1
|
Loyer G, Reinharz V. Concurrent prediction of RNA secondary structures with pseudoknots and local 3D motifs in an integer programming framework. Bioinformatics 2024; 40:btae022. [PMID: 38230755 PMCID: PMC10868335 DOI: 10.1093/bioinformatics/btae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/30/2023] [Accepted: 01/12/2024] [Indexed: 01/18/2024] Open
Abstract
MOTIVATION The prediction of RNA structure canonical base pairs from a single sequence, especially pseudoknotted ones, remains challenging in a thermodynamic models that approximates the energy of the local 3D motifs joining canonical stems. It has become more and more apparent in recent years that the structural motifs in the loops, composed of noncanonical interactions, are essential for the final shape of the molecule enabling its multiple functions. Our capacity to predict accurate 3D structures is also limited when it comes to the organization of the large intricate network of interactions that form inside those loops. RESULTS We previously developed the integer programming framework RNA Motifs over Integer Programming (RNAMoIP) to reconcile RNA secondary structure and local 3D motif information available in databases. We further develop our model to now simultaneously predict the canonical base pairs (with pseudoknots) from base pair probability matrices with or without alignment. We benchmarked our new method over the all nonredundant RNAs below 150 nucleotides. We show that the joined prediction of canonical base pairs structure and local conserved motifs (i) improves the ratio of well-predicted interactions in the secondary structure, (ii) predicts well canonical and Wobble pairs at the location where motifs are inserted, (iii) is greatly improved with evolutionary information, and (iv) noncanonical motifs at kink-turn locations. AVAILABILITY AND IMPLEMENTATION The source code of the framework is available at https://gitlab.info.uqam.ca/cbe/RNAMoIP and an interactive web server at https://rnamoip.cbe.uqam.ca/.
Collapse
Affiliation(s)
- Gabriel Loyer
- Department of Computer Science, Université du Québec à Montréal, Montréal, QC H2X 3Y7, Canada
| | - Vladimir Reinharz
- Department of Computer Science, Université du Québec à Montréal, Montréal, QC H2X 3Y7, Canada
| |
Collapse
|
2
|
Liao C, Zhang F, Teng Z, Zhang G, Yang Y, Xu P, Huang X, Wang L, Yang F, Yang Z, Zhang X. Molecular characterization and expression analysis of selenoprotein W gene in rainbow trout (Oncorhynchus mykiss) with dietary selenium levels. Biometals 2022; 35:1359-1370. [PMID: 36261677 DOI: 10.1007/s10534-022-00451-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 09/21/2022] [Indexed: 12/14/2022]
Abstract
Selenium (Se) plays an essential role in the growth of fish and performs its physiological functions mainly through incorporation into selenoproteins. Our previous studies suggested that the selenoprotein W gene (selenow) is sensitive to changes in dietary Se in rainbow trout. However, the molecular characterization and tissue expression pattern of selenow are still unknown. Here, we revealed the molecular characterization, the tissue expression pattern of rainbow trout selenow and analyzed its response to dietary Se. The open reading frame (ORF) of the selenow gene was composed of 393 base pairs (bp) and encodes a 130-amino-acid protein. The 3' untranslated region (UTR) was 372 bp with a selenocysteine insertion sequence (SECIS) element. Remarkably, the rainbow trout selenow gene sequence was longer than those reported for mammals and most other fish. A β1-α1-β2-β3-β4-α2 pattern made up the secondary structure of SELENOW. Furthermore, multiple sequence alignment revealed that rainbow trout SELENOW showed a high level of identity with SELENOW from Salmo salar. In addition, the selenow gene was ubiquitously distributed in 13 tissues with various abundances and was predominantly expressed in muscle and brain. Interestingly, dietary Se significantly increased selenow mRNA expression in muscle. Our results highlight the vital role of selenow in rainbow trout muscle response to dietary Se levels and provide a theoretical basis for studies of selenow.
Collapse
Affiliation(s)
- Chenlei Liao
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Shizishan street 1, Wuhan, 430070, People's Republic of China
| | - Feng Zhang
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Shizishan street 1, Wuhan, 430070, People's Republic of China
| | - Zhenlei Teng
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Shizishan street 1, Wuhan, 430070, People's Republic of China
| | - Guirong Zhang
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Shizishan street 1, Wuhan, 430070, People's Republic of China
| | - Ying Yang
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Shizishan street 1, Wuhan, 430070, People's Republic of China
| | - Pengke Xu
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Shizishan street 1, Wuhan, 430070, People's Republic of China
| | - Xixuan Huang
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Shizishan street 1, Wuhan, 430070, People's Republic of China
| | - Li Wang
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Shizishan street 1, Wuhan, 430070, People's Republic of China
| | - Fan Yang
- Angel Yeast Co., Ltd, Yichang, 443003, People's Republic of China
| | - Zhilong Yang
- Angel Yeast Co., Ltd, Yichang, 443003, People's Republic of China
| | - Xuezhen Zhang
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Shizishan street 1, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
3
|
An RNA Triangle with Six Ribozyme Units Can Promote a Trans-Splicing Reaction through Trimerization of Unit Ribozyme Dimers. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11062583] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Ribozymes are catalytic RNAs that are attractive platforms for the construction of nanoscale objects with biological functions. We designed a dimeric form of the Tetrahymena group I ribozyme as a unit structure in which two ribozymes were connected in a tail-to-tail manner with a linker element. We introduced a kink-turn motif as a bent linker element of the ribozyme dimer to design a closed trimer with a triangular shape. The oligomeric states of the resulting ribozyme dimers (kUrds) were analyzed biochemically and observed directly by atomic force microscopy (AFM). Formation of kUrd oligomers also triggered trans-splicing reactions, which could be monitored with a reporter system to yield a fluorescent RNA aptamer as the trans-splicing product.
Collapse
|
4
|
Modulating Immune Response with Nucleic Acid Nanoparticles. Molecules 2019; 24:molecules24203740. [PMID: 31627288 PMCID: PMC6832290 DOI: 10.3390/molecules24203740] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 10/11/2019] [Indexed: 12/17/2022] Open
Abstract
Nano-objects made of nucleic acids are becoming promising materials in the biomedical field. This is, in part, due to DNA and RNA self-assembly properties that can be accurately computed to fabricate various complex nanoarchitectures of 2D and 3D shapes. The nanoparticles can be assembled from DNA, RNA, and chemically modified oligonucleotide mixtures which, in turn, influence their chemical and biophysical properties. Solid-phase synthesis allows large-scale production of individual oligonucleotide strands with batch-to-batch consistency and exceptional purity. All of these advantageous characteristics of nucleic-acid-based nanoparticles were known to be exceptionally useful as a nanoplatform for drug delivery purposes. Recently, several important discoveries have been achieved, demonstrating that nucleic acid nanoparticles (NANPs) can also be used to modulate the immune response of host cells. The purpose of this review is to briefly overview studies demonstrating architectural design principles of NANPs, as well as the ability of NANPs to control immune responses.
Collapse
|
5
|
Grabow WW, Andrews GE. On the nature and origin of biological information: The curious case of RNA. Biosystems 2019; 185:104031. [PMID: 31525398 DOI: 10.1016/j.biosystems.2019.104031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 11/18/2022]
Abstract
Biological information is most commonly thought of in terms of biology's Central Dogma where DNA is viewed as a linearized code used to synthesize proteins. Using DNA's chemical cousin, RNA, as a case study we consider how biological information operates outside the linear arrangement of its polymeric subunits. Much like individual pieces of a jigsaw puzzle, particular structures enable biomolecules to undergo precise molecular interactions with one another based on their respective shapes. By exploring the relationship between sequence and structure in RNA we argue that biological information finds its ultimate functional fulfillment in the three-dimensional structural arrangement of its atoms. We show how recurrent structural RNA motifs-operating at the tertiary level of a molecule-provide robust building blocks for the formation of new structural configurations and thereby convey the information required for emergent biological functions. We posit that these same RNA structures, guided by their respective thermodynamic stabilities, experience selective pressure to maintain particular three-dimensional architectures over and above pressures to maintain a particular sequence of nucleotides. Ultimately, this framework for understanding the nature of biological information provides a useful paradigm for understanding its origins and how biological information can result from chaotic prebiotic conditions.
Collapse
Affiliation(s)
- Wade W Grabow
- Department of Chemistry and Biochemistry, Seattle Pacific University, Seattle, WA, 918119-1997, USA.
| | - Grace E Andrews
- Department of Chemistry and Biochemistry, Seattle Pacific University, Seattle, WA, 918119-1997, USA
| |
Collapse
|
6
|
The yeast C/D box snoRNA U14 adopts a "weak" K-turn like conformation recognized by the Snu13 core protein in solution. Biochimie 2019; 164:70-82. [PMID: 30914254 DOI: 10.1016/j.biochi.2019.03.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/20/2019] [Indexed: 01/09/2023]
Abstract
Non-coding RNAs associate with proteins to form ribonucleoproteins (RNPs), such as ribosome, box C/D snoRNPs, H/ACA snoRNPs, ribonuclease P, telomerase and spliceosome to ensure cell viability. The assembly of these RNA-protein complexes relies on the ability of the RNA to adopt the correct bound conformation. K-turn motifs represent ubiquitous binding platform for proteins found in several cellular environment. This structural motif has an internal three-nucleotide bulge flanked on its 3' side by a G•A/A•G tandem pairs followed by one or two non-Watson-Crick pairs, and on its 5' side by a classical RNA helix. This peculiar arrangement induces a strong curvature of the phosphodiester backbone, which makes it conducive to multiple tertiary interactions. SNU13/Snu13p (Human/Yeast) binds specifically the U14 C/D box snoRNA K-turn sequence motif. This event is the prerequisite to promote the assembly of the RNP, which contains NOP58/Nop58 and NOP56/Nop56 core proteins and the 2'-O-methyl-transferase, Fibrillarin/Nop1p. The U14 small nucleolar RNA is a conserved non-coding RNA found in yeast and vertebrates required for the pre-rRNA maturation and ribose methylation. Here, we report the solution structure of the free U14 snoRNA K-turn motif (kt-U14) as determined by Nuclear Magnetic Resonance. We demonstrate that a major fraction of free kt-U14 adopts a pre-folded conformation similar to protein bound K-turn, even in the absence of divalent ions. In contrast to the kt-U4 or tyrS RNA, kt-U14 displays a sharp bent in the phosphodiester backbone. The U•U and G•A tandem base pairs are formed through weak hydrogen bonds. Finally, we show that the structure of kt-U14 is stabilized upon Snu13p binding. The structure of the free U14 RNA is the first reference example for the canonical motifs of the C/D box snoRNA family.
Collapse
|
7
|
Chen YL, Sutton JL, Pollack L. How the Conformations of an Internal Junction Contribute to Fold an RNA Domain. J Phys Chem B 2018; 122:11363-11372. [PMID: 30285445 DOI: 10.1021/acs.jpcb.8b07262] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Like proteins, some RNAs fold to compact structures. We can model functional RNAs as a series of short, rigid, base-paired elements, connected by non-base-paired nucleotides that serve as junctions. These connecting regions bend and twist, facilitating the formation of tertiary contacts that stabilize compact states. Here, we explore the roles of salt and junction sequence in determining the structures of a ubiquitous connector: an asymmetric internal loop. We focus on the J5/5a junction from the widely studied P4-P6 domain of the Tetrahymena ribozyme. Following the addition of magnesium ions to fold P4-P6, this junction bends dramatically, bringing the two halves of the RNA domain together for tertiary contact engagement. Using single-molecule fluorescence resonance energy transfer (smFRET), we examine the role of sequence and salt on model RNA constructs that contain these junction regions. We explore the wild-type J5/5a junction as well as two sequence variants. These junctions display distinct, salt-dependent conformations. Small-angle X-ray scattering (SAXS) measurements verify that these effects persist in the full-length P4-P6 domain. These measurements underscore the importance of junction sequence and interactions with ions in facilitating RNA folding.
Collapse
Affiliation(s)
- Yen-Lin Chen
- School of Applied and Engineering Physics , Cornell University , Ithaca , New York 14853 , United States
| | - Julie L Sutton
- School of Applied and Engineering Physics , Cornell University , Ithaca , New York 14853 , United States
| | - Lois Pollack
- School of Applied and Engineering Physics , Cornell University , Ithaca , New York 14853 , United States
| |
Collapse
|
8
|
Ge P, Islam S, Zhong C, Zhang S. De novo discovery of structural motifs in RNA 3D structures through clustering. Nucleic Acids Res 2018; 46:4783-4793. [PMID: 29534235 PMCID: PMC5961109 DOI: 10.1093/nar/gky139] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 02/09/2018] [Accepted: 02/16/2018] [Indexed: 11/16/2022] Open
Abstract
As functional components in three-dimensional (3D) conformation of an RNA, the RNA structural motifs provide an easy way to associate the molecular architectures with their biological mechanisms. In the past years, many computational tools have been developed to search motif instances by using the existing knowledge of well-studied families. Recently, with the rapidly increasing number of resolved RNA 3D structures, there is an urgent need to discover novel motifs with the newly presented information. In this work, we classify all the loops in non-redundant RNA 3D structures to detect plausible RNA structural motif families by using a clustering pipeline. Compared with other clustering approaches, our method has two benefits: first, the underlying alignment algorithm is tolerant to the variations in 3D structures. Second, sophisticated downstream analysis has been performed to ensure the clusters are valid and easily applied to further research. The final clustering results contain many interesting new variants of known motif families, such as GNAA tetraloop, kink-turn, sarcin-ricin and T-loop. We have also discovered potential novel functional motifs conserved in ribosomal RNA, sgRNA, SRP RNA, riboswitch and ribozyme.
Collapse
Affiliation(s)
- Ping Ge
- Department of Computer Science, University of Central Florida, Orlando, FL 32816, USA
| | - Shahidul Islam
- Department of Computer Science, University of Central Florida, Orlando, FL 32816, USA
| | - Cuncong Zhong
- Department of Electrical Engineering and Computer Science, University of Kansas, Lawrence, KS 66045, USA
| | - Shaojie Zhang
- Department of Computer Science, University of Central Florida, Orlando, FL 32816, USA
| |
Collapse
|
9
|
Šponer J, Bussi G, Krepl M, Banáš P, Bottaro S, Cunha RA, Gil-Ley A, Pinamonti G, Poblete S, Jurečka P, Walter NG, Otyepka M. RNA Structural Dynamics As Captured by Molecular Simulations: A Comprehensive Overview. Chem Rev 2018; 118:4177-4338. [PMID: 29297679 PMCID: PMC5920944 DOI: 10.1021/acs.chemrev.7b00427] [Citation(s) in RCA: 366] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Indexed: 12/14/2022]
Abstract
With both catalytic and genetic functions, ribonucleic acid (RNA) is perhaps the most pluripotent chemical species in molecular biology, and its functions are intimately linked to its structure and dynamics. Computer simulations, and in particular atomistic molecular dynamics (MD), allow structural dynamics of biomolecular systems to be investigated with unprecedented temporal and spatial resolution. We here provide a comprehensive overview of the fast-developing field of MD simulations of RNA molecules. We begin with an in-depth, evaluatory coverage of the most fundamental methodological challenges that set the basis for the future development of the field, in particular, the current developments and inherent physical limitations of the atomistic force fields and the recent advances in a broad spectrum of enhanced sampling methods. We also survey the closely related field of coarse-grained modeling of RNA systems. After dealing with the methodological aspects, we provide an exhaustive overview of the available RNA simulation literature, ranging from studies of the smallest RNA oligonucleotides to investigations of the entire ribosome. Our review encompasses tetranucleotides, tetraloops, a number of small RNA motifs, A-helix RNA, kissing-loop complexes, the TAR RNA element, the decoding center and other important regions of the ribosome, as well as assorted others systems. Extended sections are devoted to RNA-ion interactions, ribozymes, riboswitches, and protein/RNA complexes. Our overview is written for as broad of an audience as possible, aiming to provide a much-needed interdisciplinary bridge between computation and experiment, together with a perspective on the future of the field.
Collapse
Affiliation(s)
- Jiří Šponer
- Institute of Biophysics of the Czech Academy of Sciences , Kralovopolska 135 , Brno 612 65 , Czech Republic
| | - Giovanni Bussi
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Miroslav Krepl
- Institute of Biophysics of the Czech Academy of Sciences , Kralovopolska 135 , Brno 612 65 , Czech Republic
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| | - Pavel Banáš
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| | - Sandro Bottaro
- Structural Biology and NMR Laboratory, Department of Biology , University of Copenhagen , Copenhagen 2200 , Denmark
| | - Richard A Cunha
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Alejandro Gil-Ley
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Giovanni Pinamonti
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Simón Poblete
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Petr Jurečka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| | - Nils G Walter
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| |
Collapse
|
10
|
Bayrak CS, Kim N, Schlick T. Using sequence signatures and kink-turn motifs in knowledge-based statistical potentials for RNA structure prediction. Nucleic Acids Res 2017; 45:5414-5422. [PMID: 28158755 PMCID: PMC5435971 DOI: 10.1093/nar/gkx045] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 01/22/2017] [Indexed: 12/15/2022] Open
Abstract
Kink turns are widely occurring motifs in RNA, located in internal loops and associated with many biological functions including translation, regulation and splicing. The associated sequence pattern, a 3-nt bulge and G-A, A-G base-pairs, generates an angle of ∼50° along the helical axis due to A-minor interactions. The conserved sequence and distinct secondary structures of kink-turns (k-turn) suggest computational folding rules to predict k-turn-like topologies from sequence. Here, we annotate observed k-turn motifs within a non-redundant RNA dataset based on sequence signatures and geometrical features, analyze bending and torsion angles, and determine distinct knowledge-based potentials with and without k-turn motifs. We apply these scoring potentials to our RAGTOP (RNA-As-Graph-Topologies) graph sampling protocol to construct and sample coarse-grained graph representations of RNAs from a given secondary structure. We present graph-sampling results for 35 RNAs, including 12 k-turn and 23 non k-turn internal loops, and compare the results to solved structures and to RAGTOP results without special k-turn potentials. Significant improvements are observed with the updated scoring potentials compared to the k-turn-free potentials. Because k-turns represent a classic example of sequence/structure motif, our study suggests that other such motifs with sequence signatures and unique geometrical features can similarly be utilized for RNA structure prediction and design.
Collapse
Affiliation(s)
- Cigdem Sevim Bayrak
- Department of Chemistry and Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012, USA
| | - Namhee Kim
- Department of Chemistry and Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012, USA
| | - Tamar Schlick
- Department of Chemistry and Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012, USA
| |
Collapse
|
11
|
Bui MN, Brittany Johnson M, Viard M, Satterwhite E, Martins AN, Li Z, Marriott I, Afonin KA, Khisamutdinov EF. Versatile RNA tetra-U helix linking motif as a toolkit for nucleic acid nanotechnology. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2017; 13:1137-1146. [PMID: 28064006 PMCID: PMC6637421 DOI: 10.1016/j.nano.2016.12.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 12/20/2016] [Accepted: 12/23/2016] [Indexed: 12/21/2022]
Abstract
RNA nanotechnology employs synthetically modified ribonucleic acid (RNA) to engineer highly stable nanostructures in one, two, and three dimensions for medical applications. Despite the tremendous advantages in RNA nanotechnology, unmodified RNA itself is fragile and prone to enzymatic degradation. In contrast to use traditionally modified RNA strands e.g. 2'-fluorine, 2'-amine, 2'-methyl, we studied the effect of RNA/DNA hybrid approach utilizing a computer-assisted RNA tetra-uracil (tetra-U) motif as a toolkit to address questions related to assembly efficiency, versatility, stability, and the production costs of hybrid RNA/DNA nanoparticles. The tetra-U RNA motif was implemented to construct four functional triangles using RNA, DNA and RNA/DNA mixtures, resulting in fine-tunable enzymatic and thermodynamic stabilities, immunostimulatory activity and RNAi capability. Moreover, the tetra-U toolkit has great potential in the fabrication of rectangular, pentagonal, and hexagonal NPs, representing the power of simplicity of RNA/DNA approach for RNA nanotechnology and nanomedicine community.
Collapse
Affiliation(s)
- My N Bui
- Department of Chemistry, Ball State University, Muncie, IN, USA
| | - M Brittany Johnson
- Department of Biology, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Mathias Viard
- Basic Science Program, Leidos Biomedical Research, Inc., RNA Biology Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Emily Satterwhite
- Nanoscale Science Program, University of North Carolina at Charlotte, The Center for Biomedical Engineering and Science, Charlotte, NC 28223, USA
| | - Angelica N Martins
- Department of Biology, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Zhihai Li
- Department of Chemistry, Ball State University, Muncie, IN, USA
| | - Ian Marriott
- Department of Biology, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Kirill A Afonin
- Nanoscale Science Program, University of North Carolina at Charlotte, The Center for Biomedical Engineering and Science, Charlotte, NC 28223, USA
| | | |
Collapse
|
12
|
Dong H, Chen W, Sun C, Sun J, Wang Y, Xie C, Fu Q, Zhu J, Ye J. Identification, characterization of selenoprotein W and its mRNA expression patterns in response to somatostatin 14, cysteamine hydrochloride, 17β-estradiol and a binary mixture of 17β-estradiol and cysteamine hydrochloride in topmouth culter (Erythroculter ilishaeformis). FISH PHYSIOLOGY AND BIOCHEMISTRY 2017; 43:115-126. [PMID: 27506211 DOI: 10.1007/s10695-016-0272-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 08/01/2016] [Indexed: 06/06/2023]
Abstract
In this study, a selenoprotein W cDNA was cloned from topmouth culter (Erythroculter ilishaeformis), and it was designated as EISelW. The EISelW open reading frame was composed of 261 base pairs (bp), encoding 86-amino-acid protein. The 5' untranslated region (UTR) consisted of 104 bp, and the 3'-UTR was composed of 365 bp. A selenocysteine insertion sequence (SECIS) element was found in the 3'-UTR of EISelW mRNA. The SECIS element was classified as form II because of a small additional apical loop presented in SECIS element of EISelW mRNA. Bioinformatic approaches showed that the secondary structure of EISelW was a β1-α1-β2-β3-β4-α2 pattern from amino-terminal to carboxy-terminal. Real-time PCR analysis of EISelW mRNAs expression in 17 tissues showed that the EISelW mRNA was predominantly expressed in liver, ovary, pituitary, various regions of the brain, spinal cord and head kidney. Study of intraperitoneal injection showed that the levels of EISelW mRNA in brain, liver, ovary and spleen were regulated by somatostatin 14 (SS14), 17β-estradiol (E2), cysteamine hydrochloride (CSH) and a binary mixture of E2 and CSH, dependent on the dosage. These results suggest that E2, SS14 and CSH status may affect tissues of selenium metabolism by regulating the expression of SelW mRNA, as SelW plays a central role in selenium metabolism.
Collapse
Affiliation(s)
- Haiyan Dong
- Department of Basic Medical Science, Huzhou University, 759 Erhuan East Road, Huzhou, 313000, Zhejiang, People's Republic of China.
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, Key Laboratory of Aquatic Animal Genetic Breeding and Nutrition of Chinese Academy of Fishery Sciences, 759 Erhuan East Road, Huzhou, 313000, Zhejiang, People's Republic of China.
| | - Wenbo Chen
- Department of Biology, Institute of Resources and Environment, Henan Polytechnic University, Jiaozuo, 454000, Henan, People's Republic of China
| | - Chao Sun
- Department of Basic Medical Science, Huzhou University, 759 Erhuan East Road, Huzhou, 313000, Zhejiang, People's Republic of China
| | - Jianwei Sun
- Department of Basic Medical Science, Huzhou University, 759 Erhuan East Road, Huzhou, 313000, Zhejiang, People's Republic of China
| | - Yanlin Wang
- Department of Basic Medical Science, Huzhou University, 759 Erhuan East Road, Huzhou, 313000, Zhejiang, People's Republic of China
| | - Chao Xie
- Department of Basic Medical Science, Huzhou University, 759 Erhuan East Road, Huzhou, 313000, Zhejiang, People's Republic of China
| | - Qianwen Fu
- Department of Basic Medical Science, Huzhou University, 759 Erhuan East Road, Huzhou, 313000, Zhejiang, People's Republic of China
| | - Junjie Zhu
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, Key Laboratory of Aquatic Animal Genetic Breeding and Nutrition of Chinese Academy of Fishery Sciences, 759 Erhuan East Road, Huzhou, 313000, Zhejiang, People's Republic of China
| | - Jinyun Ye
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, Key Laboratory of Aquatic Animal Genetic Breeding and Nutrition of Chinese Academy of Fishery Sciences, 759 Erhuan East Road, Huzhou, 313000, Zhejiang, People's Republic of China.
| |
Collapse
|
13
|
Shi X, Huang L, Lilley DMJ, Harbury PB, Herschlag D. The solution structural ensembles of RNA kink-turn motifs and their protein complexes. Nat Chem Biol 2016; 12:146-52. [PMID: 26727239 PMCID: PMC4755865 DOI: 10.1038/nchembio.1997] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 11/04/2015] [Indexed: 12/22/2022]
Abstract
With the growing number of crystal structures of RNA and RNA-protein complexes, a critical next step is understanding the dynamic solution behavior of these entities in terms of conformational ensembles and energy landscapes. To this end, we have used X-ray scattering interferometry (XSI) to probe the ubiquitous RNA kink-turn motif and its complexes with the canonical kink-turn binding protein L7Ae. XSI revealed that the folded kink-turn is best described as a restricted conformational ensemble. The ions present in solution alter the nature of this ensemble, and protein binding can perturb the kink-turn ensemble without collapsing it to a unique state. This study demonstrates how XSI can reveal structural and ensemble properties of RNAs and RNA-protein complexes and uncovers the behavior of an important RNA-protein motif. This type of information will be necessary to understand, predict and engineer the behavior and function of RNAs and their protein complexes.
Collapse
Affiliation(s)
- Xuesong Shi
- Department of Biochemistry, Stanford University, Stanford, California, USA
| | - Lin Huang
- Nucleic Acid Structure Research Group, School of Life Sciences, University of Dundee, Dundee, UK
| | - David M J Lilley
- Nucleic Acid Structure Research Group, School of Life Sciences, University of Dundee, Dundee, UK
| | - Pehr B Harbury
- Department of Biochemistry, Stanford University, Stanford, California, USA
- ChEM-H, Stanford University, Stanford, California, USA
| | - Daniel Herschlag
- Department of Biochemistry, Stanford University, Stanford, California, USA
- ChEM-H, Stanford University, Stanford, California, USA
- Department of Chemistry, Stanford University, Stanford, California, USA
- Department of Chemical Engineering, Stanford University, Stanford, California, USA
| |
Collapse
|
14
|
Huang L, Lilley DMJ. The Kink Turn, a Key Architectural Element in RNA Structure. J Mol Biol 2016; 428:790-801. [PMID: 26522935 PMCID: PMC5061560 DOI: 10.1016/j.jmb.2015.09.026] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 09/24/2015] [Indexed: 01/03/2023]
Abstract
Kink turns (k-turns) are widespread structural elements that introduce an axial bend into duplex RNA with an included angle of 50°. These mediate key tertiary interactions and bind specific proteins including members of the L7Ae family. The standard k-turn comprises a three-nucleotide bulge followed by G·A and A·G pairs. The RNA kinks by an association of the two minor grooves, stabilized by the formation of a number of key cross-strand hydrogen bonds mostly involving the adenine bases of the G·A and A·G pairs. The k-turns may be divided into two conformational classes, depending on the receptor for one of these hydrogen bonds. k-turns become folded by one of three different processes. Some, but not all, k-turns become folded in the presence of metal ions. Whether or not a given k-turn is folded under these conditions is determined by its sequence. We present a set of rules for the prediction of folding properties and the structure adopted on local sequence.
Collapse
Affiliation(s)
- Lin Huang
- Cancer Research UK Nucleic Acid Structure Research Group, MSI/WTB Complex, The University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - David M J Lilley
- Cancer Research UK Nucleic Acid Structure Research Group, MSI/WTB Complex, The University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom.
| |
Collapse
|
15
|
Abstract
SIGNIFICANCE Selenium is an essential trace element that is incorporated in the small but vital family of proteins, namely the selenoproteins, as the selenocysteine amino acid residue. In humans, 25 selenoprotein genes have been characterized. The most remarkable trait of selenoprotein biosynthesis is the cotranslational insertion of selenocysteine by the recoding of a UGA codon, normally decoded as a stop signal. RECENT ADVANCES In eukaryotes, a set of dedicated cis- and trans-acting factors have been identified as well as a variety of regulatory mechanisms, factors, or elements that control the selenoprotein expression at the level of the UGA-selenocysteine recoding process, offering a fascinating playground in the field of translational control. It appeared that the central players are two RNA molecules: the selenocysteine insertion sequence (SECIS) element within selenoprotein mRNA and the selenocysteine-tRNA([Ser]Sec); and their interacting partners. CRITICAL ISSUES After a couple of decades, despite many advances in the field and the discovery of many essential and regulatory components, the precise mechanism of UGA-selenocysteine recoding remains elusive and more complex than anticipated, with many layers of control. This review offers an update of selenoproteome biosynthesis and regulation in eukaryotes. FUTURE DIRECTIONS The regulation of selenoproteins in response to a variety of pathophysiological conditions and cellular stressors, including selenium levels, oxidative stress, replicative senescence, or cancer, awaits further detailed investigation. Clearly, the efficiency of UGA-selenocysteine recoding is the limiting stage of selenoprotein synthesis. The sequence of events leading Sec-tRNA([Ser]Sec) delivery to ribosomal A site awaits further analysis, notably at the level of a three-dimensional structure.
Collapse
Affiliation(s)
- Anne-Laure Bulteau
- Laboratoire de Chimie Analytique Bio-Inorganique et Environnement, IPREM , CNRS/UPPA, UMR5254, Pau, France
| | - Laurent Chavatte
- Laboratoire de Chimie Analytique Bio-Inorganique et Environnement, IPREM , CNRS/UPPA, UMR5254, Pau, France
| |
Collapse
|
16
|
Mo D, Raabe CA, Reinhardt R, Brosius J, Rozhdestvensky TS. Alternative processing as evolutionary mechanism for the origin of novel nonprotein coding RNAs. Genome Biol Evol 2014; 5:2061-71. [PMID: 24132753 PMCID: PMC3845636 DOI: 10.1093/gbe/evt155] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The evolution of new genes can ensue through either gene duplication and the neofunctionalization of one of the copies or the formation of a de novo gene from hitherto nonfunctional, neutrally evolving intergenic or intronic genomic sequences. Only very rarely are entire genes created de novo. Mostly, nonfunctional sequences are coopted as novel parts of existing genes, such as in the process of exonization whereby introns become exons through changes in splicing. Here, we report a case in which a novel nonprotein coding RNA evolved by intron-sequence recruitment into its structure. cDNAs derived from rat brain small RNAs, revealed a novel small nucleolar RNA (snoRNA) originating from one of the Snord115 copies in the rat Prader–Willi syndrome locus. We suggest that a single-point substitution in the Snord115 region led to the expression of a longer snoRNA variant, designated as L-Snord115. Cell culture and footprinting experiments confirmed that a single nucleotide substitution at Snord115 position 67 destabilized the kink-turn motif within the canonical snoRNA, while distal intronic sequences provided an alternate D-box region. The exapted sequence displays putative base pairing to 28S rRNA and mRNA targets.
Collapse
Affiliation(s)
- Dingding Mo
- Institute of Experimental Pathology, ZMBE, University of Muenster, Muenster, Germany
| | | | | | | | | |
Collapse
|
17
|
Labunskyy VM, Hatfield DL, Gladyshev VN. Selenoproteins: molecular pathways and physiological roles. Physiol Rev 2014; 94:739-77. [PMID: 24987004 DOI: 10.1152/physrev.00039.2013] [Citation(s) in RCA: 864] [Impact Index Per Article: 78.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Selenium is an essential micronutrient with important functions in human health and relevance to several pathophysiological conditions. The biological effects of selenium are largely mediated by selenium-containing proteins (selenoproteins) that are present in all three domains of life. Although selenoproteins represent diverse molecular pathways and biological functions, all these proteins contain at least one selenocysteine (Sec), a selenium-containing amino acid, and most serve oxidoreductase functions. Sec is cotranslationally inserted into nascent polypeptide chains in response to the UGA codon, whose normal function is to terminate translation. To decode UGA as Sec, organisms evolved the Sec insertion machinery that allows incorporation of this amino acid at specific UGA codons in a process requiring a cis-acting Sec insertion sequence (SECIS) element. Although the basic mechanisms of Sec synthesis and insertion into proteins in both prokaryotes and eukaryotes have been studied in great detail, the identity and functions of many selenoproteins remain largely unknown. In the last decade, there has been significant progress in characterizing selenoproteins and selenoproteomes and understanding their physiological functions. We discuss current knowledge about how these unique proteins perform their functions at the molecular level and highlight new insights into the roles that selenoproteins play in human health.
Collapse
Affiliation(s)
- Vyacheslav M Labunskyy
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts; and Molecular Biology of Selenium Section, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Dolph L Hatfield
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts; and Molecular Biology of Selenium Section, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts; and Molecular Biology of Selenium Section, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
18
|
Muslimov IA, Tuzhilin A, Tang TH, Wong RKS, Bianchi R, Tiedge H. Interactions of noncanonical motifs with hnRNP A2 promote activity-dependent RNA transport in neurons. ACTA ACUST UNITED AC 2014; 205:493-510. [PMID: 24841565 PMCID: PMC4033767 DOI: 10.1083/jcb.201310045] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ca2+-dependent RNA–protein interactions enable activity-inducible RNA transport in dendrites. A key determinant of neuronal functionality and plasticity is the targeted delivery of select ribonucleic acids (RNAs) to synaptodendritic sites of protein synthesis. In this paper, we ask how dendritic RNA transport can be regulated in a manner that is informed by the cell’s activity status. We describe a molecular mechanism in which inducible interactions of noncanonical RNA motif structures with targeting factor heterogeneous nuclear ribonucleoprotein (hnRNP) A2 form the basis for activity-dependent dendritic RNA targeting. High-affinity interactions between hnRNP A2 and conditional GA-type RNA targeting motifs are critically dependent on elevated Ca2+ levels in a narrow concentration range. Dendritic transport of messenger RNAs that carry such GA motifs is inducible by influx of Ca2+ through voltage-dependent calcium channels upon β-adrenergic receptor activation. The combined data establish a functional correspondence between Ca2+-dependent RNA–protein interactions and activity-inducible RNA transport in dendrites. They also indicate a role of genomic retroposition in the phylogenetic development of RNA targeting competence.
Collapse
Affiliation(s)
- Ilham A Muslimov
- The Robert F. Furchgott Center for Neural and Behavioral Science, Department of Physiology and Pharmacology, and Department of Neurology, State University of New York Downstate Medical Center, Brooklyn, NY 11203The Robert F. Furchgott Center for Neural and Behavioral Science, Department of Physiology and Pharmacology, and Department of Neurology, State University of New York Downstate Medical Center, Brooklyn, NY 11203
| | - Aliya Tuzhilin
- The Robert F. Furchgott Center for Neural and Behavioral Science, Department of Physiology and Pharmacology, and Department of Neurology, State University of New York Downstate Medical Center, Brooklyn, NY 11203The Robert F. Furchgott Center for Neural and Behavioral Science, Department of Physiology and Pharmacology, and Department of Neurology, State University of New York Downstate Medical Center, Brooklyn, NY 11203
| | - Thean Hock Tang
- Advanced Medical and Dental Institute, Universiti Sains Malaysi, 13200 Kepala Batas, Penang, Malaysia
| | - Robert K S Wong
- The Robert F. Furchgott Center for Neural and Behavioral Science, Department of Physiology and Pharmacology, and Department of Neurology, State University of New York Downstate Medical Center, Brooklyn, NY 11203The Robert F. Furchgott Center for Neural and Behavioral Science, Department of Physiology and Pharmacology, and Department of Neurology, State University of New York Downstate Medical Center, Brooklyn, NY 11203The Robert F. Furchgott Center for Neural and Behavioral Science, Department of Physiology and Pharmacology, and Department of Neurology, State University of New York Downstate Medical Center, Brooklyn, NY 11203
| | - Riccardo Bianchi
- The Robert F. Furchgott Center for Neural and Behavioral Science, Department of Physiology and Pharmacology, and Department of Neurology, State University of New York Downstate Medical Center, Brooklyn, NY 11203The Robert F. Furchgott Center for Neural and Behavioral Science, Department of Physiology and Pharmacology, and Department of Neurology, State University of New York Downstate Medical Center, Brooklyn, NY 11203
| | - Henri Tiedge
- The Robert F. Furchgott Center for Neural and Behavioral Science, Department of Physiology and Pharmacology, and Department of Neurology, State University of New York Downstate Medical Center, Brooklyn, NY 11203The Robert F. Furchgott Center for Neural and Behavioral Science, Department of Physiology and Pharmacology, and Department of Neurology, State University of New York Downstate Medical Center, Brooklyn, NY 11203The Robert F. Furchgott Center for Neural and Behavioral Science, Department of Physiology and Pharmacology, and Department of Neurology, State University of New York Downstate Medical Center, Brooklyn, NY 11203
| |
Collapse
|
19
|
The K-turn motif in riboswitches and other RNA species. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:995-1004. [PMID: 24798078 PMCID: PMC4316175 DOI: 10.1016/j.bbagrm.2014.04.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 04/15/2014] [Accepted: 04/25/2014] [Indexed: 01/12/2023]
Abstract
The kink turn is a widespread structure motif that introduces a tight bend into the axis of duplex RNA. This generally functions to mediate tertiary interactions, and to serve as a specific protein binding site. K-turns or closely related structures are found in at least seven different riboswitch structures, where they function as key architectural elements that help generate the ligand binding pocket. This article is part of a Special Issue entitled: Riboswitches.
Collapse
|
20
|
Daldrop P, Lilley DM. The plasticity of a structural motif in RNA: structural polymorphism of a kink turn as a function of its environment. RNA (NEW YORK, N.Y.) 2013; 19:357-64. [PMID: 23325110 PMCID: PMC3677246 DOI: 10.1261/rna.036657.112] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The k-turn is a widespread structural motif that introduces a tight kink into the helical axis of double-stranded RNA. The adenine bases of consecutive G•A pairs are directed toward the minor groove of the opposing helix, hydrogen bonding in a typical A-minor interaction. We show here that the available structures of k-turns divide into two classes, depending on whether N3 or N1 of the adenine at the 2b position accepts a hydrogen bond from the O2' at the -1n position. There is a coordinated structural change involving a number of hydrogen bonds between the two classes. We show here that Kt-7 can adopt either the N3 or N1 structures depending on environment. While it has the N1 structure in the ribosome, on engineering it into the SAM-I riboswitch, it changes to the N3 structure, resulting in a significant alteration in the trajectory of the helical arms.
Collapse
|
21
|
Daldrop P, Masquida B, Lilley DMJ. The functional exchangeability of pk- and k-turns in RNA structure. RNA Biol 2013; 10:445-52. [PMID: 23364423 PMCID: PMC3672288 DOI: 10.4161/rna.23673] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Ribonuclease P RNA requires a sharply kinked RNA helix to make a loop-receptor interaction that creates the binding site for the substrate. In some forms of the ribozyme, this is accomplished by a k-turn, while others have a different element called the pk-turn. The structure of the pk-turn in RNase P of Thermotoga maritima is globally very similar to a k-turn, but lacks all the standard features of that structure, including long-range hydrogen bonds between the two helical arms. We show here that in an isolated RNA duplex, the pk-turn fails to adopt a tightly kinked structure, but rather is a flexible element. This suggests that the tertiary contacts of RNase P assist its folding into the required kinked structure. We find that we can replace the k-turn of the SAM-I riboswitch with the pk-turn, such that the resulting RNA retains its ability to bind SAM, although with lower affinity. We also find that we can replace the pk-turn of T. maritima RNase P with a standard k-turn (in either orientation) with retention of ribozyme activity. Thus, although the pk-turn cannot intrinsically fold into the kinked structure, it can be induced to fold correctly in context. And the pk-turn and k-turns can substitute functionally for one another.
Collapse
Affiliation(s)
- Peter Daldrop
- Cancer Research UK Nucleic Acid Structure Research Group; MSI/WTB Complex; The University of Dundee; Dundee, UK
| | | | | |
Collapse
|
22
|
Wang J, Fessl T, Schroeder KT, Ouellet J, Liu Y, Freeman ADJ, Lilley DMJ. Single-molecule observation of the induction of k-turn RNA structure on binding L7Ae protein. Biophys J 2012; 103:2541-8. [PMID: 23260056 DOI: 10.1016/j.bpj.2012.11.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 11/02/2012] [Accepted: 11/06/2012] [Indexed: 10/27/2022] Open
Abstract
The k-turn is a commonly occurring structural motif that introduces a tight kink into duplex RNA. In free solution, it can exist in an extended form, or by folding into the kinked structure. Binding of proteins including the L7Ae family can induce the formation of the kinked geometry, raising the question of whether this occurs by passive selection of the kinked structure, or a more active process in which the protein manipulates the RNA structure. We have devised a single-molecule experiment whereby immobilized L7Ae protein binds Cy3-Cy5-labeled RNA from free solution. We find that all bound RNA is in the kinked geometry, with no evidence for transitions to an extended form at the millisecond timescale of the camera. Furthermore, real-time binding experiments provide no evidence for a more extended intermediate even at the earliest times, at a time resolution of 16 ms. The data support a passive conformational selection model by which the protein selects a fraction of RNA that is already in the kinked conformation, thereby drawing the equilibrium into this form.
Collapse
Affiliation(s)
- Jia Wang
- Cancer Research UK Nucleic Acid Structure Research Group, The University of Dundee, Dundee, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
23
|
Grabow WW, Zhuang Z, Swank ZN, Shea JE, Jaeger L. The right angle (RA) motif: a prevalent ribosomal RNA structural pattern found in group I introns. J Mol Biol 2012; 424:54-67. [PMID: 22999957 DOI: 10.1016/j.jmb.2012.09.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 09/11/2012] [Accepted: 09/12/2012] [Indexed: 12/16/2022]
Abstract
The right angle (RA) motif, previously identified in the ribosome and used as a structural module for nano-construction, is a recurrent structural motif of 13 nucleotides that establishes a 90° bend between two adjacent helices. Comparative sequence analysis was used to explore the sequence space of the RA motif within ribosomal RNAs in order to define its canonical sequence space signature. We investigated the sequence constraints associated with the RA signature using several artificial self-assembly systems. Thermodynamic and topological investigations of sequence variants associated with the RA motif in both minimal and expanded structural contexts reveal that the presence of a helix at the 3' end of the RA motif increases the thermodynamic stability and rigidity of the resulting three-helix junction domain. A search for the RA in naturally occurring RNAs as well as its experimental characterization led to the identification of the RA in groups IC1 and ID intron ribozymes, where it is suggested to play an integral role in stabilizing peripheral structural domains. The present study exemplifies the need of empirical analysis of RNA structural motifs for facilitating the rational design and structure prediction of RNAs.
Collapse
Affiliation(s)
- Wade W Grabow
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106-9510, USA
| | | | | | | | | |
Collapse
|
24
|
Lilley DMJ. The structure and folding of kink turns in RNA. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 3:797-805. [PMID: 22976946 DOI: 10.1002/wrna.1136] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The kink turn (k-turn) is a widespread structural motif that introduces a tight kink into the axis of double-stranded RNA, with an included angle ∼60°. A standard k-turn comprises a three-nucleotide bulge followed on the 3' side by a G•A pair, an A•G pair, and usually further non-Watson-Crick pairs. The kinked conformation may be stabilized by three processes. These are the addition of metal ions, the binding of proteins such as the L7Ae family, and by the formation of tertiary interactions. The structure is characterized by specific A-minor interactions with the adenine nucleobases of the G•A pairs, and some very well-conserved hydrogen bonds involving 2'-hydroxyl groups. We can identify two classes of k-turns, that differ in the manner of the hydrogen bonding at the adenine of the bulge-distal G•A pair.
Collapse
Affiliation(s)
- David M J Lilley
- Cancer Research UK Nucleic Acid Structure Research Group, MSI/WTB Complex, The University of Dundee, Dundee, UK.
| |
Collapse
|
25
|
Schroeder KT, Daldrop P, McPhee SA, Lilley DM. Structure and folding of a rare, natural kink turn in RNA with an A*A pair at the 2b*2n position. RNA (NEW YORK, N.Y.) 2012; 18:1257-66. [PMID: 22539525 PMCID: PMC3358647 DOI: 10.1261/rna.032409.112] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 03/28/2012] [Indexed: 05/20/2023]
Abstract
The kink turn (k-turn) is a frequently occurring motif, comprising a bulge followed by G•A and A•G pairs that introduces a sharp axial bend in duplex RNA. Natural k-turn sequences exhibit significant departures from the consensus, including the A•G pairs that form critical interactions stabilizing the core of the structure. Kt-23 found in the small ribosomal subunit differs from the consensus in many organisms, particularly in the second A•G pair distal to the bulge (2b•2n). Analysis of many Kt-23 sequences shows that the frequency of occurrence at the 2n position (i.e., on the nonbulged strand, normally G in standard k-turns) is U>C>G>A. Less than 1% of sequences have A at the 2n position, but one such example occurs in Thelohania solenopsae Kt-23. This sequence folds only weakly in the presence of Mg²⁺ ions but is induced to fold normally by the binding of L7Ae protein. Introduction of this sequence into the SAM-I riboswitch resulted in normal binding of SAM ligand, indicating that tertiary RNA contacts have resulted in k-turn folding. X-ray crystallography shows that the T. solenopsae Kt-23 adopts a standard k-turn geometry, making the key, conserved hydrogen bonds in the core and orienting the 1n (of the bulge-proximal A•G pair) and 2b adenine nucleobases in position facing the opposing minor groove. The 2b and 2n adenine nucleobases are not directly hydrogen bonded, but each makes hydrogen bonds to their opposing strands.
Collapse
Affiliation(s)
- Kersten T. Schroeder
- Cancer Research UK Nucleic Acid Structure Research Group, MSI/WTB Complex, The University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Peter Daldrop
- Cancer Research UK Nucleic Acid Structure Research Group, MSI/WTB Complex, The University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Scott A. McPhee
- Cancer Research UK Nucleic Acid Structure Research Group, MSI/WTB Complex, The University of Dundee, Dundee DD1 5EH, United Kingdom
| | - David M.J. Lilley
- Cancer Research UK Nucleic Acid Structure Research Group, MSI/WTB Complex, The University of Dundee, Dundee DD1 5EH, United Kingdom
- Corresponding author.E-mail .
| |
Collapse
|
26
|
Schroeder KT, Daldrop P, Lilley DMJ. RNA tertiary interactions in a riboswitch stabilize the structure of a kink turn. Structure 2011; 19:1233-40. [PMID: 21893284 PMCID: PMC3651934 DOI: 10.1016/j.str.2011.07.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 06/26/2011] [Accepted: 07/02/2011] [Indexed: 01/31/2023]
Abstract
The kink turn is a widespread RNA motif that introduces an acute kink into the axis of duplex RNA, typically comprising a bulge followed by a G⋅A and A⋅G pairs. The kinked conformation is stabilized by metal ions, or the binding of proteins including L7Ae. We now demonstrate a third mechanism for the stabilization of k-turn structure, involving tertiary interactions within a larger RNA structure. The SAM-I riboswitch contains an essential standard k-turn sequence that kinks a helix so that its terminal loop can make a long-range interaction. We find that some sequence variations in the k-turn within the riboswitch do not prevent SAM binding, despite preventing the folding of the k-turn in isolation. Furthermore, two crystal structures show that the sequence-variant k-turns are conventionally folded within the riboswitch. This study shows that the folded structure of the k-turn can be stabilized by tertiary interactions within a larger RNA structure.
Collapse
Affiliation(s)
- Kersten T Schroeder
- Cancer Research UK Nucleic Acid Structure Research Group, MSI/WTB Complex, The University of Dundee, Dundee DD1 5EH, UK
| | | | | |
Collapse
|
27
|
Forconi M, Schwans JP, Porecha RH, Sengupta RN, Piccirilli JA, Herschlag D. 2'-Fluoro substituents can mimic native 2'-hydroxyls within structured RNA. ACTA ACUST UNITED AC 2011; 18:949-54. [PMID: 21867910 DOI: 10.1016/j.chembiol.2011.07.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 06/20/2011] [Accepted: 07/06/2011] [Indexed: 10/17/2022]
Abstract
The ability of fluorine in a C-F bond to act as a hydrogen bond acceptor is controversial. To test such ability in complex RNA macromolecules, we have replaced native 2'-OH groups with 2'-F and 2'-H groups in two related systems, the Tetrahymena group I ribozyme and the ΔC209 P4-P6 RNA domain. In three cases the introduced 2'-F mimics the native 2'-OH group, suggesting that the fluorine atom can accept a hydrogen bond. In each of these cases the native hydroxyl group interacts with a purine exocyclic amine. Our results give insight about the properties of organofluorine and suggest a possible general biochemical signature for tertiary interactions between 2'-hydroxyl groups and exocyclic amino groups within RNA.
Collapse
Affiliation(s)
- Marcello Forconi
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
| | | | | | | | | | | |
Collapse
|
28
|
Réblová K, Šponer JE, Špačková N, Beššeová I, Šponer J. A-minor tertiary interactions in RNA kink-turns. Molecular dynamics and quantum chemical analysis. J Phys Chem B 2011; 115:13897-910. [PMID: 21999672 DOI: 10.1021/jp2065584] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The RNA kink-turn is an important recurrent RNA motif, an internal loop with characteristic consensus sequence forming highly conserved three-dimensional structure. Functional arrangement of RNA kink-turns shows a sharp bend in the phosphodiester backbone. Among other signature interactions, kink-turns form A-minor interaction between their two stems. Most kink-turns possess extended A-minor I (A-I) interaction where adenine of the second A•G base pair of the NC-stem interacts with the first canonical pair of the C-stem (i.e., the receptor pair) via trans-sugar-edge/sugar-edge (tSS) and cis-sugar-edge/sugar-edge (cSS) interactions. The remaining kink-turns have less compact A-minor 0 (A-0) interaction with just one tSS contact. We show that kink-turns with A-I in ribosomal X-ray structures keep G═C receptor base pair during evolution while the inverted pair (C═G) is not realized. In contrast, kink-turns with A-0 in the observed structures alternate G═C and C═G base pairs in sequences. We carried out an extended set (~5 μs) of explicit-solvent molecular dynamics simulations of kink-turns to rationalize this structural/evolutionary pattern. The simulations were done using a net-neutral Na(+) cation atmosphere (with ~0.25 M cation concentration) supplemented by simulations with either excess salt KCl atmosphere or inclusion of Mg(2+). The results do not seem to depend on the treatment of ions. The simulations started with X-ray structures of several kink-turns while we tested the response of the simulated system to base substitutions, modest structural perturbations and constraints. The trends seen in the simulations reveal that the A-I/G═C arrangement is preferred over all three other structures. The A-I/C═G triple appears structurally entirely unstable, consistent with the covariation patterns seen during the evolution. The A-0 arrangements tend to shift toward the A-I pattern in simulations, which suggests that formation of the A-0 interaction is likely supported by the surrounding protein and RNA molecules. A-0 may also be stabilized by additional kink-turn nucleotides not belonging to the kink-turn consensus, as shown for the kink-turn from ribosomal Helix 15. Quantum-chemical calculations on all four A-minor triples suggest that there is a different balance of electrostatic and dispersion stabilization in the A-I/G═C and A-I/C═G triples, which may explain different behavior of these otherwise isosteric triples in the context of kink-turns.
Collapse
Affiliation(s)
- Kamila Réblová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 61265 Brno, Czech Republic.
| | | | | | | | | |
Collapse
|
29
|
Benz-Moy TL, Herschlag D. Structure-function analysis from the outside in: long-range tertiary contacts in RNA exhibit distinct catalytic roles. Biochemistry 2011; 50:8733-55. [PMID: 21815635 PMCID: PMC3186870 DOI: 10.1021/bi2008245] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The conserved catalytic core of the Tetrahymena group I ribozyme is encircled by peripheral elements. We have conducted a detailed structure-function study of the five long-range tertiary contacts that fasten these distal elements together. Mutational ablation of each of the tertiary contacts destabilizes the folded ribozyme, indicating a role of the peripheral elements in overall stability. Once folded, three of the five tertiary contact mutants exhibit defects in overall catalysis that range from 20- to 100-fold. These and the subsequent results indicate that the structural ring of peripheral elements does not act as a unitary element; rather, individual connections have distinct roles as further revealed by kinetic and thermodynamic dissection of the individual reaction steps. Ablation of P14 or the metal ion core/metal ion core receptor (MC/MCR) destabilizes docking of the substrate-containing P1 helix into tertiary interactions with the ribozyme's conserved core. In contrast, ablation of the L9/P5 contact weakens binding of the guanosine nucleophile by slowing its association, without affecting P1 docking. The P13 and tetraloop/tetraloop receptor (TL/TLR) mutations had little functional effect and small, local structural changes, as revealed by hydroxyl radical footprinting, whereas the P14, MC/MCR, and L9/P5 mutants show structural changes distal from the mutation site. These changes extended into regions of the catalytic core involved in docking or guanosine binding. Thus, distinct allosteric pathways couple the long-range tertiary contacts to functional sites within the conserved core. This modular functional specialization may represent a fundamental strategy in RNA structure-function interrelationships.
Collapse
Affiliation(s)
- Tara L. Benz-Moy
- Department of Chemistry, Stanford University, Stanford, California 94305
| | - Daniel Herschlag
- Department of Chemistry, Stanford University, Stanford, California 94305
- Department of Biochemistry, Stanford University, Stanford, California 94305
| |
Collapse
|
30
|
Muslimov IA, Patel MV, Rose A, Tiedge H. Spatial code recognition in neuronal RNA targeting: role of RNA-hnRNP A2 interactions. ACTA ACUST UNITED AC 2011; 194:441-57. [PMID: 21807882 PMCID: PMC3153643 DOI: 10.1083/jcb.201010027] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Recognition of non-canonical purine•purine RNA motifs by hnRNP A2 mediates targeted delivery of neuronal RNAs to dendrites. In neurons, regulation of gene expression occurs in part through translational control at the synapse. A fundamental requirement for such local control is the targeted delivery of select neuronal mRNAs and regulatory RNAs to distal dendritic sites. The nature of spatial RNA destination codes, and the mechanism by which they are interpreted for dendritic delivery, remain poorly understood. We find here that in a key dendritic RNA transport pathway (exemplified by BC1 RNA, a dendritic regulatory RNA, and protein kinase M ζ [PKMζ] mRNA, a dendritic mRNA), noncanonical purine•purine nucleotide interactions are functional determinants of RNA targeting motifs. These motifs are specifically recognized by heterogeneous nuclear ribonucleoprotein A2 (hnRNP A2), a trans-acting factor required for dendritic delivery. Binding to hnRNP A2 and ensuing dendritic delivery are effectively competed by RNAs with CGG triplet repeat expansions. CGG repeats, when expanded in the 5′ untranslated region of fragile X mental retardation 1 (FMR1) mRNA, cause fragile X–associated tremor/ataxia syndrome. The data suggest that cellular dysregulation observed in the presence of CGG repeat RNA may result from molecular competition in neuronal RNA transport pathways.
Collapse
Affiliation(s)
- Ilham A Muslimov
- The Robert F. Furchgott Center for Neural and Behavioral Science, Department of Physiology and Pharmacology, State University of New York, Health Science Center at Brooklyn, USA
| | | | | | | |
Collapse
|
31
|
Ishikawa J, Fujita Y, Maeda Y, Furuta H, Ikawa Y. GNRA/receptor interacting modules: Versatile modular units for natural and artificial RNA architectures. Methods 2011; 54:226-38. [DOI: 10.1016/j.ymeth.2010.12.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 12/08/2010] [Accepted: 12/08/2010] [Indexed: 12/25/2022] Open
|
32
|
Solution structure of the K-turn and Specifier Loop domains from the Bacillus subtilis tyrS T-box leader RNA. J Mol Biol 2011; 408:99-117. [PMID: 21333656 DOI: 10.1016/j.jmb.2011.02.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 02/03/2011] [Accepted: 02/04/2011] [Indexed: 01/28/2023]
Abstract
In Gram-positive bacteria, the RNA transcripts of many amino acid biosynthetic and aminoacyl tRNA synthetase genes contain 5' untranslated regions, or leader RNAs, that function as riboswitches. These T-box riboswitches bind cognate tRNA molecules and regulate gene expression by a transcription attenuation mechanism. The Specifier Loop domain of the leader RNA contains nucleotides that pair with nucleotides in the tRNA anticodon loop and is flanked on one side by a kink-turn (K-turn), or GA, sequence motif. We have determined the solution NMR structure of the K-turn sequence element within the context of the Specifier Loop domain. The K-turn sequence motif has several noncanonical base pairs typical of K-turn structures but adopts an extended conformation. The Specifier Loop domain contains a loop E structural motif, and the single-strand Specifier nucleotides stack with their Watson-Crick edges displaced toward the minor groove. Mg(2+) leads to a significant bending of the helix axis at the base of the Specifier Loop domain, but does not alter the K-turn. Isothermal titration calorimetry indicates that the K-turn sequence causes a small enhancement of the interaction between the tRNA anticodon arm and the Specifier Loop domain. One possibility is that the K-turn structure is formed and stabilized when tRNA binds the T-box riboswitch and interacts with Stem I and the antiterminator helix. This motif in turn anchors the orientation of Stem I relative to the 3' half of the leader RNA, further stabilizing the tRNA-T box complex.
Collapse
|
33
|
Ohno H, Kobayashi T, Kabata R, Endo K, Iwasa T, Yoshimura SH, Takeyasu K, Inoue T, Saito H. Synthetic RNA-protein complex shaped like an equilateral triangle. NATURE NANOTECHNOLOGY 2011; 6:116-120. [PMID: 21240283 DOI: 10.1038/nnano.2010.268] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Accepted: 12/07/2010] [Indexed: 05/30/2023]
Abstract
Synthetic nanostructures consisting of biomacromolecules such as nucleic acids have been constructed using bottom-up approaches. In particular, Watson-Crick base pairing has been used to construct a variety of two- and three-dimensional DNA nanostructures. Here, we show that RNA and the ribosomal protein L7Ae can form a nanostructure shaped like an equilateral triangle that consists of three proteins bound to an RNA scaffold. The construction of the complex relies on the proteins binding to kink-turn (K-turn) motifs in the RNA, which allows the RNA to bend by ∼ 60° at three positions to form a triangle. Functional RNA-protein complexes constructed with this approach could have applications in nanomedicine and synthetic biology.
Collapse
Affiliation(s)
- Hirohisa Ohno
- Laboratory of Gene Biodynamics, Graduate School of Biostudies, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Spacková N, Réblová K, Sponer J. Structural dynamics of the box C/D RNA kink-turn and its complex with proteins: the role of the A-minor 0 interaction, long-residency water bridges, and structural ion-binding sites revealed by molecular simulations. J Phys Chem B 2010; 114:10581-93. [PMID: 20701388 DOI: 10.1021/jp102572k] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Kink-turns (K-turns) are recurrent elbow-like RNA motifs that participate in protein-assisted RNA folding and contribute to RNA dynamics. We carried out a set of molecular dynamics (MD) simulations using parm99 and parmbsc0 force fields to investigate structural dynamics of the box C/D RNA and its complexes with two proteins: native archaeal L7ae protein and human 15.5 kDa protein, originally bound to very similar structure of U4 snRNA. The box C/D RNA forms K-turn with A-minor 0 tertiary interaction between its canonical (C) and noncanonical (NC) stems. The local K-turn architecture is thus different from the previously studied ribosomal K-turns 38 and 42 having A-minor I interaction. The simulations reveal visible structural dynamics of this tertiary interaction involving altogether six substates which substantially contribute to the elbow-like flexibility of the K-turn. The interaction can even temporarily shift to the A-minor I type pattern; however, this is associated with distortion of the G/A base pair in the NC-stem of the K-turn. The simulations show reduction of the K-turn flexibility upon protein binding. The protein interacts with the apex of the K-turn and with the NC-stem. The protein-RNA interface includes long-residency hydration sites. We have also found long-residency hydration sites and major ion-binding sites associated with the K-turn itself. The overall topology of the K-turn remains stable in all simulations. However, in simulations of free K-turn, we observed instability of the key C16(O2')-A7(N1) H-bond, which is a signature interaction of K-turns and which was visibly more stable in simulations of K-turns possessing A-minor I interaction. It may reflect either some imbalance of the force field or it may be a correct indication of early stages of unfolding since this K-turn requires protein binding for its stabilization. Interestingly, the 16(O2')-7(N1) H- bond is usually not fully lost since it is replaced by a water bridge with a tightly bound water, which is adenine-specific similarly as the original interaction. The 16(O2')-7(N1) H-bond is stabilized by protein binding. The stabilizing effect is more visible with the human 15.5 kDa protein, which is attributed to valine to arginine substitution in the binding site. The behavior of the A-minor interaction is force-field-dependent because the parmbsc0 force field attenuates the A-minor fluctuations compared to parm99 simulations. Behavior of other regions of the box C/D RNA is not sensitive to the force field choice. Simulation with net-neutralizing Na(+) and 0.2 M excess salt conditions appear in all aspects equivalent. The simulations show loss of a hairpin tetraloop, which is not part of the K-turn. This was attributed to force field limitations.
Collapse
Affiliation(s)
- Nad'a Spacková
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | | | | |
Collapse
|
35
|
Falb M, Amata I, Gabel F, Simon B, Carlomagno T. Structure of the K-turn U4 RNA: a combined NMR and SANS study. Nucleic Acids Res 2010; 38:6274-85. [PMID: 20466811 PMCID: PMC2952850 DOI: 10.1093/nar/gkq380] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 04/26/2010] [Accepted: 04/27/2010] [Indexed: 11/13/2022] Open
Abstract
K-turn motifs are universal RNA structural elements providing a binding platform for proteins in several cellular contexts. Their characteristic is a sharp kink in the phosphate backbone that puts the two helical stems of the protein-bound RNA at an angle of 60°. However, to date no high-resolution structure of a naked K-turn motif is available. Here, we present the first structural investigation at atomic resolution of an unbound K-turn RNA (the spliceosomal U4-Kt RNA) by a combination of NMR and small-angle neutron scattering data. With this study, we wish to address the question whether the K-turn structural motif assumes the sharply kinked conformation in the absence of protein binders and divalent cations. Previous studies have addressed this question by fluorescence resonance energy transfer, biochemical assays and molecular dynamics simulations, suggesting that the K-turn RNAs exist in equilibrium between a kinked conformation, which is competent for protein binding, and a more extended conformation, with the population distribution depending on the concentration of divalent cations. Our data shows that the U4-Kt RNA predominantly assumes the more extended conformation in the absence of proteins and divalent cations. The internal loop region is well structured but adopts a different conformation from the one observed in complex with proteins. Our data suggests that the K-turn consensus sequence does not per se code for the kinked conformation; instead the sharp backbone kink requires to be stabilized by protein binders.
Collapse
Affiliation(s)
- Melanie Falb
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, D-69117 Heidelberg, Germany and Institut de Biologie Structurale Jean-Pierre Ebel, CEA, CNRS, UJF UMR 5075, 38027 Grenoble, France
| | - Irene Amata
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, D-69117 Heidelberg, Germany and Institut de Biologie Structurale Jean-Pierre Ebel, CEA, CNRS, UJF UMR 5075, 38027 Grenoble, France
| | - Frank Gabel
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, D-69117 Heidelberg, Germany and Institut de Biologie Structurale Jean-Pierre Ebel, CEA, CNRS, UJF UMR 5075, 38027 Grenoble, France
| | - Bernd Simon
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, D-69117 Heidelberg, Germany and Institut de Biologie Structurale Jean-Pierre Ebel, CEA, CNRS, UJF UMR 5075, 38027 Grenoble, France
| | - Teresa Carlomagno
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, D-69117 Heidelberg, Germany and Institut de Biologie Structurale Jean-Pierre Ebel, CEA, CNRS, UJF UMR 5075, 38027 Grenoble, France
| |
Collapse
|
36
|
Schroeder KT, McPhee SA, Ouellet J, Lilley DMJ. A structural database for k-turn motifs in RNA. RNA (NEW YORK, N.Y.) 2010; 16:1463-8. [PMID: 20562215 PMCID: PMC2905746 DOI: 10.1261/rna.2207910] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Accepted: 05/10/2010] [Indexed: 05/19/2023]
Abstract
The kink-turn (k-turn) is a common structural motif in RNA that introduces a tight kink into the helical axis. k-turns play an important architectural role in RNA structures and serve as binding sites for a number of proteins. We have created a database of known and postulated k-turn sequences and three-dimensional (3D) structures, available via the internet. This site provides (1) a database of sequence and structure, as a resource for the RNA community, and (2) a tool to enable the manipulation and comparison of 3D structures where known.
Collapse
Affiliation(s)
- Kersten T Schroeder
- Cancer Research UK Nucleic Acid Structure Research Group, The University of Dundee, Dundee DD1 5EH, United Kingdom
| | | | | | | |
Collapse
|
37
|
Antonioli AH, Cochrane JC, Lipchock SV, Strobel SA. Plasticity of the RNA kink turn structural motif. RNA (NEW YORK, N.Y.) 2010; 16:762-8. [PMID: 20145044 PMCID: PMC2844623 DOI: 10.1261/rna.1883810] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Accepted: 12/09/2009] [Indexed: 05/28/2023]
Abstract
The kink turn (K-turn) is an RNA structural motif found in many biologically significant RNAs. While most examples of the K-turn have a similar fold, the crystal structure of the Azoarcus group I intron revealed a novel RNA conformation, a reverse kink turn bent in the direction opposite that of a consensus K-turn. The reverse K-turn is bent toward the major grooves rather than the minor grooves of the flanking helices, yet the sequence differs from the K-turn consensus by only a single nucleotide. Here we demonstrate that the reverse bend direction is not solely defined by internal sequence elements, but is instead affected by structural elements external to the K-turn. It bends toward the major groove under the direction of a tetraloop-tetraloop receptor. The ability of one sequence to form two distinct structures demonstrates the inherent plasticity of the K-turn sequence. Such plasticity suggests that the K-turn is not a primary element in RNA folding, but instead is shaped by other structural elements within the RNA or ribonucleoprotein assembly.
Collapse
Affiliation(s)
- Alexandra H Antonioli
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8114, USA
| | | | | | | |
Collapse
|
38
|
Fujita Y, Furuta H, Ikawa Y. Evolutionary optimization of a modular ligase ribozyme: a small catalytic unit and a hairpin motif masking an element that could form an inactive structure. Nucleic Acids Res 2010; 38:3328-39. [PMID: 20110262 PMCID: PMC2879505 DOI: 10.1093/nar/gkq018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The YFL ribozyme is an artificial ligase ribozyme isolated by a ‘design and selection’ strategy, in which a modular catalytic unit was generated on a rationally designed modular scaffold RNA. This ligase ribozyme has a versatile catalytic unit that accepts not only β-nicotinamide mononucleotide (β-NMN) but also inorganic pyrophosphate as leaving groups for template-dependent RNA ligation. Although this property is interesting from an evolutionary viewpoint regarding primitive RNA ligation/polymerization systems in the RNA world, structural analysis of the YFL ribozyme has not been continued due to apparent structural nonuniformity of its folded state. To elucidate the active structure of the YFL ribozyme, we performed in vitro evolution experiments to improve its folding ability. Biochemical and phylogenetic analyses of evolved variants indicated that the catalytic unit of the YFL ribozyme is compact and the 3′ single-stranded region of the parent YFL-1 ribozyme contributes to mask an element that could form an inactive structure.
Collapse
Affiliation(s)
- Yuki Fujita
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | | | | |
Collapse
|
39
|
Schroeder KT, Lilley DMJ. Ion-induced folding of a kink turn that departs from the conventional sequence. Nucleic Acids Res 2010; 37:7281-9. [PMID: 19783814 PMCID: PMC2790904 DOI: 10.1093/nar/gkp791] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Kink turns (k-turns) are important structural motifs that create a sharp axial bend in RNA. Most conform to a consensus in which a three-nucleotide bulge is followed by consecutive G*A and A*G base pairs, and when these G*A pairs are modified in vitro this generally leads to a failure to adopt the k-turn conformation. Kt-23 in the 30S ribosomal subunit of Thermus thermophilus is a rare exception in which the bulge-distal A*G pair is replaced by a non-Watson-Crick A*U pair. In the context of the ribosome, Kt-23 adopts a completely conventional k-turn geometry. We show here that this sequence is induced to fold into a k-turn structure in an isolated RNA duplex by Mg(2+) or Na(+) ions. Therefore, the Kt-23 is intrinsically stable despite lacking the key A*G pair; its formation requires neither tertiary interactions nor protein binding. Moreover, the Kt-23 k-turn is stabilized by the same critical hydrogen-bonding interactions within the core of the structure that are found in more conventional sequences such as the near-consensus Kt-7. T. thermophilus Kt-23 has two further non-Watson-Crick base pairs within the non-canonical helix, three and four nucleotides from the bulge, and we find that the nature of these pairs influences the ability of the RNA to adopt k-turn conformation, although the base pair adjacent to the A*U pair is more important than the other.
Collapse
Affiliation(s)
- Kersten T Schroeder
- Cancer Research UK Nucleic Acid Structure Research Group, MSI/WTB Complex, The University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | | |
Collapse
|
40
|
Synthetic translational regulation by an L7Ae–kink-turn RNP switch. Nat Chem Biol 2009; 6:71-8. [DOI: 10.1038/nchembio.273] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Accepted: 10/16/2009] [Indexed: 12/25/2022]
|
41
|
Réblová K, Rázga F, Li W, Gao H, Frank J, Sponer J. Dynamics of the base of ribosomal A-site finger revealed by molecular dynamics simulations and Cryo-EM. Nucleic Acids Res 2009; 38:1325-40. [PMID: 19952067 PMCID: PMC2831300 DOI: 10.1093/nar/gkp1057] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Helix 38 (H38) of the large ribosomal subunit, with a length of 110 A, reaches the small subunit through intersubunit bridge B1a. Previous cryo-EM studies revealed that the tip of H38 moves by more than 10 A from the non-ratcheted to the ratcheted state of the ribosome while mutational studies implicated a key role of flexible H38 in attenuation of translocation and in dynamical signaling between ribosomal functional centers. We investigate a region including the elbow-shaped kink-turn (Kt-38) in the Haloarcula marismortui archaeal ribosome, and equivalently positioned elbows in three eubacterial species, located at the H38 base. We performed explicit solvent molecular dynamics simulations on the H38 elbows in all four species. They are formed by at first sight unrelated sequences resulting in diverse base interactions but built with the same overall topology, as shown by X-ray crystallography. The elbows display similar fluctuations and intrinsic flexibilities in simulations indicating that the eubacterial H38 elbows are structural and dynamical analogs of archaeal Kt-38. We suggest that this structural element plays a pivotal role in the large motions of H38 and may act as fulcrum for the abovementioned tip motion. The directional flexibility inferred from simulations correlates well with the cryo-EM results.
Collapse
Affiliation(s)
- Kamila Réblová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolská 135, 61265 Brno, Czech Republic
| | | | | | | | | | | |
Collapse
|
42
|
Abstract
Comparative gel electrophoresis provides information on the relative angles subtended between helical arms at a branchpoint in RNA. It is based upon the comparison of electrophoretic mobility in polyacrylamide gels of species containing two long arms, with the remaining one(s) being significantly shorter. Although the method currently lacks a really well-established basis of physical theory, it is very powerful, yet simple to apply. It has had a number of significant successes in RNA, DNA and DNA-protein complexes, and in all cases to date the results have stood the test of time and eventual comparison with crystallographic analysis.
Collapse
|
43
|
Latrèche L, Jean-Jean O, Driscoll DM, Chavatte L. Novel structural determinants in human SECIS elements modulate the translational recoding of UGA as selenocysteine. Nucleic Acids Res 2009; 37:5868-80. [PMID: 19651878 PMCID: PMC2761289 DOI: 10.1093/nar/gkp635] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The selenocysteine insertion sequence (SECIS) element directs the translational recoding of UGA as selenocysteine. In eukaryotes, the SECIS is located downstream of the UGA codon in the 3'-UTR of the selenoprotein mRNA. Despite poor sequence conservation, all SECIS elements form a similar stem-loop structure containing a putative kink-turn motif. We functionally characterized the 26 SECIS elements encoded in the human genome. Surprisingly, the SECIS elements displayed a wide range of UGA recoding activities, spanning several 1000-fold in vivo and several 100-fold in vitro. The difference in activity between a representative strong and weak SECIS element was not explained by differential binding affinity of SECIS binding Protein 2, a limiting factor for selenocysteine incorporation. Using chimeric SECIS molecules, we identified the internal loop and helix 2, which flank the kink-turn motif, as critical determinants of UGA recoding activity. The simultaneous presence of a GC base pair in helix 2 and a U in the 5'-side of the internal loop was a statistically significant predictor of weak recoding activity. Thus, the SECIS contains intrinsic information that modulates selenocysteine incorporation efficiency.
Collapse
Affiliation(s)
- Lynda Latrèche
- Centre de recherche de Gif-sur-Yvette, FRC 3115. Centre de Génétique Moléculaire, CNRS, FRE 3144, Gif-sur-Yvette, UPMC Univ Paris 06, FRE 3207, CNRS, F-75005 Paris, France, Department of Cell Biology, Lerner Research Institute, Cleveland Clinic Foundation and Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
| | - Olivier Jean-Jean
- Centre de recherche de Gif-sur-Yvette, FRC 3115. Centre de Génétique Moléculaire, CNRS, FRE 3144, Gif-sur-Yvette, UPMC Univ Paris 06, FRE 3207, CNRS, F-75005 Paris, France, Department of Cell Biology, Lerner Research Institute, Cleveland Clinic Foundation and Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
| | - Donna M. Driscoll
- Centre de recherche de Gif-sur-Yvette, FRC 3115. Centre de Génétique Moléculaire, CNRS, FRE 3144, Gif-sur-Yvette, UPMC Univ Paris 06, FRE 3207, CNRS, F-75005 Paris, France, Department of Cell Biology, Lerner Research Institute, Cleveland Clinic Foundation and Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
| | - Laurent Chavatte
- Centre de recherche de Gif-sur-Yvette, FRC 3115. Centre de Génétique Moléculaire, CNRS, FRE 3144, Gif-sur-Yvette, UPMC Univ Paris 06, FRE 3207, CNRS, F-75005 Paris, France, Department of Cell Biology, Lerner Research Institute, Cleveland Clinic Foundation and Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
- *To whom correspondence should be addressed. Tel: (33) 1 69 82 32 13; Fax: (33) 1 69 82 31 40;
| |
Collapse
|
44
|
Abstract
Electrophoresis in polyacrylamide gels provides a simple yet powerful means of analyzing the relative disposition of helical arms in branched nucleic acids. The electrophoretic mobility of DNA or RNA with a central discontinuity is determined by the angle subtended between the arms radiating from the branchpoint. In a multi-helical branchpoint, comparative gel electrophoresis can provide a relative measure of all the inter-helical angles and thus the shape and symmetry of the molecule. Using the long-short arm approach, the electrophoretic mobility of all the species with two helical arms that are longer than all others is compared. This can be done as a function of conditions, allowing the analysis of ion-dependent folding of branched DNA and RNA species. Notable successes for the technique include the four-way (Holliday) junction in DNA and helical junctions in functionally significant RNA species such as ribozymes. Many of these structures have subsequently been proved correct by crystallography or other methods, up to 10 years later in the case of the Holliday junction. Just as important, the technique has not failed to date. Comparative gel electrophoresis can provide a window on both fast and slow conformational equilibria such as conformer exchange in four-way DNA junctions. But perhaps the biggest test of the approach has been to deduce the structures of complexes of four-way DNA junctions with proteins. Two recent crystallographic structures show that the global structures were correctly deduced by electrophoresis, proving the worth of the method even in these rather complex systems. Comparative gel electrophoresis is a robust method for the analysis of branched nucleic acids and their complexes.
Collapse
|
45
|
Hsiao C, Tannenbaum E, VanDeusen H, Hershkovitz E, Perng G, Tannenbaum AR, Williams LD. Complexes of Nucleic Acids with Group I and II Cations. NUCLEIC ACID–METAL ION INTERACTIONS 2008. [DOI: 10.1039/9781847558763-00001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Chiaolong Hsiao
- School of Chemistry and Biochemistry Georgia Institute of Technology Atlanta GA 30332-0400 USA
| | | | - Halena VanDeusen
- School of Chemistry and Biochemistry Georgia Institute of Technology Atlanta GA 30332-0400 USA
| | - Eli Hershkovitz
- School of Electrical and Computer Engineering Georgia Institute of Technology Atlanta GA 30332–0250 USA
- School of Biomedical Engineering Georgia Institute of Technology Atlanta, GA 30332–0250 USA
| | - Ginger Perng
- School of Electrical and Computer Engineering Georgia Institute of Technology Atlanta GA 30332–0250 USA
| | - Allen R. Tannenbaum
- School of Electrical and Computer Engineering Georgia Institute of Technology Atlanta GA 30332–0250 USA
- School of Biomedical Engineering Georgia Institute of Technology Atlanta, GA 30332–0250 USA
| | - Loren Dean Williams
- School of Chemistry and Biochemistry Georgia Institute of Technology Atlanta GA 30332-0400 USA
| |
Collapse
|
46
|
Gerdt JP, Miduturu CV, Silverman SK. Selective stabilization of natively folded RNA structure by DNA constraints. J Am Chem Soc 2008; 130:14920-1. [PMID: 18855395 DOI: 10.1021/ja8057277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Learning how native RNA conformations can be stabilized relative to unfolded states is an important objective, for both understanding natural RNAs and improving the design of artificial functional RNAs. Here we show that covalently attached double-stranded DNA constraints (ca. 14 base pairs in length) can significantly stabilize the native conformation of an RNA molecule. Using the P4-P6 domain of the Tetrahymena group I intron as the test system, we identified pairs of RNA sites where attaching a DNA duplex is predicted to be structurally compatible with only the folded state of the RNA. The DNA-constrained RNAs were synthesized and shown by nondenaturing polyacrylamide gel electrophoresis (native PAGE) to have substantial decreases in their Mg2+ midpoints ([Mg2+]1/2 values). These changes are equivalent to free energy stabilizations as large as DeltaDeltaGdegrees = -2.5 kcal/mol, which is approximately 14% of the total tertiary folding energy. For comparison, the sole modification of P4-P6 previously reported to stabilize this RNA is a single-nucleotide deletion (DeltaC209) that provides only 1.1 kcal/mol of stabilization. Our findings indicate that nature has not completely optimized P4-P6 RNA folding. Furthermore, the DNA constraints are designed not to interact directly and extensively with the RNA, but rather more indirectly to modulate the relative stabilities of folded and unfolded RNA states. The successful implementation of this strategy to further stabilize a natively folded RNA conformation suggests an important element of modularity in stabilization of RNA structure, with implications for how nature might use other molecules such as proteins to stabilize specific RNA conformations.
Collapse
Affiliation(s)
- Joseph P Gerdt
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | |
Collapse
|
47
|
Saito H, Inoue T. Synthetic biology with RNA motifs. Int J Biochem Cell Biol 2008; 41:398-404. [PMID: 18775792 DOI: 10.1016/j.biocel.2008.08.017] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Revised: 08/05/2008] [Accepted: 08/05/2008] [Indexed: 12/23/2022]
Abstract
Structural motifs in naturally occurring RNAs and RNPs can be employed as new molecular parts for synthetic biology to facilitate the development of novel devices and systems that modulate cellular functions. In this review, we focus on the following: (i) experimental evolution techniques of RNA molecules in vitro and (ii) their applications for regulating gene expression systems in vivo. For experimental evolution, new artificial RNA aptamers and RNA enzymes (ribozymes) have been selected in vitro. These functional RNA molecules are likely to be applicable in the reprogramming of existing gene regulatory systems. Furthermore, they may be used for designing hypothetical RNA-based living systems in the so-called RNA world. For the regulation of gene expressions in living cells, the development of new riboswitches allows us to modulate the target gene expression in a tailor-made manner. Moreover, recently RNA-based synthetic genetic circuits have been reported by employing functional RNA molecules, expanding the repertory of synthetic biology with RNA motifs.
Collapse
Affiliation(s)
- Hirohide Saito
- Department of Gene Mechanisms, Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan.
| | | |
Collapse
|
48
|
The Importance of G·A Hydrogen Bonding in the Metal Ion- and Protein-induced Folding of a Kink Turn RNA. J Mol Biol 2008; 381:431-42. [DOI: 10.1016/j.jmb.2008.05.052] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Revised: 05/20/2008] [Accepted: 05/20/2008] [Indexed: 02/06/2023]
|
49
|
Singh SK, Gurha P, Gupta R. Dynamic guide-target interactions contribute to sequential 2'-O-methylation by a unique archaeal dual guide box C/D sRNP. RNA (NEW YORK, N.Y.) 2008; 14:1411-23. [PMID: 18515549 PMCID: PMC2441990 DOI: 10.1261/rna.1003308] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Accepted: 04/16/2008] [Indexed: 05/05/2023]
Abstract
Assembly and guide-target interaction of an archaeal box C/D-guide sRNP was investigated under various conditions by analyzing the lead (II)-induced cleavage of the guide RNA. Guide and target RNAs derived from Haloferax volcanii pre-tRNA(Trp) were used with recombinant Methanocaldococcus jannaschii core proteins in the reactions. Core protein L7Ae binds differentially to C/D and C'/D' motifs of the guide RNA, and interchanging the two motifs relative to the termini of the guide RNA did not affect L7Ae binding or sRNA function. L7Ae binding to the guide RNA exposes its D'-guide sequence first followed by the D guide. These exposures are reduced when aNop5p and aFib proteins are added. The exposed guide sequences did not pair with the target sequences in the presence of L7Ae alone. The D-guide sequence could pair with the target in the presence of L7Ae and aNop5p, suggesting a role of aNop5p in target recruitment and rearrangement of sRNA structure. aFib binding further stabilizes this pairing. After box C/D-guided modification, target-guide pairing at the D-guide sequence is disrupted, suggesting that each round of methylation may require some conformational change or reassembly of the RNP. Asymmetric RNPs containing only one L7Ae at either of the two box motifs can be assembled, but a functional RNP requires L7Ae at the box C/D motif. This arrangement resembles the asymmetric eukaryal snoRNP. Observations of initial D-guide-target pairing and the functional requirement for L7Ae at the box C/D motif are consistent with our previous report of the sequential 2'-O-methylations of the target RNA.
Collapse
Affiliation(s)
- Sanjay K Singh
- Department of Biochemistry and Molecular Biology, Southern Illinois University, Carbondale, Illinois 62901-4413, USA
| | | | | |
Collapse
|
50
|
Tijerina P, Mohr S, Russell R. DMS footprinting of structured RNAs and RNA-protein complexes. Nat Protoc 2008; 2:2608-23. [PMID: 17948004 DOI: 10.1038/nprot.2007.380] [Citation(s) in RCA: 189] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We describe a protocol in which dimethyl sulfate (DMS) modification of the base-pairing faces of unpaired adenosine and cytidine nucleotides is used for structural analysis of RNAs and RNA-protein complexes (RNPs). The protocol is optimized for RNAs of small to moderate size (< or = 500 nt). The RNA or RNP is first exposed to DMS under conditions that promote formation of the folded structure or complex, as well as 'control' conditions that do not allow folding or complex formation. The positions and extents of modification are then determined by primer extension, polyacrylamide gel electrophoresis and quantitative analysis. From changes in the extent of modification upon folding or protein binding (appearance of a 'footprint'), it is possible to detect local changes in the secondary and tertiary structure of RNA, as well as the formation of RNA-protein contacts. This protocol takes 1.5-3 d to complete, depending on the type of analysis used.
Collapse
Affiliation(s)
- Pilar Tijerina
- Department of Chemistry and Biochemistry and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | | | | |
Collapse
|