1
|
Ranjan N, Arya DP. Parallel G-quadruplex recognition by neomycin. Front Chem 2023; 11:1232514. [PMID: 37671393 PMCID: PMC10475565 DOI: 10.3389/fchem.2023.1232514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/25/2023] [Indexed: 09/07/2023] Open
Abstract
G-quadruplex-forming nucleic acids have evolved to have applications in biology, drug design, sensing, and nanotechnology, to name a few. Together with the structural understanding, several attempts have been made to discover and design new classes of chemical agents that target these structures in the hope of using them as future therapeutics. Here, we report the binding of aminoglycosides, in particular neomycin, to parallel G-quadruplexes that exist as G-quadruplex monomers, dimers, or compounds that have the propensity to form dimeric G-quadruplex structures. Using a combination of calorimetric and spectroscopic studies, we show that neomycin binds to the parallel G-quadruplex with affinities in the range of Ka ∼ 105-108 M-1, which depends on the base composition, ability to form dimeric G-quadruplex structures, salt, and pH of the buffer used. At pH 7.0, the binding of neomycin was found to be electrostatically driven potentially through the formation of ion pairs formed with the quadruplex. Lowering the pH resulted in neomycin's association constants in the range of Ka ∼ 106-107 M-1 in a salt dependent manner. Circular dichroism (CD) studies showed that neomycin's binding does not cause a change in the parallel conformation of the G-quadruplex, yet some binding-induced changes in the intensity of the CD signals were seen. A comparative binding study of neomycin and paromomycin using d(UG4T) showed paromomycin binding to be much weaker than neomycin, highlighting the importance of ring I in the recognition process. In toto, our results expanded the binding landscape of aminoglycosides where parallel G-quadruplexes have been discovered as one of the high-affinity sites. These results may offer a new understanding of some of the undesirable functions of aminoglycosides and help in the design of aminoglycoside-based G-quadruplex binders of high affinity.
Collapse
Affiliation(s)
| | - Dev P. Arya
- Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, SC, United States
| |
Collapse
|
2
|
Escaja N, Mir B, Garavís M, González C. Non-G Base Tetrads. Molecules 2022; 27:5287. [PMID: 36014524 PMCID: PMC9414646 DOI: 10.3390/molecules27165287] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/03/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022] Open
Abstract
Tetrads (or quartets) are arrangements of four nucleobases commonly involved in the stability of four-stranded nucleic acids structures. Four-stranded or quadruplex structures have attracted enormous attention in the last few years, being the most extensively studied guanine quadruplex (G-quadruplex). Consequently, the G-tetrad is the most common and well-known tetrad. However, this is not the only possible arrangement of four nucleobases. A number of tetrads formed by the different nucleobases have been observed in experimental structures. In most cases, these tetrads occur in the context of G-quadruplex structures, either inserted between G-quartets, or as capping elements at the sides of the G-quadruplex core. In other cases, however, non-G tetrads are found in more unusual four stranded structures, such as i-motifs, or different types of peculiar fold-back structures. In this report, we review the diversity of these non-canonical tetrads, and the structural context in which they have been found.
Collapse
Affiliation(s)
- Núria Escaja
- Organic Chemistry Section, Inorganic and Organic Chemistry Department, University of Barcelona, Martí i Franquès 1–11, 08028 Barcelona, Spain
- Institute of Biomedicine, University of Barcelona, Av. Diagonal 645, 08028 Barcelona, Spain
| | - Bartomeu Mir
- Organic Chemistry Section, Inorganic and Organic Chemistry Department, University of Barcelona, Martí i Franquès 1–11, 08028 Barcelona, Spain
- Institute of Biomedicine, University of Barcelona, Av. Diagonal 645, 08028 Barcelona, Spain
| | - Miguel Garavís
- Instituto de Química Física ‘Rocasolano’, CSIC, Serrano 119, 28006 Madrid, Spain
| | - Carlos González
- Instituto de Química Física ‘Rocasolano’, CSIC, Serrano 119, 28006 Madrid, Spain
| |
Collapse
|
3
|
Lei W, Hu J, Chen HY, Xu JJ. Combined strategies for suppressing nonspecific cationic adduction to G-quadruplexes in electrospray ionization mass spectrometry. Anal Chim Acta 2022; 1220:340146. [DOI: 10.1016/j.aca.2022.340146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/21/2022] [Accepted: 07/03/2022] [Indexed: 11/01/2022]
|
4
|
Recent advances in the construction of functional nucleic acids with isothermal amplification for heavy metal ions sensor. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
5
|
Liu L, Wang K, Liu W, Zeng Y, Hou M, Yang J, Mao Z. Spatial Matching Selectivity and Solution Structure of Organic–Metal Hybrid to Quadruplex–Duplex Hybrid. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Liu‐Yi Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry, State Key Laboratory of Oncology in South China Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Kang‐Nan Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry, State Key Laboratory of Oncology in South China Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Wenting Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry, State Key Laboratory of Oncology in South China Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - You‐Liang Zeng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry, State Key Laboratory of Oncology in South China Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Ming‐Xuan Hou
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry, State Key Laboratory of Oncology in South China Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Jing Yang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry, State Key Laboratory of Oncology in South China Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Zong‐Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry, State Key Laboratory of Oncology in South China Sun Yat-Sen University Guangzhou 510275 P. R. China
| |
Collapse
|
6
|
Liu LY, Wang KN, Liu W, Zeng YL, Hou MX, Yang J, Mao ZW. Spatial Matching Selectivity and Solution Structure of Organic-Metal Hybrid to Quadruplex-Duplex Hybrid. Angew Chem Int Ed Engl 2021; 60:20833-20839. [PMID: 34288320 DOI: 10.1002/anie.202106256] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/27/2021] [Indexed: 12/16/2022]
Abstract
The sequence-dependent DNA secondary structures possess structure polymorphism. To date, studies on regulated ligands mainly focus on individual DNA secondary topologies, while lack focus on quadruplex-duplex hybrids (QDHs). Here, we design an organic-metal hybrid ligand L1 Pt(dien), which matches and selectively binds one type of QDHs with lateral duplex stem-loop (QLDH) with high affinity, while shows poor affinity for other QDHs and individual G4 or duplex DNA. The solution structure of QLDH MYT1L-L1 Pt(dien) complex was determined by NMR. The structure reveals that L1 Pt(dien) presents a chair-type conformation, whose large aromatic "chair surface" intercalates into the G-quadruplex-duplex interface via π-π stacking and "backrest" platinum unit interacts with duplex region through hydrogen bonding and electrostatic interactions, showing a highly matched lock-key binding mode. Our work provided guidance for spatial matching design of selectively targeting ligands to QDH structures.
Collapse
Affiliation(s)
- Liu-Yi Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, State Key Laboratory of Oncology in South China, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Kang-Nan Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, State Key Laboratory of Oncology in South China, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Wenting Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, State Key Laboratory of Oncology in South China, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - You-Liang Zeng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, State Key Laboratory of Oncology in South China, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Ming-Xuan Hou
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, State Key Laboratory of Oncology in South China, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Jing Yang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, State Key Laboratory of Oncology in South China, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Zong-Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, State Key Laboratory of Oncology in South China, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
7
|
Andrałojć W, Pasternak K, Sarzyńska J, Zielińska K, Kierzek R, Gdaniec Z. The origin of the high stability of 3'-terminal uridine tetrads: contributions of hydrogen bonding, stacking interactions, and steric factors evaluated using modified oligonucleotide analogs. RNA (NEW YORK, N.Y.) 2020; 26:2000-2016. [PMID: 32967936 PMCID: PMC7668245 DOI: 10.1261/rna.076539.120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/17/2020] [Indexed: 05/09/2023]
Abstract
RNA G-quadruplexes fold almost exclusively into parallel-stranded structures and thus display much less structural diversity than their DNA counterparts. However, also among RNA G-quadruplexes peculiar structural elements can be found which are capable of reshaping the physico-chemical properties of the folded structure. A striking example is provided by a uridine tetrad (U-tetrad) placed on the 3'-terminus of the tetramolecular G-quadruplex. In this context, the U-tetrad adopts a unique conformation involving chain reversal and is responsible for a tremendous stabilization of the G-quadruplex (ΔTm up to 30°C). In this report, we attempt to rationalize the origin of this stabilizing effect by concurrent structural, thermal stability, and molecular dynamics studies of a series of G-quadruplexes with subtle chemical modifications at their 3'-termini. Our results provide detailed insights into the energetics of the "reversed" U-tetrad motif and the requirements for its formation. They point to the importance of the 2'OH to phosphate hydrogen bond and preferential stacking interactions for the formation propensity and stability of the motif.
Collapse
Affiliation(s)
- Witold Andrałojć
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Karol Pasternak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Joanna Sarzyńska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Karolina Zielińska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Ryszard Kierzek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Zofia Gdaniec
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| |
Collapse
|
8
|
Maity A, Winnerdy FR, Chang WD, Chen G, Phan AT. Intra-locked G-quadruplex structures formed by irregular DNA G-rich motifs. Nucleic Acids Res 2020; 48:3315-3327. [PMID: 32100003 PMCID: PMC7102960 DOI: 10.1093/nar/gkaa008] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 12/30/2019] [Accepted: 02/24/2020] [Indexed: 12/14/2022] Open
Abstract
G-rich DNA sequences with tracts of three or more continuous guanines (G≥3) are known to have high propensity to adopt stable G-quadruplex (G4) structures. Bioinformatic analyses suggest high prevalence of G-rich sequences with short G-tracts (G≤2) in the human genome. However, due to limited structural studies, the folding principles of such sequences remain largely unexplored and hence poorly understood. Here, we present the solution NMR structure of a sequence named AT26 consisting of irregularly spaced G2 tracts and two isolated single guanines. The structure is a four-layered G4 featuring two bi-layered blocks, locked between themselves in an unprecedented fashion making it a stable scaffold. In addition to edgewise and propeller-type loops, AT26 also harbors two V-shaped loops: a 2-nt V-shaped loop spanning two G-tetrad layers and a 0-nt V-shaped loop spanning three G-tetrad layers, which are named as VS- and VR-loop respectively, based on their distinct structural features. The intra-lock motif can be a basis for extending the G-tetrad core and a very stable intra-locked G4 can be formed by a sequence with G-tracts of various lengths including several G2 tracts. Findings from this study will aid in understanding the folding of G4 topologies from sequences containing irregularly spaced multiple short G-tracts.
Collapse
Affiliation(s)
- Arijit Maity
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Fernaldo Richtia Winnerdy
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Weili Denyse Chang
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Gang Chen
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Anh Tuân Phan
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore.,NTU Institute of Structural Biology, Nanyang Technological University, Singapore 636921, Singapore
| |
Collapse
|
9
|
Tekin A. Towards the crystal structure of thymine: An intermolecular force field development and parallel global cluster optimizations. J Chem Phys 2019; 151:244302. [DOI: 10.1063/1.5131754] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Affiliation(s)
- Adem Tekin
- Informatics Institute, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
- Research Institute for Fundamental Sciences (TÜBİTAK-TBAE), 41470 Gebze, Kocaeli, Turkey
| |
Collapse
|
10
|
Winnerdy FR, Das P, Heddi B, Phan AT. Solution Structures of a G-Quadruplex Bound to Linear- and Cyclic-Dinucleotides. J Am Chem Soc 2019; 141:18038-18047. [PMID: 31661272 DOI: 10.1021/jacs.9b05642] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cyclic dinucleotides have emerged as important secondary messengers and cell signaling molecules that regulate several cell responses. A guanine-deficit G-quadruplex structure formation by a sequence containing (4n - 1) guanines, n denoting the number of G-tetrad layers, was previously reported. Here, a (4n - 1) G-quadruplex structure is shown to be capable of binding guanine-containing dinucleotides in micromolar affinity. The guanine base of the dinucleotides interacts with a vacant G-triad, forming four additional Hoogsteen hydrogen bonds to complete a G-tetrad. Solution structures of two complexes, both comprised of a (4n - 1) G-quadruplex structure, one bound to a linear dinucleotide (d(AG)) and the other to a cyclic dinucleotide (cGAMP), are solved using NMR spectroscopy. The latter suggests sufficiently strong interaction between the guanine base of the dinucleotide and the vacant G-triad, which acts as an anchor point of binding. The binding interfaces from the two solution structures provide useful information for specific ligand design. The results also infer that other guanine-containing metabolites of a similar size have the capability of binding G-quadruplexes, potentially affecting the expression of the metabolites and functionality of the bound G-quadruplexes.
Collapse
Affiliation(s)
- Fernaldo Richtia Winnerdy
- School of Physical and Mathematical Sciences , Nanyang Technological University , Singapore 637371 , Singapore
| | - Poulomi Das
- School of Physical and Mathematical Sciences , Nanyang Technological University , Singapore 637371 , Singapore
| | - Brahim Heddi
- School of Physical and Mathematical Sciences , Nanyang Technological University , Singapore 637371 , Singapore.,Laboratoire de Biologie et de Pharmacologie Appliquée , CNRS UMR 8113 , Ecole Normale Supérieure Paris-Saclay , Cachan 94235 , France
| | - Anh Tuân Phan
- School of Physical and Mathematical Sciences , Nanyang Technological University , Singapore 637371 , Singapore.,NTU Institute of Structural Biology , Nanyang Technological University , Singapore 636921 , Singapore
| |
Collapse
|
11
|
Truong THA, Winnerdy FR, Phan AT. An Unprecedented Knot‐like G‐Quadruplex Peripheral Motif. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Thi Hong Anh Truong
- School of Physical and Mathematical SciencesNanyang Technological University Singapore 637371 Singapore
| | - Fernaldo Richtia Winnerdy
- School of Physical and Mathematical SciencesNanyang Technological University Singapore 637371 Singapore
| | - Anh Tuân Phan
- School of Physical and Mathematical SciencesNanyang Technological University Singapore 637371 Singapore
- NTU Institute of Structural BiologyNanyang Technological University Singapore 636921 Singapore
| |
Collapse
|
12
|
Truong THA, Winnerdy FR, Phan AT. An Unprecedented Knot‐like G‐Quadruplex Peripheral Motif. Angew Chem Int Ed Engl 2019; 58:13834-13839. [DOI: 10.1002/anie.201907740] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Thi Hong Anh Truong
- School of Physical and Mathematical SciencesNanyang Technological University Singapore 637371 Singapore
| | - Fernaldo Richtia Winnerdy
- School of Physical and Mathematical SciencesNanyang Technological University Singapore 637371 Singapore
| | - Anh Tuân Phan
- School of Physical and Mathematical SciencesNanyang Technological University Singapore 637371 Singapore
- NTU Institute of Structural BiologyNanyang Technological University Singapore 636921 Singapore
| |
Collapse
|
13
|
Liu H, Wang R, Yu X, Shen F, Lan W, Haruehanroengra P, Yao Q, Zhang J, Chen Y, Li S, Wu B, Zheng L, Ma J, Lin J, Cao C, Li J, Sheng J, Gan J. High-resolution DNA quadruplex structure containing all the A-, G-, C-, T-tetrads. Nucleic Acids Res 2019; 46:11627-11638. [PMID: 30285239 PMCID: PMC6265469 DOI: 10.1093/nar/gky902] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 09/24/2018] [Indexed: 12/18/2022] Open
Abstract
DNA can form diverse structures, which predefine their physiological functions. Besides duplexes that carry the genetic information, quadruplexes are the most well-studied DNA structures. In addition to their important roles in recombination, replication, transcription and translation, DNA quadruplexes have also been applied as diagnostic aptamers and antidisease therapeutics. Herein we further expand the sequence and structure complexity of DNA quadruplex by presenting a high-resolution crystal structure of DNA1 (5′-AGAGAGATGGGTGCGTT-3′). This is the first quadruplex structure that contains all the internal A-, G-, C-, T-tetrads, A:T:A:T tetrads and bulged nucleotides in one single structure; as revealed by site-specific mutagenesis and biophysical studies, the central ATGGG motif plays important role in the quadruplex formation. Interestingly, our structure also provides great new insights into cation recognition, including the first-time reported Pb2+, by tetrad structures.
Collapse
Affiliation(s)
- Hehua Liu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai 200433, China.,State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Rui Wang
- Department of Chemistry and The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Xiang Yu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai 200433, China.,State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Fusheng Shen
- Department of Chemistry and The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Wenxian Lan
- State Key Laboratory of Bioorganic and Natural Product Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Shanghai 200032, China
| | - Phensinee Haruehanroengra
- Department of Chemistry and The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Qingqing Yao
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Jing Zhang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Yiqing Chen
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Suhua Li
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Baixing Wu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Lina Zheng
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Jinbiao Ma
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Jinzhong Lin
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Chunyang Cao
- State Key Laboratory of Bioorganic and Natural Product Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Shanghai 200032, China
| | - Jixi Li
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai 200433, China.,Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jia Sheng
- Department of Chemistry and The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Jianhua Gan
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai 200433, China
| |
Collapse
|
14
|
Andrałojć W, Małgowska M, Sarzyńska J, Pasternak K, Szpotkowski K, Kierzek R, Gdaniec Z. Unraveling the structural basis for the exceptional stability of RNA G-quadruplexes capped by a uridine tetrad at the 3' terminus. RNA (NEW YORK, N.Y.) 2019; 25:121-134. [PMID: 30341177 PMCID: PMC6298561 DOI: 10.1261/rna.068163.118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/16/2018] [Indexed: 05/24/2023]
Abstract
Uridine tetrads (U-tetrads) are a structural element encountered in RNA G-quadruplexes, for example, in the structures formed by the biologically relevant human telomeric repeat RNA. For these molecules, an unexpectedly strong stabilizing influence of a U-tetrad forming at the 3' terminus of a quadruplex was reported. Here we present the high-resolution solution NMR structure of the r(UGGUGGU)4 quadruplex which, in our opinion, provides an explanation for this stabilization. Our structure features a distinctive, abrupt chain reversal just prior to the 3' uridine tetrad. Similar "reversed U-tetrads" were already observed in the crystalline phase. However, our NMR structure coupled with extensive explicit solvent molecular dynamics (MD) simulations identifies some key features of this motif that up to now remained overlooked. These include the presence of an exceptionally stable 2'OH to phosphate hydrogen bond, as well as the formation of an additional K+ binding pocket in the quadruplex groove.
Collapse
Affiliation(s)
- Witold Andrałojć
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Magdalena Małgowska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Joanna Sarzyńska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Karol Pasternak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Kamil Szpotkowski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Ryszard Kierzek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Zofia Gdaniec
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| |
Collapse
|
15
|
A secondary structure within a human piRNA modulates its functionality. Biochimie 2018; 157:72-80. [PMID: 30414834 DOI: 10.1016/j.biochi.2018.11.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 11/04/2018] [Indexed: 01/30/2023]
Abstract
The piwi-interacting RNAs (piRNAs) are small non-coding RNAs, mostly 24-32 nucleotides in length. The piRNAs are not known to have any conserved secondary structure or sequence motifs. Using bioinformatics analysis, we discovered the presence of putative G-quadruplex (GQ) forming sequences in human piRNAs. We studied human piR-48164/piR-GQ containing a potential GQ forming sequence and using biochemical and biophysical techniques confirmed its ability to form a GQ. Using EMSA, we discovered that the formation of GQ structure led to inhibition of the piRNA binding to the HIWI-PAZ domain as well as the complementary base pairing to a target RNA. The inability of the piR-GQ to interact with the PIWI protein might be detrimental to the function of the piRNA. To investigate if the formation of a GQ structure in piRNA prevents its target gene silencing in vivo, we used a reporter assay. The piR-GQ failed to inhibit the reporter gene expression while a mutated version that lacked the ability to form GQ inhibited reporter gene expression indicating that the presence of GQ in piRNA is detrimental to its function. These studies unraveled the dependence of a piRNA's functionality on an RNA secondary structure and added a new layer of regulation to their function.
Collapse
|
16
|
Akhshi P, Wu G. Umbrella sampling molecular dynamics simulations reveal concerted ion movement through G-quadruplex DNA channels. Phys Chem Chem Phys 2018; 19:11017-11025. [PMID: 28327752 DOI: 10.1039/c7cp01028a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We have applied the umbrella sampling (US) method in all-atom molecular dynamics (MD) simulations to obtain potential of mean force (PMF) profiles for ion transport through three representative G-quadruplex DNA channels: [d(TG4T)]4, [d(G3T4G4)]2, and d[G4(T4G4)3]. The US MD results are in excellent agreement with those obtained previously with the adaptive biasing force (ABF) method. We then utilized the unique features in the US MD method to investigate multi-ion effects in [d(G3T4G4)]2 and discovered that the concerted ion movement is crucial for fully explaining the unusual experimental results on ion movement in this particular G-quadruplex system. We anticipate that these modern free-energy methods will be useful tools in evaluating ion transport properties of other G-quadruplex DNA channels.
Collapse
Affiliation(s)
- Parisa Akhshi
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario K7L 3N6, Canada.
| | | |
Collapse
|
17
|
Lippert B, Sanz Miguel PJ. Merging Metal–Nucleobase Chemistry With Supramolecular Chemistry. ADVANCES IN INORGANIC CHEMISTRY 2018. [DOI: 10.1016/bs.adioch.2017.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
18
|
Wu J, Meng Z, Lu Y, Shao F. Efficient Long-Range Hole Transport Through G-Quadruplexes. Chemistry 2017; 23:13980-13985. [PMID: 28703459 DOI: 10.1002/chem.201702478] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Indexed: 01/09/2023]
Abstract
DNA offers a means of long-range charge transport for biology and electric nanodevices. Here, a series of tetra-stranded G-quadruplexes were assembled within a dendritic DNA architecture to explore oxidative charge transport (hole transport) through the G-quadruplex. Efficient charge transport was achieved over 28 Å upon UV irradiation. Over a longer G-quadruplex bridge, hole transport was escalated to a higher efficiency, which resulted in a higher yield than that of the optimal duplex DNA for charge transport, that is, the adenine tract. Efficient long-range hole transport suggests tetra-stranded G-quadruplexes, instead of an oxidation hotspot, hold better potential as an electron conduit than duplex DNA.
Collapse
Affiliation(s)
- Jingyuan Wu
- Division of Chemistry & Biological Chemistry, Nanyang Technological University, SPMS-CBC-04-22, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Zhenyu Meng
- Division of Chemistry & Biological Chemistry, Nanyang Technological University, SPMS-CBC-04-22, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Yunpeng Lu
- Division of Chemistry & Biological Chemistry, Nanyang Technological University, SPMS-CBC-04-22, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Fangwei Shao
- Division of Chemistry & Biological Chemistry, Nanyang Technological University, SPMS-CBC-04-22, 21 Nanyang Link, Singapore, 637371, Singapore
| |
Collapse
|
19
|
Affiliation(s)
- Wenhu Zhou
- Xiangya
School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
- Department
of Chemistry, Water Institute, and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Runjhun Saran
- Department
of Chemistry, Water Institute, and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Juewen Liu
- Department
of Chemistry, Water Institute, and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
20
|
Terzidis MA, Prisecaru A, Molphy Z, Barron N, Randazzo A, Dumont E, Krokidis MG, Kellett A, Chatgilialoglu C. Radical-induced purine lesion formation is dependent on DNA helical topology. Free Radic Res 2017; 50:S91-S101. [PMID: 27733084 DOI: 10.1080/10715762.2016.1244820] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Herein we report the quantification of purine lesions arising from gamma-radiation sourced hydroxyl radicals (HO•) on tertiary dsDNA helical forms of supercoiled (SC), open circular (OC), and linear (L) conformation, along with single-stranded folded and non-folded sequences of guanine-rich DNA in selected G-quadruplex structures. We identify that DNA helical topology and folding plays major, and unexpected, roles in the formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dG) and 8-oxo-7,8-dihydro-2'-deoxyadenosine (8-oxo-dA), along with tandem-type purine lesions 5',8-cyclo-2'-deoxyguanosine (5',8-cdG) and 5',8-cyclo-2'-deoxyadenosine (5',8-cdA). SC, OC, and L dsDNA conformers together with folded and non-folded G-quadruplexes d[TGGGGT]4 (TG4T), d[AGGG(TTAGGG)3] (Tel22), and the mutated tel24 d[TTGGG(TTAGGG)3A] (mutTel24) were exposed to HO• radicals and purine lesions were then quantified via stable isotope dilution LC-MS/MS analysis. Purine oxidation in dsDNA follows L > OC ≫ SC indicating greater damage towards the extended B-DNA topology. Conversely, G-quadruplex sequences were significantly more resistant toward purine oxidation in their unfolded states as compared with G-tetrad folded topologies; this effect is confirmed upon comparative analysis of Tel22 (∼50% solution folded) and mutTel24 (∼90% solution folded). In an effort to identify the accessibly of hydroxyl radicals to quadruplex purine nucleobases, G-quadruplex solvent cavities were then modeled at 1.33 Å with evidence suggesting that folded G-tetrads may act as potential oxidant traps to protect against chromosomal DNA damage.
Collapse
Affiliation(s)
| | - Andreea Prisecaru
- b School of Chemical Sciences and National Institute for Cellular Biotechnology , Dublin City University , Glasnevin , Dublin , Ireland
| | - Zara Molphy
- b School of Chemical Sciences and National Institute for Cellular Biotechnology , Dublin City University , Glasnevin , Dublin , Ireland
| | - Niall Barron
- b School of Chemical Sciences and National Institute for Cellular Biotechnology , Dublin City University , Glasnevin , Dublin , Ireland
| | - Antonio Randazzo
- c Department of Pharmacy , University of Naples "Federico II" , Napoli , Italy
| | - Elise Dumont
- d Laboratoire de Chimie, UMR 5182 CNRS , École Normale Supérieure de Lyon , Lyon Cedex , France
| | - Marios G Krokidis
- e NCSR "Demokritos" , Institute of Nanoscience and Nanotechnology , Athens , Greece
| | - Andrew Kellett
- b School of Chemical Sciences and National Institute for Cellular Biotechnology , Dublin City University , Glasnevin , Dublin , Ireland
| | - Chryssostomos Chatgilialoglu
- a ISOF , Consiglio Nazionale delle Ricerche , Bologna , Italy.,e NCSR "Demokritos" , Institute of Nanoscience and Nanotechnology , Athens , Greece
| |
Collapse
|
21
|
Boschi E, Davis S, Taylor S, Butterworth A, Chirayath LA, Purohit V, Siegel LK, Buenaventura J, Sheriff AH, Jin R, Sheardy R, Yatsunyk LA, Azam M. Interaction of a Cationic Porphyrin and Its Metal Derivatives with G-Quadruplex DNA. J Phys Chem B 2016; 120:12807-12819. [PMID: 27936741 DOI: 10.1021/acs.jpcb.6b09827] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
G-quadruplex (GQ) structures formed from guanine-rich sequences are found throughout the genome and are overrepresented in the promoter regions of some oncogenes, at the telomeric ends of eukaryotic chromosomes, and at the 5'-untranslated regions of mRNA. Interaction of small molecule ligands with GQ DNA is an area of great research interest to develop novel anticancer therapeutics and GQ sensors. In this paper we examine the interactions of TMPyP4, its isomer TMPyP2 (containing N-methyl-2-pyridyl substituents, N-Me-2Py) as well as two metal derivatives ZnTMPyP4 and CuTMPyP4 with GQs formed by dT4G4 and dT4G4T in 100 mM K+ or Na+ conditions. The DNA sequences were chosen to elucidate the effect of the 3'-T on the stabilization effect of porphyrins, binding modes, affinities, and stoichiometries determined via circular dichroism melting studies, UV-vis titrations, continuous variation analysis, and fluorescence studies. Our findings demonstrate that the stabilizing abilities of porphyrins are stronger toward (dT4G4)4 as compared to (dT4G4T)4 (ΔTm is 4.4 vs -6.4 for TMPyP4; 12.7 vs 5.7 for TMPyP2; 16.4 vs 12.1 for ZnTMPyP4; and 1.9 vs -8.4 °C for CuTMPyP4) suggesting that the 3'G-tetrad presents at least one of the binding sites. The binding affinity was determined to be moderate (Ka ∼ 106-107 μM-1) with a typical binding stoichiometry of 1:1 or 2:1 porphyrin-to-GQ. In all studies, ZnTMPyP4 emerged as a ligand superior to TMPyP4. Overall, our work contributes to clearer understanding of interactions between porphyrins and GQ DNA.
Collapse
Affiliation(s)
- Eric Boschi
- Department of Chemistry, West Chester University of Pennsylvania , West Chester, Pennsylvania 19383, United States
| | - Supriya Davis
- Department of Chemistry and Biochemistry, Swarthmore College , 500 College Avenue, Swarthmore, Pennsylvania 19081, United States
| | - Scott Taylor
- Department of Chemistry and Biochemistry, Swarthmore College , 500 College Avenue, Swarthmore, Pennsylvania 19081, United States
| | - Andrew Butterworth
- Department of Chemistry, West Chester University of Pennsylvania , West Chester, Pennsylvania 19383, United States
| | - Lilyan A Chirayath
- Department of Chemistry, West Chester University of Pennsylvania , West Chester, Pennsylvania 19383, United States
| | - Vaishali Purohit
- Department of Chemistry, West Chester University of Pennsylvania , West Chester, Pennsylvania 19383, United States
| | - Laura K Siegel
- Department of Chemistry, West Chester University of Pennsylvania , West Chester, Pennsylvania 19383, United States
| | - Janesha Buenaventura
- Department of Chemistry, West Chester University of Pennsylvania , West Chester, Pennsylvania 19383, United States
| | - Alexandra H Sheriff
- Department of Chemistry, West Chester University of Pennsylvania , West Chester, Pennsylvania 19383, United States
| | - Rowen Jin
- Department of Chemistry and Biochemistry, Swarthmore College , 500 College Avenue, Swarthmore, Pennsylvania 19081, United States
| | - Richard Sheardy
- Department of Chemistry & Biochemistry, Texas Woman's University , 324 Ann Stuart Science Center, P.O. Box 425859, Denton, Texas 76204-5859, United States
| | - Liliya A Yatsunyk
- Department of Chemistry and Biochemistry, Swarthmore College , 500 College Avenue, Swarthmore, Pennsylvania 19081, United States
| | - Mahrukh Azam
- Department of Chemistry, West Chester University of Pennsylvania , West Chester, Pennsylvania 19383, United States
| |
Collapse
|
22
|
Bhattacharyya D, Mirihana Arachchilage G, Basu S. Metal Cations in G-Quadruplex Folding and Stability. Front Chem 2016; 4:38. [PMID: 27668212 PMCID: PMC5016522 DOI: 10.3389/fchem.2016.00038] [Citation(s) in RCA: 381] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 08/25/2016] [Indexed: 12/23/2022] Open
Abstract
This review is focused on the structural and physicochemical aspects of metal cation coordination to G-Quadruplexes (GQ) and their effects on GQ stability and conformation. G-quadruplex structures are non-canonical secondary structures formed by both DNA and RNA. G-quadruplexes regulate a wide range of important biochemical processes. Besides the sequence requirements, the coordination of monovalent cations in the GQ is essential for its formation and determines the stability and polymorphism of GQ structures. The nature, location, and dynamics of the cation coordination and their impact on the overall GQ stability are dependent on several factors such as the ionic radii, hydration energy, and the bonding strength to the O6 of guanines. The intracellular monovalent cation concentration and the localized ion concentrations determine the formation of GQs and can potentially dictate their regulatory roles. A wide range of biochemical and biophysical studies on an array of GQ enabling sequences have generated at a minimum the knowledge base that allows us to often predict the stability of GQs in the presence of the physiologically relevant metal ions, however, prediction of conformation of such GQs is still out of the realm.
Collapse
Affiliation(s)
| | | | - Soumitra Basu
- Department of Chemistry and Biochemistry, Kent State UniversityKent, OH, USA
| |
Collapse
|
23
|
Balaratnam S, Basu S. Divalent cation-aided identification of physico-chemical properties of metal ions that stabilize RNA G-quadruplexes. Biopolymers 2016; 103:376-86. [PMID: 25807937 DOI: 10.1002/bip.22628] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 02/16/2015] [Accepted: 02/17/2015] [Indexed: 02/02/2023]
Abstract
DNA and RNA sequences rich in guanosines (G) can form a four-stranded secondary structure known as a G-quadruplex (GQ), which plays a role in regulation of gene expression at the transcription and translation level. Both DNA and RNA GQs typically use the monovalent K(+) ion for stabilization of the structures. However, the fundamental reasons for K(+) acting as the most stabilizing metal ion for RNA GQs are not known. To identify the properties of a metal ion that stabilizes an RNA GQ we investigated the effect of alkaline earth metal cations and a set of divalent transition metal ions on two previously identified highly stable RNA GQs. Our results based upon circular dichroism and RNase T1 structure mapping data reveal that the RNA GQs are destabilized in the presence of the tested divalent metal cations. The destabilizing effect of a divalent metal cation is reversible upon increasing K(+) concentration. Results show that ionic radius, hydration energy, and binding strength towards the hard ligand (guanine O(6)) are important factors that determine a metal ion's ability to stabilize an RNA GQ. Additionally, the tested set of divalent metal cations incongruously affects RNA and DNA GQs.
Collapse
Affiliation(s)
- Sumirtha Balaratnam
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH, 44242
| | | |
Collapse
|
24
|
Largy E, Mergny JL, Gabelica V. Role of Alkali Metal Ions in G-Quadruplex Nucleic Acid Structure and Stability. Met Ions Life Sci 2016; 16:203-58. [PMID: 26860303 DOI: 10.1007/978-3-319-21756-7_7] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
G-quadruplexes are guanine-rich nucleic acids that fold by forming successive quartets of guanines (the G-tetrads), stabilized by intra-quartet hydrogen bonds, inter-quartet stacking, and cation coordination. This specific although highly polymorphic type of secondary structure deviates significantly from the classical B-DNA duplex. G-quadruplexes are detectable in human cells and are strongly suspected to be involved in a number of biological processes at the DNA and RNA levels. The vast structural polymorphism exhibited by G-quadruplexes, together with their putative biological relevance, makes them attractive therapeutic targets compared to canonical duplex DNA. This chapter focuses on the essential and specific coordination of alkali metal cations by G-quadruplex nucleic acids, and most notably on studies highlighting cation-dependent dissimilarities in their stability, structure, formation, and interconversion. Section 1 surveys G-quadruplex structures and their interactions with alkali metal ions while Section 2 presents analytical methods used to study G-quadruplexes. The influence of alkali cations on the stability, structure, and kinetics of formation of G-quadruplex structures of quadruplexes will be discussed in Sections 3 and 4. Section 5 focuses on the cation-induced interconversion of G-quadruplex structures. In Sections 3 to 5, we will particularly emphasize the comparisons between cations, most often K(+) and Na(+) because of their prevalence in the literature and in cells.
Collapse
Affiliation(s)
- Eric Largy
- ARNA Laboratory, Université Bordeaux, IECB, 2, rue Robert Escarpit, F-33600, Pessac, France.,ARNA Laboratory, INSERM, U869, F-33000, Bordeaux, France
| | - Jean-Louis Mergny
- ARNA Laboratory, Université Bordeaux, IECB, 2, rue Robert Escarpit, F-33600, Pessac, France. .,ARNA Laboratory, INSERM, U869, F-33000, Bordeaux, France.
| | - Valérie Gabelica
- ARNA Laboratory, Université Bordeaux, IECB, 2, rue Robert Escarpit, F-33600, Pessac, France. .,ARNA Laboratory, INSERM, U869, F-33000, Bordeaux, France.
| |
Collapse
|
25
|
Huang PJJ, Vazin M, Liu J. Desulfurization Activated Phosphorothioate DNAzyme for the Detection of Thallium. Anal Chem 2015; 87:10443-9. [PMID: 26393365 DOI: 10.1021/acs.analchem.5b02568] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Thallium (Tl) is a highly toxic heavy metal situated between mercury and lead in the periodic table. While its neighbors have been thoroughly studied for DNA-based sensing, little is known about thallium detection. In this work, in vitro selection of RNA-cleaving DNAzymes is carried out using Tl(3+) as the target metal cofactor. Both normal DNA and phosphorothioate (PS)-modified DNA are tested for this purpose. While no Tl(3+)-dependent DNAzymes are obtained, a DNA oligonucleotide containing a single PS-modified RNA nucleotide is found to cleave by ∼7% by Tl(3+) at the RNA position. The remaining 93% are desulfurized. By hybridization of this PS-modified oligonucleotide with the Tm7 DNAzyme, the cleavage yield increases to ∼40% in the presence of Tl(3+) and Er(3+). Tm7 is an Er(3+)-dependent RNA-cleaving DNAzyme. It cleaves only the normal substrate but is completely inactive using the PS-modified substrate. Tl(3+) desulfurizes the PS substrate to the normal substrate to be cleaved by Tm7 and Er(3+). This system is engineered into a catalytic beacon for Tl(3+) with a detection limit of 1.5 nM, which is below its maximal contamination limit defined by the U.S. Environmental Protection Agency (10 nM).
Collapse
Affiliation(s)
- Po-Jung Jimmy Huang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| | - Mahsa Vazin
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
26
|
Métifiot M, Amrane S, Mergny JL, Andreola ML. Anticancer molecule AS1411 exhibits low nanomolar antiviral activity against HIV-1. Biochimie 2015; 118:173-5. [PMID: 26363100 DOI: 10.1016/j.biochi.2015.09.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 09/07/2015] [Indexed: 11/29/2022]
Abstract
During clinical trials, a number of fully characterized molecules are dropped along the way because they do not provide enough benefit for the patient. Some of them show limited side effects and might be of great use for other applications. AS1411 is a nucleolin-targeting aptamer that underwent phase II clinical trials as anticancer agent. Here, we show that AS1411 exhibits extremely potent antiviral activity and is therefore an attractive new lead as anti-HIV agent.
Collapse
Affiliation(s)
- Mathieu Métifiot
- Laboratoire MFP, CNRS UMR-5234, Université de Bordeaux, FR Transbiomed, 146 Rue Léo Saignat, 33076 Bordeaux, France
| | - Samir Amrane
- INSERM U869, IECB, ARNA Laboratory, Université de Bordeaux, 2 Rue Robert Escarpit, 33600 Pessac, France
| | - Jean-Louis Mergny
- INSERM U869, IECB, ARNA Laboratory, Université de Bordeaux, 2 Rue Robert Escarpit, 33600 Pessac, France.
| | - Marie-Line Andreola
- Laboratoire MFP, CNRS UMR-5234, Université de Bordeaux, FR Transbiomed, 146 Rue Léo Saignat, 33076 Bordeaux, France.
| |
Collapse
|
27
|
Morikawa M, Kino K, Oyoshi T, Suzuki M, Kobayashi T, Miyazawa H. Calculation of the HOMO localization of Tetrahymena and Oxytricha telomeric quadruplex DNA. Bioorg Med Chem Lett 2015; 25:3359-62. [PMID: 26071638 DOI: 10.1016/j.bmcl.2015.05.050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 05/16/2015] [Accepted: 05/19/2015] [Indexed: 10/23/2022]
Abstract
Several guanine-rich sequences exist in many important regions, such as telomeres, and these sequences can form quadruplex DNA structures. It was previously reported that 3'-guanines are mainly oxidized in the Tetrahymena and Oxytricha telomeric quadruplex DNA, d(TGGGGT)4, and 5'-guanines are mainly oxidized in the human telomeric quadruplex DNA, d(TAGGGT)4T. We speculated that the differences in site reactivity between d(TGGGGT)4 and d(TAGGGT)4T are induced by the localization of the HOMO. The HOMOs of the possible quadruplex structures were thus determined and the results showed that the HOMOs of d(TGGGGT)4 +3K(+) and d(TAGGGT)4T +2K(+) localized at the 5'-guanine, and that the HOMO shifted from the 5'-guanine to the 3'-guanine by the addition of a 5'-capping cation. Furthermore, we determined the influence of the cation and demonstrated that localization of the HOMO at the G-quartet plane located immediately adjacent to the cation is disfavored. The calculated HOMO localization of d(TGGGGT)4 +4K(+) and d(TAGGGT)4T +2K(+) matched the experimental results and suggest that d(TGGGGT)4 contains a 5'-capping cation in solution.
Collapse
Affiliation(s)
- Masayuki Morikawa
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, 1314-1 Shido, Sanuki, Kagawa 769-2193, Japan
| | - Katsuhito Kino
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, 1314-1 Shido, Sanuki, Kagawa 769-2193, Japan.
| | - Takanori Oyoshi
- Faculty of Science, Department of Chemistry, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan
| | - Masayo Suzuki
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, 1314-1 Shido, Sanuki, Kagawa 769-2193, Japan
| | - Takanobu Kobayashi
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, 1314-1 Shido, Sanuki, Kagawa 769-2193, Japan
| | - Hiroshi Miyazawa
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, 1314-1 Shido, Sanuki, Kagawa 769-2193, Japan
| |
Collapse
|
28
|
D'Atri V, Porrini M, Rosu F, Gabelica V. Linking molecular models with ion mobility experiments. Illustration with a rigid nucleic acid structure. JOURNAL OF MASS SPECTROMETRY : JMS 2015; 50:711-26. [PMID: 26259654 PMCID: PMC4440389 DOI: 10.1002/jms.3590] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 03/04/2015] [Accepted: 03/04/2015] [Indexed: 05/13/2023]
Abstract
Ion mobility spectrometry experiments allow the mass spectrometrist to determine an ion's rotationally averaged collision cross section Ω(EXP). Molecular modelling is used to visualize what ion three-dimensional structure(s) is(are) compatible with the experiment. The collision cross sections of candidate molecular models have to be calculated, and the resulting Ω(CALC) are compared with the experimental data. Researchers who want to apply this strategy to a new type of molecule face many questions: (1) What experimental error is associated with Ω(EXP) determination, and how to estimate it (in particular when using a calibration for traveling wave ion guides)? (2) How to generate plausible 3D models in the gas phase? (3) Different collision cross section calculation models exist, which have been developed for other analytes than mine. Which one(s) can I apply to my systems? To apply ion mobility spectrometry to nucleic acid structural characterization, we explored each of these questions using a rigid structure which we know is preserved in the gas phase: the tetramolecular G-quadruplex [dTGGGGT]4, and we will present these detailed investigation in this tutorial.
Collapse
Affiliation(s)
- Valentina D'Atri
- Univ. Bordeaux, IECB, ARNA laboratoryPessac, F-33600, France
- INSERM, U869, ARNA laboratoryBordeaux, F-33000, France
| | - Massimiliano Porrini
- Univ. Bordeaux, IECB, ARNA laboratoryPessac, F-33600, France
- INSERM, U869, ARNA laboratoryBordeaux, F-33000, France
| | | | - Valérie Gabelica
- Univ. Bordeaux, IECB, ARNA laboratoryPessac, F-33600, France
- INSERM, U869, ARNA laboratoryBordeaux, F-33000, France
| |
Collapse
|
29
|
Fyfe AC, Dunten PW, Martick MM, Scott WG. Structural Variations and Solvent Structure of r(UGGGGU) Quadruplexes Stabilized by Sr(2+) Ions. J Mol Biol 2015; 427:2205-19. [PMID: 25861762 DOI: 10.1016/j.jmb.2015.03.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 03/18/2015] [Accepted: 03/31/2015] [Indexed: 11/18/2022]
Abstract
Guanine-rich sequences can, under appropriate conditions, adopt a distinctive, four-stranded, helical fold known as a G-quadruplex. Interest in quadruplex folds has grown in recent years as evidence of their biological relevance has accumulated from both sequence analysis and function-specific assays. The folds are unusually stable and their formation appears to require close management to maintain cell health; regulatory failure correlates with genomic instability and a number of cancer phenotypes. Biologically relevant quadruplex folds are anticipated to form transiently in mRNA and in single-stranded, unwound DNA. To elucidate factors, including bound solvent, that contribute to the stability of RNA quadruplexes, we examine, by X-ray crystallography and small-angle X-ray scattering, the structure of a previously reported tetramolecular quadruplex, UGGGGU stabilized by Sr(2+) ions. Crystal forms of the octameric assembly formed by this sequence exhibit unusually strong diffraction and anomalous signal enabling the construction of reliable models to a resolution of 0.88Å. The solvent structure confirms hydration patterns reported for other nucleic acid helical conformations and provides support for the greater stability of RNA quadruplexes relative to DNA. Novel features detected in the octameric RNA assembly include a new crystal form, evidence of multiple conformations and structural variations in the 3' U tetrad, including one that leads to the formation of a hydrated internal cavity.
Collapse
Affiliation(s)
- Alastair C Fyfe
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - Pete W Dunten
- Stanford Synchrotron Radiation Lightsource, CA 94025, USA
| | - Monika M Martick
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - William G Scott
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| |
Collapse
|
30
|
Mendoza O, Porrini M, Salgado GF, Gabelica V, Mergny JL. Orienting tetramolecular G-quadruplex formation: the quest for the elusive RNA antiparallel quadruplex. Chemistry 2015; 21:6732-9. [PMID: 25820943 DOI: 10.1002/chem.201500358] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Indexed: 11/07/2022]
Abstract
DNA and RNA G-quadruplexes (G4) are unusual nucleic acid structures involved in a number of key biological processes. RNA G-quadruplexes are less studied although recent evidence demonstrates that they are biologically relevant. Compared to DNA quadruplexes, RNA G4 are generally more stable and less polymorphic. Duplexes and quadruplexes may be combined to obtain pure tetrameric species. Here, we investigated whether classical antiparallel duplexes can drive the formation of antiparallel tetramolecular quadruplexes. This concept was first successfully applied to DNA G4. In contrast, RNA G4 were found to be much more unwilling to adopt the forced antiparallel orientation, highlighting that the reason RNA adopts a different structure must not be sought in the loops but in the G-stem structure itself. RNA antiparallel G4 formation is likely to be restricted to a very small set of peculiar sequences, in which other structural features overcome the formidable intrinsic barrier preventing its formation.
Collapse
Affiliation(s)
- Oscar Mendoza
- Université de Bordeaux, ARNA laboratory IECB, 2 rue Robert Escarpit, 33607 Pessac (France); INSERM, U869, IECB, 33600 Pessac (France).
| | | | | | | | | |
Collapse
|
31
|
Zhang D, Huang T, Lukeman PS, Paukstelis PJ. Crystal structure of a DNA/Ba2+ G-quadruplex containing a water-mediated C-tetrad. Nucleic Acids Res 2014; 42:13422-9. [PMID: 25389267 PMCID: PMC4245957 DOI: 10.1093/nar/gku1122] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
We have determined the 1.50 Å crystal structure of the DNA decamer, d(CCA(CNV)KGCGTGG) ((CNV)K, 3-cyanovinylcarbazole), which forms a G-quadruplex structure in the presence of Ba(2+). The structure contains several unique features including a bulged nucleotide and the first crystal structure observation of a C-tetrad. The structure reveals that water molecules mediate contacts between the divalent cations and the C-tetrad, allowing Ba(2+) ions to occupy adjacent steps in the central ion channel. One ordered Mg(2+) facilitates 3'-3' stacking of two quadruplexes in the asymmetric unit, while the bulged nucleotide mediates crystal contacts. Despite the high diffraction limit, the first four nucleotides including the (CNV)K nucleoside are disordered though they are still involved in crystal packing. This work suggests that the bulky hydrophobic groups may locally influence the formation of non-Watson-Crick structures from otherwise complementary sequences. These observations lead to the intriguing possibility that certain types of DNA damage may act as modulators of G-quadruplex formation.
Collapse
Affiliation(s)
- Diana Zhang
- Department of Chemistry & Biochemistry, Center for Biomolecular Structure and Organization, Maryland NanoCenter, University of Maryland, College Park, MD 20742, USA
| | - Terry Huang
- Chemistry and Biochemistry Department, California State Polytechnic University, 3801 West Temple Avenue, Pomona, CA 91768, USA
| | - Philip S. Lukeman
- Chemistry Department, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA
| | - Paul J. Paukstelis
- Department of Chemistry & Biochemistry, Center for Biomolecular Structure and Organization, Maryland NanoCenter, University of Maryland, College Park, MD 20742, USA,To whom correspondence should be addressed. Tel: 301.405.9933; Fax: 301.314.0386;
| |
Collapse
|
32
|
|
33
|
Mandal PK, Collie GW, Kauffmann B, Huc I. Racemic DNA Crystallography. Angew Chem Int Ed Engl 2014; 53:14424-7. [DOI: 10.1002/anie.201409014] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Indexed: 12/14/2022]
|
34
|
DNA and RNA quadruplex-binding proteins. Int J Mol Sci 2014; 15:17493-517. [PMID: 25268620 PMCID: PMC4227175 DOI: 10.3390/ijms151017493] [Citation(s) in RCA: 191] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 09/15/2014] [Accepted: 09/22/2014] [Indexed: 02/01/2023] Open
Abstract
Four-stranded DNA structures were structurally characterized in vitro by NMR, X-ray and Circular Dichroism spectroscopy in detail. Among the different types of quadruplexes (i-Motifs, minor groove quadruplexes, G-quadruplexes, etc.), the best described are G-quadruplexes which are featured by Hoogsteen base-paring. Sequences with the potential to form quadruplexes are widely present in genome of all organisms. They are found often in repetitive sequences such as telomeric ones, and also in promoter regions and 5' non-coding sequences. Recently, many proteins with binding affinity to G-quadruplexes have been identified. One of the initially portrayed G-rich regions, the human telomeric sequence (TTAGGG)n, is recognized by many proteins which can modulate telomerase activity. Sequences with the potential to form G-quadruplexes are often located in promoter regions of various oncogenes. The NHE III1 region of the c-MYC promoter has been shown to interact with nucleolin protein as well as other G-quadruplex-binding proteins. A number of G-rich sequences are also present in promoter region of estrogen receptor alpha. In addition to DNA quadruplexes, RNA quadruplexes, which are critical in translational regulation, have also been predicted and observed. For example, the RNA quadruplex formation in telomere-repeat-containing RNA is involved in interaction with TRF2 (telomere repeat binding factor 2) and plays key role in telomere regulation. All these fundamental examples suggest the importance of quadruplex structures in cell processes and their understanding may provide better insight into aging and disease development.
Collapse
|
35
|
Di Leva FS, Novellino E, Cavalli A, Parrinello M, Limongelli V. Mechanistic insight into ligand binding to G-quadruplex DNA. Nucleic Acids Res 2014; 42:5447-55. [PMID: 24753420 PMCID: PMC4027208 DOI: 10.1093/nar/gku247] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 03/10/2014] [Accepted: 03/13/2014] [Indexed: 12/12/2022] Open
Abstract
Specific guanine-rich regions in human genome can form higher-order DNA structures called G-quadruplexes, which regulate many relevant biological processes. For instance, the formation of G-quadruplex at telomeres can alter cellular functions, inducing apoptosis. Thus, developing small molecules that are able to bind and stabilize the telomeric G-quadruplexes represents an attractive strategy for antitumor therapy. An example is 3-(benzo[d]thiazol-2-yl)-7-hydroxy-8-((4-(2-hydroxyethyl)piperazin-1-yl)methyl)-2H-chromen-2-one (compound 1: ), recently identified as potent ligand of the G-quadruplex [d(TGGGGT)]4 with promising in vitro antitumor activity. The experimental observations are suggestive of a complex binding mechanism that, despite efforts, has defied full characterization. Here, we provide through metadynamics simulations a comprehensive understanding of the binding mechanism of 1: to the G-quadruplex [d(TGGGGT)]4. In our calculations, the ligand explores all the available binding sites on the DNA structure and the free-energy landscape of the whole binding process is computed. We have thus disclosed a peculiar hopping binding mechanism whereas 1: is able to bind both to the groove and to the 3' end of the G-quadruplex. Our results fully explain the available experimental data, rendering our approach of great value for further ligand/DNA studies.
Collapse
Affiliation(s)
- Francesco Saverio Di Leva
- Department of Drug Discovery and Development, Istituto Italiano di Tecnologia, via Morego, 30, I-16163 Genoa, Italy
| | - Ettore Novellino
- Department of Pharmacy, University of Naples "Federico II", via D. Montesano, 49, I-80131 Naples, Italy
| | - Andrea Cavalli
- Department of Drug Discovery and Development, Istituto Italiano di Tecnologia, via Morego, 30, I-16163 Genoa, Italy Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, via Belmeloro, 6, I-40126 Bologna, Italy
| | - Michele Parrinello
- Department of Chemistry and Applied Biosciences, ETH Zurich, and Facoltà di Informatica, Istituto di Scienze Computazionali, Università della Svizzera Italiana, via G. Buffi, 13, CH-6900 Lugano, Switzerland
| | - Vittorio Limongelli
- Department of Pharmacy, University of Naples "Federico II", via D. Montesano, 49, I-80131 Naples, Italy
| |
Collapse
|
36
|
Hui WQB, Sherman JC. Self-assembly of a thymine quartet and quadruplex via an organic template. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2014.01.058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
37
|
Zhong D, Blömker T, Mück-Lichtenfeld C, Zhang H, Kehr G, Erker G, Fuchs H, Chi L. Thymine and adenine tetrads formed on anisotropic metal surfaces. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:265-270. [PMID: 24605377 DOI: 10.1002/smll.201301595] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The interplay of the Au(110) surface and alkyl-substituted DNA bases induces reorganization of the surface with parallel atomic grooves, while the enhanced surface anisotropy constrains the substituent alkyl chains along the grooves. Every four molecules are bound together through H-bonds while further possible H-bonds are prohibited by either the alkyl chains or the groove borders, resulting in separated tetrad structures located in the grooves.
Collapse
|
38
|
Russo Krauss I, Parkinson GN, Merlino A, Mattia CA, Randazzo A, Novellino E, Mazzarella L, Sica F. A regular thymine tetrad and a peculiar supramolecular assembly in the first crystal structure of an all-LNA G-quadruplex. ACTA ACUST UNITED AC 2014; 70:362-70. [PMID: 24531470 DOI: 10.1107/s1399004713028095] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 10/13/2013] [Indexed: 01/19/2023]
Abstract
Locked nucleic acids (LNAs) are formed by bicyclic ribonucleotides where the O2' and C4' atoms are linked through a methylene bridge and the sugar is blocked in a 3'-endo conformation. They represent a promising tool for therapeutic and diagnostic applications and are characterized by higher thermal stability and nuclease resistance with respect to their natural counterparts. However, structural descriptions of LNA-containing quadruplexes are rather limited, since few NMR models have been reported in the literature. Here, the first crystallographically derived model of an all-LNA-substituted quadruplex-forming sequence 5'-TGGGT-3' is presented refined at 1.7 Å resolution. This high-resolution crystallographic analysis reveals a regular parallel G-quadruplex arrangement terminating in a well defined thymine tetrad at the 3'-end. The detailed picture of the hydration pattern reveals LNA-specific features in the solvent distribution. Interestingly, two closely packed quadruplexes are present in the asymmetric unit. They face one another with their 3'-ends giving rise to a compact higher-order structure. This new assembly suggests a possible way in which sequential quadruplexes can be disposed in the crowded cell environment. Furthermore, as the formation of ordered structures by molecular self-assembly is an effective strategy to obtain nanostructures, this study could open the way to the design of a new class of LNA-based building blocks for nanotechnology.
Collapse
Affiliation(s)
- Irene Russo Krauss
- Department of Chemical Sciences, University of Naples `Federico II', Complesso Universitario di Monte Sant'Angelo, Via Cinthia, I-80126 Napoli, Italy
| | - Gary Nigel Parkinson
- Department of Pharmaceutical and Biological Chemistry, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, England
| | - Antonello Merlino
- Department of Chemical Sciences, University of Naples `Federico II', Complesso Universitario di Monte Sant'Angelo, Via Cinthia, I-80126 Napoli, Italy
| | - Carlo Andrea Mattia
- Department of Pharmacy, University of Salerno, Via Ponte Don Melillo, I-84084 Fisciano, Italy
| | - Antonio Randazzo
- Department of Pharmacy, University of Naples `Federico II', Via D. Montesano 49, I-80131 Napoli, Italy
| | - Ettore Novellino
- Department of Pharmacy, University of Naples `Federico II', Via D. Montesano 49, I-80131 Napoli, Italy
| | - Lelio Mazzarella
- Department of Chemical Sciences, University of Naples `Federico II', Complesso Universitario di Monte Sant'Angelo, Via Cinthia, I-80126 Napoli, Italy
| | - Filomena Sica
- Department of Chemical Sciences, University of Naples `Federico II', Complesso Universitario di Monte Sant'Angelo, Via Cinthia, I-80126 Napoli, Italy
| |
Collapse
|
39
|
D'Atri V, Borbone N, Amato J, Gabelica V, D'Errico S, Piccialli G, Mayol L, Oliviero G. DNA-based nanostructures: The effect of the base sequence on octamer formation from d(XGGYGGT) tetramolecular G-quadruplexes. Biochimie 2013; 99:119-28. [PMID: 24316277 DOI: 10.1016/j.biochi.2013.11.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 11/22/2013] [Indexed: 11/28/2022]
Abstract
In a previous work we have demonstrated that the DNA sequence CGGTGGT folds into a higher order G-quadruplex structure (2Q), obtained by the 5'-5' stacking of two unusual G(:C):G(:C):G(:C):G(:C) planar octads belonging to two identical tetra-stranded parallel quadruplexes, when annealed in the presence of ammonium or potassium ions. In the present paper, we discuss the role played by the title nucleosides X and Y (where X and Y stand for A, C, G, or T) on the formation and stability of 2Q structures formed by the XGGYGGT oligodeoxynucleotides. We found that the above mentioned dimerization pathway is not peculiar to the CGGTGGT sequence, but is possible for all the remaining CGGYGGT sequences (with Y = A, C, or G). Furthermore, we have found that the TGGAGGT sequence, despite the absence of the 5'-ending C, is also capable of forming a 2Q-like higher order quadruplex by using a slightly different dimerization interface, as characterized by NMR spectroscopy. To the best of our knowledge, this is the first characterization of a quadruplex multimer formed by an oligodeoxynucleotide presenting a thymine at its 5'-end. Examples of such structures were observed previously only in crystals and in the presence of non-physiological cations. Our results expand the repertoire of DNA quadruplex nanostructures of chosen length and add further complexity to the structural polymorphism of G-rich DNA sequences.
Collapse
Affiliation(s)
- Valentina D'Atri
- Dipartimento di Farmacia, Università di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Nicola Borbone
- Dipartimento di Farmacia, Università di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy.
| | - Jussara Amato
- Dipartimento di Farmacia, Università di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Valérie Gabelica
- Univ. Bordeaux, IECB, ARNA Laboratory, F-33600 Pessac, France; INSERM, U869, ARNA laboratory, F-33000 Bordeaux, France
| | - Stefano D'Errico
- Dipartimento di Farmacia, Università di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Gennaro Piccialli
- Dipartimento di Farmacia, Università di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Luciano Mayol
- Dipartimento di Farmacia, Università di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Giorgia Oliviero
- Dipartimento di Farmacia, Università di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| |
Collapse
|
40
|
Bare GAL, Sherman JC. A thymine tetrad assembly templated from thymidylic acid. J Org Chem 2013; 78:8198-202. [PMID: 23875642 DOI: 10.1021/jo401281p] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A template tetra-coupled with thymidylic acid through a phosphate linkage was characterized in methanol for emergent properties of nucleobase tetrad formation. Intramolecular hydrogen bonded base pairing in the absence of a cation was indicated for the thymidylic acid species supporting a monomeric template-assembled structure. Thus, an initial report of a stabilized individual thymine tetrad assembly is presented here. Consistent with previous investigations, a deoxyguanylic acid variant templated an analogous methanolic monomeric G-tetrad in comparison to the thymine species.
Collapse
Affiliation(s)
- Grant A L Bare
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, Canada, V6T 1Z1
| | | |
Collapse
|
41
|
Abstract
This review summarizes the results of structural studies carried out with analogs of G-quadruplexes built from natural nucleotides. Several dozens of base-, sugar-, and phosphate derivatives of the biological building blocks have been incorporated into more than 50 potentially quadruplex forming DNA and RNA oligonucleotides and the stability and folding topology of the resultant intramolecular, bimolecular and tetramolecular architectures characterized. The TG4T, TG5T, the 15 nucleotide-long thrombin binding aptamer, and the human telomere repeat AG3(TTAG3)3 sequences were modified in most cases, and four guanine analogs can be noted as being particularly useful in structural studies. These are the fluorescent 2-aminopurine, the 8-bromo-, and 8-methylguanines, and the hypoxanthine. The latter three analogs stabilize a given fold in a mixture of structures making possible accurate structural determinations by circular dichroism and nuclear magnetic resonance measurements.
Collapse
Affiliation(s)
- Janos Sagi
- a Rimstone Laboratory , RLI, 29 Lancaster Way, Cheshire , CT , 06410 , USA
| |
Collapse
|
42
|
Doluca O, Withers JM, Filichev VV. Molecular engineering of guanine-rich sequences: Z-DNA, DNA triplexes, and G-quadruplexes. Chem Rev 2013; 113:3044-83. [PMID: 23391174 DOI: 10.1021/cr300225q] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Osman Doluca
- Institute of Fundamental Sciences, Massey University, Private Bag 11 222, Palmerston North, New Zealand
| | | | | |
Collapse
|
43
|
Campbell N, Collie GW, Neidle S. Crystallography of DNA and RNA G-quadruplex nucleic acids and their ligand complexes. ACTA ACUST UNITED AC 2013; Chapter 17:Unit17.6. [PMID: 22956455 DOI: 10.1002/0471142700.nc1706s50] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Quadruplexes are higher-order structures formed by natural guanine-rich nucleic acid sequences. They may play a role in gene regulation and in telomere function. This article focuses on the crystallization of quadruplexes and their complexes with small-molecule ligands. Protocols for successful crystallization, as used in the author's laboratory, are described in detail.
Collapse
Affiliation(s)
- Nancy Campbell
- Cancer Research UK Biomolecular Structure Group, The UCL School of Pharmacy, London, United Kingdom
| | | | | |
Collapse
|
44
|
Abstract
G-quadruplexes constitute a class of nucleic acid structures defined by stacked guanine tetrads (or G-tetrads) with guanine bases from neighboring tetrads stacking with one another within the G-tetrad core. Individual G-quadruplexes can also stack with one another at their G-tetrad interface leading to higher-order structures as observed in telomeric repeat-containing DNA and RNA. In this study, we investigate how guanine base stacking influences the stability of G-quadruplexes and their stacked higher-order structures. A structural survey of the Protein Data Bank is conducted to characterize experimentally observed guanine base stacking geometries within the core of G-quadruplexes and at the interface between stacked G-quadruplex structures. We couple this survey with a systematic computational examination of stacked G-tetrad energy landscapes using quantum mechanical computations. Energy calculations of stacked G-tetrads reveal large energy differences of up to 12 kcal/mol between experimentally observed geometries at the interface of stacked G-quadruplexes. Energy landscapes are also computed using an AMBER molecular mechanics description of stacking energy and are shown to agree quite well with quantum mechanical calculated landscapes. Molecular dynamics simulations provide a structural explanation for the experimentally observed preference of parallel G-quadruplexes to stack in a 5′–5′ manner based on different accessible tetrad stacking modes at the stacking interfaces of 5′–5′ and 3′–3′ stacked G-quadruplexes.
Collapse
Affiliation(s)
- Christopher Jacques Lech
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | | | | |
Collapse
|
45
|
Adrian M, Heddi B, Phan AT. NMR spectroscopy of G-quadruplexes. Methods 2012; 57:11-24. [DOI: 10.1016/j.ymeth.2012.05.003] [Citation(s) in RCA: 184] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 05/15/2012] [Accepted: 05/16/2012] [Indexed: 12/24/2022] Open
|
46
|
In silico screening of quadruplex-binding ligands. Methods 2012; 57:106-14. [DOI: 10.1016/j.ymeth.2012.02.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Revised: 01/29/2012] [Accepted: 02/01/2012] [Indexed: 12/18/2022] Open
|
47
|
Ferreira R, Alvira M, Aviñó A, Gómez-Pinto I, González C, Gabelica V, Eritja R. Synthesis and structural characterization of stable branched DNA g-quadruplexes using the trebler phosphoramidite. ChemistryOpen 2012; 1:106-14. [PMID: 24551498 PMCID: PMC3922461 DOI: 10.1002/open.201200009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Indexed: 01/17/2023] Open
Abstract
Guanine (G)-rich sequences can form a noncanonical four-stranded structure known as the G-quadruplex. G-quadruplex structures are interesting because of their potential biological properties and use in nanosciences. Here, we describe a method to prepare highly stable G-quadruplexes by linking four G-rich DNA strands to form a monomolecular G-quadruplex. In this method, one strand is synthesized first, and then a trebler molecule is added to simultaneously assemble the remaining three strands. This approach allows the introduction of specific modifications in only one of the strands. As a proof of concept, we prepared a quadruplex where one of the chains includes a change in polarity. A hybrid quadruplex is observed in ammonium acetate solutions, whereas in the presence of sodium or potassium, a parallel G-quadruplex structure is formed. In addition to the expected monomolecular quadruplexes, we observed the presence of dimeric G-quadruplex structures. We also applied the method to prepare G-quadruplexes containing a single 8-aminoguanine substitution and found that this single base stabilizes the G-quadruplex structure when located at an internal position.
Collapse
Affiliation(s)
- Rubén Ferreira
- Department of Chemical and Biomolecular Nanotechnology, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Networking Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) Jordi Girona 18-26, 08034 Barcelona (Spain) ; Department of Chemistry and Molecular Pharmacology, Institute for Research in Biomedicine (IRB Barcelona) Baldiri i Reixac 10, 08028 Barcelona (Spain)
| | - Margarita Alvira
- Department of Chemical and Biomolecular Nanotechnology, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Networking Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) Jordi Girona 18-26, 08034 Barcelona (Spain) ; Department of Chemistry and Molecular Pharmacology, Institute for Research in Biomedicine (IRB Barcelona) Baldiri i Reixac 10, 08028 Barcelona (Spain)
| | - Anna Aviñó
- Department of Chemical and Biomolecular Nanotechnology, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Networking Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) Jordi Girona 18-26, 08034 Barcelona (Spain) ; Department of Chemistry and Molecular Pharmacology, Institute for Research in Biomedicine (IRB Barcelona) Baldiri i Reixac 10, 08028 Barcelona (Spain)
| | - Irene Gómez-Pinto
- Departmento de Química Física Biológica, Instituto de Química Física 'Rocasolano' CSIC, Serrano 119, 28006 Madrid (Spain)
| | - Carlos González
- Departmento de Química Física Biológica, Instituto de Química Física 'Rocasolano' CSIC, Serrano 119, 28006 Madrid (Spain)
| | - Valérie Gabelica
- Department of Chemistry, University of Liège Allée de la Chimie Building B6c, 4000 Liège (Belgium)
| | - Ramon Eritja
- Department of Chemical and Biomolecular Nanotechnology, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Networking Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) Jordi Girona 18-26, 08034 Barcelona (Spain) ; Department of Chemistry and Molecular Pharmacology, Institute for Research in Biomedicine (IRB Barcelona) Baldiri i Reixac 10, 08028 Barcelona (Spain)
| |
Collapse
|
48
|
Clark GR, Pytel PD, Squire CJ. The high-resolution crystal structure of a parallel intermolecular DNA G-4 quadruplex/drug complex employing syn glycosyl linkages. Nucleic Acids Res 2012; 40:5731-8. [PMID: 22373921 PMCID: PMC3384316 DOI: 10.1093/nar/gks193] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We have determined the X-ray structure of the complex between the DNA quadruplex d(5′-GGGG-3′)4 and daunomycin, as a potential model for studying drug–telomere interactions. The structure was solved at 1.08 Å by direct methods in space group I4. The asymmetric unit comprises a linear arrangement of one d(GGGG) strand, four daunomycin molecules, a second d(GGGG) strand facing in the opposite direction to the first, and Na and Mg cations. The crystallographic 4-fold axis generates the biological unit, which is a 12-layered structure comprising two sets of four guanine layers, with four layers each of four daunomycins stacked between the 5′ faces of the two quadruplexes. The daunomycin layers fall into two groups which are novel in their mode of self assembly. The only contacts between daunomycin molecules within any one of these layers are van der Waals interactions, however there is substantial π–π stacking between successive daunomycin layers and also with adjacent guanine layers. The structure differs significantly from all other parallel d(TGGGGT)4 quadruplexes in that the 5′ guanine adopts the unusual syn glycosyl linkage, refuting the widespread belief that such conformations should all be anti. In contrast to the related d(TGGGGT)/daunomycin complex, there are no ligand–quadruplex groove insertion interactions.
Collapse
Affiliation(s)
- George R Clark
- Chemistry Department and School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland 1044, New Zealand.
| | | | | |
Collapse
|
49
|
Abstract
Metal ions stabilize quadruplex nucleic acids by coordinating the O6 guanine atoms from G-quartets. These quartets form the basic motif of quadruplex structures. This article systematically surveys the available crystallographic data on native quadruplexes, their ligand complexes and (in one instance) a protein complex. Three categories of quadruplex are examined, tetramolecular, bimolecular, and intramolecular: all are formed by telomeric nucleic acid sequences from human or ciliate organisms.
Collapse
Affiliation(s)
- Nancy H Campbell
- The School of Pharmacy, University of London, London, WC1N 1AX, UK
| | | |
Collapse
|
50
|
Do NQ, Lim KW, Teo MH, Heddi B, Phan AT. Stacking of G-quadruplexes: NMR structure of a G-rich oligonucleotide with potential anti-HIV and anticancer activity. Nucleic Acids Res 2011; 39:9448-57. [PMID: 21840903 PMCID: PMC3241632 DOI: 10.1093/nar/gkr539] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
G-rich oligonucleotides T30695 (or T30923), with the sequence of (GGGT)4, and T40214, with the sequence of (GGGC)4, have been reported to exhibit anti-HIV and anticancer activity. Here we report on the structure of a dimeric G-quadruplex adopted by a derivative of these sequences in K+ solution. It comprises two identical propeller-type parallel-stranded G-quadruplex subunits each containing three G-tetrad layers that are stacked via the 5′-5′ interface. We demonstrated control over the stacking of the two monomeric subunits by sequence modifications. Our analysis of possible structures at the stacking interface provides a general principle for stacking of G-quadruplexes, which could have implications for the assembly and recognition of higher-order G-quadruplex structures.
Collapse
Affiliation(s)
- Ngoc Quang Do
- School of Physical and Mathematical Sciences and School of Biological Sciences, Nanyang Technological University, Singapore
| | | | | | | | | |
Collapse
|