide insights into how it recognizes the 5'-end of the RNA substrate. J Biol Chem 2020; 295:9076-9086. [PMID: 32381506 PMCID: PMC7335777 DOI: 10.1074/jbc.ra119.011811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 05/06/2020] [Indexed: 11/06/2022] Open
Abstract
RNA triphosphatase catalyzes the first step in mRNA cap formation, hydrolysis of the terminal phosphate from the nascent mRNA transcript. The RNA triphosphatase from the protozoan parasite Trypanosoma cruzi, TcCet1, belongs to the family of triphosphate tunnel metalloenzymes (TTMs). TcCet1 is a promising antiprotozoal drug target because the mechanism and structure of the protozoan RNA triphosphatases are completely different from those of the RNA triphosphatases found in mammalian and arthropod hosts. Here, we report several crystal structures of the catalytically active form of TcCet1 complexed with a divalent cation and an inorganic tripolyphosphate in the active-site tunnel at 2.20-2.51 Å resolutions. The structures revealed that the overall structure, the architecture of the tunnel, and the arrangement of the metal-binding site in TcCet1 are similar to those in other TTM proteins. On the basis of the position of three sulfate ions that cocrystallized on the positively charged surface of the protein and results obtained from mutational analysis, we identified an RNA-binding site in TcCet1. We conclude that the 5'-end of the triphosphate RNA substrate enters the active-site tunnel directionally. The structural information reported here provides valuable insight into designing inhibitors that could specifically block the entry of the triphosphate RNA substrate into the TTM-type RNA triphosphatases of T. cruzi and related pathogens.
Collapse
Affiliation(s)
- Yuko Takagi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | - Naoyuki Kuwabara
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba, Ibaraki, Japan
| | - Truong Tat Dang
- Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki Japan
| | - Koji Furukawa
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | - C Kiong Ho
- Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki Japan.
| |
Collapse
|
2
|
Świeżawska B, Duszyn M, Kwiatkowski M, Jaworski K, Pawełek A, Szmidt‐Jaworska A. Brachypodium distachyon
triphosphate tunnel metalloenzyme 3 is both a triphosphatase and an adenylyl cyclase upregulated by mechanical wounding. FEBS Lett 2020; 594:1101-1111. [DOI: 10.1002/1873-3468.13701] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/15/2019] [Accepted: 11/15/2019] [Indexed: 01/07/2023]
Affiliation(s)
- Brygida Świeżawska
- Chair of Plant Physiology and Biotechnology Nicolaus Copernicus University Torun Poland
| | - Maria Duszyn
- Chair of Plant Physiology and Biotechnology Nicolaus Copernicus University Torun Poland
| | - Mateusz Kwiatkowski
- Chair of Plant Physiology and Biotechnology Nicolaus Copernicus University Torun Poland
| | - Krzysztof Jaworski
- Chair of Plant Physiology and Biotechnology Nicolaus Copernicus University Torun Poland
| | - Agnieszka Pawełek
- Chair of Plant Physiology and Biotechnology Nicolaus Copernicus University Torun Poland
| | | |
Collapse
|
3
|
Ansari MY, Singh PK, Rajagopalan D, Shanmugam P, Bellur A, Shaila MS. The large protein 'L' of Peste-des-petits-ruminants virus exhibits RNA triphosphatase activity, the first enzyme in mRNA capping pathway. Virus Genes 2018; 55:68-75. [PMID: 30511208 PMCID: PMC6373323 DOI: 10.1007/s11262-018-1617-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 11/15/2018] [Indexed: 10/31/2022]
Abstract
Peste-des-petits-ruminants is a highly contagious and fatal disease of goats and sheep caused by non-segmented, negative strand RNA virus belonging to the Morbillivirus genus-Peste-des-petits-ruminants virus (PPRV) which is evolutionarily closely related to Rinderpest virus (RPV). The large protein 'L' of the members of this genus is a multifunctional catalytic protein, which transcribes and replicates the viral genomic RNA as well as possesses mRNA capping, methylation and polyadenylation activities; however, the detailed mechanism of mRNA capping by PPRV L protein has not been studied. We have found earlier that the L protein of RPV has RNA triphosphatase (RTPase), guanylyltransferase (GTase) and methyltransferase activities, and unlike vesicular stomatitis virus (VSV), follows the conventional pathway of mRNA capping. In the present work, using a 5'-end labelled viral RNA as substrate, we demonstrate that PPRV L protein has RTPase activity when present in the ribonucleoprotein complex of purified virus as well as recombinant L-P complex expressed in insect cells. Further, a minimal domain in the C-terminal region (aa1640-1840) of the L protein has been expressed in E. coli and shown to exhibit RTPase activity. The RTPase activity of PPRV L protein is metal-dependent and functions with a divalent cation, either magnesium or manganese. In addition, RTPase associated nucleotide triphosphatase activity (NTPase) of PPRV L protein is also demonstrated. This work provides the first detailed study of RTPase activity and identifies the RTPase domain of PPRV L protein.
Collapse
Affiliation(s)
- Mohammad Yunus Ansari
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India.,Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | - Piyush Kumar Singh
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India.,Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Bareilly, UP, 243122, India
| | - Deepa Rajagopalan
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | - Purnima Shanmugam
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | - Asutosh Bellur
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | - Melkote Subbarao Shaila
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
4
|
Smith P, Ho CK, Takagi Y, Djaballah H, Shuman S. Nanomolar Inhibitors of Trypanosoma brucei RNA Triphosphatase. mBio 2016; 7:e00058-16. [PMID: 26908574 PMCID: PMC4791841 DOI: 10.1128/mbio.00058-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 01/19/2016] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED Eukaryal taxa differ with respect to the structure and mechanism of the RNA triphosphatase (RTPase) component of the mRNA capping apparatus. Protozoa, fungi, and certain DNA viruses have a metal-dependent RTPase that belongs to the triphosphate tunnel metalloenzyme (TTM) superfamily. Because the structures, active sites, and chemical mechanisms of the TTM-type RTPases differ from those of mammalian RTPases, the TTM RTPases are potential targets for antiprotozoal, antifungal, and antiviral drug discovery. Here, we employed RNA interference (RNAi) knockdown methods to show that Trypanosoma brucei RTPase Cet1 (TbCet1) is necessary for proliferation of procyclic cells in culture. We then conducted a high-throughput biochemical screen for small-molecule inhibitors of the phosphohydrolase activity of TbCet1. We identified several classes of chemicals-including chlorogenic acids, phenolic glycopyranosides, flavonoids, and other phenolics-that inhibit TbCet1 with nanomolar to low-micromolar 50% inhibitory concentrations (IC50s). We confirmed the activity of these compounds, and tested various analogs thereof, by direct manual assays of TbCet1 phosphohydrolase activity. The most potent nanomolar inhibitors included tetracaffeoylquinic acid, 5-galloylgalloylquinic acid, pentagalloylglucose, rosmarinic acid, and miquelianin. TbCet1 inhibitors were less active (or inactive) against the orthologous TTM-type RTPases of mimivirus, baculovirus, and budding yeast (Saccharomyces cerevisiae). Our results affirm that a TTM RTPase is subject to potent inhibition by small molecules, with the caveat that parallel screens against TTM RTPases from multiple different pathogens may be required to fully probe the chemical space of TTM inhibition. IMPORTANCE The stark differences between the structure and mechanism of the RNA triphosphatase (RTPase) component of the mRNA capping apparatus in pathogenic protozoa, fungi, and viruses and those of their metazoan hosts highlight RTPase as a target for anti-infective drug discovery. Protozoan, fungal, and DNA virus RTPases belong to the triphosphate tunnel metalloenzyme family. This study shows that a protozoan RTPase, TbCet1 from Trypanosoma brucei, is essential for growth of the parasite in culture and identifies, via in vitro screening of chemical libraries, several classes of potent small-molecule inhibitors of TbCet1 phosphohydrolase activity.
Collapse
Affiliation(s)
- Paul Smith
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York, USA
| | - C Kiong Ho
- Department of Infection Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| | - Yuko Takagi
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| | - Hakim Djaballah
- High Throughput Screening Core Facility, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Stewart Shuman
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York, USA
| |
Collapse
|
5
|
Martinez J, Truffault V, Hothorn M. Structural Determinants for Substrate Binding and Catalysis in Triphosphate Tunnel Metalloenzymes. J Biol Chem 2015. [PMID: 26221030 PMCID: PMC4641920 DOI: 10.1074/jbc.m115.674473] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Triphosphate tunnel metalloenzymes (TTMs) are present in all kingdoms of life and catalyze diverse enzymatic reactions such as mRNA capping, the cyclization of adenosine triphosphate, the hydrolysis of thiamine triphosphate, and the synthesis and breakdown of inorganic polyphosphates. TTMs have an unusual tunnel domain fold that harbors substrate- and metal co-factor binding sites. It is presently poorly understood how TTMs specifically sense different triphosphate-containing substrates and how catalysis occurs in the tunnel center. Here we describe substrate-bound structures of inorganic polyphosphatases from Arabidopsis and Escherichia coli, which reveal an unorthodox yet conserved mode of triphosphate and metal co-factor binding. We identify two metal binding sites in these enzymes, with one co-factor involved in substrate coordination and the other in catalysis. Structural comparisons with a substrate- and product-bound mammalian thiamine triphosphatase and with previously reported structures of mRNA capping enzymes, adenylate cyclases, and polyphosphate polymerases suggest that directionality of substrate binding defines TTM catalytic activity. Our work provides insight into the evolution and functional diversification of an ancient enzyme family.
Collapse
Affiliation(s)
- Jacobo Martinez
- From the Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland and
| | - Vincent Truffault
- Department of Biochemistry, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Michael Hothorn
- From the Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland and
| |
Collapse
|
6
|
Singh PK, Ratnam N, Narayanarao KB, Bugatha H, Karande AA, Melkote Subbarao S. A carboxy terminal domain of the L protein of rinderpest virus possesses RNA triphosphatase activity - The first enzyme in the viral mRNA capping pathway. Biochem Biophys Res Commun 2015; 464:629-34. [PMID: 26168720 DOI: 10.1016/j.bbrc.2015.07.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 07/06/2015] [Indexed: 11/30/2022]
Abstract
The large protein L of negative-sense RNA viruses is a multifunctional protein involved in transcription and replication of genomic RNA. It also possesses enzymatic activities involved in capping and methylation of viral mRNAs. The pathway for mRNA capping followed by the L protein of the viruses in the Morbillivirus genus has not been established, although it has been speculated that these viruses may follow the unconventional capping pathway as has been shown for some viruses of Rhabdoviridae family. We had earlier shown that the large protein L of Rinderpest virus expressed as recombinant L-P complex in insect cells as well as the ribonucleoprotein complex from purified virus possesses RNA triphosphatase (RTPase) and guanylyltransferase activities, in addition to RNA dependent RNA polymerase activity. In the present work, we demonstrate that RTPase as well as nucleoside triphosphatase (NTPase) activities are exhibited by a subdomain of the L protein in the C terminal region (a.a. 1640-1840). The RTPase activity depends absolutely on a divalent cation, either magnesium or manganese. Both the RTPase and NTPase activities of the protein show dual metal specificity. Two mutant proteins having alanine mutations in the glutamic acid residues in motif-A of the RTPase domain did not show RTPase activity, while exhibiting reduced NTPase activity suggesting overlapping active sites for the two enzymatic functions. The RTPase and NTPase activities of the L subdomain resemble those of the Vaccinia capping enzyme D1 and the baculovirus LEF4 proteins.
Collapse
Affiliation(s)
- Piyush Kumar Singh
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Nivedita Ratnam
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Kannan Boosi Narayanarao
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Harigopalarao Bugatha
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Anjali A Karande
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Shaila Melkote Subbarao
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
7
|
Bettendorff L, Wins P. Thiamine triphosphatase and the CYTH superfamily of proteins. FEBS J 2013; 280:6443-55. [DOI: 10.1111/febs.12498] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 07/01/2013] [Indexed: 11/28/2022]
Affiliation(s)
| | - Pierre Wins
- GIGA-Neuroscience; University of Liège; Belgium
| |
Collapse
|
8
|
RNA 5'-triphosphatase activity of the hepatitis E virus helicase domain. J Virol 2010; 84:9637-41. [PMID: 20592074 DOI: 10.1128/jvi.00492-10] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Hepatitis E virus (HEV) has a positive-sense RNA genome with a 5'-m7G cap. HEV open reading frame 1 (ORF1) encodes a polyprotein with multiple enzyme domains required for replication. HEV helicase is a nucleoside triphosphatase (NTPase) with the ability to unwind RNA duplexes in the 5'-to-3' direction. When incubated with 5'-[gamma-(32)P]RNA and 5'-[alpha-(32)P]RNA, HEV helicase released (32)P only from 5'-[gamma-(32)P]RNA, showing specificity for the gamma-beta-triphosphate bond. Removal of gamma-phosphate from the 5' end of the primary transcripts (pppRNA to ppRNA) by RNA triphosphatase is an essential step during cap formation. It is suggested that HEV employs the helicase to mediate the first step of 5' cap synthesis.
Collapse
|
9
|
Rasheedi S, Suragani M, Haq SK, Ghosh S, Ehtesham NZ, Hasnain SE. Characterization of LEF4 ligand binding property and its role as part of baculoviral transcription machinery. Mol Cell Biochem 2009; 333:83-9. [PMID: 19633819 DOI: 10.1007/s11010-009-0207-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Accepted: 07/06/2009] [Indexed: 11/25/2022]
Abstract
Late expression factor 4 (LEF4) is one of the four identified subunits of Autographa californica nucleopolyhedrosis virus (AcNPV) encoded RNA polymerase that carries out transcription from viral late and very late promoters. This 464-amino acid baculovirus-encoded protein also harbors 5' mRNA capping activity that includes RNA 5' triphosphatase, nucleoside triphosphatase, and guanylyltransferase activities. Hydrolysis of 5' triphosphate RNA and free NTPs is metal ion dependent property of the protein. In the present communication, we describe the structural changes in the recombinant LEF4 protein following ligand binding. Metal ion binding causes some alteration in the conformation around aromatic amino acids whereas there is no effect on tryptophan fluorescence on GTP binding in absence and presence of metal ion. It is found that GTP and divalent cation cofactor produce some prominent changes in the secondary structure of the protein. Electrophoretic mobility shift assay (EMSA) shows that LEF4 is the probable factor that acts as anchor to dock the viral RNA polymerase on the very late polyhedrin promoter (Ppolh) facilitated by other factors.
Collapse
Affiliation(s)
- Sheeba Rasheedi
- Department of Biochemistry, University of Hyderabad, Gachibowli, Hyderabad, 500 046, India
| | | | | | | | | | | |
Collapse
|
10
|
Characterization of the vaccinia virus D10 decapping enzyme provides evidence for a two-metal-ion mechanism. Biochem J 2009; 420:27-35. [PMID: 19210265 DOI: 10.1042/bj20082296] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Decapping enzymes are required for the removal of the 5'-end cap of mRNAs. These enzymes exhibit a specific hydrolase activity, resulting in cleavage between the alpha- and beta-phosphates of the m7GpppN cap to generate both m7GDP and monophosphorylated RNA products. Decapping enzymes have been found in humans, plants and yeasts, and have been discovered more recently in vaccinia virus (D10 protein). Although experimental evidences are lacking, three-metal- and two-metal-ion mechanisms have been proposed so far for the decapping enzymes. In the present study, we performed a biochemical characterization of the interaction of bivalent cations with the vaccinia virus D10 protein. Synergistic activation of the enzyme was observed in the presence of Mg2+ and Mn2+ ions, suggesting the existence of two metal-ion-binding sites on the D10 protein. Moreover, dual-ligand titration experiments using fluorescence spectroscopy demonstrated the presence of two metal-ion-binding sites on the enzyme. A three-dimensional structural model of the active site of the enzyme was generated which highlighted the importance of three glutamate residues involved in the co-ordination of two metal ions and a water molecule. Mutational analyses confirmed the role of two glutamate residues for the binding of metal ions. We demonstrate that one metal ion is co-ordinated by Glu132, while the second metal ion is co-ordinated by Glu145. Taken together, these results support the proposed two-metal-ion mechanistic model for the D10 decapping enzyme.
Collapse
|
11
|
Jain R, Shuman S. Polyphosphatase activity of CthTTM, a bacterial triphosphate tunnel metalloenzyme. J Biol Chem 2008; 283:31047-57. [PMID: 18782773 DOI: 10.1074/jbc.m805392200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Triphosphate tunnel metalloenzymes (TTMs) are a superfamily of phosphotransferases with a distinctive active site located within an eight-stranded beta barrel. The best understood family members are the eukaryal RNA triphosphatases, which catalyze the initial step in mRNA capping. The RNA triphosphatases characteristically hydrolyze nucleoside 5'-triphosphates in the presence of manganese and are inept at cleaving inorganic tripolyphosphate. We recently identified a TTM protein from the bacterium Clostridium thermocellum (CthTTM) with the opposite substrate preference. Here we report that CthTTM catalyzes hydrolysis of guanosine 5'-tetraphosphate to yield GTP and P(i) (K(m) = 70 microm, k(cat) = 170 s(-1)) much more effectively than it converts GTP to GDP and P(i) (K(m) = 70 microm, k(cat) = 0.3 s(-1)), implying that a nucleoside interferes when positioned too close to the tunnel entrance. CthTTM is capable of quantitatively cleaving diadenosine hexaphosphate but has feeble activity with shorter derivatives diadenosine tetraphosphate and diadenosine pentaphosphate. We propose that the tunnel opens to accommodate the dumbbell-shaped diadenosine hexaphosphate and then closes around it to perform catalysis. We find that CthTTM can exhaustively hydrolyze a long-chain inorganic polyphosphate, a molecule that plays important roles in bacterial physiology. CthTTM differs from other known polyphosphatases in that it yields a approximately 2:1 mixture of P(i) and PP(i) end products. Bacterial/archaeal TTMs have a C-terminal helix located near the tunnel entrance. Deletion of this helix from CthTTM exerts pleiotropic effects. (i) It suppresses hydrolysis of guanosine 5'-tetraphosphate and inorganic PPP(i); (ii) it stimulates NTP hydrolysis; and (iii) it biases the outcome of the long-chain polyphosphatase reaction more strongly in favor of P(i) production. We discuss models for substrate binding in the triphosphate tunnel.
Collapse
Affiliation(s)
- Ruchi Jain
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10021, USA
| | | |
Collapse
|
12
|
Roles of LEF-4 and PTP/BVP RNA triphosphatases in processing of baculovirus late mRNAs. J Virol 2008; 82:5573-83. [PMID: 18385232 DOI: 10.1128/jvi.00058-08] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The baculovirus Autographa californica nucleopolyhedrovirus encodes two proteins with RNA triphosphatase activity. Late expression factor LEF-4, which is an essential gene, is a component of the RNA polymerase and also encodes the RNA capping enzyme guanylyltransferase. PTP/BVP is also an RNA triphosphatase, but is not essential for viral replication, possibly because its activity is redundant to that of LEF-4. To elucidate the role of these proteins in mRNA cap formation, a mutant virus that lacked both RNA triphosphatase activities was constructed. Infection studies revealed that the double-mutant virus was viable and normal with respect to the production of budded virus. Pulse-labeling studies and immunoblot analyses showed that late gene expression in the double mutant was equivalent to that in the wild type, while polyhedrin expression was slightly reduced. Direct analysis of the mRNA cap structure indicated no alteration of cap processing in the double mutant. Together, these results reveal that baculoviruses replicate and express their late genes at normal levels in the absence of its two different types of RNA triphosphatases.
Collapse
|
13
|
Soulière MF, Perreault JP, Bisaillon M. Magnesium-binding studies reveal fundamental differences between closely related RNA triphosphatases. Nucleic Acids Res 2007; 36:451-61. [PMID: 18039706 PMCID: PMC2241848 DOI: 10.1093/nar/gkm1067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The Chlorella virus RNA triphosphatase (cvRTPase) is involved in the formation of the RNA cap structure found at the 5′-end of the viral mRNAs and requires magnesium ions to mediate its catalytic activity. To extend our studies on the role of metal ions in phosphohydrolysis, we have used a combination of fluorescence spectroscopy, circular dichroism, denaturation studies and thermodynamic analyses to monitor the binding of magnesium ions to the cvRTPase. Using these techniques, the thermodynamic forces responsible for the interaction of metal ions with an RNA triphosphatase were also evaluated for the first time. Our thermodynamic analyses indicate that the initial association of magnesium with the cvRTPase is dominated by a favorable entropic effect and is accompanied by the release of eight water molecules from the enzyme. Moreover, both fluorescence spectroscopy and circular dichroism assays indicated that minor conformational changes were occurring upon magnesium binding. Mutational studies were also performed and confirmed the importance of three specific glutamate residues located in the active site of the enzyme for the binding of magnesium ions. Finally, in contrast to the yeast RNA triphosphatase, we demonstrate that the binding of magnesium ions to the cvRTPase does not lead to the stabilization of the ground state binding of the RNA substrate. Based on the results of the present study, we hypothesize that the binding of magnesium ions induces local conformational perturbations in the active site residues that ultimately positions the lateral chains of critical amino acids involved in catalysis. Our results highlight fundamental differences in the role of magnesium ions in the phosphohydrolase reactions catalyzed by the cvRTPase and the closely related yeast RNA triphosphatase.
Collapse
Affiliation(s)
- Marie F Soulière
- Département de Biochimie, RNA Group, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | | | | |
Collapse
|
14
|
Han YT, Tsai CS, Chen YC, Lin MK, Hsu YH, Meng M. Mutational analysis of a helicase motif-based RNA 5'-triphosphatase/NTPase from bamboo mosaic virus. Virology 2007; 367:41-50. [PMID: 17585982 PMCID: PMC7103348 DOI: 10.1016/j.virol.2007.05.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Revised: 03/06/2007] [Accepted: 05/03/2007] [Indexed: 12/15/2022]
Abstract
The helicase-like domain of BaMV replicase possesses NTPase and RNA 5′-triphosphatase activities. In this study, mutational effects of the helicase signature motifs and residue L543 on the two activities were investigated. Either activity was inactivated by K643A-S644A, D702A, D730A, R855A, or L543P mutations. On the other hand, Q826A, D858A and L543A had activities, in terms of kcat/Km, reduced by 5- to 15-fold. AMPPNP, a nonhydrolyzable ATP analogue, competitively inhibited RNA 5′-triphosphatase activity. Analogies of mutational effects on the two activities and approximation of Ki(AMPPNP) and Km(ATP) suggest that the catalytic sites of the activities are overlapped. Mutational effects on the viral accumulation in Chenopodium quinoa indicated that the activities manifested by the domain are required for BaMV survival. Results also suggest that Q826 in motif V plays an additional role in preventing tight binding to ATP, which would otherwise decrease further RNA 5′-triphosphatase, leading to demise of the virus in plant.
Collapse
|
15
|
Keppetipola N, Jain R, Shuman S. Novel triphosphate phosphohydrolase activity of Clostridium thermocellum TTM, a member of the triphosphate tunnel metalloenzyme superfamily. J Biol Chem 2007; 282:11941-9. [PMID: 17303560 DOI: 10.1074/jbc.m611328200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Triphosphate tunnel metalloenzymes (TTMs) are a newly recognized superfamily of phosphotransferases defined by a unique active site residing within an eight-stranded beta barrel. The prototypical members are the eukaryal metal-dependent RNA triphosphatases, which catalyze the initial step in mRNA capping. Little is known about the activities and substrate specificities of the scores of TTM homologs present in bacterial and archaeal proteomes, nearly all of which are annotated as adenylate cyclases. Here we have conducted a biochemical and structure-function analysis of a TTM protein (CthTTM) from the bacterium Clostridium thermocellum. CthTTM is a metal-dependent tripolyphosphatase and nucleoside triphosphatase; it is not an adenylate cyclase. We have identified 11 conserved amino acids in the tunnel that are critical for tripolyphosphatase and ATPase activity. The most salient findings are that (i) CthTTM is 150-fold more active in cleaving tripolyphosphate than ATP and (ii) the substrate specificity of CthTTM can be transformed by a single mutation (K8A) that abolishes tripolyphosphatase activity while strongly stimulating ATP hydrolysis. Our results underscore the plasticity of CthTTM substrate choice and suggest how novel specificities within the TTM superfamily might evolve through changes in the residues that line the tunnel walls.
Collapse
|
16
|
Gong C, Smith P, Shuman S. Structure-function analysis of Plasmodium RNA triphosphatase and description of a triphosphate tunnel metalloenzyme superfamily that includes Cet1-like RNA triphosphatases and CYTH proteins. RNA (NEW YORK, N.Y.) 2006; 12:1468-74. [PMID: 16809816 PMCID: PMC1524888 DOI: 10.1261/rna.119806] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
RNA triphosphatase catalyzes the first step in mRNA capping. The RNA triphosphatases of fungi and protozoa are structurally and mechanistically unrelated to the analogous mammalian enzyme, a situation that recommends RNA triphosphatase as an anti-infective target. Fungal and protozoan RNA triphosphatases belong to a family of metal-dependent phosphohydrolases exemplified by yeast Cet1. The Cet1 active site is unusually complex and located within a topologically closed hydrophilic beta-barrel (the triphosphate tunnel). Here we probe the active site of Plasmodium falciparum RNA triphosphatase by targeted mutagenesis and thereby identify eight residues essential for catalysis. The functional data engender an improved structural alignment in which the Plasmodium counterparts of the Cet1 tunnel strands and active-site functional groups are located with confidence. We gain insight into the evolution of the Cet1-like triphosphatase family by noting that the heretofore unique tertiary structure and active site of Cet1 are recapitulated in recently deposited structures of proteins from Pyrococcus (PBD 1YEM) and Vibrio (PDB 2ACA). The latter proteins exemplify a CYTH domain found in CyaB-like adenylate cyclases and mammalian thiamine triphosphatase. We conclude that the tunnel fold first described for Cet1 is the prototype of a larger enzyme superfamily that includes the CYTH branch. This superfamily, which we name "triphosphate tunnel metalloenzyme," is distributed widely among bacterial, archaeal, and eukaryal taxa. It is now clear that Cet1-like RNA triphosphatases did not arise de novo in unicellular eukarya in tandem with the emergence of caps as the defining feature of eukaryotic mRNA. They likely evolved by incremental changes in an ancestral tunnel enzyme that conferred specificity for RNA 5'-end processing.
Collapse
Affiliation(s)
- Chunling Gong
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10021, USA
| | | | | |
Collapse
|
17
|
Changela A, Martins A, Shuman S, Mondragón A. Crystal structure of baculovirus RNA triphosphatase complexed with phosphate. J Biol Chem 2005; 280:17848-56. [PMID: 15713658 DOI: 10.1074/jbc.m500885200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Baculovirus RNA 5'-triphosphatase (BVP) exemplifies a family of RNA-specific cysteine phosphatases that includes the RNA triphosphatase domains of metazoan and plant mRNA capping enzymes. Here we report the crystal structure of BVP in a phosphate-bound state at 1.5 A resolution. BVP adopts the characteristic cysteine-phosphatase alpha/beta fold and binds two phosphate ions in the active site region, one of which is proposed to mimic the phosphate of the product complex after hydrolysis of the covalent phosphoenzyme intermediate. The crystal structure highlights the role of backbone amides and side chains of the P-loop motif (118)HCTHGXNRT(126) in binding the cleavable phosphate and stabilizing the transition state. Comparison of the BVP structure to the apoenzyme of mammalian RNA triphosphatase reveals a concerted movement of the Arg-125 side chain (to engage the phosphate directly) and closure of an associated surface loop over the phosphate in the active site. The structure highlights a direct catalytic role of Asn-124, which is the signature P-loop residue of the RNA triphosphatase family and a likely determinant of the specificity of BVP for hydrolysis of phosphoanhydride linkages.
Collapse
Affiliation(s)
- Anita Changela
- Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, Evanston, Illinois 60208, USA
| | | | | | | |
Collapse
|
18
|
Hausmann S, Altura MA, Witmer M, Singer SM, Elmendorf HG, Shuman S. Yeast-like mRNA capping apparatus in Giardia lamblia. J Biol Chem 2004; 280:12077-86. [PMID: 15556935 DOI: 10.1074/jbc.m412063200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
A scheme of eukaryotic phylogeny has been suggested based on the structure and physical linkage of the RNA triphosphatase and RNA guanylyltransferase enzymes that catalyze mRNA cap formation. Here we show that the unicellular pathogen Giardia lamblia encodes an mRNA capping apparatus consisting of separate triphosphatase and guanylyltransferase components, which we characterize biochemically. We also show that native Giardia mRNAs have blocked 5'-ends and that 7-methylguanosine caps promote translation of transfected mRNAs in Giardia in vivo. The Giardia triphosphatase belongs to the tunnel family of metal-dependent phosphohydrolases that includes the RNA triphosphatases of fungi, microsporidia, and protozoa such as Plasmodium and Trypanosoma. The tunnel enzymes adopt a unique active-site fold and are structurally and mechanistically unrelated to the cysteine-phosphatase-type RNA triphosphatases found in metazoans and plants, which comprise part of a bifunctional triphosphataseguanylyltransferase fusion protein. All available evidence now points to the separate tunnel-type triphosphatase and guanylyltransferase as the aboriginal state of the capping apparatus. We identify a putative tunnel-type triphosphatase and a separate guanylyltransferase encoded by the red alga Cyanidioschyzon merolae. These findings place fungi, protozoa, and red algae in a common lineage distinct from that of metazoa and plants.
Collapse
Affiliation(s)
- Stéphane Hausmann
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10021, USA
| | | | | | | | | | | |
Collapse
|
19
|
Gong C, Martins A, Shuman S. Structure-Function Analysis of Trypanosoma brucei RNA Triphosphatase and Evidence for a Two-metal Mechanism. J Biol Chem 2003; 278:50843-52. [PMID: 14525979 DOI: 10.1074/jbc.m309188200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Trypanosoma brucei RNA triphosphatase TbCet1 is a 252-amino acid polypeptide that catalyzes the first step in mRNA cap formation. By performing an alanine scan of TbCet1, we identified six amino acids that are essential for triphosphatase activity (Glu-52, Arg-127, Glu-168, Arg-186, Glu-216, and Glu-218). These results consolidate the proposal that protozoan, fungal, and Chlorella virus RNA triphosphatases belong to a single family of metal-dependent NTP phosphohydrolases with a unique tunnel active site composed of eight beta strands. Limited proteolysis of TbCet1 suggests that the hydrophilic N terminus is surface-exposed, whereas the catalytic core domain is tightly folded with the exception of a protease-sensitive loop (76WKGRRARKT84) between two of the putative tunnel strands. The catalytic domain of TbCet1 is extraordinarily thermostable. It remains active after heating for 2 h at 75 degrees C. Analysis by zonal velocity sedimentation indicates that TbCet1 is a monomeric enzyme, unlike fungal RNA triphosphatases, which are homodimers. We show that tripolyphosphate is a potent competitive inhibitor of TbCet1 (Ki 1.4 microm) that binds more avidly to the active site than the ATP substrate (Km 25 microm). We present evidence of synergistic activation of the TbCet1 triphosphatase by manganese and magnesium, consistent with a two-metal mechanism of catalysis. Our findings provide new insight to the similarities (in active site tertiary structure and catalytic mechanism) and differences (in quaternary structure and thermal stability) among the different branches of the tunnel enzyme family.
Collapse
Affiliation(s)
- Chunling Gong
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10021, USA
| | | | | |
Collapse
|
20
|
Kim J, Parker JSL, Murray KE, Nibert ML. Nucleoside and RNA triphosphatase activities of orthoreovirus transcriptase cofactor mu2. J Biol Chem 2003; 279:4394-403. [PMID: 14613938 DOI: 10.1074/jbc.m308637200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mammalian Orthoreovirus (mORV) core particle is an icosahedral multienzyme complex for viral mRNA synthesis and provides a delimited system for mechanistic studies of that process. Previous genetic results have identified the mORV mu2 protein as a determinant of viral strain differences in the transcriptase and nucleoside triphosphatase activities of cores. New results in this report provided biochemical and genetic evidence that purified mu2 is itself a divalent cation-dependent nucleoside triphosphatase that can remove the 5' gamma-phosphate from RNA as well. Alanine substitutions in a putative nucleotide binding region of mu2 abrogated both functions but did not affect the purification profile of the protein or its known associations with microtubules and mORV microNS protein in vivo. In vitro microtubule binding by purified mu2 was also demonstrated and not affected by the mutations. Purified mu2 was further demonstrated to interact in vitro with the mORV RNA-dependent RNA polymerase, lambda3, and the presence of lambda3 mildly stimulated the triphosphatase activities of mu2. These findings confirm that mu2 is an enzymatic component of the mORV core and may contribute several possible functions to viral mRNA synthesis.
Collapse
Affiliation(s)
- Jonghwa Kim
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
21
|
Bisaillon M, Bougie I. Investigating the role of metal ions in the catalytic mechanism of the yeast RNA triphosphatase. J Biol Chem 2003; 278:33963-71. [PMID: 12819229 DOI: 10.1074/jbc.m303007200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Saccharomyces cerevisiae RNA triphosphatase (Cet1) requires the presence of metal ion cofactors to catalyze its phosphohydrolase activity, the first step in the formation of the 5'-terminal cap structure of mRNAs. We have used endogenous tryptophan fluorescence studies to elucidate both the nature and the role(s) of the metal ions in the Cet1-mediated phosphohydrolase reaction. The association of Mg2+, Mn2+, and Co2+ ions with the enzyme resulted in a decrease in the intensity of the tryptophan emission spectrum. This decrease was then used to determine the apparent dissociation constants for these ions. Subsequent dual ligand titration experiments demonstrated that the metal ions bind to a common site, for which they compete. The kinetics of real-time metal ion binding to the Cet1 protein were also investigated, and the effects on RNA and nucleotide binding were evaluated. To provide additional insight into the relationship between Cet1 structure and metal ion binding, we correlated the effect of ion binding on protein structure using both circular dichroism and guanidium hydrochloride-induced denaturation as structural indicators. Our data indicate that binding of RNA, nucleotides, and metal ion cofactors does not lead to significant structural modifications of the Cet1 architecture. This suggests a model in which Cet1 possesses a preformed active site, and where major domain rearrangements are not required to form an active catalytic site. Finally, denaturation studies demonstrate that the metal ion cofactors can act by stabilizing the ground state binding of the phosphohydrolase substrate.
Collapse
Affiliation(s)
- Martin Bisaillon
- Département de Biochimie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada.
| | | |
Collapse
|