1
|
Burgute BD, Peche VS, Müller R, Matthias J, Gaßen B, Eichinger L, Glöckner G, Noegel AA. The C-Terminal SynMuv/DdDUF926 Domain Regulates the Function of the N-Terminal Domain of DdNKAP. PLoS One 2016; 11:e0168617. [PMID: 27997579 PMCID: PMC5173251 DOI: 10.1371/journal.pone.0168617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/11/2016] [Indexed: 11/18/2022] Open
Abstract
NKAP (NF-κB activating protein) is a highly conserved SR (serine/arginine-rich) protein involved in transcriptional control and splicing in mammals. We identified DdNKAP, the Dictyostelium discoideum ortholog of mammalian NKAP, as interacting partner of the nuclear envelope protein SUN-1. DdNKAP harbors a number of basic RDR/RDRS repeats in its N-terminal domain and the SynMuv/DUF926 domain at its C-terminus. We describe a novel and direct interaction between DdNKAP and Prp19 (Pre mRNA processing factor 19) which might be relevant for the observed DdNKAP ubiquitination. Genome wide analysis using cross-linking immunoprecipitation-high-throughput sequencing (CLIP-seq) revealed DdNKAP association with intergenic regions, exons, introns and non-coding RNAs. Ectopic expression of DdNKAP and its domains affects several developmental aspects like stream formation, aggregation, and chemotaxis. We conclude that DdNKAP is a multifunctional protein, which might influence Dictyostelium development through its interaction with RNA and RNA binding proteins. Mutants overexpressing full length DdNKAP and the N-terminal domain alone (DdN-NKAP) showed opposite phenotypes in development and opposite expression profiles of several genes and rRNAs. The observed interaction between DdN-NKAP and the DdDUF926 domain indicates that the DdDUF926 domain acts as negative regulator of the N-terminus.
Collapse
Affiliation(s)
- Bhagyashri D. Burgute
- Institute of Biochemistry I, Medical Faculty, Center for Molecular Medicine Cologne (CMMC), Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Vivek S. Peche
- Institute of Biochemistry I, Medical Faculty, Center for Molecular Medicine Cologne (CMMC), Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Rolf Müller
- Institute of Biochemistry I, Medical Faculty, Center for Molecular Medicine Cologne (CMMC), Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Jan Matthias
- Institute of Biochemistry I, Medical Faculty, Center for Molecular Medicine Cologne (CMMC), Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Berthold Gaßen
- Institute of Biochemistry I, Medical Faculty, Center for Molecular Medicine Cologne (CMMC), Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Ludwig Eichinger
- Institute of Biochemistry I, Medical Faculty, Center for Molecular Medicine Cologne (CMMC), Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Gernot Glöckner
- Institute of Biochemistry I, Medical Faculty, Center for Molecular Medicine Cologne (CMMC), Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, IGB, Berlin, Germany
| | - Angelika A. Noegel
- Institute of Biochemistry I, Medical Faculty, Center for Molecular Medicine Cologne (CMMC), Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
2
|
Inter-kingdom Signaling by the Legionella Quorum Sensing Molecule LAI-1 Modulates Cell Migration through an IQGAP1-Cdc42-ARHGEF9-Dependent Pathway. PLoS Pathog 2015; 11:e1005307. [PMID: 26633832 PMCID: PMC4669118 DOI: 10.1371/journal.ppat.1005307] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 11/03/2015] [Indexed: 11/19/2022] Open
Abstract
Small molecule signaling promotes the communication between bacteria as well as between bacteria and eukaryotes. The opportunistic pathogenic bacterium Legionella pneumophila employs LAI-1 (3-hydroxypentadecane-4-one) for bacterial cell-cell communication. LAI-1 is produced and detected by the Lqs (Legionella quorum sensing) system, which regulates a variety of processes including natural competence for DNA uptake and pathogen-host cell interactions. In this study, we analyze the role of LAI-1 in inter-kingdom signaling. L. pneumophila lacking the autoinducer synthase LqsA no longer impeded the migration of infected cells, and the defect was complemented by plasmid-borne lqsA. Synthetic LAI-1 dose-dependently inhibited cell migration, without affecting bacterial uptake or cytotoxicity. The forward migration index but not the velocity of LAI-1-treated cells was reduced, and the cell cytoskeleton appeared destabilized. LAI-1-dependent inhibition of cell migration involved the scaffold protein IQGAP1, the small GTPase Cdc42 as well as the Cdc42-specific guanine nucleotide exchange factor ARHGEF9, but not other modulators of Cdc42, or RhoA, Rac1 or Ran GTPase. Upon treatment with LAI-1, Cdc42 was inactivated and IQGAP1 redistributed to the cell cortex regardless of whether Cdc42 was present or not. Furthermore, LAI-1 reversed the inhibition of cell migration by L. pneumophila, suggesting that the compound and the bacteria antagonistically target host signaling pathway(s). Collectively, the results indicate that the L. pneumophila quorum sensing compound LAI-1 modulates migration of eukaryotic cells through a signaling pathway involving IQGAP1, Cdc42 and ARHGEF9.
Collapse
|
3
|
Wojtkowska M, Buczek D, Stobienia O, Karachitos A, Antoniewicz M, Slocinska M, Makałowski W, Kmita H. The TOM Complex of Amoebozoans: the Cases of the Amoeba Acanthamoeba castellanii and the Slime Mold Dictyostelium discoideum. Protist 2015; 166:349-62. [PMID: 26074248 DOI: 10.1016/j.protis.2015.05.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 05/10/2015] [Accepted: 05/14/2015] [Indexed: 11/29/2022]
Abstract
Protein import into mitochondria requires a wide variety of proteins, forming complexes in both mitochondrial membranes. The TOM complex (translocase of the outer membrane) is responsible for decoding of targeting signals, translocation of imported proteins across or into the outer membrane, and their subsequent sorting. Thus the TOM complex is regarded as the main gate into mitochondria for imported proteins. Available data indicate that mitochondria of representative organisms from across the major phylogenetic lineages of eukaryotes differ in subunit organization of the TOM complex. The subunit organization of the TOM complex in the Amoebozoa is still elusive, so we decided to investigate its organization in the soil amoeba Acanthamoeba castellanii and the slime mold Dictyostelium discoideum. They represent two major subclades of the Amoebozoa: the Lobosa and Conosa, respectively. Our results confirm the presence of Tom70, Tom40 and Tom7 in the A. castellanii and D. discoideum TOM complex, while the presence of Tom22 and Tom20 is less supported. Interestingly, the Tom proteins display the highest similarity to Opisthokonta cognate proteins, with the exception of Tom40. Thus representatives of two major subclades of the Amoebozoa appear to be similar in organization of the TOM complex, despite differences in their lifestyle.
Collapse
Affiliation(s)
- Małgorzata Wojtkowska
- Adam Mickiewicz University, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Department of Bioenergetics, Poznań, Poland.
| | - Dorota Buczek
- Adam Mickiewicz University, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Department of Bioenergetics, Poznań, Poland; University of Muenster, Faculty of Medicine Institute of Bioinformatics, Muenster, Germany
| | - Olgierd Stobienia
- Adam Mickiewicz University, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Department of Bioenergetics, Poznań, Poland
| | - Andonis Karachitos
- Adam Mickiewicz University, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Department of Bioenergetics, Poznań, Poland
| | - Monika Antoniewicz
- Adam Mickiewicz University, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Department of Bioenergetics, Poznań, Poland
| | - Małgorzata Slocinska
- Adam Mickiewicz University, Faculty of Biology, Institute of Experimental Biology, Department of Animal Physiology and Development, Poznań, Poland
| | - Wojciech Makałowski
- University of Muenster, Faculty of Medicine Institute of Bioinformatics, Muenster, Germany
| | - Hanna Kmita
- Adam Mickiewicz University, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Department of Bioenergetics, Poznań, Poland
| |
Collapse
|
4
|
Tian X, Strassmann JE, Queller DC. A conserved extraordinarily long serine homopolymer in Dictyostelid amoebae. Heredity (Edinb) 2013; 112:215-8. [PMID: 24084645 DOI: 10.1038/hdy.2013.96] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 06/12/2012] [Accepted: 08/30/2013] [Indexed: 12/19/2022] Open
Abstract
Eukaryotic protein sequences often contain amino-acid homopolymers that consist of a single amino acid repeated from several to dozens of times. Some of these are functional but others may persist largely because of high expansion rates due to DNA slippage. However, very long homopolymers with over a hundred repeats are very rare. We report an extraordinarily long homopolymer consisting of 306 tandem serine repeats from the single-celled eukaryote Dictyostelium discoideum, which also has a multicellular stage. The gene has a paralog with 132 repeats and orthologs, also with high serine repeat numbers, in various other Dictyostelid species. The conserved gene structure and protein sequences suggest that the homopolymer is functional. The high codon diversity and very poor alignment of serine codons in this gene between species similarly indicate functionality. This is because the serine homopolymer is conserved despite much DNA sequence change. A survey of other very long amino-acid homopolymers in eukaryotes shows that high codon diversity is the rule, suggesting that these too may be functional.
Collapse
Affiliation(s)
- X Tian
- Department of Biology, Washington University in St Louis, St Louis, MO, USA
| | - J E Strassmann
- Department of Biology, Washington University in St Louis, St Louis, MO, USA
| | - D C Queller
- Department of Biology, Washington University in St Louis, St Louis, MO, USA
| |
Collapse
|
5
|
Crona M, Avesson L, Sahlin M, Lundin D, Hinas A, Klose R, Söderbom F, Sjöberg BM. A rare combination of ribonucleotide reductases in the social amoeba Dictyostelium discoideum. J Biol Chem 2013; 288:8198-8208. [PMID: 23372162 PMCID: PMC3605638 DOI: 10.1074/jbc.m112.442434] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Ribonucleotide reductases (RNRs) catalyze the only pathway for de novo synthesis of deoxyribonucleotides needed for DNA replication and repair. The vast majority of eukaryotes encodes only a class I RNR, but interestingly some eukaryotes, including the social amoeba Dictyostelium discoideum, encode both a class I and a class II RNR. The amino acid sequence of the D. discoideum class I RNR is similar to other eukaryotic RNRs, whereas that of its class II RNR is most similar to the monomeric class II RNRs found in Lactobacillus spp. and a few other bacteria. Here we report the first study of RNRs in a eukaryotic organism that encodes class I and class II RNRs. Both classes of RNR genes were expressed in D. discoideum cells, although the class I transcripts were more abundant and strongly enriched during mid-development compared with the class II transcript. The quaternary structure, allosteric regulation, and properties of the diiron-oxo/radical cofactor of D. discoideum class I RNR are similar to those of the mammalian RNRs. Inhibition of D. discoideum class I RNR by hydroxyurea resulted in a 90% reduction in spore formation and decreased the germination viability of the surviving spores by 75%. Class II RNR could not compensate for class I inhibition during development, and an excess of vitamin B12 coenzyme, which is essential for class II activity, did not improve spore formation. We suggest that class I is the principal RNR during D. discoideum development and growth and is important for spore formation, possibly by providing dNTPs for mitochondrial replication.
Collapse
Affiliation(s)
- Mikael Crona
- Department of Molecular Biology and Functional Genomics, Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-10691 Stockholm, Sweden
| | - Lotta Avesson
- Department of Molecular Biology, Swedish University of Agricultural Sciences, Uppsala Biomedical Center, SE-75124 Uppsala, Sweden
| | - Margareta Sahlin
- Department of Molecular Biology and Functional Genomics, Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-10691 Stockholm, Sweden; Department of Biochemistry and Biophysics, Stockholm University, SE-10691 Stockholm, Sweden
| | - Daniel Lundin
- Department of Biochemistry and Biophysics, Stockholm University, SE-10691 Stockholm, Sweden
| | - Andrea Hinas
- Department of Molecular Biology, Swedish University of Agricultural Sciences, Uppsala Biomedical Center, SE-75124 Uppsala, Sweden
| | - Ralph Klose
- Department of Molecular Biology and Functional Genomics, Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-10691 Stockholm, Sweden
| | - Fredrik Söderbom
- Department of Molecular Biology, Swedish University of Agricultural Sciences, Uppsala Biomedical Center, SE-75124 Uppsala, Sweden
| | - Britt-Marie Sjöberg
- Department of Molecular Biology and Functional Genomics, Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-10691 Stockholm, Sweden; Department of Biochemistry and Biophysics, Stockholm University, SE-10691 Stockholm, Sweden.
| |
Collapse
|
6
|
Fey P, Dodson RJ, Basu S, Chisholm RL. One stop shop for everything Dictyostelium: dictyBase and the Dicty Stock Center in 2012. Methods Mol Biol 2013; 983:59-92. [PMID: 23494302 DOI: 10.1007/978-1-62703-302-2_4] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
dictyBase (http://dictybase.org), the model organism database for Dictyostelium discoideum, includes the complete genome sequence and expression data for this organism. Relevant literature is integrated into the database, and gene models and functional annotation are manually curated from experimental results and comparative multigenome analyses. dictyBase has recently expanded to include the genome sequences of three additional Dictyostelids and has added new software tools to facilitate multigenome comparisons. The Dicty Stock Center, a strain and plasmid repository for Dictyostelium research, has relocated to Northwestern University in 2009. This allowed us integrating all Dictyostelium resources to better serve the research community. In this chapter, we will describe how to navigate the Web site and highlight some of our newer improvements.
Collapse
Affiliation(s)
- Petra Fey
- dictyBase and the Dicty Stock Center, Center for Genetic Medicine, Northwestern University, Chicago, IL, USA.
| | | | | | | |
Collapse
|
7
|
Strasser K, Bloomfield G, MacWilliams A, Ceccarelli A, MacWilliams H, Tsang A. A retinoblastoma orthologue is a major regulator of S-phase, mitotic, and developmental gene expression in Dictyostelium. PLoS One 2012; 7:e39914. [PMID: 22768168 PMCID: PMC3386910 DOI: 10.1371/journal.pone.0039914] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 06/04/2012] [Indexed: 12/21/2022] Open
Abstract
Background The retinoblastoma tumour suppressor, Rb, has two major functions. First, it represses genes whose products are required for S-phase entry and progression thus stabilizing cells in G1. Second, Rb interacts with factors that induce cell-cycle exit and terminal differentiation. Dictyostelium lacks a G1 phase in its cell cycle but it has a retinoblastoma orthologue, rblA. Methodology/Principal Findings Using microarray analysis and mRNA-Seq transcriptional profiling, we show that RblA strongly represses genes whose products are involved in S phase and mitosis. Both S-phase and mitotic genes are upregulated at a single point in late G2 and again in mid-development, near the time when cell cycling is reactivated. RblA also activates a set of genes unique to slime moulds that function in terminal differentiation. Conclusions Like its mammalian counterpart Dictyostelium, RblA plays a dual role, regulating cell-cycle progression and transcriptional events leading to terminal differentiation. In the absence of a G1 phase, however, RblA functions in late G2 controlling the expression of both S-phase and mitotic genes.
Collapse
Affiliation(s)
- Kimchi Strasser
- Biology Department and Centre for Structural and Functional Genomics, Concordia University, Montreal, Canada
- * E-mail:
| | - Gareth Bloomfield
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | | | - Adriano Ceccarelli
- Neuroscience Institute Cavalieri Ottolenghi, University of Torino, Torino, Italy
| | | | - Adrian Tsang
- Biology Department and Centre for Structural and Functional Genomics, Concordia University, Montreal, Canada
| |
Collapse
|
8
|
Conservation and divergence between cytoplasmic and muscle-specific actin capping proteins: insights from the crystal structure of cytoplasmic Cap32/34 from Dictyostelium discoideum. BMC STRUCTURAL BIOLOGY 2012; 12:12. [PMID: 22657106 PMCID: PMC3472329 DOI: 10.1186/1472-6807-12-12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 05/10/2012] [Indexed: 01/14/2023]
Abstract
BACKGROUND Capping protein (CP), also known as CapZ in muscle cells and Cap32/34 in Dictyostelium discoideum, plays a major role in regulating actin filament dynamics. CP is a ubiquitously expressed heterodimer comprising an α- and β-subunit. It tightly binds to the fast growing end of actin filaments, thereby functioning as a "cap" by blocking the addition and loss of actin subunits. Vertebrates contain two somatic variants of CP, one being primarily found at the cell periphery of non-muscle tissues while the other is mainly localized at the Z-discs of skeletal muscles. RESULTS To elucidate structural and functional differences between cytoplasmic and sarcomercic CP variants, we have solved the atomic structure of Cap32/34 (32=β- and 34=α-subunit) from the cellular slime mold Dictyostelium at 2.2 Å resolution and compared it to that of chicken muscle CapZ. The two homologs display a similar overall arrangement including the attached α-subunit C-terminus (α-tentacle) and the flexible β-tentacle. Nevertheless, the structures exhibit marked differences suggesting considerable structural flexibility within the α-subunit. In the α-subunit we observed a bending motion of the β-sheet region located opposite to the position of the C-terminal β-tentacle towards the antiparallel helices that interconnect the heterodimer. Recently, a two domain twisting attributed mainly to the β-subunit has been reported. At the hinge of these two domains Cap32/34 contains an elongated and highly flexible loop, which has been reported to be important for the interaction of cytoplasmic CP with actin and might contribute to the more dynamic actin-binding of cytoplasmic compared to sarcomeric CP (CapZ). CONCLUSIONS The structure of Cap32/34 from Dictyostelium discoideum allowed a detailed analysis and comparison between the cytoplasmic and sarcomeric variants of CP. Significant structural flexibility could particularly be found within the α-subunit, a loop region in the β-subunit, and the surface of the α-globule where the amino acid differences between the cytoplasmic and sarcomeric mammalian CP are located. Hence, the crystal structure of Cap32/34 raises the possibility of different binding behaviours of the CP variants toward the barbed end of actin filaments, a feature, which might have arisen from adaptation to different environments.
Collapse
|
9
|
Sillo A, Matthias J, Konertz R, Bozzaro S, Eichinger L. Salmonella typhimurium is pathogenic for Dictyostelium cells and subverts the starvation response. Cell Microbiol 2011; 13:1793-811. [PMID: 21824247 DOI: 10.1111/j.1462-5822.2011.01662.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In unicellular amoebae, such as Dictyostelium discoideum, bacterial phagocytosis is a food hunting device, while in higher organisms it is the first defence barrier against microbial infection. In both cases, pathogenic bacteria exploit phagocytosis to enter the cell and multiply intracellularly. Salmonella typhimurium, the agent of food-borne gastroenteritis, is phagocytosed by both macrophages and Dictyostelium cells. By using cell biological assays and global transcriptional analysis with DNA microarrays covering the Dictyostelium genome, we show here that S. typhimurium is pathogenic for Dictyostelium cells. Depending on the degree of virulence, which in turn depended on bacterial growth conditions, Salmonella could kill Dictyostelium cells or inhibit their growth and development. In the early phase of infection in non-nutrient buffer, the ingested bacteria escaped degradation, induced a starvation-like transcriptional response but inhibited selectively genes required for chemotaxis and aggregation. This way differentiation of the host cells into spore and stalk cells was blocked or delayed, which in turn is likely to be favourable for the establishment of a replicative niche for Salmonella. Inhibition of the aggregation competence and chemotactic streaming of aggregation-competent cells in the presence of Salmonella suggests interference with cAMP signalling.
Collapse
Affiliation(s)
- Alessio Sillo
- Department of Clinical and Biological Sciences, University of Turin, AOU S. Luigi, 10043 Orbassano (Torino), Italy
| | | | | | | | | |
Collapse
|
10
|
The cooperative amoeba: Dictyostelium as a model for social evolution. Trends Genet 2011; 27:48-54. [DOI: 10.1016/j.tig.2010.11.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 11/17/2010] [Accepted: 11/17/2010] [Indexed: 11/20/2022]
|
11
|
Whitney TJ, Gardner DG, Mott ML, Brandon M. Identifying the molecular basis of functions in the transcriptome of the social amoeba Dictyostelium discoideum. GENETICS AND MOLECULAR RESEARCH 2010; 9:394-415. [PMID: 20309825 DOI: 10.4238/vol9-1gmr752] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The unusual life cycle of Dictyostelium discoideum, in which an extra-cellular stressor such as starvation induces the development of a multicellular fruiting body consisting of stalk cells and spores from a culture of identical amoebae, provides an excellent model for investigating the molecular control of differentiation and the transition from single- to multi-cellular life, a key transition in development. We utilized serial analysis of gene expression (SAGE), a molecular method that is unbiased by dependence on previously identified genes, to obtain a transcriptome from a high-density culture of amoebae, in order to examine the transition to multi-cellular development. The SAGE method provides relative expression levels, which allows us to rank order the expressed genes. We found that a large number of ribosomal proteins were expressed at high levels, while various components of the proteosome were expressed at low levels. The only identifiable transmembrane signaling system components expressed in amoebae are related to quorum sensing, and their expression levels were relatively low. The most highly expressed gene in the amoeba transcriptome, dutA untranslated RNA, is a molecule with unknown function that may serve as an inhibitor of translation. These results suggest that high-density amoebae have not initiated development, and they also suggest a mechanism by which the transition into the development program is controlled.
Collapse
Affiliation(s)
- T J Whitney
- Department of Biological Sciences, Idaho State University, Pocatello, ID, USA
| | | | | | | |
Collapse
|
12
|
Nguyen HN, Raisley B, Hadwiger JA. MAP kinases have different functions in Dictyostelium G protein-mediated signaling. Cell Signal 2010; 22:836-47. [PMID: 20079430 DOI: 10.1016/j.cellsig.2010.01.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Accepted: 01/07/2010] [Indexed: 10/20/2022]
Abstract
Extracellular signal regulated kinases (ERKs) are a class of MAP kinases that function in many signaling pathways in eukaryotic cells and in some cases, a single stimulus can activate more than one ERK suggesting functional redundancy or divergence from a common pathway. Dictyostelium discoideum encodes only two MAP kinases, ERK1 and ERK2, that both function during the developmental life cycle. To determine if ERK1 and ERK2 have overlapping functions, chemotactic and developmental phenotypes of erk1(-) and erk2(-) mutants were assessed with respect to G protein-mediated signal transduction pathways. ERK1 was specifically required for Galpha5-mediated tip morphogenesis and inhibition of folate chemotaxis but not for cAMP-stimulated chemotaxis or cGMP accumulation. ERK2 was the primary MAPK phosphorylated in response to folate or cAMP stimulation. Cell growth was not altered in erk1(-), erk2(-) or erk1(-)erk2(-) mutants but each mutant displayed a different pattern of cell sorting in chimeric aggregates. The distribution of GFP-ERK1 or GFP-ERK2 fusion proteins in the cytoplasm and nucleus was not grossly altered in cells stimulated with cAMP or folate. These results suggest ERK1 and ERK2 have different roles in G protein-mediated signaling during growth and development.
Collapse
Affiliation(s)
- Hoai-Nghia Nguyen
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, 74078-3020, USA
| | | | | |
Collapse
|
13
|
Abstract
Cellular slime molds are eukaryotic microorganisms in the soil. They feed on bacteria as solitary amoebae but conditionally construct multicellular forms in which cell differentiation takes place. Therefore, they are attractive for the study of fundamental biological phenomena such as phagocytosis, cell division, chemotactic movements, intercellular communication, cell differentiation, and morphogenesis. The most widely used species, Dictyostelium discoideum, is highly amenable to experimental manipulation and can be used with most recent molecular biological techniques. Its genome and cDNA analyses have been completed and well-annotated data are publicly available. A larger number of orthologues of human disease-related genes were found in D. discoideum than in yeast. Moreover, some pathogenic bacteria infect Dictyostelium amoebae. Thus, this microorganism can also offer a good experimental system for biomedical research. The resources of cellular slime molds, standard strains, mutants, and genes are maintained and distributed upon request by the core center of the National BioResource Project (NBRP-nenkin) to support Dictyostelium community users as well as new users interested in new platforms for research and/or phylogenic consideration.
Collapse
Affiliation(s)
- Hideko Urushihara
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
14
|
Sultana H, Neelakanta G, Eichinger L, Rivero F, Noegel AA. Microarray phenotyping places cyclase associated protein CAP at the crossroad of signaling pathways reorganizing the actin cytoskeleton in Dictyostelium. Exp Cell Res 2009; 315:127-40. [DOI: 10.1016/j.yexcr.2008.10.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Revised: 08/29/2008] [Accepted: 10/14/2008] [Indexed: 01/31/2023]
|
15
|
Bennett N, Letourneur F, Ragno M, Louwagie M. Sorting of the v-SNARE VAMP7 in Dictyostelium discoideum: A role for more than one Adaptor Protein (AP) complex. Exp Cell Res 2008; 314:2822-33. [DOI: 10.1016/j.yexcr.2008.06.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Revised: 06/11/2008] [Accepted: 06/16/2008] [Indexed: 01/31/2023]
|
16
|
Joseph JM, Fey P, Ramalingam N, Liu XI, Rohlfs M, Noegel AA, Müller-Taubenberger A, Glöckner G, Schleicher M. The actinome of Dictyostelium discoideum in comparison to actins and actin-related proteins from other organisms. PLoS One 2008; 3:e2654. [PMID: 18612387 PMCID: PMC2441452 DOI: 10.1371/journal.pone.0002654] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Accepted: 06/06/2008] [Indexed: 11/18/2022] Open
Abstract
Actin belongs to the most abundant proteins in eukaryotic cells which harbor usually many conventional actin isoforms as well as actin-related proteins (Arps). To get an overview over the sometimes confusing multitude of actins and Arps, we analyzed the Dictyostelium discoideum actinome in detail and compared it with the genomes from other model organisms. The D. discoideum actinome comprises 41 actins and actin-related proteins. The genome contains 17 actin genes which most likely arose from consecutive gene duplications, are all active, in some cases developmentally regulated and coding for identical proteins (Act8-group). According to published data, the actin fraction in a D. discoideum cell consists of more than 95% of these Act8-type proteins. The other 16 actin isoforms contain a conventional actin motif profile as well but differ in their protein sequences. Seven actin genes are potential pseudogenes. A homology search of the human genome using the most typical D. discoideum actin (Act8) as query sequence finds the major actin isoforms such as cytoplasmic beta-actin as best hit. This suggests that the Act8-group represents a nearly perfect actin throughout evolution. Interestingly, limited data from D. fasciculatum, a more ancient member among the social amoebae, show different relationships between conventional actins. The Act8-type isoform is most conserved throughout evolution. Modeling of the putative structures suggests that the majority of the actin-related proteins is functionally unrelated to canonical actin. The data suggest that the other actin variants are not necessary for the cytoskeleton itself but rather regulators of its dynamical features or subunits in larger protein complexes.
Collapse
Affiliation(s)
- Jayabalan M. Joseph
- Adolf Butenandt Inst./Cell Biology and Center for Integrated Protein Science (CIPSM), Ludwig-Maximilians-University, Muenchen, Germany
| | - Petra Fey
- dictyBase, Center for Genetic Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Nagendran Ramalingam
- Adolf Butenandt Inst./Cell Biology and Center for Integrated Protein Science (CIPSM), Ludwig-Maximilians-University, Muenchen, Germany
| | - Xiao I. Liu
- Department of Biology II, Ludwig-Maximilians-University, Muenchen, Germany
| | - Meino Rohlfs
- Adolf Butenandt Inst./Cell Biology and Center for Integrated Protein Science (CIPSM), Ludwig-Maximilians-University, Muenchen, Germany
| | - Angelika A. Noegel
- Institute for Biochemistry I, Center for Molecular Medicine Cologne (CMMC) and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Koeln, Germany
| | - Annette Müller-Taubenberger
- Adolf Butenandt Inst./Cell Biology and Center for Integrated Protein Science (CIPSM), Ludwig-Maximilians-University, Muenchen, Germany
| | - Gernot Glöckner
- Leibniz-Institute for Age Research - Fritz Lipmann Institute, Jena, Germany
| | - Michael Schleicher
- Adolf Butenandt Inst./Cell Biology and Center for Integrated Protein Science (CIPSM), Ludwig-Maximilians-University, Muenchen, Germany
- * E-mail:
| |
Collapse
|
17
|
Carilla-Latorre S, Calvo-Garrido J, Bloomfield G, Skelton J, Kay RR, Ivens A, Martinez JL, Escalante R. Dictyostelium transcriptional responses to Pseudomonas aeruginosa: common and specific effects from PAO1 and PA14 strains. BMC Microbiol 2008; 8:109. [PMID: 18590548 PMCID: PMC2474670 DOI: 10.1186/1471-2180-8-109] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Accepted: 06/30/2008] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Pseudomonas aeruginosa is one of the most relevant human opportunistic bacterial pathogens. Two strains (PAO1 and PA14) have been mainly used as models for studying virulence of P. aeruginosa. The strain PA14 is more virulent than PAO1 in a wide range of hosts including insects, nematodes and plants. Whereas some of the differences might be attributable to concerted action of determinants encoded in pathogenicity islands present in the genome of PA14, a global analysis of the differential host responses to these P. aeruginosa strains has not been addressed. Little is known about the host response to infection with P. aeruginosa and whether or not the global host transcription is being affected as a defense mechanism or altered in the benefit of the pathogen. Since the social amoeba Dictyostelium discoideum is a suitable host to study virulence of P. aeruginosa and other pathogens, we used available genomic tools in this model system to study the transcriptional host response to P. aeruginosa infection. RESULTS We have compared the virulence of the P. aeruginosa PAO1 and PA14 using D. discoideum and studied the transcriptional response of the amoeba upon infection. Our results showed that PA14 is more virulent in Dictyostelium than PA01using different plating assays. For studying the differential response of the host to infection by these model strains, D. discoideum cells were exposed to either P. aeruginosa PAO1 or P. aeruginosa PA14 (mixed with an excess of the non-pathogenic bacterium Klebsiella aerogenes as food supply) and after 4 hours, cellular RNA extracted. A three-way comparison was made using whole-genome D. discoideum microarrays between RNA samples from cells treated with the two different strains and control cells exposed only to K. aerogenes. The transcriptomic analyses have shown the existence of common and specific responses to infection. The expression of 364 genes changed in a similar way upon infection with one or another strain, whereas 169 genes were differentially regulated depending on whether the infecting strain was either P. aeruginosa PAO1 or PA14. Effects on metabolism, signalling, stress response and cell cycle can be inferred from the genes affected. CONCLUSION Our results show that pathogenic Pseudomonas strains invoke both a common transcriptional response from Dictyostelium and a strain specific one, indicating that the infective process of bacterial pathogens can be strain-specific and is more complex than previously thought.
Collapse
Affiliation(s)
- Sergio Carilla-Latorre
- Instituto de Investigaciones Biomédicas Alberto Sols, Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, Madrid, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Sillo A, Bloomfield G, Balest A, Balbo A, Pergolizzi B, Peracino B, Skelton J, Ivens A, Bozzaro S. Genome-wide transcriptional changes induced by phagocytosis or growth on bacteria in Dictyostelium. BMC Genomics 2008; 9:291. [PMID: 18559084 PMCID: PMC2443395 DOI: 10.1186/1471-2164-9-291] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Accepted: 06/17/2008] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Phagocytosis plays a major role in the defense of higher organisms against microbial infection and provides also the basis for antigen processing in the immune response. Cells of the model organism Dictyostelium are professional phagocytes that exploit phagocytosis of bacteria as the preferred way to ingest food, besides killing pathogens. We have investigated Dictyostelium differential gene expression during phagocytosis of non-pathogenic bacteria, using DNA microarrays, in order to identify molecular functions and novel genes involved in phagocytosis. RESULTS The gene expression profiles of cells incubated for a brief time with bacteria were compared with cells either incubated in axenic medium or growing on bacteria. Transcriptional changes during exponential growth in axenic medium or on bacteria were also compared. We recognized 443 and 59 genes that are differentially regulated by phagocytosis or by the different growth conditions (growth on bacteria vs. axenic medium), respectively, and 102 genes regulated by both processes. Roughly one third of the genes are up-regulated compared to macropinocytosis and axenic growth. Functional annotation of differentially regulated genes with different tools revealed that phagocytosis induces profound changes in carbohydrate, amino acid and lipid metabolism, and in cytoskeletal components. Genes regulating translation and mitochondrial biogenesis are mostly up-regulated. Genes involved in sterol biosynthesis are selectively up-regulated, suggesting a shift in membrane lipid composition linked to phagocytosis. Very few changes were detected in genes required for vesicle fission/fusion, indicating that the intracellular traffic machinery is mostly in common between phagocytosis and macropinocytosis. A few putative receptors, including GPCR family 3 proteins, scaffolding and adhesion proteins, components of signal transduction and transcription factors have been identified, which could be part of a signalling complex regulating phagocytosis and adaptational downstream responses. CONCLUSION The results highlight differences between phagocytosis and macropinocytosis, and provide the basis for targeted functional analysis of new candidate genes and for comparison studies with transcriptomes during infection with pathogenic bacteria.
Collapse
Affiliation(s)
- Alessio Sillo
- Department of Clinical and Biological Sciences, University of Turin, Ospedale S, Luigi, 10043 Orbassano, Torino, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Urushihara H. Developmental biology of the social amoeba: history, current knowledge and prospects. Dev Growth Differ 2008; 50 Suppl 1:S277-81. [PMID: 18482401 DOI: 10.1111/j.1440-169x.2008.01013.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The cellular slime molds are known as the social amoebae because they conditionally construct multicellular forms in which cell differentiation takes place. Among them, Dictyostelium discoideum has many advantages as an experimental system and is widely used as a model organism. This review aims to reconsider how it has contributed to the understanding of developmental mechanisms and what should be done in the future. Chemotaxis, cell differentiation, genome and transcriptome, and the ecological and evolutionary implications of development are discussed.
Collapse
Affiliation(s)
- Hideko Urushihara
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8572, Japan.
| |
Collapse
|
20
|
Regulation of ammonia homeostasis by the ammonium transporter AmtA in Dictyostelium discoideum. EUKARYOTIC CELL 2007; 6:2419-28. [PMID: 17951519 DOI: 10.1128/ec.00204-07] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Ammonia has been shown to function as a morphogen at multiple steps during the development of the cellular slime mold Dictyostelium discoideum; however, it is largely unknown how intracellular ammonia levels are controlled. In the Dictyostelium genome, there are five genes that encode putative ammonium transporters: amtA, amtB, amtC, rhgA, and rhgB. Here, we show that AmtA regulates ammonia homeostasis during growth and development. We found that cells lacking amtA had increased levels of ammonia/ammonium, whereas their extracellular ammonia/ammonium levels were highly decreased. These results suggest that AmtA mediates the excretion of ammonium. In support of a role for AmtA in ammonia homeostasis, AmtA mRNA is expressed throughout the life cycle, and its expression level increases during development. Importantly, AmtA-mediated ammonia homeostasis is critical for many developmental processes. amtA(-) cells are more sensitive to NH(4)Cl than wild-type cells in inhibition of chemotaxis toward cyclic AMP and of formation of multicellular aggregates. Furthermore, even in the absence of exogenously added ammonia, we found that amtA(-) cells produced many small fruiting bodies and that the viability and germination of amtA(-) spores were dramatically compromised. Taken together, our data clearly demonstrate that AmtA regulates ammonia homeostasis and plays important roles in multiple developmental processes in Dictyostelium.
Collapse
|
21
|
STATc is a key regulator of the transcriptional response to hyperosmotic shock. BMC Genomics 2007; 8:123. [PMID: 17517120 PMCID: PMC1888708 DOI: 10.1186/1471-2164-8-123] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2006] [Accepted: 05/21/2007] [Indexed: 11/14/2022] Open
Abstract
Background Dictyostelium discoideum is frequently subjected to environmental changes in its natural habitat, the forest soil. In order to survive, the organism had to develop effective mechanisms to sense and respond to such changes. When cells are faced with a hypertonic environment a complex response is triggered. It starts with signal sensing and transduction and leads to changes in cell shape, the cytoskeleton, transport processes, metabolism and gene expression. Certain aspects of the Dictyostelium osmotic stress response have been elucidated, however, no comprehensive picture was available up to now. Results To better understand the D. discoideum response to hyperosmotic conditions, we performed gene expression profiling using DNA microarrays. The transcriptional profile of cells treated with 200 mM sorbitol during a 2-hour time course revealed a time-dependent induction or repression of 809 genes, more than 15% of the genes on the array, which peaked 45 to 60 minutes after the hyperosmotic shock. The differentially regulated genes were applied to cluster analysis and functional annotation using gene GO terms. Two main responses appear to be the down-regulation of the metabolic machinery and the up-regulation of the stress response system, including STATc. Further analysis of STATc revealed that it is a key regulator of the transcriptional response to hyperosmotic shock. Approximately 20% of the differentially regulated genes were dependent on the presence of STATc. Conclusion At least two signalling pathways are activated in Dictyostelium cells subjected to hypertonicity. STATc is responsible for the transcriptional changes of one of them.
Collapse
|
22
|
Metcalf T, van der Wel H, Escalante R, Sastre L, West CM. Role of SP65 in assembly of the Dictyostelium discoideum spore coat. EUKARYOTIC CELL 2007; 6:1137-49. [PMID: 17416892 PMCID: PMC1951108 DOI: 10.1128/ec.00329-06] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Like the cyst walls of other protists, the spore coat of Dictyostelium discoideum is formed de novo to protect the enclosed dormant cell from stress. Spore coat assembly is initiated by exocytosis of protein and polysaccharide precursors at the cell surface, followed by the infusion of nascent cellulose fibrils, resulting in an asymmetrical trilaminar sandwich with cellulose filling the middle layer. A molecular complex consisting of cellulose and two proteins, SP85 and SP65, is associated with the inner and middle layers and is required for proper organization of distinct proteins in the outer layer. Here we show that, unlike SP85 and other protein precursors, which are stored in prespore vesicles, SP65 is, like cellulose, synthesized just in time. By tagging the SP65 locus with green fluorescent protein, we find that SP65 is delivered to the cell surface via largely distinct vesicles, suggesting that separate delivery of components of the cellulose-SP85-SP65 complex regulates its formation at the cell surface. In support of previous in vivo studies, recombinant SP65 and SP85 are shown to interact directly. In addition, truncation of SP65 causes a defect of the outer layer permeability barrier as seen previously for SP85 mutants. These observations suggest that assembly of the cellulose-SP85-SP65 triad at the cell surface is biosynthetically regulated both temporally and spatially and that the complex contributes an essential function to outer layer architecture and function.
Collapse
Affiliation(s)
- Talibah Metcalf
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | | | | | | | |
Collapse
|
23
|
Muramoto T, Kuwayama H, Kobayashi K, Urushihara H. A stress response kinase, KrsA, controls cAMP relay during the early development of Dictyostelium discoideum. Dev Biol 2007; 305:77-89. [PMID: 17362909 DOI: 10.1016/j.ydbio.2007.01.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Revised: 01/29/2007] [Accepted: 01/31/2007] [Indexed: 11/19/2022]
Abstract
Solitary amoebae of Dictyostelium discoideum are frequently exposed to stressful conditions in nature, and their multicellular development is one response to environmental stress. Here we analyzed an aggregation stage abundant gene, krsA, homologous to human krs1 (kinase responsive to stress 1) to understand the mechanisms for the initiation of development and cell fate determination. The krsA- cells exhibited reduced viability under hyperosmotic conditions. They produced smaller aggregates on membrane filters and did not form aggregation streams on a plastic surface under submerged starvation conditions, but were normal in sexual development. During early asexual development, the expression of cAMP-related genes peaked earlier in the knockout mutants. Neither cAMP oscillation in starved cells nor an increase in the cAMP level following osmotic stress was observed in krsA-. The nuclear export signal, as well as the kinase domain, in KrsA was necessary for stream formation. These results strongly suggest that krsA is involved in cAMP relay, and that signaling pathways for multicellular development have evolved in unison with the stress response.
Collapse
Affiliation(s)
- Tetsuya Muramoto
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8572, Japan
| | | | | | | |
Collapse
|
24
|
Sawai S, Guan XJ, Kuspa A, Cox EC. High-throughput analysis of spatio-temporal dynamics in Dictyostelium. Genome Biol 2007; 8:R144. [PMID: 17659086 PMCID: PMC2323234 DOI: 10.1186/gb-2007-8-7-r144] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2007] [Revised: 06/25/2007] [Accepted: 07/21/2007] [Indexed: 11/20/2022] Open
Abstract
We demonstrate a time-lapse video approach that allows rapid examination of the spatio-temporal dynamics of Dictyostelium cell populations. Quantitative information was gathered by sampling life histories of more than 2,000 mutant clones from a large mutagenesis collection. Approximately 4% of the clonal lines showed a mutant phenotype at one stage. Many of these could be ordered by clustering into functional groups. The dataset allows one to search and retrieve movies on a gene-by-gene and phenotype-by-phenotype basis.
Collapse
Affiliation(s)
- Satoshi Sawai
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
- ERATO Complex Systems Biology Project, JST, Tokyo 153-8902, Japan
| | - Xiao-Juan Guan
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Adam Kuspa
- Departments of Biochemistry and Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Edward C Cox
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
25
|
El-Halawany MS, Shibata H, Hitomi K, Maki M. Reevaluation of the predicted gene structure of Dictyostelium cystatin A3 (cpiC) by nucleotide sequence determination of its cDNA* and its phylogenetic position in the cystatin superfamily. Mol Biol Rep 2006; 32:257-64. [PMID: 16328887 DOI: 10.1007/s11033-005-3139-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2005] [Indexed: 10/25/2022]
Abstract
Cystatins, cysteine protease inhibitors, are widely distributed among eukaryotes. We reevaluated the structure of the gene cpiC, a gene encoding the third identified member of cystatin family (cystatin A3) that was predicted in the genome database of the social amoeba Dictyostelium discoidium (dictyBase) but remained controversial. We determined the sequences of cDNA and PCR-amplified genomic DNA fragment and found a critical error in the registered nucleotide sequence. The corrected cystatin A3 gene has an open reading frame (ORF) without intron sequence interruption and encodes 94 amino acids (aa), in contrast to the previously predicted sequence of either 80, 82 or 118 aa. The cDNA has an unusual internal poly(A) sequence of 31 adenines, which immediately follows the translation termination codon (TAA) located 146 nucleotides upstream of the post-transcriptional polyadenylation site. The amino acid sequence of Dictyostelium cystatin A3 shows a high similarity to those of previously reported Dictyostelium cystatins as well as Family I cystatins of higher eukaryotes.
Collapse
Affiliation(s)
- Medhat S El-Halawany
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | | | | | | |
Collapse
|
26
|
Kollmar M. Thirteen is enough: the myosins of Dictyostelium discoideum and their light chains. BMC Genomics 2006; 7:183. [PMID: 16857047 PMCID: PMC1634994 DOI: 10.1186/1471-2164-7-183] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Accepted: 07/20/2006] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Dictyostelium discoideum is one of the most famous model organisms for studying motile processes like cell movement, organelle transport, cytokinesis, and endocytosis. Members of the myosin superfamily, that move on actin filaments and power many of these tasks, are tripartite proteins consisting of a conserved catalytic domain followed by the neck region consisting of a different number of so-called IQ motifs for binding of light chains. The tails contain functional motifs that are responsible for the accomplishment of the different tasks in the cell. Unicellular organisms like yeasts contain three to five myosins while vertebrates express over 40 different myosin genes. Recently, the question has been raised how many myosins a simple multicellular organism like Dictyostelium would need to accomplish all the different motility-related tasks. RESULTS The analysis of the Dictyostelium genome revealed thirteen myosins of which three have not been described before. The phylogenetic analysis of the motor domains of the new myosins placed Myo1F to the class-I myosins and Myo5A to the class-V myosins. The third new myosin, an orphan myosin, has been named MyoG. It contains an N-terminal extension of over 400 residues, and a tail consisting of four IQ motifs and two MyTH4/FERM (myosin tail homology 4/band 4.1, ezrin, radixin, and moesin) tandem domains that are separated by a long region containing an SH3 (src homology 3) domain. In contrast to previous analyses, an extensive comparison with 126 class-VII, class-X, class-XV, and class-XXII myosins now showed that MyoI does not group into any of these classes and should not be used as a model for class-VII myosins.The search for calmodulin related proteins revealed two further potential myosin light chains. One is a close homolog of the two EF-hand motifs containing MlcB, and the other, CBP14, phylogenetically groups to the ELC/RLC/calmodulin (essential light chain/regulatory light chain) branch of the tree. CONCLUSION Dictyostelium contains thirteen myosins together with 6-8 MLCs (myosin light chain) to assist in a variety of actin-based processes in the cell. Although they are homologous to myosins of higher eukaryotes, the myosins of Dictyostelium should be considered with care as models for specific functions of vertebrate myosins.
Collapse
Affiliation(s)
- Martin Kollmar
- Abteilung NMR basierte Strukturbiologie, Max-Planck-Institut für Biophysikalische Chemie, Am Fassberg 11, D-37077 Goettingen, Germany.
| |
Collapse
|
27
|
Abstract
Macrocyst formation in the cellular slime moulds is a sexual process induced under dark and humid conditions. Normal development life cycle in these organisms involves proliferation by cell division and, upon starvation, formation of multicellular aggregates and fruiting bodies, consisting of spores and stalk cells. Macrocyst formation, cell division by binary fission and spore formation are thus three alternative modes of reproduction, for which it is of interest to understand how a choice is made. The genetic basis of asexual development and fruiting body formation is well known, by contrast information on the genetic control of sexual reproduction during macrocyst formation is scarce. In Dictyostelium discoideum, the most widely used species, several cell-surface proteins relevant to sexual cell fusion have been identified using cell fusion-blocking antibodies, but isolation of the relevant genes has been unsuccessful. Analysis of sexually deficient mutants, some of which are normal for asexual development, has shown that sexual reproduction is regulated by both specific genes and genes that are also involved in asexual development. Reverse genetic analysis of 24 genes highly enriched in a gamete-specific subtraction library has revealed four genes involved in the regulation of sexual cell interactions. One of them was found to be a novel regulator of the cAMP signalling pathway specific to sexual development. Studies on the molecular genetic control of the sexual cycle will be reviewed and their contribution to our understanding of the organization and function of the D. discoideum genome as a whole discussed.
Collapse
Affiliation(s)
- Hideko Urushihara
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba-shi, Ibaraki-ken 305-8572, Japan.
| | | |
Collapse
|
28
|
Farbrother P, Wagner C, Na J, Tunggal B, Morio T, Urushihara H, Tanaka Y, Schleicher M, Steinert M, Eichinger L. Dictyostelium transcriptional host cell response upon infection with Legionella. Cell Microbiol 2006; 8:438-56. [PMID: 16469056 DOI: 10.1111/j.1462-5822.2005.00633.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Differential gene expression of Dictyostelium discoideum after infection with Legionella pneumophila was investigated using DNA microarrays. Investigation of a 48 h time course of infection revealed several clusters of co-regulated genes, an enrichment of preferentially up- or downregulated genes in distinct functional categories and also showed that most of the transcriptional changes occurred 24 h after infection. A detailed analysis of the 24 h time point post infection was performed in comparison to three controls, uninfected cells and co-incubation with Legionella hackeliae and L. pneumophilaDeltadotA. One hundred and thirty-one differentially expressed D. discoideum genes were identified as common to all three experiments and are thought to be involved in the pathogenic response. Functional annotation of the differentially regulated genes revealed that apart from triggering a stress response Legionella apparently not only interferes with intracellular vesicle fusion and destination but also profoundly influences and exploits the metabolism of its host. For some of the identified genes, e.g. rtoA involvement in the host response has been demonstrated in a recent study, for others such a role appears plausible. The results provide the basis for a better understanding of the complex host-pathogen interactions and for further studies on the Dictyostelium response to Legionella infection.
Collapse
Affiliation(s)
- Patrick Farbrother
- Institut für Biochemie I, Medizinische Fakultät, Universität zu Köln, Joseph-Stelzmann-Str. 52, D-50931 Cologne, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Semova N, Storms R, John T, Gaudet P, Ulycznyj P, Min XJ, Sun J, Butler G, Tsang A. Generation, annotation, and analysis of an extensive Aspergillus niger EST collection. BMC Microbiol 2006; 6:7. [PMID: 16457709 PMCID: PMC1434744 DOI: 10.1186/1471-2180-6-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2005] [Accepted: 02/02/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Aspergillus niger, a saprophyte commonly found on decaying vegetation, is widely used and studied for industrial purposes. Despite its place as one of the most important organisms for commercial applications, the lack of available information about its genetic makeup limits research with this filamentous fungus. RESULTS We present here the analysis of 12,820 expressed sequence tags (ESTs) generated from A. niger cultured under seven different growth conditions. These ESTs identify about 5,108 genes of which 44.5% code for proteins sharing similarity (E < or = 1e(-5)) with GenBank entries of known function, 38% code for proteins that only share similarity with GenBank entries of unknown function and 17.5% encode proteins that do not have a GenBank homolog. Using the Gene Ontology hierarchy, we present a first classification of the A. niger proteins encoded by these genes and compare its protein repertoire with other well-studied fungal species. We have established a searchable web-based database that includes the EST and derived contig sequences and their annotation. Details about this project and access to the annotated A. niger database are available. CONCLUSION This EST collection and its annotation provide a significant resource for fundamental and applied research with A. niger. The gene set identified in this manuscript will be highly useful in the annotation of the genome sequence of A. niger, the genes described in the manuscript, especially those encoding hydrolytic enzymes will provide a valuable source for researchers interested in enzyme properties and applications.
Collapse
Affiliation(s)
- Natalia Semova
- Centre for Structural and Functional Genomics, Concordia University, Montreal, Canada
| | - Reginald Storms
- Centre for Structural and Functional Genomics, Concordia University, Montreal, Canada
- Department of Biology, Concordia University, Montreal, Canada
| | - Tricia John
- Centre for Structural and Functional Genomics, Concordia University, Montreal, Canada
| | - Pascale Gaudet
- Centre for Structural and Functional Genomics, Concordia University, Montreal, Canada
- Northwestern University, 676 N. St. Clair Street, Chicago, IL 60611
| | - Peter Ulycznyj
- Centre for Structural and Functional Genomics, Concordia University, Montreal, Canada
| | - Xiang Jia Min
- Centre for Structural and Functional Genomics, Concordia University, Montreal, Canada
| | - Jian Sun
- Centre for Structural and Functional Genomics, Concordia University, Montreal, Canada
| | - Greg Butler
- Centre for Structural and Functional Genomics, Concordia University, Montreal, Canada
- Department of Computer Science and Software Engineering, Concordia University, Montreal, Canada
| | - Adrian Tsang
- Centre for Structural and Functional Genomics, Concordia University, Montreal, Canada
- Department of Biology, Concordia University, Montreal, Canada
| |
Collapse
|
30
|
Eichinger L, Noegel AA. Comparative genomics of Dictyostelium discoideum and Entamoeba histolytica. Curr Opin Microbiol 2006; 8:606-11. [PMID: 16125444 DOI: 10.1016/j.mib.2005.08.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2005] [Accepted: 08/15/2005] [Indexed: 11/18/2022]
Abstract
Amoebozoa represent one of the earliest branches from the last common ancestor of all eukaryotes and contain some of the most dangerous human pathogens. Two amoebozoan genomes -- from the model organism Dictyostelium discoideum and the human pathogen Entamoeba histolytica -- have been published this year. Owing to their high A+T content, both genomes were difficult to sequence. In addition to nine amoebozoan expressed sequence tag projects, efforts are underway for comparative sequencing of four additional Entamoeba species. The completed genome sequences of D. discoideum and E. histolytica revealed unusual telomere structures, a high percentage of repetitive elements and a remarkably high gene content that is close to the one of Drosophila melanogaster. Finally, both organisms are brilliant examples of the influence of the lifestyle of an organism on its genome.
Collapse
Affiliation(s)
- Ludwig Eichinger
- Centre for Biochemistry, Medical Faculty, University of Cologne, 50931 Köln, Germany
| | | |
Collapse
|
31
|
Yamada Y, Sakamoto H, Ogihara S, Maeda M. Novel patterns of the gene expression regulation in the prestalk region along the antero-posterior axis during multicellular development of Dictyostelium. Gene Expr Patterns 2005; 6:63-8. [PMID: 16024295 DOI: 10.1016/j.modgep.2005.04.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2005] [Revised: 04/27/2005] [Accepted: 04/27/2005] [Indexed: 10/25/2022]
Abstract
Simultaneous hybridization with differentially labeled fluorescent probes for in situ hybridization analysis revealed several novel expression patterns of prestalk genes during multicellular development of Dictyostelium. Seven prestalk genes and one prespore gene (pspA) were analyzed in this study. The patterns identified here indicate that prestalk cells are more heterogeneous than previously thought. Heterogeneity was observed in peripheral prestalk tissues such as the pstAO domain of a slug and the prestalk region surrounding a stalk tube of a culminant. Heterogeneity was also observed in the core pstAB cells of the slug and immature stalk cells within the stalk tube. The upper- and lower-cups of a late culminant were also composed of several subdomains.
Collapse
Affiliation(s)
- Yoko Yamada
- Biological Science, Graduate School of Science, Osaka University, Machikaneyama 1-1, Toyonaka, Osaka 560-0043, Japan
| | | | | | | |
Collapse
|
32
|
Serafimidis I, Kay RR. New prestalk and prespore inducing signals in Dictyostelium. Dev Biol 2005; 282:432-41. [PMID: 15950608 DOI: 10.1016/j.ydbio.2005.03.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Revised: 03/11/2005] [Accepted: 03/20/2005] [Indexed: 10/25/2022]
Abstract
The differentiation-inducing signals (DIFs) currently known in Dictyostelium appear unable to account for the full diversity of cell types produced in development. To search for new signals, we analyzed the differentiation in monolayers of cells expressing prestalk (ecmAO, ecmA, ecmO, ecmB and cAR2) and prespore (psA) markers. Expression of each marker drops off as the cell density is reduced, suggesting that cell interaction is required. Expression of each marker is inhibited by cerulenin, an inhibitor of polyketide synthesis, and can be restored by conditioned medium. However, the known stalk-inducing polyketide, DIF-1, could not replace conditioned medium and induce the ecmA or cAR2 prestalk markers, suggesting that they require different polyketide inducers. Polyketide production by fungi is stimulated by cadmium ions, which also dramatically stimulates differentiation in Dictyostelium cell cultures and the accumulation of medium factors. Factors produced with cadmium present were extracted from conditioned medium and fractionated by HPLC. A new factor inducing prespore cell differentiation, called PSI-2, and two inducing stalk cell differentiation (DIFs 6 and 7) were resolved. All are distinct from currently identified factors. DIF-6, but not DIF-7 or PSI-2, appears to have an essential carbonyl group. Thus Dictyostelium may use extensive polyketide signaling in its development.
Collapse
|
33
|
Eichinger L, Pachebat J, Glöckner G, Rajandream MA, Sucgang R, Berriman M, Song J, Olsen R, Szafranski K, Xu Q, Tunggal B, Kummerfeld S, Madera M, Konfortov BA, Rivero F, Bankier AT, Lehmann R, Hamlin N, Davies R, Gaudet P, Fey P, Pilcher K, Chen G, Saunders D, Sodergren E, Davis P, Kerhornou A, Nie X, Hall N, Anjard C, Hemphill L, Bason N, Farbrother P, Desany B, Just E, Morio T, Rost R, Churcher C, Cooper J, Haydock S, van Driessche N, Cronin A, Goodhead I, Muzny D, Mourier T, Pain A, Lu M, Harper D, Lindsay R, Hauser H, James K, Quiles M, Babu MM, Saito T, Buchrieser C, Wardroper A, Felder M, Thangavelu M, Johnson D, Knights A, Loulseged H, Mungall K, Oliver K, Price C, Quail M, Urushihara H, Hernandez J, Rabbinowitsch E, Steffen D, Sanders M, Ma J, Kohara Y, Sharp S, Simmonds M, Spiegler S, Tivey A, Sugano S, White B, Walker D, Woodward J, Winckler T, Tanaka Y, Shaulsky G, Schleicher M, Weinstock G, Rosenthal A, Cox E, Chisholm RL, Gibbs R, Loomis WF, Platzer M, Kay RR, Williams J, Dear PH, Noegel AA, Barrell B, Kuspa A. The genome of the social amoeba Dictyostelium discoideum. Nature 2005; 435:43-57. [PMID: 15875012 PMCID: PMC1352341 DOI: 10.1038/nature03481] [Citation(s) in RCA: 970] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2004] [Accepted: 02/17/2005] [Indexed: 02/07/2023]
Abstract
The social amoebae are exceptional in their ability to alternate between unicellular and multicellular forms. Here we describe the genome of the best-studied member of this group, Dictyostelium discoideum. The gene-dense chromosomes of this organism encode approximately 12,500 predicted proteins, a high proportion of which have long, repetitive amino acid tracts. There are many genes for polyketide synthases and ABC transporters, suggesting an extensive secondary metabolism for producing and exporting small molecules. The genome is rich in complex repeats, one class of which is clustered and may serve as centromeres. Partial copies of the extrachromosomal ribosomal DNA (rDNA) element are found at the ends of each chromosome, suggesting a novel telomere structure and the use of a common mechanism to maintain both the rDNA and chromosomal termini. A proteome-based phylogeny shows that the amoebozoa diverged from the animal-fungal lineage after the plant-animal split, but Dictyostelium seems to have retained more of the diversity of the ancestral genome than have plants, animals or fungi.
Collapse
Affiliation(s)
- L. Eichinger
- Center for Biochemistry and Center for Molecular Medicine Cologne, University of Cologne, Joseph-Stelzmann-Str. 52, 50931 Cologne, Germany
| | - J.A. Pachebat
- Center for Biochemistry and Center for Molecular Medicine Cologne, University of Cologne, Joseph-Stelzmann-Str. 52, 50931 Cologne, Germany
- Laboratory of Molecular Biology, MRC Centre, Cambridge CB2 2QH, UK
| | - G. Glöckner
- Genome Analysis, Institute for Molecular Biotechnology, Beutenbergstr. 11, D-07745 Jena, Germany
| | - M.-A. Rajandream
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - R. Sucgang
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX77030, USA
| | - M. Berriman
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - J. Song
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX77030, USA
| | - R. Olsen
- Section of Cell and Developmental Biology, Division of Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - K. Szafranski
- Genome Analysis, Institute for Molecular Biotechnology, Beutenbergstr. 11, D-07745 Jena, Germany
| | - Q. Xu
- Dept. of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Graduate Program in Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, Houston TX 77030, USA
| | - B. Tunggal
- Center for Biochemistry and Center for Molecular Medicine Cologne, University of Cologne, Joseph-Stelzmann-Str. 52, 50931 Cologne, Germany
| | - S. Kummerfeld
- Laboratory of Molecular Biology, MRC Centre, Cambridge CB2 2QH, UK
| | - M. Madera
- Laboratory of Molecular Biology, MRC Centre, Cambridge CB2 2QH, UK
| | - B. A. Konfortov
- Laboratory of Molecular Biology, MRC Centre, Cambridge CB2 2QH, UK
| | - F. Rivero
- Center for Biochemistry and Center for Molecular Medicine Cologne, University of Cologne, Joseph-Stelzmann-Str. 52, 50931 Cologne, Germany
| | - A. T. Bankier
- Laboratory of Molecular Biology, MRC Centre, Cambridge CB2 2QH, UK
| | - R. Lehmann
- Genome Analysis, Institute for Molecular Biotechnology, Beutenbergstr. 11, D-07745 Jena, Germany
| | - N. Hamlin
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - R. Davies
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - P. Gaudet
- dictyBase, Center for Genetic Medicine, Northwestern University, 303 E Chicago Ave, Chicago, IL 60611, USA
| | - P. Fey
- dictyBase, Center for Genetic Medicine, Northwestern University, 303 E Chicago Ave, Chicago, IL 60611, USA
| | - K. Pilcher
- dictyBase, Center for Genetic Medicine, Northwestern University, 303 E Chicago Ave, Chicago, IL 60611, USA
| | - G. Chen
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX77030, USA
| | - D. Saunders
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - E. Sodergren
- Dept. of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - P. Davis
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - A. Kerhornou
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - X. Nie
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX77030, USA
| | - N. Hall
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - C. Anjard
- Section of Cell and Developmental Biology, Division of Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - L. Hemphill
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX77030, USA
| | - N. Bason
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - P. Farbrother
- Center for Biochemistry and Center for Molecular Medicine Cologne, University of Cologne, Joseph-Stelzmann-Str. 52, 50931 Cologne, Germany
| | - B. Desany
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX77030, USA
| | - E. Just
- dictyBase, Center for Genetic Medicine, Northwestern University, 303 E Chicago Ave, Chicago, IL 60611, USA
| | - T. Morio
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - R. Rost
- Adolf-Butenandt-Institute/Cell Biology, Ludwig-Maximilians-University, 80336 Munich, Germany
| | - C. Churcher
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - J. Cooper
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - S. Haydock
- Biochemistry Department, University of Cambridge, Cambridge CB2 1QW, UK
| | - N. van Driessche
- Dept. of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - A. Cronin
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - I. Goodhead
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - D. Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - T. Mourier
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - A. Pain
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - M. Lu
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX77030, USA
| | - D. Harper
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - R. Lindsay
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX77030, USA
| | - H. Hauser
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - K. James
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - M. Quiles
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - M. Madan Babu
- Laboratory of Molecular Biology, MRC Centre, Cambridge CB2 2QH, UK
| | - T. Saito
- Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo 060-0810 Japan
| | - C. Buchrieser
- Unité de Genomique des Microorganismes Pathogenes, Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris Cedex 15, France
| | - A. Wardroper
- Laboratory of Molecular Biology, MRC Centre, Cambridge CB2 2QH, UK
- Department of Biology, University of York, York YO10 5YW, UK
| | - M. Felder
- Genome Analysis, Institute for Molecular Biotechnology, Beutenbergstr. 11, D-07745 Jena, Germany
| | - M. Thangavelu
- MRC Cancer Cell Unit, Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 2XZ, UK
| | - D. Johnson
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - A. Knights
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - H. Loulseged
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - K. Mungall
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - K. Oliver
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - C. Price
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - M.A. Quail
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - H. Urushihara
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - J. Hernandez
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - E. Rabbinowitsch
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - D. Steffen
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - M. Sanders
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - J. Ma
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Y. Kohara
- Centre for Genetic Resource Information, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - S. Sharp
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - M. Simmonds
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - S. Spiegler
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - A. Tivey
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - S. Sugano
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Minato, Tokyo 108-8639, Japan
| | - B. White
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - D. Walker
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - J. Woodward
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - T. Winckler
- Institut für Pharmazeutische Biologie, Universität Frankfurt (Biozentrum), Frankfurt am Main, 60439, Germany
| | - Y. Tanaka
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - G. Shaulsky
- Dept. of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Graduate Program in Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, Houston TX 77030, USA
| | - M. Schleicher
- Adolf-Butenandt-Institute/Cell Biology, Ludwig-Maximilians-University, 80336 Munich, Germany
| | - G. Weinstock
- Dept. of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - A. Rosenthal
- Genome Analysis, Institute for Molecular Biotechnology, Beutenbergstr. 11, D-07745 Jena, Germany
| | - E.C. Cox
- Department of Molecular Biology, Princeton University, Princeton, NJ08544-1003, USA
| | - R. L. Chisholm
- dictyBase, Center for Genetic Medicine, Northwestern University, 303 E Chicago Ave, Chicago, IL 60611, USA
| | - R. Gibbs
- Dept. of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - W. F. Loomis
- Section of Cell and Developmental Biology, Division of Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - M. Platzer
- Genome Analysis, Institute for Molecular Biotechnology, Beutenbergstr. 11, D-07745 Jena, Germany
| | - R. R. Kay
- Laboratory of Molecular Biology, MRC Centre, Cambridge CB2 2QH, UK
| | - J. Williams
- School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - P. H. Dear
- Laboratory of Molecular Biology, MRC Centre, Cambridge CB2 2QH, UK
| | - A. A. Noegel
- Center for Biochemistry and Center for Molecular Medicine Cologne, University of Cologne, Joseph-Stelzmann-Str. 52, 50931 Cologne, Germany
| | - B. Barrell
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - A. Kuspa
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX77030, USA
- Dept. of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
34
|
Winckler T, Iranfar N, Beck P, Jennes I, Siol O, Baik U, Loomis WF, Dingermann T. CbfA, the C-module DNA-binding factor, plays an essential role in the initiation of Dictyostelium discoideum development. EUKARYOTIC CELL 2005; 3:1349-58. [PMID: 15470262 PMCID: PMC522599 DOI: 10.1128/ec.3.5.1349-1358.2004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We recently isolated from Dictyostelium discoideum cells a DNA-binding protein, CbfA, that interacts in vitro with a regulatory element in retrotransposon TRE5-A. We have generated a mutant strain that expresses CbfA at <5% of the wild-type level to characterize the consequences for D. discoideum cell physiology. We found that the multicellular development program leading to fruiting body formation is highly compromised in the mutant. The cells cannot aggregate and stay as a monolayer almost indefinitely. The cells respond properly to prestarvation conditions by expressing discoidin in a cell density-dependent manner. A genomewide microarray-assisted expression analysis combined with Northern blot analyses revealed a failure of CbfA-depleted cells to induce the gene encoding aggregation-specific adenylyl cyclase ACA and other genes required for cyclic AMP (cAMP) signal relay, which is necessary for aggregation and subsequent multicellular development. However, the cbfA mutant aggregated efficiently when mixed with as few as 5% wild-type cells. Moreover, pulsing cbfA mutant cells developing in suspension with nanomolar levels of cAMP resulted in induction of acaA and other early developmental genes. Although the response was less efficient and slower than in wild-type cells, it showed that cells depleted of CbfA are able to initiate development if given exogenous cAMP signals. Ectopic expression of the gene encoding the catalytic subunit of protein kinase A restored multicellular development of the mutant. We conclude that sensing of cell density and starvation are independent of CbfA, whereas CbfA is essential for the pattern of gene expression which establishes the genetic network leading to aggregation and multicellular development of D. discoideum.
Collapse
Affiliation(s)
- Thomas Winckler
- Institut für Pharmazeutische Biologie, Universität Frankfurt (Biozentrum), Marie-Curie-Strasse 9, D-60439 Frankfurt, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Maruo T, Sakamoto H, Iranfar N, Fuller D, Morio T, Urushihara H, Tanaka Y, Maeda M, Loomis WF. Control of cell type proportioning in Dictyostelium discoideum by differentiation-inducing factor as determined by in situ hybridization. EUKARYOTIC CELL 2005; 3:1241-8. [PMID: 15470253 PMCID: PMC522602 DOI: 10.1128/ec.3.5.1241-1248.2004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We have determined the proportions of the prespore and prestalk regions in Dictyostelium discoideum slugs by in situ hybridization with a large number of prespore- and prestalk-specific genes. Microarrays were used to discover genes expressed in a cell type-specific manner. Fifty-four prespore-specific genes were verified by in situ hybridization, including 18 that had been previously shown to be cell type specific. The 36 new genes more than doubles the number of available prespore markers. At the slug stage, the prespore genes hybridized to cells uniformly in the posterior 80% of wild-type slugs but hybridized to the posterior 90% of slugs lacking the secreted alkylphenone differentiation-inducing factor 1 (DIF-1). There was a compensatory twofold decrease in prestalk cells in DIF-less slugs. Removal of prespore cells resulted in cell type conversion in both wild-type and DIF-less anterior fragments. Thus, DIF-1 appears to act in concert with other processes to establish cell type proportions.
Collapse
Affiliation(s)
- Toshinari Maruo
- Department of Biology, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Kimmel AR, Firtel RA. Breaking symmetries: regulation of Dictyostelium development through chemoattractant and morphogen signal-response. Curr Opin Genet Dev 2005; 14:540-9. [PMID: 15380246 DOI: 10.1016/j.gde.2004.08.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Dictyostelium discoideum grow unicellularly, but develop as multicellular organisms. At two stages of development, their underlying symmetrical pattern of cellular organization becomes disrupted. During the formation of the multicellular aggregate, individual non-polarized cells re-organize their cytoskeletal structures to sequester specific intracellular signaling elements for activation by and directed movement within chemoattractant gradients. Subsequently, response to secreted morphogens directs undifferentiated populations to adopt different cell fates. Using a combination of cellular, biochemical and molecular approaches, workers have now begun to understand the mechanisms that permit Dictyostelium (and other chemotactic cells) to move directionally in shallow chemoattractant gradients and the transcriptional regulatory pathways that polarize cell-fate choice and initiate pattern formation.
Collapse
Affiliation(s)
- Alan R Kimmel
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, Maryland 20892-8028, USA.
| | | |
Collapse
|
37
|
Muramoto T, Takeda S, Furuya Y, Urushihara H. Reverse genetic analyses of gamete-enriched genes revealed a novel regulator of the cAMP signaling pathway in Dictyostelium discoideum. Mech Dev 2005; 122:733-43. [PMID: 15817229 DOI: 10.1016/j.mod.2004.11.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2004] [Revised: 11/19/2004] [Accepted: 11/25/2004] [Indexed: 11/16/2022]
Abstract
Sexual development in Dictyostelium discoideum is initiated by the fusion of opposite mating type cells to form zygote giant cells, which subsequently gather and phagocytose surrounding cells for nutrition to form macrocysts. Here we performed the targeting of 24 highly gamete-enriched genes we previously isolated, and successfully generated knockout mutants for 16 genes and RNAi mutants for 20 genes including 6 genes without disruptants. In the knockout mutants of two genes, cell aggregation toward the giant cells was much less extensive and many cells remained around poorly formed macrocysts. We named these genes tmcB and tmcC. Although macrocyst formation of wild type cells was suppressed by the addition of exogenous cAMP, that of knockout mutants of tmcB was much less sensitive. The mRNA level of phosphodiesterase (pde) was higher and that of its inhibitor (pdi) was lower in the latter cells compared to the parental strains during sexual development. Thus, tmcB appeared to be a novel regulator of the cAMP signaling pathway specific to sexual development. Knockout mutants of tmcC were indistinguishable from the wild type cells with respect to the cAMP response, suggesting that this gene is relevant to other processes.
Collapse
Affiliation(s)
- Tetsuya Muramoto
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba-shi 305-8572, Japan
| | | | | | | |
Collapse
|
38
|
Rigden DJ. A distant evolutionary relationship between GPI-specific phospholipase D and bacterial phosphatidylcholine-preferring phospholipase C. FEBS Lett 2004; 569:229-34. [PMID: 15225639 DOI: 10.1016/j.febslet.2004.05.071] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2004] [Accepted: 05/24/2004] [Indexed: 11/17/2022]
Abstract
In eukaryotes some surface proteins are attached to the plasma membrane by a glycosylphosphatidylinositol (GPI) anchor. A GPI-specific phospholipase D (GPI-PLD) activity has been characterized and implicated in the regulation of anchoring, thereby influencing the dispersal of anchored proteins or their maintenance on the cell surface, and possibly in cell signalling. Despite its biological and medical importance, little is known of the structure of GPI-PLD. Here, a distant relationship between the catalytic domains of GPI-PLD and some bacterial phospholipases C is demonstrated. A model of the GPI-PLD catalytic site sheds light on catalysis and highlights possibilities for design of improved and more specific GPI-PLD inhibitors. The databases contain hitherto unnoticed close homologues of GPI-PLD from yeast and Dictyostelium discoideum.
Collapse
Affiliation(s)
- Daniel J Rigden
- School of Biological Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK.
| |
Collapse
|