1
|
Mejdrová I, Węgrzyn E, Carell T. Step-by-Step Towards Biological Homochirality - from Prebiotic Randomness To Perfect Asymmetry. Chem Asian J 2025; 20:e202401074. [PMID: 39400505 DOI: 10.1002/asia.202401074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/15/2024]
Abstract
The history of life's formation and the origin of its stereochemistry are nearly as multifaceted as the life itself. In this review, we focus on analyzing the step-by-step path leading to what we can define as "life" in parallel to what we know about the emergence of enantiomeric imbalance and subsequent transition to full homochirality. We start at the level of assembly of the building blocks of life from inorganic molecules and build up to the polymerization and formation of nucleic acids and peptides. We report and analyze different theories at various stages of this development and try to elucidate the most plausible theory.
Collapse
Affiliation(s)
- Ivana Mejdrová
- Department of Chemistry, Institute for Chemical Epigenetics (ICE-M), Ludwig-Maximilians-Universität (LMU) München, Butenandtstrasse 5-13, 81377, Munich, Germany
| | - Ewa Węgrzyn
- Department of Chemistry, Institute for Chemical Epigenetics (ICE-M), Ludwig-Maximilians-Universität (LMU) München, Butenandtstrasse 5-13, 81377, Munich, Germany
| | - Thomas Carell
- Department of Chemistry, Institute for Chemical Epigenetics (ICE-M), Ludwig-Maximilians-Universität (LMU) München, Butenandtstrasse 5-13, 81377, Munich, Germany
| |
Collapse
|
2
|
Aguilar MR, Jover J, Ruiz E, Aragonès AC, Artés Vivancos JM. Single-Molecule Electrical Conductance in Z-form DNA:RNA. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2408459. [PMID: 39696933 DOI: 10.1002/smll.202408459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/06/2024] [Indexed: 12/20/2024]
Abstract
Nucleic acids have emerged as new materials with promising applications in nanotechnology, molecular electronics, and biosensing, but their electronic properties, especially at the single-molecule level, are largely underexplored. The Z-form is an exotic left-handed helical oligonucleotide conformation that may be involved in critical biological processes such as the regulation of gene expression and epigenetic processes. In this work, the electrical conductance of individual Guanine Cytosine (GC)-rich DNA:RNA molecules is measured in physiological buffer and 2,2,2-Trifluoroethanol (TFE) solvent, corresponding to the natural (right-handed helix) A-form typical in DNA:RNA hybrids and the (left-handed) Z-form conformations, respectively. Single-molecule conductance measurements are performed using the Scanning Tunneling Microscopy (STM)-assisted break-junction method in the so-called "blinking" approach, recording the spontaneous formation of single-biomolecule junctions and performing statistical analysis of the signals. Circular Dichroism (CD) experiments and ab initio calculations are also done to rationalize the measured molecular conductivity with a simple structural and electronic model. These results show that the electrical conductivity of the Z-form is one order of magnitude lower than that of the more compact A-form. The longer molecular length and higher energy for the Highest Occupied Molecular Orbital (HOMO) of the Z-form account for the differences in single-molecule conductance observed experimentally.
Collapse
Affiliation(s)
- Mauricio R Aguilar
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, Diagonal 645, Barcelona, 08028, Spain
- Institut de Química Teòrica i Computacional (IQTC), Diagonal 645, Barcelona, 08028, Spain
| | - Jesus Jover
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, Diagonal 645, Barcelona, 08028, Spain
- Institut de Química Teòrica i Computacional (IQTC), Diagonal 645, Barcelona, 08028, Spain
| | - Eliseo Ruiz
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, Diagonal 645, Barcelona, 08028, Spain
- Institut de Química Teòrica i Computacional (IQTC), Diagonal 645, Barcelona, 08028, Spain
| | - Albert C Aragonès
- Institut de Química Teòrica i Computacional (IQTC), Diagonal 645, Barcelona, 08028, Spain
- Departament de Ciència de Materials i Química Física, Universitat de Barcelona, Marti i Franquès 1, Barcelona, 08028, Spain
| | | |
Collapse
|
3
|
Varshney A, Jia Z, Howe MD, Keiler KC, Baughn AD. A trans-translation inhibitor is potentiated by zinc and kills Mycobacterium tuberculosis and non-tuberculous mycobacteria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.02.621434. [PMID: 39554143 PMCID: PMC11566007 DOI: 10.1101/2024.11.02.621434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Mycobacterium tuberculosis poses a serious challenge for human health, and new antibiotics with novel targets are needed. Here we demonstrate that an acylaminooxadiazole, MBX-4132, specifically inhibits the trans-translation ribosome rescue pathway to kill M. tuberculosis. Our data demonstrate that MBX-4132 is bactericidal against multiple pathogenic mycobacterial species and kills M. tuberculosis in macrophages. We also show that acylaminooxadiazole activity is antagonized by iron but is potentiated by zinc. Our transcriptomic data reveals dysregulation of multiple metal homeostasis pathways after exposure to MBX-4132. Furthermore, we see differential expression of genes related to zinc sensing and efflux when trans-translation is inhibited. Taken together, these data suggest that there is a link between disturbing intracellular metal levels and acylaminooxadiazole-mediated inhibition of trans-translation. These findings provide an important proof-of-concept that trans-translation is a promising antitubercular drug target.
Collapse
Affiliation(s)
- Akanksha Varshney
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712 USA
- These authors contributed equally
| | - Ziyi Jia
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN 55455 USA
- These authors contributed equally
| | - Michael D Howe
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN 55455 USA
| | - Kenneth C Keiler
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712 USA
| | - Anthony D Baughn
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN 55455 USA
| |
Collapse
|
4
|
Eldin P, David A, Hirtz C, Battini JL, Briant L. SARS-CoV-2 Displays a Suboptimal Codon Usage Bias for Efficient Translation in Human Cells Diverted by Hijacking the tRNA Epitranscriptome. Int J Mol Sci 2024; 25:11614. [PMID: 39519170 PMCID: PMC11546939 DOI: 10.3390/ijms252111614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/25/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
Codon bias analysis of SARS-CoV-2 reveals suboptimal adaptation for translation in human cells it infects. The detailed examination of the codons preferentially used by SARS-CoV-2 shows a strong preference for LysAAA, GlnCAA, GluGAA, and ArgAGA, which are infrequently used in human genes. In the absence of an adapted tRNA pool, efficient decoding of these codons requires a 5-methoxycarbonylmethyl-2-thiouridine (mcm5s2) modification at the U34 wobble position of the corresponding tRNAs (tLysUUU; tGlnUUG; tGluUUC; tArgUCU). The optimal translation of SARS-CoV-2 open reading frames (ORFs) may therefore require several adjustments to the host's translation machinery, enabling the highly biased viral genome to achieve a more favorable "Ready-to-Translate" state in human cells. Experimental approaches based on LC-MS/MS quantification of tRNA modifications and on alteration of enzymatic tRNA modification pathways provide strong evidence to support the hypothesis that SARS-CoV-2 induces U34 tRNA modifications and relies on these modifications for its lifecycle. The conclusions emphasize the need for future studies on the evolution of SARS-CoV-2 codon bias and its ability to alter the host tRNA pool through the manipulation of RNA modifications.
Collapse
Affiliation(s)
- Patrick Eldin
- Institut de Recherche en Infectiologie de Montpellier (IRIM), University of Montpellier, CNRS UMR 9004, 1919 route de Mende, 34293 Montpellier, France
| | - Alexandre David
- Institut de Génomique Fonctionnelle (IGF), INSERM U1191, 141 Rue de la Cardonille, 34000 Montpellier, France
- Institute for Regenerative Medicine and Biotherapy (IRMB)-Plateforme de Protéomique Clinique (PPC), Institut des Neurosciences de Montpellier (INM), University of Montpellier, CHU Montpellier, INSERM CNRS, 298 Rue du Truel, 34090 Montpellier, France
| | - Christophe Hirtz
- Institute for Regenerative Medicine and Biotherapy (IRMB)-Plateforme de Protéomique Clinique (PPC), Institut des Neurosciences de Montpellier (INM), University of Montpellier, CHU Montpellier, INSERM CNRS, 298 Rue du Truel, 34090 Montpellier, France
| | - Jean-Luc Battini
- Institut de Recherche en Infectiologie de Montpellier (IRIM), University of Montpellier, CNRS UMR 9004, 1919 route de Mende, 34293 Montpellier, France
| | - Laurence Briant
- Institut de Recherche en Infectiologie de Montpellier (IRIM), University of Montpellier, CNRS UMR 9004, 1919 route de Mende, 34293 Montpellier, France
| |
Collapse
|
5
|
Yan Q, Zhou J, Gu Y, Huang W, Ruan M, Zhang H, Wang T, Wei P, Chen G, Li W, Lu C. Lactylation of NAT10 promotes N 4-acetylcytidine modification on tRNA Ser-CGA-1-1 to boost oncogenic DNA virus KSHV reactivation. Cell Death Differ 2024; 31:1362-1374. [PMID: 38879723 PMCID: PMC11445560 DOI: 10.1038/s41418-024-01327-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 10/03/2024] Open
Abstract
N4-acetylcytidine (ac4C), a conserved but recently rediscovered RNA modification on tRNAs, rRNAs and mRNAs, is catalyzed by N-acetyltransferase 10 (NAT10). Lysine acylation is a ubiquitous protein modification that controls protein functions. Our latest study demonstrates a NAT10-dependent ac4C modification, which occurs on the polyadenylated nuclear RNA (PAN) encoded by oncogenic DNA virus Kaposi's sarcoma-associated herpesvirus (KSHV), can induce KSHV reactivation from latency and activate inflammasome. However, it remains unclear whether a novel lysine acylation occurs in NAT10 during KSHV reactivation and how this acylation of NAT10 regulates tRNAs ac4C modification. Here, we showed that NAT10 was lactylated by α-tubulin acetyltransferase 1 (ATAT1), as a writer at the critical domain, to exert RNA acetyltransferase function and thus increase the ac4C level of tRNASer-CGA-1-1. Mutagenesis at the ac4C site in tRNASer-CGA-1-1 inhibited its ac4C modifications, translation efficiency of viral lytic genes, and virion production. Mechanistically, KSHV PAN orchestrated NAT10 and ATAT1 to enhance NAT10 lactylation, resulting in tRNASer-CGA-1-1 ac4C modification, eventually boosting KSHV reactivation. Our findings reveal a novel post-translational modification in NAT10, as well as expand the understanding about tRNA-related ac4C modification during KSHV replication, which may be exploited to design therapeutic strategies for KSHV-related diseases.
Collapse
Affiliation(s)
- Qin Yan
- Department of Microbiology, Nanjing Medical University, Nanjing, 211166, PR China.
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, PR China.
- Changzhou Medical Center, Nanjing Medical University, Nanjing, 211166, PR China.
| | - Jing Zhou
- Department of Microbiology, Nanjing Medical University, Nanjing, 211166, PR China
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, PR China
| | - Yang Gu
- Department of Microbiology, Nanjing Medical University, Nanjing, 211166, PR China
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, PR China
| | - Wenjing Huang
- Department of Microbiology, Nanjing Medical University, Nanjing, 211166, PR China
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, PR China
| | - Mingpeng Ruan
- Department of Microbiology, Nanjing Medical University, Nanjing, 211166, PR China
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, PR China
| | - Haoran Zhang
- Department of Microbiology, Nanjing Medical University, Nanjing, 211166, PR China
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, PR China
| | - Tianjiao Wang
- Department of Microbiology, Nanjing Medical University, Nanjing, 211166, PR China
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, PR China
| | - Pengjun Wei
- Department of Microbiology, Nanjing Medical University, Nanjing, 211166, PR China
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, PR China
| | - Guochun Chen
- Changzhou Medical Center, Nanjing Medical University, Nanjing, 211166, PR China.
- Department of Infectious Diseases, Changzhou Third People's Hospital, Changzhou, 213000, PR China.
| | - Wan Li
- Department of Microbiology, Nanjing Medical University, Nanjing, 211166, PR China.
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, PR China.
- Changzhou Medical Center, Nanjing Medical University, Nanjing, 211166, PR China.
| | - Chun Lu
- Department of Microbiology, Nanjing Medical University, Nanjing, 211166, PR China.
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, PR China.
- Changzhou Medical Center, Nanjing Medical University, Nanjing, 211166, PR China.
| |
Collapse
|
6
|
Schuntermann DB, Jaskolowski M, Reynolds NM, Vargas-Rodriguez O. The central role of transfer RNAs in mistranslation. J Biol Chem 2024; 300:107679. [PMID: 39154912 PMCID: PMC11415595 DOI: 10.1016/j.jbc.2024.107679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/20/2024] Open
Abstract
Transfer RNAs (tRNA) are essential small non-coding RNAs that enable the translation of genomic information into proteins in all life forms. The principal function of tRNAs is to bring amino acid building blocks to the ribosomes for protein synthesis. In the ribosome, tRNAs interact with messenger RNA (mRNA) to mediate the incorporation of amino acids into a growing polypeptide chain following the rules of the genetic code. Accurate interpretation of the genetic code requires tRNAs to carry amino acids matching their anticodon identity and decode the correct codon on mRNAs. Errors in these steps cause the translation of codons with the wrong amino acids (mistranslation), compromising the accurate flow of information from DNA to proteins. Accumulation of mutant proteins due to mistranslation jeopardizes proteostasis and cellular viability. However, the concept of mistranslation is evolving, with increasing evidence indicating that mistranslation can be used as a mechanism for survival and acclimatization to environmental conditions. In this review, we discuss the central role of tRNAs in modulating translational fidelity through their dynamic and complex interplay with translation factors. We summarize recent discoveries of mistranslating tRNAs and describe the underlying molecular mechanisms and the specific conditions and environments that enable and promote mistranslation.
Collapse
Affiliation(s)
- Dominik B Schuntermann
- Department of Biology, Institute of Molecular Biology and Biophysics, Zurich, Switzerland
| | - Mateusz Jaskolowski
- Department of Biology, Institute of Molecular Biology and Biophysics, Zurich, Switzerland
| | - Noah M Reynolds
- School of Integrated Sciences, Sustainability, and Public Health, University of Illinois Springfield, Springfield, Illinois, USA
| | - Oscar Vargas-Rodriguez
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, Connecticut, USA.
| |
Collapse
|
7
|
Węgrzyn E, Mejdrová I, Carell T. Gradual evolution of a homo-l-peptide world on homo-d-configured RNA and DNA. Chem Sci 2024; 15:d4sc03384a. [PMID: 39129775 PMCID: PMC11306956 DOI: 10.1039/d4sc03384a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/26/2024] [Indexed: 08/13/2024] Open
Abstract
Modern life requires the translation of genetic information - encoded by nucleic acids - into proteins, which establishes the essential link between genotype and phenotype. During translation, exclusively l-amino acids are loaded onto transfer RNA molecules (tRNA), which are then connected at the ribosome to give homo-l-proteins. In contrast to the homo-l-configuration of amino acids and proteins, the oligonucleotides involved are all d-configured (deoxy)ribosides. Previously, others and us have shown that if peptide synthesis occurs at homo d-configured oligonucleotides, a pronounced l-amino acid selectivity is observed, which reflects the d-sugar/l-amino acid world that evolved in nature. Here we further explore this astonishing selectivity. We show a peptide-synthesis/recapture-cycle that can lead to a gradual enrichment and hence selection of a homo-l-peptide world. We show that even if peptides with a mixed l/d-stereochemistry are formed, they are not competitive against the homo-l-counterparts. We also demonstrate that this selectivity is not limited to RNA but that peptide synthesis on DNA features the same l-amino acid preference. In total, the data bring us a step closer to an understanding of how homochirality on Earth once evolved.
Collapse
Affiliation(s)
- Ewa Węgrzyn
- Department of Chemistry, Center for Nucleic Acids Therapies at the Institute for Chemical Epigenetics (ICE-M), Ludwig-Maximilians-Universität (LMU) München Butenandtstrasse 5-13 81377 Munich Germany
| | - Ivana Mejdrová
- Department of Chemistry, Center for Nucleic Acids Therapies at the Institute for Chemical Epigenetics (ICE-M), Ludwig-Maximilians-Universität (LMU) München Butenandtstrasse 5-13 81377 Munich Germany
| | - Thomas Carell
- Department of Chemistry, Center for Nucleic Acids Therapies at the Institute for Chemical Epigenetics (ICE-M), Ludwig-Maximilians-Universität (LMU) München Butenandtstrasse 5-13 81377 Munich Germany
| |
Collapse
|
8
|
Weiss JL, Decker JC, Bolano A, Krahn N. Tuning tRNAs for improved translation. Front Genet 2024; 15:1436860. [PMID: 38983271 PMCID: PMC11231383 DOI: 10.3389/fgene.2024.1436860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 06/06/2024] [Indexed: 07/11/2024] Open
Abstract
Transfer RNAs have been extensively explored as the molecules that translate the genetic code into proteins. At this interface of genetics and biochemistry, tRNAs direct the efficiency of every major step of translation by interacting with a multitude of binding partners. However, due to the variability of tRNA sequences and the abundance of diverse post-transcriptional modifications, a guidebook linking tRNA sequences to specific translational outcomes has yet to be elucidated. Here, we review substantial efforts that have collectively uncovered tRNA engineering principles that can be used as a guide for the tuning of translation fidelity. These principles have allowed for the development of basic research, expansion of the genetic code with non-canonical amino acids, and tRNA therapeutics.
Collapse
Affiliation(s)
- Joshua L Weiss
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - J C Decker
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Ariadna Bolano
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Natalie Krahn
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| |
Collapse
|
9
|
Mir DA, Ma Z, Horrocks J, Rogers A. Stress-Induced Eukaryotic Translational Regulatory Mechanisms. JOURNAL OF CLINICAL AND MEDICAL SCIENCES 2024; 8:1000277. [PMID: 39364184 PMCID: PMC11448810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
The eukaryotic protein synthesis process entails intricate stages governed by diverse mechanisms to tightly regulate translation. Translational regulation during stress is pivotal for maintaining cellular homeostasis, ensuring the accurate expression of essential proteins is important for survival. This selective translational control mechanism is integral to cellular adaptation and resilience under adverse conditions. This review manuscript explores various mechanisms involved in selective translational regulation, focusing on mRNA-specific and global regulatory processes. Key aspects of translational control include translation initiation, which is often a rate-limiting step, and involves the formation of the eIF4F complex and recruitment of mRNA to ribosomes. Regulation of translation initiation factors, such as eIF4E, eIF4E2, and eIF2, through phosphorylation and interactions with binding proteins, modulates translation efficiency under stress conditions. This review also highlights the control of translation initiation through factors like the eIF4F complex and the ternary complex and also underscores the importance of eIF2α phosphorylation in stress granule formation and cellular stress responses. Additionally, the impact of amino acid deprivation, mTOR signaling, and ribosome biogenesis on translation regulation and cellular adaptation to stress is also discussed. Understanding the intricate mechanisms of translational regulation during stress provides insights into cellular adaptation mechanisms and potential therapeutic targets for various diseases, offering valuable avenues for addressing conditions associated with dysregulated protein synthesis.
Collapse
Affiliation(s)
- Dilawar Ahmad Mir
- Kathryn W. Davis Center for Regenerative Biology and Aging, Mount Desert Island Biological Laboratory, Maine, United States of America
| | - Zhengxin Ma
- Kathryn W. Davis Center for Regenerative Biology and Aging, Mount Desert Island Biological Laboratory, Maine, United States of America
| | - Jordan Horrocks
- Kathryn W. Davis Center for Regenerative Biology and Aging, Mount Desert Island Biological Laboratory, Maine, United States of America
| | - Aric Rogers
- Kathryn W. Davis Center for Regenerative Biology and Aging, Mount Desert Island Biological Laboratory, Maine, United States of America
| |
Collapse
|
10
|
Węgrzyn E, Mejdrová I, Müller FM, Nainytė M, Escobar L, Carell T. RNA-Templated Peptide Bond Formation Promotes L-Homochirality. Angew Chem Int Ed Engl 2024; 63:e202319235. [PMID: 38407532 DOI: 10.1002/anie.202319235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024]
Abstract
The world in which we live is homochiral. The ribose units that form the backbone of DNA and RNA are all D-configured and the encoded amino acids that comprise the proteins of all living species feature an all-L-configuration at the α-carbon atoms. The homochirality of α-amino acids is essential for folding of the peptides into well-defined and functional 3D structures and the homochirality of D-ribose is crucial for helix formation and base-pairing. The question of why nature uses only encoded L-α-amino acids is not understood. Herein, we show that an RNA-peptide world, in which peptides grow on RNAs constructed from D-ribose, leads to the self-selection of homo-L-peptides, which provides a possible explanation for the homo-D-ribose and homo-L-amino acid combination seen in nature.
Collapse
Affiliation(s)
- Ewa Węgrzyn
- Department of Chemistry, Institute for Chemical Epigenetics (ICE-M), Ludwig-Maximilians-Universität (LMU) München, Butenandtstrasse 5-13, 81377, Munich, Germany
| | - Ivana Mejdrová
- Department of Chemistry, Institute for Chemical Epigenetics (ICE-M), Ludwig-Maximilians-Universität (LMU) München, Butenandtstrasse 5-13, 81377, Munich, Germany
| | - Felix M Müller
- Department of Chemistry, Institute for Chemical Epigenetics (ICE-M), Ludwig-Maximilians-Universität (LMU) München, Butenandtstrasse 5-13, 81377, Munich, Germany
| | - Milda Nainytė
- Department of Chemistry, Institute for Chemical Epigenetics (ICE-M), Ludwig-Maximilians-Universität (LMU) München, Butenandtstrasse 5-13, 81377, Munich, Germany
| | - Luis Escobar
- Department of Chemistry, Institute for Chemical Epigenetics (ICE-M), Ludwig-Maximilians-Universität (LMU) München, Butenandtstrasse 5-13, 81377, Munich, Germany
| | - Thomas Carell
- Department of Chemistry, Institute for Chemical Epigenetics (ICE-M), Ludwig-Maximilians-Universität (LMU) München, Butenandtstrasse 5-13, 81377, Munich, Germany
| |
Collapse
|
11
|
Mir DA, Ma Z, Horrocks J, Rogers AN. Stress-induced Eukaryotic Translational Regulatory Mechanisms. ARXIV 2024:arXiv:2405.01664v1. [PMID: 38745702 PMCID: PMC11092689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The eukaryotic protein synthesis process entails intricate stages governed by diverse mechanisms to tightly regulate translation. Translational regulation during stress is pivotal for maintaining cellular homeostasis, ensuring the accurate expression of essential proteins crucial for survival. This selective translational control mechanism is integral to cellular adaptation and resilience under adverse conditions. This review manuscript explores various mechanisms involved in selective translational regulation, focusing on mRNA-specific and global regulatory processes. Key aspects of translational control include translation initiation, which is often a rate-limiting step, and involves the formation of the eIF4F complex and recruitment of mRNA to ribosomes. Regulation of translation initiation factors, such as eIF4E, eIF4E2, and eIF2, through phosphorylation and interactions with binding proteins, modulates translation efficiency under stress conditions. This review also highlights the control of translation initiation through factors like the eIF4F complex and the ternary complex and also underscores the importance of eIF2α phosphorylation in stress granule formation and cellular stress responses. Additionally, the impact of amino acid deprivation, mTOR signaling, and ribosome biogenesis on translation regulation and cellular adaptation to stress is also discussed. Understanding the intricate mechanisms of translational regulation during stress provides insights into cellular adaptation mechanisms and potential therapeutic targets for various diseases, offering valuable avenues for addressing conditions associated with dysregulated protein synthesis.
Collapse
Affiliation(s)
- Dilawar Ahmad Mir
- Kathryn W. Davis Center for Regenerative Biology and Aging, Mount Desert Island Biological Laboratory, Bar Harbor, ME
| | - Zhengxin Ma
- Kathryn W. Davis Center for Regenerative Biology and Aging, Mount Desert Island Biological Laboratory, Bar Harbor, ME
| | - Jordan Horrocks
- Kathryn W. Davis Center for Regenerative Biology and Aging, Mount Desert Island Biological Laboratory, Bar Harbor, ME
| | - Aric N Rogers
- Kathryn W. Davis Center for Regenerative Biology and Aging, Mount Desert Island Biological Laboratory, Bar Harbor, ME
| |
Collapse
|
12
|
Dunaeva M, Blom J, Thurlings R, van Weijsten M, van de Loo FAJ, Pruijn GJM. Circulating tRNA-derived fragments are decreased in patients with rheumatoid arthritis and increased in patients with psoriatic arthritis. Biomarkers 2024; 29:90-99. [PMID: 38362802 DOI: 10.1080/1354750x.2024.2319297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 02/10/2024] [Indexed: 02/17/2024]
Abstract
INTRODUCTION tRNA-derived fragments (tRFs) play an important role in immune responses. To clarify the role of tRFs in autoimmunity we studied circulating tRF-levels in patients with rheumatoid arthritis (RA) and psoriatic arthritis (PsA), and in a murine model for arthritis. MATERIAL AND METHODS Circulating tRF-levels were quantified by miR-Q RT-qPCR. tRNA processing and modification enzyme expression was analysed by RT-qPCR and public transcriptomics data. RESULTS Significant reduction (up to 3-fold on average) of tRF-levels derived from tRNA-Gly-GCC,CCC, tRNA-Glu-CTC and tRNA-Val-CAC,AAC was observed in RA patients, whereas tRNA-Glu-CTC and tRNA-Val-CAC,AAC tRFs were found at significantly higher levels (up to 3-fold on average) in PsA patients, compared to healthy controls. Also in arthritic IL1Ra-KO mice reduced levels of tRNA-Glu-CTC fragments were seen. The expression of NSUN2, a methyltransferase catalysing tRNA methylation, was increased in RA-peripheral blood mononuclear cells (PBMCs) compared to PsA, but this is not consistently supported by public transcriptomics data. DISCUSSION The observed changes of specific tRF-levels may be involved in the immune responses in RA and PsA and may be applicable as new biomarkers. CONCLUSION Circulating tRF-levels are decreased in RA and increased in PsA and this may, at least in part, be mediated by methylation changes.
Collapse
Affiliation(s)
- Marina Dunaeva
- Department of Biomolecular Chemistry, Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| | - Jan Blom
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rogier Thurlings
- Department of Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Margot van Weijsten
- Department of Synthetic Organic Chemistry, Radboud University, Nijmegen, The Netherlands
| | - Fons A J van de Loo
- Department of Rheumatology, Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ger J M Pruijn
- Department of Biomolecular Chemistry, Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
13
|
McFeely CAL, Shakya B, Makovsky CA, Haney AK, Ashton Cropp T, Hartman MCT. Extensive breaking of genetic code degeneracy with non-canonical amino acids. Nat Commun 2023; 14:5008. [PMID: 37591858 PMCID: PMC10435567 DOI: 10.1038/s41467-023-40529-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 07/26/2023] [Indexed: 08/19/2023] Open
Abstract
Genetic code expansion (GCE) offers many exciting opportunities for the creation of synthetic organisms and for drug discovery methods that utilize in vitro translation. One type of GCE, sense codon reassignment (SCR), focuses on breaking the degeneracy of the 61 sense codons which encode for only 20 amino acids. SCR has great potential for genetic code expansion, but extensive SCR is limited by the post-transcriptional modifications on tRNAs and wobble reading of these tRNAs by the ribosome. To better understand codon-tRNA pairing, here we develop an assay to evaluate the ability of aminoacyl-tRNAs to compete with each other for a given codon. We then show that hyperaccurate ribosome mutants demonstrate reduced wobble reading, and when paired with unmodified tRNAs lead to extensive and predictable SCR. Together, we encode seven distinct amino acids across nine codons spanning just two codon boxes, thereby demonstrating that the genetic code hosts far more re-assignable space than previously expected, opening the door to extensive genetic code engineering.
Collapse
Affiliation(s)
- Clinton A L McFeely
- Department of Chemistry, Virginia Commonwealth University, 1001 W Main St., Richmond, VA, 23284, USA
- Massey Cancer Center, Virginia Commonwealth University, 401 College St., Richmond, VA, 23219, USA
| | - Bipasana Shakya
- Department of Chemistry, Virginia Commonwealth University, 1001 W Main St., Richmond, VA, 23284, USA
- Massey Cancer Center, Virginia Commonwealth University, 401 College St., Richmond, VA, 23219, USA
| | - Chelsea A Makovsky
- Department of Chemistry, Virginia Commonwealth University, 1001 W Main St., Richmond, VA, 23284, USA
- Massey Cancer Center, Virginia Commonwealth University, 401 College St., Richmond, VA, 23219, USA
| | - Aidan K Haney
- Department of Chemistry, Virginia Commonwealth University, 1001 W Main St., Richmond, VA, 23284, USA
| | - T Ashton Cropp
- Department of Chemistry, Virginia Commonwealth University, 1001 W Main St., Richmond, VA, 23284, USA
| | - Matthew C T Hartman
- Department of Chemistry, Virginia Commonwealth University, 1001 W Main St., Richmond, VA, 23284, USA.
- Massey Cancer Center, Virginia Commonwealth University, 401 College St., Richmond, VA, 23219, USA.
| |
Collapse
|
14
|
Miwa T, Katsuno T, Wei F, Tomizawa K. Mitochondrial alterations in the cochlea of Cdk5rap1-knockout mice with age-related hearing loss. FEBS Open Bio 2023; 13:1365-1374. [PMID: 37258461 PMCID: PMC10315731 DOI: 10.1002/2211-5463.13655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/08/2023] [Accepted: 05/30/2023] [Indexed: 06/02/2023] Open
Abstract
Previous studies have revealed that age-related hearing loss (AHL) in Cdk5 regulatory subunit-associated protein 1 (Cdk5rap1)-knockout mice is associated with pathology in the cochlea. Here, we aimed to identify mitochondrial alterations in the cochlea of Cdk5rap1-knockout mice with AHL. Mitochondria in the spiral ganglion neurons (SGNs) and hair cells (HCs) were normal despite senescence; however, the mitochondria of types I, II, and IV spiral ligament fibrocytes were ballooned, damaged, and ballooned, respectively, in the stria vascularis. Our results suggest that the accumulation of dysfunctional mitochondria in the lateral wall, rather than the loss of HCs and SGNs, leads to the onset of AHL. Our results provide valuable information regarding the underlying mechanisms of AHL and the relationship between aberrant tRNA modification-induced hearing loss and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Toru Miwa
- Department of Otolaryngology‐Head and Neck Surgery, Graduate School of MedicineKyoto UniversityJapan
- Department of Otolaryngology‐Head and Neck SurgeryOsaka Metropolitan UniversityJapan
| | - Tatsuya Katsuno
- Department of Otolaryngology‐Head and Neck SurgeryOsaka Metropolitan UniversityJapan
| | - Fan‐Yan Wei
- Department of Molecular Physiology, Faculty of Life SciencesKumamoto UniversityJapan
- Department of Modomics Biology and Medicine, Institute of Development, Aging and CancerTohoku UniversitySendaiJapan
| | - Kazuhito Tomizawa
- Department of Molecular Physiology, Faculty of Life SciencesKumamoto UniversityJapan
| |
Collapse
|
15
|
Cho G, Lee J, Kim J. Identification of a novel 5-aminomethyl-2-thiouridine methyltransferase in tRNA modification. Nucleic Acids Res 2023; 51:1971-1983. [PMID: 36762482 PMCID: PMC9976899 DOI: 10.1093/nar/gkad048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/07/2023] [Accepted: 01/18/2023] [Indexed: 02/11/2023] Open
Abstract
The uridine at the 34th position of tRNA, which is able to base pair with the 3'-end codon on mRNA, is usually modified to influence many aspects of decoding properties during translation. Derivatives of 5-methyluridine (xm5U), which include methylaminomethyl (mnm-) or carboxymethylaminomethyl (cmnm-) groups at C5 of uracil base, are widely conserved at the 34th position of many prokaryotic tRNAs. In Gram-negative bacteria such as Escherichia coli, a bifunctional MnmC is involved in the last two reactions of the biosynthesis of mnm5(s2)U, in which the enzyme first converts cmnm5(s2)U to 5-aminomethyl-(2-thio)uridine (nm5(s2)U) and subsequently installs the methyl group to complete the formation of mnm5(s2)U. Although mnm5s2U has been identified in tRNAs of Gram-positive bacteria and plants as well, their genomes do not contain an mnmC ortholog and the gene(s) responsible for this modification is unknown. We discovered that MnmM, previously known as YtqB, is the methyltransferase that converts nm5s2U to mnm5s2U in Bacillus subtilis through comparative genomics, gene complementation experiments, and in vitro assays. Furthermore, we determined X-ray crystal structures of MnmM complexed with anticodon stem loop of tRNAGln. The structures provide the molecular basis underlying the importance of U33-nm5s2U34-U35 as the key determinant for the specificity of MnmM.
Collapse
Affiliation(s)
- Gyuhyeok Cho
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Jangmin Lee
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Jungwook Kim
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| |
Collapse
|
16
|
Jürgenstein K, Tagel M, Ilves H, Leppik M, Kivisaar M, Remme J. Variance in translational fidelity of different bacterial species is affected by pseudouridines in the tRNA anticodon stem-loop. RNA Biol 2022; 19:1050-1058. [PMID: 36093925 PMCID: PMC9481147 DOI: 10.1080/15476286.2022.2121447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Delicate variances in the translational machinery affect how efficiently different organisms approach protein synthesis. Determining the scale of this effect, however, requires knowledge on the differences of mistranslation levels. Here, we used a dual-luciferase reporter assay cloned into a broad host range plasmid to reveal the translational fidelity profiles of Pseudomonas putida, Pseudomonas aeruginosa and Escherichia coli. We observed that these profiles are surprisingly different, whereas species more prone to translational frameshifting are not necessarily more prone to stop codon readthrough. As tRNA modifications are among the factors that have been implicated to affect translation accuracy, we also show that translational fidelity is context-specifically influenced by pseudouridines in the anticodon stem-loop of tRNA, but the effect is not uniform between species.
Collapse
Affiliation(s)
- Karl Jürgenstein
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Mari Tagel
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Heili Ilves
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Margus Leppik
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Maia Kivisaar
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Jaanus Remme
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| |
Collapse
|
17
|
Fages‐Lartaud M, Hundvin K, Hohmann‐Marriott MF. Mechanisms governing codon usage bias and the implications for protein expression in the chloroplast of Chlamydomonas reinhardtii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:919-945. [PMID: 36071273 PMCID: PMC9828097 DOI: 10.1111/tpj.15970] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 05/30/2023]
Abstract
Chloroplasts possess a considerably reduced genome that is decoded via an almost minimal set of tRNAs. These features make an excellent platform for gaining insights into fundamental mechanisms that govern protein expression. Here, we present a comprehensive and revised perspective of the mechanisms that drive codon selection in the chloroplast of Chlamydomonas reinhardtii and the functional consequences for protein expression. In order to extract this information, we applied several codon usage descriptors to genes with different expression levels. We show that highly expressed genes strongly favor translationally optimal codons, while genes with lower functional importance are rather affected by directional mutational bias. We demonstrate that codon optimality can be deduced from codon-anticodon pairing affinity and, for a small number of amino acids (leucine, arginine, serine, and isoleucine), tRNA concentrations. Finally, we review, analyze, and expand on the impact of codon usage on protein yield, secondary structures of mRNA, translation initiation and termination, and amino acid composition of proteins, as well as cotranslational protein folding. The comprehensive analysis of codon choice provides crucial insights into heterologous gene expression in the chloroplast of C. reinhardtii, which may also be applicable to other chloroplast-containing organisms and bacteria.
Collapse
Affiliation(s)
- Maxime Fages‐Lartaud
- Department of BiotechnologyNorwegian University of Science and TechnologyTrondheimN‐7491Norway
| | - Kristoffer Hundvin
- Department of BiotechnologyNorwegian University of Science and TechnologyTrondheimN‐7491Norway
| | | |
Collapse
|
18
|
Dysfunctional tRNA reprogramming and codon-biased translation in cancer. Trends Mol Med 2022; 28:964-978. [PMID: 36241532 PMCID: PMC10071289 DOI: 10.1016/j.molmed.2022.09.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/20/2022] [Accepted: 09/12/2022] [Indexed: 12/17/2022]
Abstract
Many cancers hijack translation to increase the synthesis of tumor-driving proteins, the messenger mRNAs of which have specific codon usage patterns. Termed 'codon-biased translation' and originally identified in stress response regulation, this mechanism is supported by diverse studies demonstrating how the 50 RNA modifications of the epitranscriptome, specific tRNAs, and codon-biased mRNAs are used by oncogenic programs to promote proliferation and chemoresistance. The epitranscriptome writers METTL1-WDR4, Elongator complex protein (ELP)1-6, CTU1-2, and ALKBH8-TRM112 illustrate the principal mechanism of codon-biased translation, with gene amplifications, increased RNA modifications, and enhanced tRNA stability promoting cancer proliferation. Furthermore, systems-level analyses of 34 tRNA writers and 493 tRNA genes highlight the theme of tRNA epitranscriptome dysregulation in many cancers and identify candidate tRNA writers, tRNA modifications, and tRNA molecules as drivers of pathological codon-biased translation.
Collapse
|
19
|
McFeely CAL, Dods KK, Patel SS, Hartman MCT. Expansion of the genetic code through reassignment of redundant sense codons using fully modified tRNA. Nucleic Acids Res 2022; 50:11374-11386. [PMID: 36300637 PMCID: PMC9638912 DOI: 10.1093/nar/gkac846] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 09/09/2022] [Accepted: 09/23/2022] [Indexed: 11/21/2022] Open
Abstract
Breaking codon degeneracy for the introduction of non-canonical amino acids offers many opportunities in synthetic biology. Yet, despite the existence of 64 codons, the code has only been expanded to 25 amino acids in vitro. A limiting factor could be the over-reliance on synthetic tRNAs which lack the post-transcriptional modifications that improve translational fidelity. To determine whether modified, wild-type tRNA could improve sense codon reassignment, we developed a new fluorous method for tRNA capture and applied it to the isolation of roughly half of the Escherichia coli tRNA isoacceptors. We then performed codon competition experiments between the five captured wild-type leucyl-tRNAs and their synthetic counterparts, revealing a strong preference for wild-type tRNA in an in vitro translation system. Finally, we compared the ability of wild-type and synthetic leucyl-tRNA to break the degeneracy of the leucine codon box, showing that only captured wild-type tRNAs are discriminated with enough fidelity to accurately split the leucine codon box for the encoding of three separate amino acids. Wild-type tRNAs are therefore enabling reagents for maximizing the reassignment potential of the genetic code.
Collapse
Affiliation(s)
- Clinton A L McFeely
- Department of Chemistry, Virginia Commonwealth University , Richmond, VA 23220 , USA
- Massey Cancer Center, Virginia Commonwealth University , Richmond, VA 23220 , USA
| | - Kara K Dods
- Department of Chemistry, Virginia Commonwealth University , Richmond, VA 23220 , USA
- Massey Cancer Center, Virginia Commonwealth University , Richmond, VA 23220 , USA
| | - Shivam S Patel
- Department of Chemistry, Virginia Commonwealth University , Richmond, VA 23220 , USA
| | - Matthew C T Hartman
- Department of Chemistry, Virginia Commonwealth University , Richmond, VA 23220 , USA
- Massey Cancer Center, Virginia Commonwealth University , Richmond, VA 23220 , USA
| |
Collapse
|
20
|
Dome A, Dymova M, Richter V, Stepanov G. Post-Transcriptional Modifications of RNA as Regulators of Apoptosis in Glioblastoma. Int J Mol Sci 2022; 23:9272. [PMID: 36012529 PMCID: PMC9408889 DOI: 10.3390/ijms23169272] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/16/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
This review is devoted to changes in the post-transcriptional maturation of RNA in human glioblastoma cells, which leads to disruption of the normal course of apoptosis in them. The review thoroughly highlights the latest information on both post-transcriptional modifications of certain regulatory RNAs, associated with the process of apoptosis, presents data on the features of apoptosis in glioblastoma cells, and shows the relationship between regulatory RNAs and the apoptosis in tumor cells. In conclusion, potential target candidates are presented that are necessary for the development of new drugs for the treatment of glioblastoma.
Collapse
Affiliation(s)
| | - Maya Dymova
- Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | | | | |
Collapse
|
21
|
Yang Y, Lin M, Chen X, Zhao X, Chen L, Zhao M, Yao C, Sheng K, Yang Y, Ma G, Du A. The first apicoplast tRNA thiouridylase plays a vital role in the growth of Toxoplasma gondii. Front Cell Infect Microbiol 2022; 12:947039. [PMID: 36046743 PMCID: PMC9420914 DOI: 10.3389/fcimb.2022.947039] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/18/2022] [Indexed: 01/27/2023] Open
Abstract
Toxoplasmosis caused by the protozoan Toxoplasma gondii is one of the most common parasitic diseases in humans and almost all warm-blooded animals. Lys, Glu, and Gln-specific tRNAs contain a super-modified 2-thiourea (s2U) derivatives at the position 34, which is essential for all living organisms by maintaining the structural stability and aminoacylation of tRNA, and the precision and efficiency of codon recognition during protein translation. However, the enzyme(s) involved in this modification in T. gondii remains elusive. In this report, three putative tRNA-specific 2-thiolation enzymes were identified, of which two were involved in the s2U34 modification of tRNALys, tRNAGlu, and tRNAGln. One was named TgMnmA, an apicoplast-located tRNA-specific 2-thiolation enzyme in T. gondii. Knockout of TgMnmA showed that this enzyme is important for the lytic cycle of tachyzoites. Loss of TgMnmA also led to abnormities in apicoplast biogenesis and severely disturbed apicoplast genomic transcription. Notably, mice survived from the infection with 10 TgMnmA-KO RH tachyzoites. These findings provide new insights into s2U34 tRNA modification in Apicomplexa, and suggest TgMnmA, the first apicoplast tRNA thiouridylase identified in all apicomplexans, as a potential drug target.
Collapse
Affiliation(s)
- Yimin Yang
- Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Mi Lin
- Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Xueqiu Chen
- Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - XianFeng Zhao
- Animals & Plant Inspection and Quarantine Technology Center of Shenzhen Customs, Shenzhen, China
| | - Lulu Chen
- Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Mingxiu Zhao
- Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Chaoqun Yao
- Department of Biomedical Sciences and One Health Center for Zoonoses and Tropical Veterinary Medicine, Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis
| | - Kaiyin Sheng
- Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yi Yang
- Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Guangxu Ma
- Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Aifang Du
- Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
- *Correspondence: Aifang Du,
| |
Collapse
|
22
|
DeBenedictis EA, Söll D, Esvelt KM. Measuring the tolerance of the genetic code to altered codon size. eLife 2022; 11:76941. [PMID: 35293861 PMCID: PMC9094753 DOI: 10.7554/elife.76941] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
Translation using four-base codons occurs in both natural and synthetic systems. What constraints contributed to the universal adoption of a triplet codon, rather than quadruplet codon, genetic code? Here, we investigate the tolerance of the Escherichia coli genetic code to tRNA mutations that increase codon size. We found that tRNAs from all 20 canonical isoacceptor classes can be converted to functional quadruplet tRNAs (qtRNAs). Many of these selectively incorporate a single amino acid in response to a specified four-base codon, as confirmed with mass spectrometry. However, efficient quadruplet codon translation often requires multiple tRNA mutations. Moreover, while tRNAs were largely amenable to quadruplet conversion, only nine of the twenty aminoacyl tRNA synthetases tolerate quadruplet anticodons. These may constitute a functional and mutually orthogonal set, but one that sharply limits the chemical alphabet available to a nascent all-quadruplet code. Our results suggest that the triplet codon code was selected because it is simpler and sufficient, not because a quadruplet codon code is unachievable. These data provide a blueprint for synthetic biologists to deliberately engineer an all-quadruplet expanded genetic code.
Collapse
Affiliation(s)
- Erika Alden DeBenedictis
- Department of Biological Engineering, Massachusetts Institue of Technology, Cambridge, United States
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, United States
| | - Kevin M Esvelt
- Department of Media Arts and Sciences, Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|
23
|
Vangaveti S, Ranganathan SV, Agris PF. Physical Chemistry of a Single tRNA-Modified Nucleoside Regulates Decoding of the Synonymous Lysine Wobble Codon and Affects Type 2 Diabetes. J Phys Chem B 2022; 126:1168-1177. [PMID: 35119848 DOI: 10.1021/acs.jpcb.1c09053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The 2-methylthio-modification (ms2-) of N6-threonylcarbonyladenosine (t6A37) at position-37 (ms2t6A37) in tRNAUUULys3 provides the needed stability between the tRNA anticodon and the human insulin mRNA codon AAG during translation, as determined by molecular dynamics simulation. Single-nucleoside polymorphisms of the human gene for the enzyme, Cdkal1 that post-transcriptionally modifies t6A37 to ms2t6A37 in tRNAUUULys3, correlate with type 2 diabetes mellitus. Without the ms2-modification, tRNAUUULys3 is incapable of correctly translating the insulin mRNA AAG codon for lysine at the site of protease cleavage between the A-chain and the C-peptide. By enhancing anticodon/codon cross-strand stacking, the ms2-modification adds stability through van der Waals interactions and dehydration of the ASL loop and cavity of the anticodon/codon minihelix but does not add hydrogen bonding of any consequence. Thus, the modifying enzyme Cdkal1, by adding a crucial ms2-group to tRNAUUULys3-t6A37, facilitates the decoding of the AAG codon and enables human pancreatic islets to correctly translate insulin mRNA.
Collapse
Affiliation(s)
- Sweta Vangaveti
- The RNA Institute, University at Albany, Albany, New York 12222, United States
| | - Srivathsan V Ranganathan
- Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon 97210 United States
| | - Paul F Agris
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina 27710 United States
| |
Collapse
|
24
|
Chemical modifications to mRNA nucleobases impact translation elongation and termination. Biophys Chem 2022; 285:106780. [DOI: 10.1016/j.bpc.2022.106780] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/03/2022] [Accepted: 02/13/2022] [Indexed: 12/15/2022]
|
25
|
Fages-Lartaud M, Hohmann-Marriott MF. Overview of tRNA Modifications in Chloroplasts. Microorganisms 2022; 10:226. [PMID: 35208681 PMCID: PMC8877259 DOI: 10.3390/microorganisms10020226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 11/29/2022] Open
Abstract
The chloroplast is a promising platform for biotechnological innovation due to its compact translation machinery. Nucleotide modifications within a minimal set of tRNAs modulate codon-anticodon interactions that are crucial for translation efficiency. However, a comprehensive assessment of these modifications does not presently exist in chloroplasts. Here, we synthesize all available information concerning tRNA modifications in the chloroplast and assign translation efficiency for each modified anticodon-codon pair. In addition, we perform a bioinformatics analysis that links enzymes to tRNA modifications and aminoacylation in the chloroplast of Chlamydomonas reinhardtii. This work provides the first comprehensive analysis of codon and anticodon interactions of chloroplasts and its implication for translation efficiency.
Collapse
Affiliation(s)
- Maxime Fages-Lartaud
- Department of Biotechnology, Norwegian University of Science and Technology, N-7491 Trondheim, Norway;
| | - Martin Frank Hohmann-Marriott
- Department of Biotechnology, Norwegian University of Science and Technology, N-7491 Trondheim, Norway;
- United Scientists CORE (Limited), Dunedin 9016, Aotearoa, New Zealand
| |
Collapse
|
26
|
Lateef OM, Akintubosun MO, Olaoba OT, Samson SO, Adamczyk M. Making Sense of "Nonsense" and More: Challenges and Opportunities in the Genetic Code Expansion, in the World of tRNA Modifications. Int J Mol Sci 2022; 23:938. [PMID: 35055121 PMCID: PMC8779196 DOI: 10.3390/ijms23020938] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 01/09/2023] Open
Abstract
The evolutional development of the RNA translation process that leads to protein synthesis based on naturally occurring amino acids has its continuation via synthetic biology, the so-called rational bioengineering. Genetic code expansion (GCE) explores beyond the natural translational processes to further enhance the structural properties and augment the functionality of a wide range of proteins. Prokaryotic and eukaryotic ribosomal machinery have been proven to accept engineered tRNAs from orthogonal organisms to efficiently incorporate noncanonical amino acids (ncAAs) with rationally designed side chains. These side chains can be reactive or functional groups, which can be extensively utilized in biochemical, biophysical, and cellular studies. Genetic code extension offers the contingency of introducing more than one ncAA into protein through frameshift suppression, multi-site-specific incorporation of ncAAs, thereby increasing the vast number of possible applications. However, different mediating factors reduce the yield and efficiency of ncAA incorporation into synthetic proteins. In this review, we comment on the recent advancements in genetic code expansion to signify the relevance of systems biology in improving ncAA incorporation efficiency. We discuss the emerging impact of tRNA modifications and metabolism in protein design. We also provide examples of the latest successful accomplishments in synthetic protein therapeutics and show how codon expansion has been employed in various scientific and biotechnological applications.
Collapse
Affiliation(s)
- Olubodun Michael Lateef
- Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland; (O.M.L.); (M.O.A.); (S.O.S.)
| | | | - Olamide Tosin Olaoba
- Laboratory of Functional and Structural Biochemistry, Federal University of Sao Carlos, Sao Carlos 13565-905, SP, Brazil;
| | - Sunday Ocholi Samson
- Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland; (O.M.L.); (M.O.A.); (S.O.S.)
| | - Malgorzata Adamczyk
- Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland; (O.M.L.); (M.O.A.); (S.O.S.)
| |
Collapse
|
27
|
Valadon C, Namy O. The Importance of the Epi-Transcriptome in Translation Fidelity. Noncoding RNA 2021; 7:51. [PMID: 34564313 PMCID: PMC8482273 DOI: 10.3390/ncrna7030051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/17/2021] [Accepted: 08/22/2021] [Indexed: 12/11/2022] Open
Abstract
RNA modifications play an essential role in determining RNA fate. Recent studies have revealed the effects of such modifications on all steps of RNA metabolism. These modifications range from the addition of simple groups, such as methyl groups, to the addition of highly complex structures, such as sugars. Their consequences for translation fidelity are not always well documented. Unlike the well-known m6A modification, they are thought to have direct effects on either the folding of the molecule or the ability of tRNAs to bind their codons. Here we describe how modifications found in tRNAs anticodon-loop, rRNA, and mRNA can affect translation fidelity, and how approaches based on direct manipulations of the level of RNA modification could potentially be used to modulate translation for the treatment of human genetic diseases.
Collapse
Affiliation(s)
| | - Olivier Namy
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France;
| |
Collapse
|
28
|
Zheng YY, Wu Y, Begley TJ, Sheng J. Sulfur modification in natural RNA and therapeutic oligonucleotides. RSC Chem Biol 2021; 2:990-1003. [PMID: 34458821 PMCID: PMC8341892 DOI: 10.1039/d1cb00038a] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/22/2021] [Indexed: 11/21/2022] Open
Abstract
Sulfur modifications have been discovered on both DNA and RNA. Sulfur substitution of oxygen atoms at nucleobase or backbone locations in the nucleic acid framework led to a wide variety of sulfur-modified nucleosides and nucleotides. While the discovery, regulation and functions of DNA phosphorothioate (PS) modification, where one of the non-bridging oxygen atoms is replaced by sulfur on the DNA backbone, are important topics, this review focuses on the sulfur modification in natural cellular RNAs and therapeutic nucleic acids. The sulfur modifications on RNAs exhibit diversity in terms of modification location and cellular function, but the various sulfur modifications share common biosynthetic strategies across RNA species, cell types and domains of life. The first section reviews the post-transcriptional sulfur modifications on nucleobases with an emphasis on thiouridine on tRNA and phosphorothioate modification on RNA backbones, as well as the functions of the sulfur modifications on different species of cellular RNAs. The second section reviews the biosynthesis of different types of sulfur modifications and summarizes the general strategy for the biosynthesis of sulfur-containing RNA residues. One of the main goals of investigating sulfur modifications is to aid the genomic drug development pipeline and enhance our understandings of the rapidly growing nucleic acid-based gene therapies. The last section of the review focuses on the current drug development strategies employing sulfur substitution of oxygen atoms in therapeutic RNAs.
Collapse
Affiliation(s)
- Ya Ying Zheng
- Department of Chemistry, University at Albany, State University of New York 1400 Washington Ave. Albany NY 12222 USA
- The RNA Institute, University at Albany, State University of New York 1400 Washington Ave. Albany NY 12222 USA
| | - Ying Wu
- Department of Chemistry, University at Albany, State University of New York 1400 Washington Ave. Albany NY 12222 USA
- The RNA Institute, University at Albany, State University of New York 1400 Washington Ave. Albany NY 12222 USA
| | - Thomas J Begley
- The RNA Institute, University at Albany, State University of New York 1400 Washington Ave. Albany NY 12222 USA
- Department of Biological Science, University at Albany, State University of New York 1400 Washington Ave. Albany NY 12222 USA
| | - Jia Sheng
- Department of Chemistry, University at Albany, State University of New York 1400 Washington Ave. Albany NY 12222 USA
- The RNA Institute, University at Albany, State University of New York 1400 Washington Ave. Albany NY 12222 USA
| |
Collapse
|
29
|
Miwa T, Wei FY, Tomizawa K. Cdk5 regulatory subunit-associated protein 1 knockout mice show hearing loss phenotypically similar to age-related hearing loss. Mol Brain 2021; 14:82. [PMID: 34001214 PMCID: PMC8130336 DOI: 10.1186/s13041-021-00791-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/12/2021] [Indexed: 11/10/2022] Open
Abstract
Mitochondrial dysfunction is associated with aging and age-related hearing loss (AHL). However, the precise mechanisms underlying the pathophysiology of hearing loss remain unclear. Cdk5 regulatory subunit-associated protein 1 (CDK5RAP1) enables efficient intramitochondrial translation by catalyzing the deposition of 2-methylthio modifications on mitochondrial tRNAs. Here we investigated the effect of defective mitochondrial protein translation on hearing and AHL in a Cdk5rap1 deficiency C57BL/6 mouse model. Compared to control C57BL/6 mice, Cdk5rap1-knockout female mice displayed hearing loss phenotypically similar to AHL from an early age. The premature hearing loss in Cdk5rap1-knockout mice was associated with the degeneration of the spiral ligament and reduction of endocochlear potentials following the loss of auditory sensory cells. Furthermore, cultured primary mouse embryonic fibroblasts displayed early onset of cellular senescence associated with high oxidative stress and cell death. These results indicate that the CDK5RAP1 deficiency-induced defective mitochondrial translation might cause early hearing loss through the induction of cellular senescence and cochlear dysfunction in the inner ear. Our results suggest that the accumulation of dysfunctional mitochondria might promote AHL progression. Furthermore, our findings suggest that mitochondrial dysfunction and dysregulated mitochondrial tRNA modifications mechanistically cause AHL. Understanding the mechanisms underlying AHL will guide future clinical investigations and interventions in the attempt to mitigate the consequences of AHL.
Collapse
Affiliation(s)
- Toru Miwa
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 6068507, Japan.
- Department of Otolaryngology-Head and Neck Surgery, Kitano Hospital, Tazuke Kofukai Medical Research Institute, 2-4-20 Ougimaci, Kita-ku, Osaka, 5308480, Japan.
| | - Fan-Yan Wei
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, 1-1-1- Honjo, Chuo-ku, Kumamoto, 8608556, Japan
- Department of Modomics Biology and Medicine, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo, Aoba-ku, Sendai, Miyagi, 9808575, Japan
| | - Kazuhito Tomizawa
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, 1-1-1- Honjo, Chuo-ku, Kumamoto, 8608556, Japan
| |
Collapse
|
30
|
Tavares JF, Davis NK, Poim A, Reis A, Kellner S, Sousa I, Soares AR, Moura GMR, Dedon PC, Santos M. tRNA-modifying enzyme mutations induce codon-specific mistranslation and protein aggregation in yeast. RNA Biol 2021; 18:563-575. [PMID: 32893724 PMCID: PMC7971265 DOI: 10.1080/15476286.2020.1819671] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 01/28/2023] Open
Abstract
Protein synthesis rate and accuracy are tightly controlled by the cell and are essential for proteome homoeostasis (proteostasis); however, the full picture of how mRNA translational factors maintain protein synthesis accuracy and co-translational protein folding are far from being fully understood. To address this question, we evaluated the role of 70 yeast tRNA-modifying enzyme genes on protein aggregation and used mass spectrometry to identify the aggregated proteins. We show that modification of uridine at anticodon position 34 (U34) by the tRNA-modifying enzymes Elp1, Elp3, Sml3 and Trm9 is critical for proteostasis, the mitochondrial tRNA-modifying enzyme Slm3 plays a fundamental role in general proteostasis and that stress response proteins whose genes are enriched in codons decoded by tRNAs lacking mcm5U34, mcm5s2U34, ncm5U34, ncm5Um34, modifications are overrepresented in protein aggregates of the ELP1, SLM3 and TRM9 KO strains. Increased rates of amino acid misincorporation were also detected in these strains at protein sites that specifically mapped to the codons sites that are decoded by the hypomodified tRNAs, demonstrating that U34 tRNA modifications safeguard the proteome from translational errors, protein misfolding and proteotoxic stress.
Collapse
Affiliation(s)
- Joana F Tavares
- Department of Medical Sciences, Institute of Biomedicine – iBiMED, University of Aveiro, Aveiro, Portugal
| | - Nick K. Davis
- Department of Biological Engineering, Massachusetts Institute of Technology – MIT, Cambridge, US
| | - Ana Poim
- Department of Medical Sciences, Institute of Biomedicine – iBiMED, University of Aveiro, Aveiro, Portugal
| | - Andreia Reis
- Department of Medical Sciences, Institute of Biomedicine – iBiMED, University of Aveiro, Aveiro, Portugal
| | - Stefanie Kellner
- Department of Biological Engineering, Massachusetts Institute of Technology – MIT, Cambridge, US
| | - Inês Sousa
- Department of Medical Sciences, Institute of Biomedicine – iBiMED, University of Aveiro, Aveiro, Portugal
| | - Ana R. Soares
- Department of Medical Sciences, Institute of Biomedicine – iBiMED, University of Aveiro, Aveiro, Portugal
| | - Gabriela M R Moura
- Department of Medical Sciences, Institute of Biomedicine – iBiMED, University of Aveiro, Aveiro, Portugal
| | - Peter C Dedon
- Department of Biological Engineering, Massachusetts Institute of Technology – MIT, Cambridge, US
- Singapore-MIT Alliance for Research and Technology, Campus for Research Excellence and Technical Enterprise – CREATE, Singapore
| | - Manuel Santos
- Department of Medical Sciences, Institute of Biomedicine – iBiMED, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
31
|
tRNA Biology in the Pathogenesis of Diabetes: Role of Genetic and Environmental Factors. Int J Mol Sci 2021; 22:ijms22020496. [PMID: 33419045 PMCID: PMC7825315 DOI: 10.3390/ijms22020496] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/02/2021] [Accepted: 01/03/2021] [Indexed: 02/07/2023] Open
Abstract
The global rise in type 2 diabetes results from a combination of genetic predisposition with environmental assaults that negatively affect insulin action in peripheral tissues and impair pancreatic β-cell function and survival. Nongenetic heritability of metabolic traits may be an important contributor to the diabetes epidemic. Transfer RNAs (tRNAs) are noncoding RNA molecules that play a crucial role in protein synthesis. tRNAs also have noncanonical functions through which they control a variety of biological processes. Genetic and environmental effects on tRNAs have emerged as novel contributors to the pathogenesis of diabetes. Indeed, altered tRNA aminoacylation, modification, and fragmentation are associated with β-cell failure, obesity, and insulin resistance. Moreover, diet-induced tRNA fragments have been linked with intergenerational inheritance of metabolic traits. Here, we provide a comprehensive review of how perturbations in tRNA biology play a role in the pathogenesis of monogenic and type 2 diabetes.
Collapse
|
32
|
Jeong S, Kim J. Structural snapshots of CmoB in various states during wobble uridine modification of tRNA. Biochem Biophys Res Commun 2020; 534:604-609. [PMID: 33213836 DOI: 10.1016/j.bbrc.2020.11.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 11/09/2020] [Indexed: 10/23/2022]
Abstract
CmoB utilizes carboxy-S-adenosyl-l-methionine (CxSAM) to carry out unusual carboxymethyl transfer to form 5-carboxymethoxyuridine (cmo5U) of several tRNA species in Gram-negative bacteria. In this report, we present three X-ray crystal structures of CmoB from Vibrio vulnificus representing different states in the course of the reaction pathway; i.e., apo-, substrate-bound, and product-bound forms. Especially, the crystal structure of apo-CmoB unveils a novel open state of the enzyme, capturing unprecedented conformational dynamics around the substrate-binding site. The apo-structure demonstrates that the open conformation favors the release of CxSAM thus representing an inactive form. Our crystal structures of CmoB complexed with CxSAM and S-adenosyl-l-homocysteine (SAH) and combined binding assay results support the proposed mechanism underlying the cofactor selectivity, where CmoB preferentially senses negative charge around amino acid residues Lys-91, Tyr-200, and Arg-315.
Collapse
Affiliation(s)
- Sehwang Jeong
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, 61005, South Korea
| | - Jungwook Kim
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, 61005, South Korea.
| |
Collapse
|
33
|
Zhang TT, Liu H, Gao QY, Yang T, Liu JN, Ma XF, Li ZH. Gene transfer and nucleotide sequence evolution by Gossypium cytoplasmic genomes indicates novel evolutionary characteristics. PLANT CELL REPORTS 2020; 39:765-777. [PMID: 32215683 DOI: 10.1007/s00299-020-02529-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/04/2020] [Indexed: 06/10/2023]
Abstract
The DNA fragments transferred among cotton cytoplasmic genomes are highly differentiated. The wild D group cotton species have undergone much greater evolution compared with cultivated AD group. Cotton (Gossypium spp.) is one of the most economically important fiber crops worldwide. Gene transfer, nucleotide evolution, and the codon usage preferences in cytoplasmic genomes are important evolutionary characteristics of high plants. In this study, we analyzed the nucleotide sequence evolution, codon usage, and transfer of cytoplasmic DNA fragments in Gossypium chloroplast (cp) and mitochondrial (mt) genomes, including the A genome group, wild D group, and cultivated AD group of cotton species. Our analyses indicated that the differences in the length of transferred cytoplasmic DNA fragments were not significant in mitochondrial and chloroplast sequences. Analysis of the transfer of tRNAs found that trnQ and nine other tRNA genes were commonly transferred between two different cytoplasmic genomes. The Codon Adaptation Index values showed that Gossypium cp genomes prefer A/T-ending codons. Codon preference selection was higher in the D group than the other two groups. Nucleotide sequence evolution analysis showed that intergenic spacer sequences were more variable than coding regions and nonsynonymous mutations were clearly more common in cp genomes than mt genomes. Evolutionary analysis showed that the substitution rate was much higher in cp genomes than mt genomes. Interestingly, the D group cotton species have undergone much faster evolution compared with cultivated AD groups, possibly due to the selection and domestication of diverse cotton species. Our results demonstrate that gene transfer and differential nucleotide sequence evolution have occurred frequently in cotton cytoplasmic genomes.
Collapse
Affiliation(s)
- Ting-Ting Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Heng Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Qi-Yuan Gao
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Ting Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Jian-Ni Liu
- State Key Laboratory of Continental Dynamics, Department of Geology, Early Life Institute, Northwest University, Xi'an, 710069, China
| | - Xiong-Feng Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| | - Zhong-Hu Li
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an, 710069, China.
- State Key Laboratory of Continental Dynamics, Department of Geology, Early Life Institute, Northwest University, Xi'an, 710069, China.
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| |
Collapse
|
34
|
Schwark DG, Schmitt MA, Biddle W, Fisk JD. The Influence of Competing tRNA Abundance on Translation: Quantifying the Efficiency of Sense Codon Reassignment at Rarely Used Codons. Chembiochem 2020; 21:2274-2286. [PMID: 32203635 DOI: 10.1002/cbic.202000052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/12/2020] [Indexed: 11/07/2022]
Abstract
A quantitative understanding of how system composition and molecular properties conspire to determine the fidelity of translation is lacking. Our strategy directs an orthogonal tRNA to directly compete against endogenous tRNAs to decode individual targeted codons in a GFP reporter. Sets of directed sense codon reassignment measurements allow the isolation of particular factors contributing to translational fidelity. In this work, we isolated the effect of tRNA concentration on translational fidelity by evaluating reassignment of the 15 least commonly employed E. coli sense codons. Eight of the rarely used codons are reassigned with greater than 20 % efficiency. Both tRNA abundance and codon demand moderately inversely correlate with reassignment efficiency. Furthermore, the reassignment of rarely used codons does not appear to confer a fitness advantage relative to reassignment of other codons. These direct competition experiments also map potential targets for genetic code expansion. The isoleucine AUA codon is particularly attractive for the incorporation of noncanonical amino acids, with a nonoptimized reassignment efficiency of nearly 70 %.
Collapse
Affiliation(s)
- David G Schwark
- Department of Chemistry, University of Colorado Denver Campus Box 194, P.O. Box 173364, Denver, CO 80217-3364, USA
| | - Margaret A Schmitt
- Department of Chemistry, University of Colorado Denver Campus Box 194, P.O. Box 173364, Denver, CO 80217-3364, USA
| | - Wil Biddle
- Department of Chemistry, University of Colorado Denver Campus Box 194, P.O. Box 173364, Denver, CO 80217-3364, USA
| | - John D Fisk
- Department of Chemistry, University of Colorado Denver Campus Box 194, P.O. Box 173364, Denver, CO 80217-3364, USA
| |
Collapse
|
35
|
Kaur J, Daoud A, Eblen ST. Targeting Chromatin Remodeling for Cancer Therapy. Curr Mol Pharmacol 2020; 12:215-229. [PMID: 30767757 PMCID: PMC6875867 DOI: 10.2174/1874467212666190215112915] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/25/2019] [Accepted: 01/31/2019] [Indexed: 12/31/2022]
Abstract
Background: Epigenetic alterations comprise key regulatory events that dynamically alter gene expression and their deregulation is commonly linked to the pathogenesis of various diseases, including cancer. Unlike DNA mutations, epigenetic alterations involve modifications to proteins and nucleic acids that regulate chromatin structure without affecting the underlying DNA sequence, altering the accessibility of the transcriptional machinery to the DNA, thus modulating gene expression. In cancer cells, this often involves the silencing of tumor suppressor genes or the increased expression of genes involved in oncogenesis. Advances in laboratory medicine have made it possible to map critical epigenetic events, including histone modifications and DNA methylation, on a genome-wide scale. Like the identification of genetic mutations, mapping of changes to the epigenetic landscape has increased our understanding of cancer progression. However, in contrast to irreversible genetic mutations, epigenetic modifications are flexible and dynamic, thereby making them promising therapeutic targets. Ongoing studies are evaluating the use of epigenetic drugs in chemotherapy sensitization and immune system modulation. With the preclinical success of drugs that modify epigenetics, along with the FDA approval of epigenetic drugs including the DNA methyltransferase 1 (DNMT1) inhibitor 5-azacitidine and the histone deacetylase (HDAC) inhibitor vorinostat, there has been a rise in the number of drugs that target epigenetic modulators over recent years. Conclusion: We provide an overview of epigenetic modulations, particularly those involved in cancer, and discuss the recent advances in drug development that target these chromatin-modifying events, primarily focusing on novel strategies to regulate the epigenome.
Collapse
Affiliation(s)
- Jasmine Kaur
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Abdelkader Daoud
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Scott T Eblen
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, United States
| |
Collapse
|
36
|
Angelova MT, Dimitrova DG, Da Silva B, Marchand V, Jacquier C, Achour C, Brazane M, Goyenvalle C, Bourguignon-Igel V, Shehzada S, Khouider S, Lence T, Guerineau V, Roignant JY, Antoniewski C, Teysset L, Bregeon D, Motorin Y, Schaefer MR, Carré C. tRNA 2'-O-methylation by a duo of TRM7/FTSJ1 proteins modulates small RNA silencing in Drosophila. Nucleic Acids Res 2020; 48:2050-2072. [PMID: 31943105 PMCID: PMC7038984 DOI: 10.1093/nar/gkaa002] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 12/30/2019] [Accepted: 01/01/2020] [Indexed: 12/14/2022] Open
Abstract
2′-O-Methylation (Nm) represents one of the most common RNA modifications. Nm affects RNA structure and function with crucial roles in various RNA-mediated processes ranging from RNA silencing, translation, self versus non-self recognition to viral defense mechanisms. Here, we identify two Nm methyltransferases (Nm-MTases) in Drosophila melanogaster (CG7009 and CG5220) as functional orthologs of yeast TRM7 and human FTSJ1. Genetic knockout studies together with MALDI-TOF mass spectrometry and RiboMethSeq mapping revealed that CG7009 is responsible for methylating the wobble position in tRNAPhe, tRNATrp and tRNALeu, while CG5220 methylates position C32 in the same tRNAs and also targets additional tRNAs. CG7009 or CG5220 mutant animals were viable and fertile but exhibited various phenotypes such as lifespan reduction, small RNA pathways dysfunction and increased sensitivity to RNA virus infections. Our results provide the first detailed characterization of two TRM7 family members in Drosophila and uncover a molecular link between enzymes catalyzing Nm at specific tRNAs and small RNA-induced gene silencing pathways.
Collapse
Affiliation(s)
- Margarita T Angelova
- Transgenerational Epigenetics & small RNA Biology, Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine, 9 Quai Saint Bernard, 75005 Paris, France
| | - Dilyana G Dimitrova
- Transgenerational Epigenetics & small RNA Biology, Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine, 9 Quai Saint Bernard, 75005 Paris, France
| | - Bruno Da Silva
- Transgenerational Epigenetics & small RNA Biology, Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine, 9 Quai Saint Bernard, 75005 Paris, France
| | - Virginie Marchand
- Next-Generation Sequencing Core Facility, UMS2008 IBSLor CNRS-Université de Lorraine-INSERM, BioPôle, 9 avenue de la Forêt de Haye, 54505 Vandoeuvre-les-Nancy, France
| | - Caroline Jacquier
- Transgenerational Epigenetics & small RNA Biology, Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine, 9 Quai Saint Bernard, 75005 Paris, France
| | - Cyrinne Achour
- Transgenerational Epigenetics & small RNA Biology, Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine, 9 Quai Saint Bernard, 75005 Paris, France
| | - Mira Brazane
- Transgenerational Epigenetics & small RNA Biology, Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine, 9 Quai Saint Bernard, 75005 Paris, France
| | - Catherine Goyenvalle
- Eucaryiotic Translation, Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Biological Adaptation and Ageing, Institut de Biologie Paris Seine, 9 Quai Saint bernard, 75005 Paris, France
| | - Valérie Bourguignon-Igel
- Next-Generation Sequencing Core Facility, UMS2008 IBSLor CNRS-Université de Lorraine-INSERM, BioPôle, 9 avenue de la Forêt de Haye, 54505 Vandoeuvre-les-Nancy, France.,Ingénierie Moléculaire et Physiopathologie Articulaire, UMR7365, CNRS - Université de Lorraine, 9 avenue de la Forêt de Haye, 54505 Vandoeuvre-les-Nancy, France
| | - Salman Shehzada
- Transgenerational Epigenetics & small RNA Biology, Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine, 9 Quai Saint Bernard, 75005 Paris, France
| | - Souraya Khouider
- Transgenerational Epigenetics & small RNA Biology, Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine, 9 Quai Saint Bernard, 75005 Paris, France
| | - Tina Lence
- Institute of Molecular Biology, Ackermannweg 4, 55128, Mainz, Germany
| | - Vincent Guerineau
- Institut de Chimie de Substances Naturelles, Centre de Recherche de Gif CNRS, 1 avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Jean-Yves Roignant
- Institute of Molecular Biology, Ackermannweg 4, 55128, Mainz, Germany.,Center for Integrative Genomics, Génopode Building, Faculty of Biology and Medicine, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Christophe Antoniewski
- ARTbio Bioinformatics Analysis Facility, Sorbonne Université, CNRS, Institut de Biologie Paris Seine, 9 Quai Saint Bernard, 75005 Paris, France
| | - Laure Teysset
- Transgenerational Epigenetics & small RNA Biology, Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine, 9 Quai Saint Bernard, 75005 Paris, France
| | - Damien Bregeon
- Eucaryiotic Translation, Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Biological Adaptation and Ageing, Institut de Biologie Paris Seine, 9 Quai Saint bernard, 75005 Paris, France
| | - Yuri Motorin
- Ingénierie Moléculaire et Physiopathologie Articulaire, UMR7365, CNRS - Université de Lorraine, 9 avenue de la Forêt de Haye, 54505 Vandoeuvre-les-Nancy, France
| | - Matthias R Schaefer
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstrasse 17, A-1090 Vienna, Austria
| | - Clément Carré
- Transgenerational Epigenetics & small RNA Biology, Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine, 9 Quai Saint Bernard, 75005 Paris, France
| |
Collapse
|
37
|
Pinto R, Vågbø CB, Jakobsson ME, Kim Y, Baltissen MP, O'Donohue MF, Guzmán UH, Małecki JM, Wu J, Kirpekar F, Olsen JV, Gleizes PE, Vermeulen M, Leidel SA, Slupphaug G, Falnes PØ. The human methyltransferase ZCCHC4 catalyses N6-methyladenosine modification of 28S ribosomal RNA. Nucleic Acids Res 2020; 48:830-846. [PMID: 31799605 PMCID: PMC6954407 DOI: 10.1093/nar/gkz1147] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 11/19/2019] [Accepted: 11/25/2019] [Indexed: 01/06/2023] Open
Abstract
RNA methylations are essential both for RNA structure and function, and are introduced by a number of distinct methyltransferases (MTases). In recent years, N6-methyladenosine (m6A) modification of eukaryotic mRNA has been subject to intense studies, and it has been demonstrated that m6A is a reversible modification that regulates several aspects of mRNA function. However, m6A is also found in other RNAs, such as mammalian 18S and 28S ribosomal RNAs (rRNAs), but the responsible MTases have remained elusive. 28S rRNA carries a single m6A modification, found at position A4220 (alternatively referred to as A4190) within a stem–loop structure, and here we show that the MTase ZCCHC4 is the enzyme responsible for introducing this modification. Accordingly, we found that ZCCHC4 localises to nucleoli, the site of ribosome assembly, and that proteins involved in RNA metabolism are overrepresented in the ZCCHC4 interactome. Interestingly, the absence of m6A4220 perturbs codon-specific translation dynamics and shifts gene expression at the translational level. In summary, we establish ZCCHC4 as the enzyme responsible for m6A modification of human 28S rRNA, and demonstrate its functional significance in mRNA translation.
Collapse
Affiliation(s)
- Rita Pinto
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo 0316, Norway
| | - Cathrine B Vågbø
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, NO-7491 Trondheim, Norway.,Proteomics and Modomics Experimental Core (PROMEC), NTNU and the Central Norway Regional Health Authority, NO-7491 Trondheim, Norway
| | - Magnus E Jakobsson
- Proteomics Program, Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Protein Research (NNF-CPR), University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Yeji Kim
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, 48149 Muenster, Germany.,Department of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland
| | - Marijke P Baltissen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen 6500 HB, The Netherlands
| | - Marie-Françoise O'Donohue
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Ulises H Guzmán
- Proteomics Program, Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Protein Research (NNF-CPR), University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Jędrzej M Małecki
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo 0316, Norway
| | - Jie Wu
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, 48149 Muenster, Germany.,Department of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland
| | - Finn Kirpekar
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Jesper V Olsen
- Proteomics Program, Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Protein Research (NNF-CPR), University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Pierre-Emmanuel Gleizes
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen 6500 HB, The Netherlands
| | - Sebastian A Leidel
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, 48149 Muenster, Germany.,Department of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland
| | - Geir Slupphaug
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, NO-7491 Trondheim, Norway.,Proteomics and Modomics Experimental Core (PROMEC), NTNU and the Central Norway Regional Health Authority, NO-7491 Trondheim, Norway
| | - Pål Ø Falnes
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo 0316, Norway
| |
Collapse
|
38
|
Forrest ME, Pinkard O, Martin S, Sweet TJ, Hanson G, Coller J. Codon and amino acid content are associated with mRNA stability in mammalian cells. PLoS One 2020; 15:e0228730. [PMID: 32053646 PMCID: PMC7018022 DOI: 10.1371/journal.pone.0228730] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 01/21/2020] [Indexed: 12/31/2022] Open
Abstract
Messenger RNA (mRNA) degradation plays a critical role in regulating transcript levels in the cell and is a major control point for modulating gene expression. In yeast and other model organisms, codon identity is a powerful determinant of transcript stability, contributing broadly to impact half-lives. General principles governing mRNA stability are poorly understood in mammalian systems. Importantly, however, the degradation machinery is highly conserved, thus it seems logical that mammalian transcript half-lives would also be strongly influenced by coding determinants. Herein we characterize the contribution of coding sequence towards mRNA decay in human and Chinese Hamster Ovary cells. In agreement with previous studies, we observed that synonymous codon usage impacts mRNA stability in mammalian cells. Surprisingly, however, we also observe that the amino acid content of a gene is an additional determinant correlating with transcript stability. The impact of codon and amino acid identity on mRNA decay appears to be associated with underlying tRNA and intracellular amino acid concentrations. Accordingly, genes of similar physiological function appear to coordinate their mRNA stabilities in part through codon and amino acid content. Together, these results raise the possibility that intracellular tRNA and amino acid levels interplay to mediate coupling between translational elongation and mRNA degradation rate in mammals.
Collapse
Affiliation(s)
- Megan E. Forrest
- Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, Ohio, United States of America
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Otis Pinkard
- Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, Ohio, United States of America
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Sophie Martin
- Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Thomas J. Sweet
- Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Gavin Hanson
- Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Jeff Coller
- Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, Ohio, United States of America
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
39
|
Abdelaziz A, Zaitsau DH, Buzyurov AV, Verevkin SP, Schick C. Sublimation thermodynamics of nucleobases derived from fast scanning calorimetry. Phys Chem Chem Phys 2020; 22:838-853. [DOI: 10.1039/c9cp04761a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Fast scanning calorimetry was utilized to measure the sublimation thermodynamics of nucleobases. The results were rationalized at the molecular level.
Collapse
Affiliation(s)
- A. Abdelaziz
- University of Rostock
- Institute of Physics
- 18059 Rostock
- Germany
- University of Rostock
| | - D. H. Zaitsau
- University of Rostock
- Faculty of Interdisciplinary Research
- Competence Centre CALOR
- 18059 Rostock
- Germany
| | | | - S. P. Verevkin
- University of Rostock
- Faculty of Interdisciplinary Research
- Competence Centre CALOR
- 18059 Rostock
- Germany
| | - C. Schick
- University of Rostock
- Institute of Physics
- 18059 Rostock
- Germany
- University of Rostock
| |
Collapse
|
40
|
Calles J, Justice I, Brinkley D, Garcia A, Endy D. Fail-safe genetic codes designed to intrinsically contain engineered organisms. Nucleic Acids Res 2019; 47:10439-10451. [PMID: 31511890 PMCID: PMC6821295 DOI: 10.1093/nar/gkz745] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/13/2019] [Accepted: 08/19/2019] [Indexed: 11/24/2022] Open
Abstract
One challenge in engineering organisms is taking responsibility for their behavior over many generations. Spontaneous mutations arising before or during use can impact heterologous genetic functions, disrupt system integration, or change organism phenotype. Here, we propose restructuring the genetic code itself such that point mutations in protein-coding sequences are selected against. Synthetic genetic systems so-encoded should fail more safely in response to most spontaneous mutations. We designed fail-safe codes and simulated their expected effects on the evolution of so-encoded proteins. We predict fail-safe codes supporting expression of 20 or 15 amino acids could slow protein evolution to ∼30% or 0% the rate of standard-encoded proteins, respectively. We also designed quadruplet-codon codes that should ensure all single point mutations in protein-coding sequences are selected against while maintaining expression of 20 or more amino acids. We demonstrate experimentally that a reduced set of 21 tRNAs is capable of expressing a protein encoded by only 20 sense codons, whereas a standard 64-codon encoding is not expressed. Our work suggests that biological systems using rationally depleted but otherwise natural translation systems should evolve more slowly and that such hypoevolvable organisms may be less likely to invade new niches or outcompete native populations.
Collapse
Affiliation(s)
- Jonathan Calles
- Bioengineering Department, Stanford University, Stanford, CA 94305, USA
| | - Isaac Justice
- Bioengineering Department, Stanford University, Stanford, CA 94305, USA
| | - Detravious Brinkley
- Department of Mathematics and Computer Science, Claflin University, Orangeburg, SC 29115, USA
| | - Alexa Garcia
- Bioengineering Department, Stanford University, Stanford, CA 94305, USA
| | - Drew Endy
- Bioengineering Department, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
41
|
Kim HJ. Cell Fate Control by Translation: mRNA Translation Initiation as a Therapeutic Target for Cancer Development and Stem Cell Fate Control. Biomolecules 2019; 9:biom9110665. [PMID: 31671902 PMCID: PMC6921038 DOI: 10.3390/biom9110665] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 10/28/2019] [Accepted: 10/28/2019] [Indexed: 12/11/2022] Open
Abstract
Translation of mRNA is an important process that controls cell behavior and gene regulation because proteins are the functional molecules that determine cell types and function. Cancer develops as a result of genetic mutations, which lead to the production of abnormal proteins and the dysregulation of translation, which in turn, leads to aberrant protein synthesis. In addition, the machinery that is involved in protein synthesis plays critical roles in stem cell fate determination. In the current review, recent advances in the understanding of translational control, especially translational initiation in cancer development and stem cell fate control, are described. Therapeutic targets of mRNA translation such as eIF4E, 4EBP, and eIF2, for cancer treatment or stem cell fate regulation are reviewed. Upstream signaling pathways that regulate and affect translation initiation were introduced. It is important to regulate the expression of protein for normal cell behavior and development. mRNA translation initiation is a key step to regulate protein synthesis, therefore, identifying and targeting molecules that are critical for protein synthesis is necessary and beneficial to develop cancer therapeutics and stem cells fate regulation.
Collapse
Affiliation(s)
- Hyun-Jung Kim
- Laboratory of Molecular Stem Cell Pharmacology, College of Pharmacy, Chung-Ang University, Seoul 156-756, Korea.
| |
Collapse
|
42
|
Smith TS, Zoltek MA, Simon MD. Reengineering a tRNA Methyltransferase To Covalently Capture New RNA Substrates. J Am Chem Soc 2019; 141:17460-17465. [PMID: 31626536 DOI: 10.1021/jacs.9b08529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Covalent RNA modifications can alter the function and metabolism of RNA transcripts. Altering the RNA substrate specificities of the enzymes that install these modifications can provide powerful tools to study and manipulate RNA. To develop new tools and probe the plasticity of the substrate specificity of one of these enzymes, we examined the engineerability of the uridine-54 tRNA methyltransferase, TrmA. Starting from a mutant that remains covalently bound to its substrate RNA (E358Q, TrmA*), we were able to use both rational design and a high-throughput sequencing assay to examine the RNA substrates of TrmA*. Although rational engineering substantially changed TrmA* specificity, the rationally designed substrate mutants we developed still retained activity with the wild-type protein. Using high-throughput substrate screening of additional TrmA* mutants, we identified a triple mutant of the substrate RNA (C56A;A58G;C60U) that is efficiently trapped by a TrmA* double mutant (E49R;R51E) but not by the wild-type TrmA*. This work establishes a foundation for using protein engineering to reconfigure substrate specificities of RNA-modifying enzymes and covalently trap RNAs with engineered proteins.
Collapse
Affiliation(s)
- Tyler S Smith
- Department of Molecular Biophysics & Biochemistry , Yale University , New Haven , Connecticut 06511 , United States.,Chemical Biology Institute , Yale University , West Haven , Connecticut 06516 , United States
| | - Madeline A Zoltek
- Department of Molecular Biophysics & Biochemistry , Yale University , New Haven , Connecticut 06511 , United States.,Chemical Biology Institute , Yale University , West Haven , Connecticut 06516 , United States
| | - Matthew D Simon
- Department of Molecular Biophysics & Biochemistry , Yale University , New Haven , Connecticut 06511 , United States.,Chemical Biology Institute , Yale University , West Haven , Connecticut 06516 , United States
| |
Collapse
|
43
|
Reading Chemical Modifications in the Transcriptome. J Mol Biol 2019:S0022-2836(19)30598-4. [PMID: 31628951 DOI: 10.1016/j.jmb.2019.10.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/07/2019] [Accepted: 10/08/2019] [Indexed: 12/15/2022]
Abstract
Diverse chemical modifications have been identified in the transcriptome, leading to the emerging field of epitranscriptomics. In eukaryotic mRNA, the 5' cap and 3' poly(A) tail play important roles in regulation, and multiple internal modifications have also been revealed to participate in RNA metabolism. In this review, we focus on internal modifications in eukaryotic mRNA, including modifications to A/U/C/G bases and to ribose as well. We provide an overview of their biogenesis, high-throughput detection methods, biological functions, and regulatory mechanisms, with an emphasis on their reported reader proteins (RNA-binding proteins that specifically bind to modified RNA). We also briefly discuss the current problems in the investigation of mRNA modifications that need to be solved.
Collapse
|
44
|
Takesue Y, Wei FY, Fukuda H, Tanoue Y, Yamamoto T, Chujo T, Shinojima N, Yano S, Morioka M, Mukasa A, Kuratsu J, Tomizawa K. Regulation of growth hormone biosynthesis by Cdk5 regulatory subunit associated protein 1-like 1 (CDKAL1) in pituitary adenomas. Endocr J 2019; 66:807-816. [PMID: 31189758 DOI: 10.1507/endocrj.ej18-0536] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
CDK5 regulatory subunit associated protein 1-like 1 (CDKAL1) is a tRNA-modifying enzyme that catalyzes 2-methylthiolation (ms2) and has been implicated in the development of type 2 diabetes (T2D). CDKAL1-mediated ms2 is important for efficient protein translation and regulates insulin biosynthesis in pancreatic cells. Interestingly, an association between T2D and release of growth hormone (GH) has been reported in humans. However, it is unknown whether CDKAL1 is important for hormone production in the pituitary gland. The present study investigated the role of CDKAL1 in GH-producing pituitary adenomas (GHPAs). CDKAL1 activity was suppressed in GHPAs, as evidenced by a decrease in ms2, compared with non-functioning pituitary adenomas (NFPAs), which do not produce specific hormones. Downregulation of Cdkal1 using small interfering and short hairpin RNAs increased the biosynthesis and secretion of GH in rat GH3 cells. Depletion of Cdkal1 increased the cytosolic calcium level via downregulation of DnaJ heat shock protein family (Hsp40) member C10 (Dnajc10), which is an endoplasmic reticulum protein related to calcium homeostasis. This stimulated transcription of GH via upregulation of Pit-1. Moreover, CDKAL1 activity was highly sensitive to proteostatic stress and was upregulated by suppression of this stress. Taken together, these results suggest that dysregulation of CDKAL1 is involved in the pathogenesis of GHPAs, and that modulation of the proteostatic stress response might control CDKAL1 activity and facilitate treatment of GHPAs.
Collapse
Affiliation(s)
- Yoshihiro Takesue
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
- Department of Neurosurgery, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Fan-Yan Wei
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Hiroyuki Fukuda
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Yuki Tanoue
- International Research Center for Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Takahiro Yamamoto
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
- Department of Neurosurgery, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Takeshi Chujo
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Naoki Shinojima
- Department of Neurosurgery, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Shigetoshi Yano
- Department of Neurosurgery, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
- Department of Neurosurgery, Fukuoka Neurosurgical Hospital, Fukuoka 811-1313, Japan
| | - Motohiro Morioka
- Department of Neurosurgery, Kurume University School of Medicine, Fukuoka 830-0011, Japan
| | - Akitake Mukasa
- Department of Neurosurgery, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Junichi Kuratsu
- Department of Neurosurgery, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
- Department of Neurosurgery, Sakurajuji Hospital, Kumamoto 861-4173, Japan
| | - Kazuhito Tomizawa
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
- Center for Metabolic Regulation of Healthy Aging, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| |
Collapse
|
45
|
Mosca P, Leheup B, Dreumont N. Nutrigenomics and RNA methylation: Role of micronutrients. Biochimie 2019; 164:53-59. [DOI: 10.1016/j.biochi.2019.07.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 07/06/2019] [Indexed: 12/24/2022]
|
46
|
Wilcox B, Osterman I, Serebryakova M, Lukyanov D, Komarova E, Gollan B, Morozova N, Wolf YI, Makarova KS, Helaine S, Sergiev P, Dubiley S, Borukhov S, Severinov K. Escherichia coli ItaT is a type II toxin that inhibits translation by acetylating isoleucyl-tRNAIle. Nucleic Acids Res 2019; 46:7873-7885. [PMID: 29931259 PMCID: PMC6125619 DOI: 10.1093/nar/gky560] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 06/07/2018] [Indexed: 11/14/2022] Open
Abstract
Prokaryotic toxin-antitoxin (TA) modules are highly abundant and are involved in stress response and drug tolerance. The most common type II TA modules consist of two interacting proteins. The type II toxins are diverse enzymes targeting various essential intracellular targets. The antitoxin binds to cognate toxin and inhibits its function. Recently, TA modules whose toxins are GNAT-family acetyltransferases were described. For two such systems, the target of acetylation was shown to be aminoacyl-tRNA: the TacT toxin targets aminoacylated elongator tRNAs, while AtaT targets the amino acid moiety of initiating tRNAMet. We show that the itaRT gene pair from Escherichia coli encodes a TA module with acetyltransferase toxin ItaT that specifically and exclusively acetylates Ile-tRNAIle thereby blocking translation and inhibiting cell growth. ItaT forms a tight complex with the ItaR antitoxin, which represses the transcription of itaRT operon. A comprehensive bioinformatics survey of GNAT acetyltransferases reveals that enzymes encoded by validated or putative TA modules are common and form a distinct branch of the GNAT family tree. We speculate that further functional analysis of such TA modules will result in identification of enzymes capable of specifically targeting many, perhaps all, aminoacyl tRNAs.
Collapse
Affiliation(s)
- Brendan Wilcox
- Centre for Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo 143025, Russia
| | - Ilya Osterman
- Centre for Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo 143025, Russia.,Lomonosov Moscow State University, A.N. Belozersky Institute of Physico-Chemical Biology, Moscow 119992, Russia
| | - Marina Serebryakova
- Centre for Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo 143025, Russia.,Lomonosov Moscow State University, A.N. Belozersky Institute of Physico-Chemical Biology, Moscow 119992, Russia
| | - Dmitry Lukyanov
- Lomonosov Moscow State University, A.N. Belozersky Institute of Physico-Chemical Biology, Moscow 119992, Russia
| | - Ekaterina Komarova
- Centre for Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo 143025, Russia.,Lomonosov Moscow State University, A.N. Belozersky Institute of Physico-Chemical Biology, Moscow 119992, Russia
| | - Bridget Gollan
- MRC Centre for Molecular Bacteriology and Infection, Flowers Building, Armstrong Road, Imperial College London, London SW7 2AZ, UK
| | - Natalia Morozova
- Centre for Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo 143025, Russia.,Peter the Great St. Petersburg State Polytechnic University, St. Petersburg, Russia
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA
| | - Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA
| | - Sophie Helaine
- MRC Centre for Molecular Bacteriology and Infection, Flowers Building, Armstrong Road, Imperial College London, London SW7 2AZ, UK
| | - Petr Sergiev
- Centre for Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo 143025, Russia.,Lomonosov Moscow State University, A.N. Belozersky Institute of Physico-Chemical Biology, Moscow 119992, Russia
| | - Svetlana Dubiley
- Centre for Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo 143025, Russia.,Institute of Gene Biology of the Russian Academy of Sciences, Moscow 119334, Russia
| | - Sergei Borukhov
- Department of Cell Biology, Rowan University School of Osteopathic Medicine at Stratford, Stratford, NJ 08084-1489, USA
| | - Konstantin Severinov
- Centre for Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo 143025, Russia.,Institute of Gene Biology of the Russian Academy of Sciences, Moscow 119334, Russia.,Waksman Institute for Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
47
|
Yu Y, Zhu SH, Yuan F, Zhang XH, Lu YY, Zhou YL, Zhang XX. Ultrasensitive and simultaneous determination of RNA modified nucleotides by sheathless interfaced capillary electrophoresis-tandem mass spectrometry. Chem Commun (Camb) 2019; 55:7595-7598. [PMID: 31180413 DOI: 10.1039/c9cc03195b] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A label-free ultrasensitive determination of eight RNA modified nucleotides simultaneously was first established based on a sheathless capillary electrophoresis-tandem mass spectrometry system. This system performed well using only 500 pg-5 ng practical RNA samples, and a downward trend of most target nucleotides in HCT 116 cells was observed with the increase of nickel concentration.
Collapse
Affiliation(s)
- Yue Yu
- Beijing National Laboratory for Molecular Sciences (BNLMS), MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry, Peking University, Beijing 100871, China.
| | - Si-Hao Zhu
- Molecular Imaging Lab, Department of Biomedical Engineering, Peking University, Beijing 100871, China
| | - Fang Yuan
- Beijing National Laboratory for Molecular Sciences (BNLMS), MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry, Peking University, Beijing 100871, China.
| | - Xiao-Hui Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Yan-Ye Lu
- Molecular Imaging Lab, Department of Biomedical Engineering, Peking University, Beijing 100871, China
| | - Ying-Lin Zhou
- Beijing National Laboratory for Molecular Sciences (BNLMS), MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry, Peking University, Beijing 100871, China.
| | - Xin-Xiang Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry, Peking University, Beijing 100871, China.
| |
Collapse
|
48
|
Monies D, Vågbø CB, Al-Owain M, Alhomaidi S, Alkuraya FS. Recessive Truncating Mutations in ALKBH8 Cause Intellectual Disability and Severe Impairment of Wobble Uridine Modification. Am J Hum Genet 2019; 104:1202-1209. [PMID: 31079898 DOI: 10.1016/j.ajhg.2019.03.026] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/26/2019] [Indexed: 01/17/2023] Open
Abstract
The wobble hypothesis was proposed to explain the presence of fewer tRNAs than possible codons. The wobble nucleoside position in the anticodon stem-loop undergoes a number of modifications that help maintain the efficiency and fidelity of translation. AlkB homolog 8 (ALKBH8) is an atypical member of the highly conserved AlkB family of dioxygenases and is involved in the formation of mcm5s2U, (S)-mchm5U, (R)-mchm5U, mcm5U, and mcm5Um at the anticodon wobble uridines of specific tRNAs. In two multiplex consanguineous families, we identified two homozygous truncating ALKBH8 mutations causing intellectual disability. Analysis of tRNA derived from affected individuals showed the complete absence of these modifications, consistent with the presumptive loss of function of the variants. Our results highlight the sensitivity of the brain to impaired wobble modification and expand the list of intellectual-disability syndromes caused by mutations in genes related to tRNA modification.
Collapse
|
49
|
Takenouchi T, Wei FY, Suzuki H, Uehara T, Takahashi T, Okazaki Y, Kosaki K, Tomizawa K. Noninvasive diagnosis of TRIT1-related mitochondrial disorder by measuring i 6 A37 and ms 2 i 6 A37 modifications in tRNAs from blood and urine samples. Am J Med Genet A 2019; 179:1609-1614. [PMID: 31140736 DOI: 10.1002/ajmg.a.61211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 05/14/2019] [Accepted: 05/14/2019] [Indexed: 11/08/2022]
Abstract
Subsets of mitochondrial transfer RNA (tRNA) contain the N6 -isopentenyladenosine (i6 A) or 2-methylthio-N6 -isopentenyladenosine (ms2 i6 A) modification at position A37, which is adjacent to an anticodon. These modifications are essential for efficient protein translation in mitochondria and contribute to energy metabolism. The first step in i6 A and ms2 i6 A modifications is catalyzed by tRNA isopentenyltransferase, which is encoded by the TRIT1 gene. Herein, we report a girl with a developmental delay, frequent episodes of seizures induced by febrile illness, and myoclonic epilepsy who had compound heterozygous missense mutations in TRIT1. A mass spectrometry analysis of RNA nucleoside obtained from the subject's peripheral blood and urine showed a marked decrease in both i6 A and ms2 i6 A modifications. These results suggest that the mitochondrial disorder was caused by defective tRNA isopentenylation arising from a loss-of-function mutation in TRIT1. Furthermore, the present observations suggest that noninvasive biochemical analysis using peripheral blood and urine samples are sufficient for the diagnosis of TRIT1-related disorders, making muscle biopsy for the direct measurement of oxidative phosphorylation unnecessary. Such biochemical analyses before the start of antiepileptic medications would be beneficial to avoid hepatotoxicity in patients with possible mitochondrial disorders.
Collapse
Affiliation(s)
- Toshiki Takenouchi
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Fan-Yan Wei
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hisato Suzuki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Tomoko Uehara
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Takao Takahashi
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Yasushi Okazaki
- Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Kenjiro Kosaki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Kazuhito Tomizawa
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
50
|
Advani VM, Ivanov P. Translational Control under Stress: Reshaping the Translatome. Bioessays 2019; 41:e1900009. [PMID: 31026340 PMCID: PMC6541386 DOI: 10.1002/bies.201900009] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/06/2019] [Indexed: 01/01/2023]
Abstract
Adequate reprogramming of cellular metabolism in response to stresses or suboptimal growth conditions involves a myriad of coordinated changes that serve to promote cell survival. As protein synthesis is an energetically expensive process, its regulation under stress is of critical importance. Reprogramming of messenger RNA (mRNA) translation involves well-understood stress-activated kinases that target components of translation initiation machinery, resulting in the robust inhibition of general translation and promotion of the translation of stress-responsive proteins. Translational arrest of mRNAs also results in the accumulation of transcripts in cytoplasmic foci called stress granules. Recent studies focus on the key roles of transfer RNA (tRNA) in stress-induced translational reprogramming. These include stress-specific regulation of tRNA pools, codon-biased translation influenced by tRNA modifications, tRNA miscoding, and tRNA cleavage. In combination, signal transduction pathways and tRNA metabolism changes regulate translation during stress, resulting in adaptation and cell survival. This review examines molecular mechanisms that regulate protein synthesis in response to stress.
Collapse
Affiliation(s)
- Vivek M. Advani
- Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Pavel Ivanov
- Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- The Broad Institute of Harvard and M.I.T., Cambridge, Massachusetts, United States of America
| |
Collapse
|