1
|
Hasan MK, Jeannine Brady L. Nucleic acid-binding KH domain proteins influence a spectrum of biological pathways including as part of membrane-localized complexes. J Struct Biol X 2024; 10:100106. [PMID: 39040530 PMCID: PMC11261784 DOI: 10.1016/j.yjsbx.2024.100106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/24/2024] Open
Abstract
K-Homology domain (KH domain) proteins bind single-stranded nucleic acids, influence protein-protein interactions of proteins that harbor them, and are found in all kingdoms of life. In concert with other functional protein domains KH domains contribute to a variety of critical biological activities, often within higher order machineries including membrane-localized protein complexes. Eukaryotic KH domain proteins are linked to developmental processes, morphogenesis, and growth regulation, and their aberrant expression is often associated with cancer. Prokaryotic KH domain proteins are involved in integral cellular activities including cell division and protein translocation. Eukaryotic and prokaryotic KH domains share structural features, but are differentiated based on their structural organizations. In this review, we explore the structure/function relationships of known examples of KH domain proteins, and highlight cases in which they function within or at membrane surfaces. We also summarize examples of KH domain proteins that influence bacterial virulence and pathogenesis. We conclude the article by discussing prospective research avenues that could be pursued to better investigate this largely understudied protein category.
Collapse
Affiliation(s)
- Md Kamrul Hasan
- Department of Oral Biology, University of Florida, Gainesville, FL 32610, USA
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - L. Jeannine Brady
- Department of Oral Biology, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
2
|
Senn KA, Hoskins AA. Mechanisms and regulation of spliceosome-mediated pre-mRNA splicing in Saccharomyces cerevisiae. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1866. [PMID: 38972853 DOI: 10.1002/wrna.1866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/19/2024] [Accepted: 05/28/2024] [Indexed: 07/09/2024]
Abstract
Pre-mRNA splicing, the removal of introns and ligation of flanking exons, is a crucial step in eukaryotic gene expression. The spliceosome, a macromolecular complex made up of five small nuclear RNAs (snRNAs) and dozens of proteins, assembles on introns via a complex pathway before catalyzing the two transesterification reactions necessary for splicing. All of these steps have the potential to be highly regulated to ensure correct mRNA isoform production for proper cellular function. While Saccharomyces cerevisiae (yeast) has a limited set of intron-containing genes, many of these genes are highly expressed, resulting in a large number of transcripts in a cell being spliced. As a result, splicing regulation is of critical importance for yeast. Just as in humans, yeast splicing can be influenced by protein components of the splicing machinery, structures and properties of the pre-mRNA itself, or by the action of trans-acting factors. It is likely that further analysis of the mechanisms and pathways of splicing regulation in yeast can reveal general principles applicable to other eukaryotes. This article is categorized under: RNA Processing > Splicing Mechanisms RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
- Katherine Anne Senn
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Aaron A Hoskins
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
3
|
Abrhámová K, Groušlová M, Valentová A, Hao X, Liu B, Převorovský M, Gahura O, Půta F, Sunnerhagen P, Folk P. Truncating the spliceosomal 'rope protein' Prp45 results in Htz1 dependent phenotypes. RNA Biol 2024; 21:1-17. [PMID: 38711165 PMCID: PMC11085953 DOI: 10.1080/15476286.2024.2348896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2024] [Indexed: 05/08/2024] Open
Abstract
Spliceosome assembly contributes an important but incompletely understood aspect of splicing regulation. Prp45 is a yeast splicing factor which runs as an extended fold through the spliceosome, and which may be important for bringing its components together. We performed a whole genome analysis of the genetic interaction network of the truncated allele of PRP45 (prp45(1-169)) using synthetic genetic array technology and found chromatin remodellers and modifiers as an enriched category. In agreement with related studies, H2A.Z-encoding HTZ1, and the components of SWR1, INO80, and SAGA complexes represented prominent interactors, with htz1 conferring the strongest growth defect. Because the truncation of Prp45 disproportionately affected low copy number transcripts of intron-containing genes, we prepared strains carrying intronless versions of SRB2, VPS75, or HRB1, the most affected cases with transcription-related function. Intron removal from SRB2, but not from the other genes, partly repaired some but not all the growth phenotypes identified in the genetic screen. The interaction of prp45(1-169) and htz1Δ was detectable even in cells with SRB2 intron deleted (srb2Δi). The less truncated variant, prp45(1-330), had a synthetic growth defect with htz1Δ at 16°C, which also persisted in the srb2Δi background. Moreover, htz1Δ enhanced prp45(1-330) dependent pre-mRNA hyper-accumulation of both high and low efficiency splicers, genes ECM33 and COF1, respectively. We conclude that while the expression defects of low expression intron-containing genes contribute to the genetic interactome of prp45(1-169), the genetic interactions between prp45 and htz1 alleles demonstrate the sensitivity of spliceosome assembly, delayed in prp45(1-169), to the chromatin environment.
Collapse
Affiliation(s)
- Kateřina Abrhámová
- Department of Cell Biology, Faculty of Science, Charles University, Praha, Czech Republic
| | - Martina Groušlová
- Department of Cell Biology, Faculty of Science, Charles University, Praha, Czech Republic
| | - Anna Valentová
- Department of Cell Biology, Faculty of Science, Charles University, Praha, Czech Republic
| | - Xinxin Hao
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Beidong Liu
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Martin Převorovský
- Department of Cell Biology, Faculty of Science, Charles University, Praha, Czech Republic
| | - Ondřej Gahura
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - František Půta
- Department of Cell Biology, Faculty of Science, Charles University, Praha, Czech Republic
| | - Per Sunnerhagen
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Petr Folk
- Department of Cell Biology, Faculty of Science, Charles University, Praha, Czech Republic
| |
Collapse
|
4
|
Abstract
A wide variety of factors are required for the conversion of pre-tRNA molecules into the mature tRNAs that function in translation. To identify factors influencing tRNA biogenesis, we previously performed a screen for strains carrying mutations that induce lethality when combined with a sup61-T47:2C allele, encoding a mutant form of [Formula: see text]. Analyzes of two complementation groups led to the identification of Tan1 as a protein involved in formation of the modified nucleoside N4-acetylcytidine (ac4C) in tRNA and Bud13 as a factor controlling the levels of ac4C by promoting TAN1 pre-mRNA splicing. Here, we describe the remaining complementation groups and show that they include strains with mutations in genes for known tRNA biogenesis factors that modify (DUS2, MOD5 and TRM1), transport (LOS1), or aminoacylate (SES1) [Formula: see text]. Other strains carried mutations in genes for factors involved in rRNA/mRNA synthesis (RPA49, RRN3 and MOT1) or magnesium uptake (ALR1). We show that mutations in not only DUS2, LOS1 and SES1 but also in RPA49, RRN3 and MOT1 cause a reduction in the levels of the altered [Formula: see text]. These results indicate that Rpa49, Rrn3 and Mot1 directly or indirectly influence [Formula: see text] biogenesis.
Collapse
Affiliation(s)
- Fu Xu
- a Department of Molecular Biology , Umeå University , Umeå , Sweden
| | - Yang Zhou
- a Department of Molecular Biology , Umeå University , Umeå , Sweden
| | - Anders S Byström
- a Department of Molecular Biology , Umeå University , Umeå , Sweden
| | | |
Collapse
|
5
|
Fernandez JP, Moreno-Mateos MA, Gohr A, Miao L, Chan SH, Irimia M, Giraldez AJ. RES complex is associated with intron definition and required for zebrafish early embryogenesis. PLoS Genet 2018; 14:e1007473. [PMID: 29969449 PMCID: PMC6047831 DOI: 10.1371/journal.pgen.1007473] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 07/16/2018] [Accepted: 06/06/2018] [Indexed: 12/16/2022] Open
Abstract
Pre-mRNA splicing is a critical step of gene expression in eukaryotes. Transcriptome-wide splicing patterns are complex and primarily regulated by a diverse set of recognition elements and associated RNA-binding proteins. The retention and splicing (RES) complex is formed by three different proteins (Bud13p, Pml1p and Snu17p) and is involved in splicing in yeast. However, the importance of the RES complex for vertebrate splicing, the intronic features associated with its activity, and its role in development are unknown. In this study, we have generated loss-of-function mutants for the three components of the RES complex in zebrafish and showed that they are required during early development. The mutants showed a marked neural phenotype with increased cell death in the brain and a decrease in differentiated neurons. Transcriptomic analysis of bud13, snip1 (pml1) and rbmx2 (snu17) mutants revealed a global defect in intron splicing, with strong mis-splicing of a subset of introns. We found these RES-dependent introns were short, rich in GC and flanked by GC depleted exons, all of which are features associated with intron definition. Using these features, we developed and validated a predictive model that classifies RES dependent introns. Altogether, our study uncovers the essential role of the RES complex during vertebrate development and provides new insights into its function during splicing.
Collapse
Affiliation(s)
- Juan Pablo Fernandez
- Department of Genetics, Yale University School of Medicine, New Haven, CT, United States of America
| | | | - Andre Gohr
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST); Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Liyun Miao
- Department of Genetics, Yale University School of Medicine, New Haven, CT, United States of America
| | - Shun Hang Chan
- Department of Genetics, Yale University School of Medicine, New Haven, CT, United States of America
| | - Manuel Irimia
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST); Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Antonio J. Giraldez
- Department of Genetics, Yale University School of Medicine, New Haven, CT, United States of America
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, United States of America
- Yale Cancer Center, Yale University School of Medicine, New Haven, CT, United States of America
| |
Collapse
|
6
|
Hálová M, Gahura O, Převorovský M, Cit Z, Novotný M, Valentová A, Abrhámová K, Půta F, Folk P. Nineteen complex-related factor Prp45 is required for the early stages of cotranscriptional spliceosome assembly. RNA (NEW YORK, N.Y.) 2017; 23:1512-1524. [PMID: 28701519 PMCID: PMC5602110 DOI: 10.1261/rna.061986.117] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 06/21/2017] [Indexed: 05/22/2023]
Abstract
Splicing in S. cerevisiae has been shown to proceed cotranscriptionally, but the nature of the coupling remains a subject of debate. Here, we examine the effect of nineteen complex-related splicing factor Prp45 (a homolog of SNW1/SKIP) on cotranscriptional splicing. RNA-sequencing and RT-qPCR showed elevated pre-mRNA levels but only limited reduction of spliced mRNAs in cells expressing C-terminally truncated Prp45, Prp45(1-169). Assays with a series of reporters containing the AMA1 intron with regulatable splicing confirmed decreased splicing efficiency and showed the leakage of unspliced RNAs in prp45(1-169) cells. We also measured pre-mRNA accumulation of the meiotic MER2 gene, which depends on the expression of Mer1 factor for splicing. prp45(1-169) cells accumulated approximately threefold higher levels of MER2 pre-mRNA than WT cells only when splicing was induced. To monitor cotranscriptional splicing, we determined the presence of early spliceosome assembly factors and snRNP complexes along the ECM33 and ACT1 genes. We found that prp45(1-169) hampered the cotranscriptional recruitment of U2 and, to a larger extent, U5 and NTC, while the U1 profile was unaffected. The recruitment of Prp45(1-169) was impaired similarly to U5 snRNP and NTC. Our results imply that Prp45 is required for timely formation of complex A, prior to stable physical association of U5/NTC with the emerging pre-mRNA substrate. We suggest that Prp45 facilitates conformational rearrangements and/or contacts that couple U1 snRNP-recognition to downstream assembly events.
Collapse
Affiliation(s)
- Martina Hálová
- Department of Cell Biology, Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Ondřej Gahura
- Department of Cell Biology, Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Martin Převorovský
- Department of Cell Biology, Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Zdeněk Cit
- Department of Cell Biology, Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Marian Novotný
- Department of Cell Biology, Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Anna Valentová
- Department of Cell Biology, Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Kateřina Abrhámová
- Department of Cell Biology, Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - František Půta
- Department of Cell Biology, Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Petr Folk
- Department of Cell Biology, Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| |
Collapse
|
7
|
Talwar T, Vidhyasagar V, Qing J, Guo M, Kariem A, Lu Y, Singh RS, Lukong KE, Wu Y. The DEAD-box protein DDX43 (HAGE) is a dual RNA-DNA helicase and has a K-homology domain required for full nucleic acid unwinding activity. J Biol Chem 2017; 292:10429-10443. [PMID: 28468824 DOI: 10.1074/jbc.m117.774950] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 04/25/2017] [Indexed: 11/06/2022] Open
Abstract
The K-homology (KH) domain is a nucleic acid-binding domain present in many proteins but has not been reported in helicases. DDX43, also known as HAGE (helicase antigen gene), is a member of the DEAD-box protein family. It contains a helicase core domain in its C terminus and a potential KH domain in its N terminus. DDX43 is highly expressed in many tumors and is, therefore, considered a potential target for immunotherapy. Despite its potential as a therapeutic target, little is known about its activities. Here, we purified recombinant DDX43 protein to near homogeneity and found that it exists as a monomer in solution. Biochemical assays demonstrated that it is an ATP-dependent RNA and DNA helicase. Although DDX43 was active on duplex RNA regardless of the orientation of the single-stranded RNA tail, it preferred a 5' to 3' polarity on RNA and a 3' to 5' direction on DNA. Truncation mutations and site-directed mutagenesis confirmed that the KH domain in DDX43 is responsible for nucleic acid binding. Compared with the activity of the full-length protein, the C-terminal helicase domain had no unwinding activity on RNA substrates and had significantly reduced unwinding activity on DNA. Moreover, the full-length DDX43 protein, with single amino acid change in the KH domain, had reduced unwinding and binding activates on RNA and DNA substrates. Our results demonstrate that DDX43 is a dual helicase and the KH domain is required for its full unwinding activity.
Collapse
Affiliation(s)
- Tanu Talwar
- From the Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | | | - Jennifer Qing
- From the Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Manhong Guo
- From the Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Ahmad Kariem
- From the Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Yi Lu
- From the Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Ravi Shankar Singh
- From the Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Kiven Erique Lukong
- From the Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Yuliang Wu
- From the Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| |
Collapse
|
8
|
Zhou Y, Johansson MJO. The pre-mRNA retention and splicing complex controls expression of the Mediator subunit Med20. RNA Biol 2017; 14:1411-1417. [PMID: 28277935 PMCID: PMC5711472 DOI: 10.1080/15476286.2017.1294310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
The heterotrimeric pre-mRNA retention and splicing (RES) complex, consisting of Bud13p, Snu17p and Pml1p, promotes splicing and nuclear retention of a subset of intron-containing pre-mRNAs. Yeast cells deleted for individual RES genes show growth defects that are exacerbated at elevated temperatures. Although the growth phenotypes correlate to the splicing defects in the individual mutants, the underlying mechanism is unknown. Here, we show that the temperature sensitive (Ts) growth phenotype of bud13Δ and snu17Δ cells is a consequence of inefficient splicing of MED20 pre-mRNA, which codes for a subunit of the Mediator complex; a co-regulator of RNA polymerase II transcription. The MED20 pre-mRNA splicing defect is less pronounced in pml1Δ cells, explaining why they grow better than the other 2 RES mutants at elevated temperatures. Inactivation of the cytoplasmic nonsense-mediated mRNA decay (NMD) pathway in the RES mutants leads to accumulation of MED20 pre-mRNA, indicating that inefficient nuclear retention contributes to the growth defect. Further, the Ts phenotype of bud13Δ and snu17Δ cells is partially suppressed by the inactivation of NMD, showing that the growth defects are augmented by the presence of a functional NMD pathway. Collectively, our results demonstrate an important role of the RES complex in maintaining the Med20p levels.
Collapse
Affiliation(s)
- Yang Zhou
- a Department of Molecular Biology , Umeå University , Umeå , Sweden
| | - Marcus J O Johansson
- a Department of Molecular Biology , Umeå University , Umeå , Sweden.,b BRF Krutet , Norra Majorsgatan, Umeå , Sweden.,c University of Tartu, Institute of Technology , Nooruse, Tartu , Estonia
| |
Collapse
|
9
|
Abstract
One of the great challenges to structural biologists lies in explaining the complexities of the spliceosome – a ribosome-sized molecular machine that is assembled in a step-wise manner and is responsible for pre-mRNA splicing. The spliceosome is both fascinating and difficult to work with, because of its dynamic nature. At each discrete step of splicing tens of proteins come and go orchestrating the functional transition through massive structural rearrangements. The retention and splicing complex (RES) is an important splicing factor interacting with pre-mRNA at the onset of the first transesterification reaction. RES is a specific splicing factor for a number of genes and is important for controlling pre-mRNA retention in the nucleus. RES is a 71 kDa heterotrimer composed of the 3 proteins Pml1p, Bud13p and Snu17p. We solved the 3-dimensional structure of the core of the RES complex as well as the 2 dimers, Snu17p-Bud13p and Snu17p-Pml1p. Further biophysical analysis revealed an astounding cooperativity that governs the assembly of this trimeric complex as well as its interaction with pre-mRNA. The more than 100-fold cooperativity originates from the progressive rigidification of Snu17p upon coupled binding-and-folding of protein regions, which are disordered in the unbound state. Our work highlights the role of cooperativity in the spliceosome and poses new questions about the structure and assembly of the spliceosome.
Collapse
Affiliation(s)
- Piotr Wysoczanski
- a Department for NMR-based Structural Biology ; Max Planck Institute for Biophysical Chemistry ; Am Fassberg 11, Göttingen , Germany
| | - Markus Zweckstetter
- a Department for NMR-based Structural Biology ; Max Planck Institute for Biophysical Chemistry ; Am Fassberg 11, Göttingen , Germany.,b German Center for Neurodegenerative Diseases (DZNE) ; Göttingen , Germany.,c Center for Nanoscale Microscopy and Molecular Physiology of the Brain; University Medical Center ; Göttingen , Germany
| |
Collapse
|
10
|
Wysoczański P, Schneider C, Xiang S, Munari F, Trowitzsch S, Wahl MC, Lührmann R, Becker S, Zweckstetter M. Cooperative structure of the heterotrimeric pre-mRNA retention and splicing complex. Nat Struct Mol Biol 2014; 21:911-8. [PMID: 25218446 DOI: 10.1038/nsmb.2889] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 08/15/2014] [Indexed: 02/08/2023]
Abstract
The precursor mRNA (pre-mRNA) retention and splicing (RES) complex is a spliceosomal complex that is present in yeast and humans and is important for RNA splicing and retention of unspliced pre-mRNA. Here, we present the solution NMR structure of the RES core complex from Saccharomyces cerevisiae. Complex formation leads to an intricate folding of three components-Snu17p, Bud13p and Pml1p-that stabilizes the RNA-recognition motif (RRM) fold of Snu17p and increases binding affinity in tertiary interactions between the components by more than 100-fold compared to that in binary interactions. RES interacts with pre-mRNA within the spliceosome, and through the assembly of the RES core complex RNA binding efficiency is increased. The three-dimensional structure of the RES core complex highlights the importance of cooperative folding and binding in the functional organization of the spliceosome.
Collapse
Affiliation(s)
- Piotr Wysoczański
- Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Cornelius Schneider
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - ShengQi Xiang
- Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Francesca Munari
- Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Simon Trowitzsch
- 1] Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany. [2]
| | - Markus C Wahl
- Laboratory of Structural Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Reinhard Lührmann
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Stefan Becker
- Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Markus Zweckstetter
- 1] Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany. [2] German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany. [3] Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center, Göttingen, Germany
| |
Collapse
|
11
|
Zhou Y, Chen C, Johansson MJO. The pre-mRNA retention and splicing complex controls tRNA maturation by promoting TAN1 expression. Nucleic Acids Res 2013; 41:5669-78. [PMID: 23605039 PMCID: PMC3675484 DOI: 10.1093/nar/gkt269] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The conserved pre-mRNA retention and splicing (RES) complex, which in yeast consists of Bud13p, Snu17p and Pml1p, is thought to promote nuclear retention of unspliced pre-mRNAs and enhance splicing of a subset of transcripts. Here, we find that the absence of Bud13p or Snu17p causes greatly reduced levels of the modified nucleoside N4-acetylcytidine (ac4C) in tRNA and that a lack of Pml1p reduces ac4C levels at elevated temperatures. The ac4C nucleoside is normally found at position 12 in the tRNA species specific for serine and leucine. We show that the tRNA modification defect in RES-deficient cells is attributable to inefficient splicing of TAN1 pre-mRNA and the effects of reduced Tan1p levels on formation of ac4C. Analyses of cis-acting elements in TAN1 pre-mRNA showed that the intron sequence between the 5′ splice site and branchpoint is necessary and sufficient to mediate RES dependency. We also show that in RES-deficient cells, the TAN1 pre-mRNA is targeted for degradation by the cytoplasmic nonsense-mediated mRNA decay pathway, indicating that poor nuclear retention may contribute to the tRNA modification defect. Our results demonstrate that TAN1 pre-mRNA processing has an unprecedented requirement for RES factors and that the complex controls the formation of ac4C in tRNA.
Collapse
Affiliation(s)
- Yang Zhou
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
| | | | | |
Collapse
|
12
|
Tuo S, Nakashima K, Pringle JR. Apparent defect in yeast bud-site selection due to a specific failure to splice the pre-mRNA of a regulator of cell-type-specific transcription. PLoS One 2012; 7:e47621. [PMID: 23118884 PMCID: PMC3485267 DOI: 10.1371/journal.pone.0047621] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2011] [Accepted: 09/19/2012] [Indexed: 11/22/2022] Open
Abstract
The yeast Saccharomyces cerevisiae normally selects bud sites (and hence axes of cell polarization) in one of two distinct patterns, the axial pattern of haploid cells and the bipolar pattern of diploid cells. Although many of the proteins involved in bud-site selection are known, it is likely that others remain to be identified. Confirming a previous report (Ni and Snyder, 2001, Mol. Biol. Cell 12, 2147-2170), we found that diploids homozygous for deletions of IST3/SNU17 or BUD13 do not show normal bipolar budding. However, these abnormalities do not reflect defects in the apparatus of bipolar budding. Instead, the absence of Ist3 or Bud13 results in a specific defect in the splicing of the MATa1 pre-mRNA, which encodes a repressor that normally blocks expression of haploid-specific genes in diploid cells. When Mata1 protein is lacking, Axl1, a haploid-specific protein critical for the choice between axial and bipolar budding, is expressed ectopically in diploid cells and disrupts bipolar budding. The involvement of Ist3 and Bud13 in pre-mRNA splicing is by now well known, but the degree of specificity shown here for MATa1 pre-mRNA, which has no obvious basis in the pre-mRNA structure, is rather surprising in view of current models for the functions of these proteins. Moreover, we found that deletion of PML1, whose product is thought to function together with Ist3 and Bud13 in a three-protein retention-and-splicing (RES) complex, had no detectable effect on the splicing in vivo of either MATa1 or four other pre-mRNAs.
Collapse
Affiliation(s)
| | | | - John R. Pringle
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| |
Collapse
|
13
|
Coltri PP, Oliveira CC. Cwc24p is a general Saccharomyces cerevisiae splicing factor required for the stable U2 snRNP binding to primary transcripts. PLoS One 2012; 7:e45678. [PMID: 23029180 PMCID: PMC3454408 DOI: 10.1371/journal.pone.0045678] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 08/23/2012] [Indexed: 12/31/2022] Open
Abstract
Splicing of primary transcripts is an essential process for the control of gene expression. Specific conserved sequences in premature transcripts are important to recruit the spliceosome machinery. The Saccharomyces cerevisiae catalytic spliceosome is composed of about 60 proteins and 5 snRNAs (U1, U2, U4/U6 and U5). Among these proteins, there are core components and regulatory factors, which might stabilize or facilitate splicing of specific substrates. Assembly of a catalytic complex depends on the dynamics of interactions between these proteins and RNAs. Cwc24p is an essential S. cerevisiae protein, originally identified as a component of the NTC complex, and later shown to affect splicing in vivo. In this work, we show that Cwc24p also affects splicing in vitro. We show that Cwc24p is important for the U2 snRNP binding to primary transcripts, co-migrates with spliceosomes, and that it interacts with Brr2p. Additionally, we show that Cwc24p is important for the stable binding of Prp19p to the spliceosome. We propose a model in which Cwc24p is required for stabilizing the U2 association with primary transcripts, and therefore, especially important for splicing of RNAs containing non-consensus branchpoint sequences.
Collapse
Affiliation(s)
- Patricia P. Coltri
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil
| | - Carla C. Oliveira
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil
- * E-mail:
| |
Collapse
|
14
|
Wang J, Xu M, Zhu K, Li L, Liu X. The N-terminus of FILIA forms an atypical KH domain with a unique extension involved in interaction with RNA. PLoS One 2012; 7:e30209. [PMID: 22276159 PMCID: PMC3261892 DOI: 10.1371/journal.pone.0030209] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 12/12/2011] [Indexed: 01/07/2023] Open
Abstract
FILIA is a member of the recently identified oocyte/embryo expressed gene family in eutherian mammals, which is characterized by containing an N-terminal atypical KH domain. Here we report the structure of the N-terminal fragment of FILIA (FILIA-N), which represents the first reported three-dimensional structure of a KH domain in the oocyte/embryo expressed gene family of proteins. The structure of FILIA-N revealed a unique N-terminal extension beyond the canonical KH region, which plays important roles in interaction with RNA. By co-incubation with the lysates of mice ovaries, FILIA and FILIA-N could sequester specific RNA components, supporting the critical roles of FILIA in regulation of RNA transcripts during mouse oogenesis and early embryogenesis.
Collapse
Affiliation(s)
- Juke Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Mengyuan Xu
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Kai Zhu
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Lei Li
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- * E-mail: (LL); (XL)
| | - Xinqi Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
- * E-mail: (LL); (XL)
| |
Collapse
|
15
|
Factors affecting splicing strength of yeast genes. Comp Funct Genomics 2011; 2011:212146. [PMID: 22162666 PMCID: PMC3226532 DOI: 10.1155/2011/212146] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Accepted: 09/06/2011] [Indexed: 01/30/2023] Open
Abstract
Accurate and efficient splicing is of crucial importance for highly-transcribed intron-containing genes (ICGs) in rapidly replicating unicellular eukaryotes such as the budding yeast Saccharomyces cerevisiae. We characterize the 5' and 3' splice sites (ss) by position weight matrix scores (PWMSs), which is the highest for the consensus sequence and the lowest for splice sites differing most from the consensus sequence and used PWMS as a proxy for splicing strength. HAC1, which is known to be spliced by a nonspliceosomal mechanism, has the most negative PWMS for both its 5' ss and 3' ss. Several genes under strong splicing regulation and requiring additional splicing factors for their splicing also have small or negative PWMS values. Splicing strength is higher for highly transcribed ICGs than for lowly transcribed ICGs and higher for transcripts that bind strongly to spliceosomes than those that bind weakly. The 3' splice site features a prominent poly-U tract before the 3'AG. Our results suggest the potential of using PWMS as a screening tool for ICGs that are either spliced by a nonspliceosome mechanism or under strong splicing regulation in yeast and other fungal species.
Collapse
|
16
|
Abstract
Genome-wide analyses of metazoan transcriptomes have revealed an unexpected level of mRNA diversity that is generated by alternative splicing. Recently, regulatory networks have been identified through which splicing promotes dynamic remodelling of the transcriptome to promote physiological changes, which involve robust and coordinated alternative splicing transitions. The regulation of splicing in yeast, worms, flies and vertebrates affects a variety of biological processes. The functional classes of genes that are regulated by alternative splicing include both those with widespread homeostatic activities and those with cell-type-specific functions. Alternative splicing can drive determinative physiological change or can have a permissive role by providing mRNA variability that is used by other regulatory mechanisms.
Collapse
|
17
|
Qiu ZR, Schwer B, Shuman S. Defining the Mer1 and Nam8 meiotic splicing regulons by cDNA rescue. RNA (NEW YORK, N.Y.) 2011; 17:1648-54. [PMID: 21788335 PMCID: PMC3162330 DOI: 10.1261/rna.2792011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Meiosis-specific pre-mRNA splicing in budding yeast embraces multiple pre-mRNA targets grouped into regulons defined by their genetic requirements for vegetatively optional splicing factors (e.g., splicing enhancer Mer1 and the U1 snRNP subunit Nam8) or snRNA modifications (trimethylguanosine caps). Here, we genetically demarcate a complete meiotic splicing regulon by the criterion of cDNA bypass of the requirement for the governing splicing regulators to execute sporulation. We thereby show that the Mer1 and Nam8 regulons embrace four essential pre-mRNAs: MER2, MER3, SPO22, and AMA1. Whereas Nam8 also regulates PCH2 splicing, PCH2 cDNA is not needed for sporulation by nam8Δ diploids. Our results show that there are no essential intron-containing RNAs missing from the known roster of Mer1 and Nam8 targets. Nam8 is composed of three RRM domains, flanked by N-terminal leader and C-terminal tail segments. We find that the RRM2 and RRM3 domains, and their putative RNA-binding sites, are essential for yeast sporulation, whereas the leader, tail, and RRM1 modules are not.
Collapse
Affiliation(s)
- Zhicheng R. Qiu
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10065, USA
| | - Beate Schwer
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York 10065, USA
| | - Stewart Shuman
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10065, USA
- Corresponding author.E-mail .
| |
Collapse
|
18
|
Qiu ZR, Shuman S, Schwer B. An essential role for trimethylguanosine RNA caps in Saccharomyces cerevisiae meiosis and their requirement for splicing of SAE3 and PCH2 meiotic pre-mRNAs. Nucleic Acids Res 2011; 39:5633-46. [PMID: 21398639 PMCID: PMC3141232 DOI: 10.1093/nar/gkr083] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Tgs1 is the enzyme that converts m7G RNA caps to the 2,2,7-trimethylguanosine (TMG) caps characteristic of spliceosomal snRNAs. Fungi grow vegetatively without TMG caps, thereby raising the question of what cellular transactions, if any, are TMG cap-dependent. Here, we report that Saccharomyces cerevisiae Tgs1 methyltransferase activity is essential for meiosis. tgs1Δ cells are specifically defective in splicing PCH2 and SAE3 meiotic pre-mRNAs. The TMG requirement for SAE3 splicing is alleviated by two intron mutations: a UAUUAAC to UACUAAC change that restores a consensus branchpoint and disruption of a stem–loop encompassing the branchpoint. The TMG requirement for PCH2 splicing is alleviated by a CACUAAC to UACUAAC change restoring a consensus branchpoint and by shortening the PCH2 5′ exon. Placing the SAE3 and PCH2 introns within a HIS3 reporter confers Tgs1-dependent histidine prototrophy, signifying that the respective introns are portable determinants of TMG-dependent gene expression. Analysis of in vitro splicing in extracts of TGS1 versus tgs1Δ cells showed that SAE3 intron removal was enfeebled without TMG caps, whereas splicing of ACT1 was unaffected. Our findings illuminate a new mode of tunable splicing, a reliance on TMG caps for an essential developmental RNA transaction, and three genetically distinct meiotic splicing regulons in budding yeast.
Collapse
Affiliation(s)
- Zhicheng R Qiu
- Molecular Biology Program, Sloan-Kettering Institute and Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065 USA
| | | | | |
Collapse
|
19
|
Qiu ZR, Schwer B, Shuman S. Determinants of Nam8-dependent splicing of meiotic pre-mRNAs. Nucleic Acids Res 2011; 39:3427-45. [PMID: 21208980 PMCID: PMC3082912 DOI: 10.1093/nar/gkq1328] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Nam8, a component of yeast U1 snRNP, is optional for mitotic growth but required during meiosis, because Nam8 collaborates with Mer1 to promote splicing of essential meiotic mRNAs AMA1, MER2 and MER3. Here, we identify SPO22 and PCH2 as novel targets of Nam8-dependent meiotic splicing. Whereas SPO22 splicing is co-dependent on Mer1, PCH2 is not. The SPO22 intron has a non-consensus 5′ splice site (5′SS) that dictates its Nam8/Mer1-dependence. SPO22 splicing relies on Mer1 recognition, via its KH domain, of an intronic enhancer 5′-AYACCCUY. Mutagenesis of KH and the enhancer highlights Arg214 and Gln243 and the CCC triplet as essential for Mer1 activity. The Nam8-dependent PCH2 pre-mRNA has a consensus 5′SS and lacks a Mer1 enhancer. For PCH2, a long 5′ exon and a non-consensus intron branchpoint dictate Nam8-dependence. Our results implicate Nam8 in two distinct meiotic splicing regulons. Nam8 is composed of three RRM domains, flanked by N-terminal leader and C-terminal tail segments. The leader, tail and RRM1 are dispensable for splicing meiotic targets and unnecessary for vegetative Nam8 function in multiple synthetic lethal genetic backgrounds. Nam8 activity is enfeebled by alanine mutations in the putative RNA binding sites of the RRM2 and RRM3 domains.
Collapse
Affiliation(s)
- Zhicheng R Qiu
- Sloan-Kettering Institute, Weill Cornell Medical College, New York, NY 10065, USA
| | | | | |
Collapse
|
20
|
Munding EM, Igel AH, Shiue L, Dorighi KM, Treviño LR, Ares M. Integration of a splicing regulatory network within the meiotic gene expression program of Saccharomyces cerevisiae. Genes Dev 2010; 24:2693-704. [PMID: 21123654 DOI: 10.1101/gad.1977410] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Splicing regulatory networks are essential components of eukaryotic gene expression programs, yet little is known about how they are integrated with transcriptional regulatory networks into coherent gene expression programs. Here we define the MER1 splicing regulatory network and examine its role in the gene expression program during meiosis in budding yeast. Mer1p splicing factor promotes splicing of just four pre-mRNAs. All four Mer1p-responsive genes also require Nam8p for splicing activation by Mer1p; however, other genes require Nam8p but not Mer1p, exposing an overlapping meiotic splicing network controlled by Nam8p. MER1 mRNA and three of the four Mer1p substrate pre-mRNAs are induced by the transcriptional regulator Ume6p. This unusual arrangement delays expression of Mer1p-responsive genes relative to other genes under Ume6p control. Products of Mer1p-responsive genes are required for initiating and completing recombination and for activation of Ndt80p, the activator of the transcriptional network required for subsequent steps in the program. Thus, the MER1 splicing regulatory network mediates the dependent relationship between the UME6 and NDT80 transcriptional regulatory networks in the meiotic gene expression program. This study reveals how splicing regulatory networks can be interlaced with transcriptional regulatory networks in eukaryotic gene expression programs.
Collapse
Affiliation(s)
- Elizabeth M Munding
- Center for Molecular Biology of RNA, Department of Molecular, Cell, and Developmental Biology, University of California at Santa Cruz, 95064, USA
| | | | | | | | | | | |
Collapse
|
21
|
|
22
|
Meyer M, Vilardell J. The quest for a message: budding yeast, a model organism to study the control of pre-mRNA splicing. BRIEFINGS IN FUNCTIONAL GENOMICS AND PROTEOMICS 2009; 8:60-7. [PMID: 19279072 DOI: 10.1093/bfgp/elp002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Removal of introns during pre-mRNA splicing is a critical process in gene expression, and understanding its control at both single-gene and genomic levels is one of the great challenges in Biology. Splicing takes place in a dynamic, large ribonucleoprotein complex known as the spliceosome. Combining Genetics and Biochemistry, Saccharomyces cerevisiae provides insights into its mechanisms, including its regulation by RNA-protein interactions. Recent genome-wide analyses indicate that regulated splicing is broad and biologically relevant even in organisms with a relatively simple intronic structure, such as yeast. Furthermore, the possibility of coordination in splicing regulation at genomic level is becoming clear in this model organism. This should provide a valuable system to approach the complex problem of the role of regulated splicing in genomic expression.
Collapse
Affiliation(s)
- Markus Meyer
- Gene Regulation Program, Centre de Regulació Genòmica, Dr Aiguader 88, Barcelona, Spain
| | | |
Collapse
|
23
|
Brooks MA, Dziembowski A, Quevillon-Cheruel S, Henriot V, Faux C, van Tilbeurgh H, Séraphin B. Structure of the yeast Pml1 splicing factor and its integration into the RES complex. Nucleic Acids Res 2008; 37:129-43. [PMID: 19033360 PMCID: PMC2615620 DOI: 10.1093/nar/gkn894] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The RES complex was previously identified in yeast as a splicing factor affecting nuclear pre-mRNA retention. This complex was shown to contain three subunits, namely Snu17, Bud13 and Pml1, but its mode of action remains ill-defined. To obtain insights into its function, we have performed a structural investigation of this factor. Production of a short N-terminal truncation of residues that are apparently disordered allowed us to determine the X-ray crystallographic structure of Pml1. This demonstrated that it consists mainly of a FHA domain, a fold which has been shown to mediate interactions with phosphothreonine-containing peptides. Using a new sensitive assay based on alternative splice-site choice, we show, however, that mutation of the putative phosphothreonine-binding pocket of Pml1 does not affect pre-mRNA splicing. We have also investigated how Pml1 integrates into the RES complex. Production of recombinant complexes, combined with serial truncation and mutagenesis of their subunits, indicated that Pml1 binds to Snu17, which itself contacts Bud13. This analysis allowed us to demarcate the binding sites involved in the formation of this assembly. We propose a model of the organization of the RES complex based on these results, and discuss the functional consequences of this architecture.
Collapse
Affiliation(s)
- Mark A. Brooks
- IBBMC-CNRS UMR8619, IFR 115, Bât. 430, Université Paris-Sud, 91405 Orsay, Equipe Labelisée La Ligue, CGM, CNRS UPR2167, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, Univ Paris-Sud, Orsay, F-91405 and Université Pierre et Marie Curie- Paris 6, Paris, F-75005, France
| | - Andrzej Dziembowski
- IBBMC-CNRS UMR8619, IFR 115, Bât. 430, Université Paris-Sud, 91405 Orsay, Equipe Labelisée La Ligue, CGM, CNRS UPR2167, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, Univ Paris-Sud, Orsay, F-91405 and Université Pierre et Marie Curie- Paris 6, Paris, F-75005, France
| | - Sophie Quevillon-Cheruel
- IBBMC-CNRS UMR8619, IFR 115, Bât. 430, Université Paris-Sud, 91405 Orsay, Equipe Labelisée La Ligue, CGM, CNRS UPR2167, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, Univ Paris-Sud, Orsay, F-91405 and Université Pierre et Marie Curie- Paris 6, Paris, F-75005, France
| | - Véronique Henriot
- IBBMC-CNRS UMR8619, IFR 115, Bât. 430, Université Paris-Sud, 91405 Orsay, Equipe Labelisée La Ligue, CGM, CNRS UPR2167, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, Univ Paris-Sud, Orsay, F-91405 and Université Pierre et Marie Curie- Paris 6, Paris, F-75005, France
| | - Céline Faux
- IBBMC-CNRS UMR8619, IFR 115, Bât. 430, Université Paris-Sud, 91405 Orsay, Equipe Labelisée La Ligue, CGM, CNRS UPR2167, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, Univ Paris-Sud, Orsay, F-91405 and Université Pierre et Marie Curie- Paris 6, Paris, F-75005, France
| | - Herman van Tilbeurgh
- IBBMC-CNRS UMR8619, IFR 115, Bât. 430, Université Paris-Sud, 91405 Orsay, Equipe Labelisée La Ligue, CGM, CNRS UPR2167, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, Univ Paris-Sud, Orsay, F-91405 and Université Pierre et Marie Curie- Paris 6, Paris, F-75005, France
| | - Bertrand Séraphin
- IBBMC-CNRS UMR8619, IFR 115, Bât. 430, Université Paris-Sud, 91405 Orsay, Equipe Labelisée La Ligue, CGM, CNRS UPR2167, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, Univ Paris-Sud, Orsay, F-91405 and Université Pierre et Marie Curie- Paris 6, Paris, F-75005, France
- *To whom correspondence should be addressed. Tel: + 33 1 69 82 38 84; Fax: + 33 1 69 82 38 77;
| |
Collapse
|
24
|
Hausmann S, Zheng S, Costanzo M, Brost RL, Garcin D, Boone C, Shuman S, Schwer B. Genetic and biochemical analysis of yeast and human cap trimethylguanosine synthase: functional overlap of 2,2,7-trimethylguanosine caps, small nuclear ribonucleoprotein components, pre-mRNA splicing factors, and RNA decay pathways. J Biol Chem 2008; 283:31706-18. [PMID: 18775984 PMCID: PMC2581544 DOI: 10.1074/jbc.m806127200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Revised: 09/04/2008] [Indexed: 12/26/2022] Open
Abstract
Trimethylguanosine synthase (Tgs1) is the enzyme that converts standard m(7)G caps to the 2,2,7-trimethylguanosine (TMG) caps characteristic of spliceosomal small nuclear RNAs. Fungi and mammalian somatic cells are able to grow in the absence of Tgs1 and TMG caps, suggesting that an essential function of the TMG cap might be obscured by functional redundancy. A systematic screen in budding yeast identified nonessential genes that, when deleted, caused synthetic growth defects with tgs1Delta. The Tgs1 interaction network embraced proteins implicated in small nuclear ribonucleoprotein function and spliceosome assembly, including Mud2, Nam8, Brr1, Lea1, Ist3, Isy1, Cwc21, and Bud13. Complementation of the synthetic lethality of mud2Delta tgs1Delta and nam8Delta tgs1Delta strains by wild-type TGS1, but not by catalytically defective mutants, indicated that the TMG cap is essential for mitotic growth when redundant splicing factors are missing. Our genetic analysis also highlighted synthetic interactions of Tgs1 with proteins implicated in RNA end processing and decay (Pat1, Lsm1, and Trf4) and regulation of polymerase II transcription (Rpn4, Spt3, Srb2, Soh1, Swr1, and Htz1). We find that the C-terminal domain of human Tgs1 can function in lieu of the yeast protein in vivo. We present a biochemical characterization of the human Tgs1 guanine-N2 methyltransferase reaction and identify individual amino acids required for methyltransferase activity in vitro and in vivo.
Collapse
Affiliation(s)
- Stéphane Hausmann
- Department of Microbiology and Molecular Medicine, University of Geneva, CH1211 Geneva, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Trowitzsch S, Weber G, Lührmann R, Wahl MC. Crystal structure of the Pml1p subunit of the yeast precursor mRNA retention and splicing complex. J Mol Biol 2008; 385:531-41. [PMID: 19010333 DOI: 10.1016/j.jmb.2008.10.087] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Accepted: 10/21/2008] [Indexed: 10/21/2022]
Abstract
The precursor mRNA retention and splicing (RES) complex mediates nuclear retention and enhances splicing of precursor mRNAs. The RES complex from yeast comprises three proteins, Snu17p, Bud13p and Pml1p. Snu17p acts as a central platform that concomitantly binds the Bud13p and Pml1p subunits via short peptide epitopes. As a step to decipher the molecular architecture of the RES complex, we have determined crystal structures of full-length Pml1p and N-terminally truncated Pml1p. The first 50 residues of full-length Pml1p, encompassing the Snu17p-binding region, are disordered, showing that Pml1p binds to Snu17p via an intrinsically unstructured region. The remainder of Pml1p folds as a forkhead-associated (FHA) domain, which is expanded by a number of noncanonical elements compared with known FHA domains from other proteins. An atypical N-terminal appendix runs across one beta-sheet and thereby stabilizes the domain as shown by deletion experiments. FHA domains are thought to constitute phosphopeptide-binding elements. Consistently, a sulfate ion was found at the putative phosphopeptide-binding loops of full-length Pml1p. The N-terminally truncated version of the protein lacked a similar phosphopeptide mimic but retained an almost identical structure. A long loop neighboring the putative phosphopeptide-binding site was disordered in both structures. Comparison with other FHA domain proteins suggests that this loop adopts a defined conformation upon ligand binding and thereby confers ligand specificity. Our results show that in the RES complex, an FHA domain of Pml1p is flexibly tethered via an unstructured N-terminal region to Snu17p.
Collapse
Affiliation(s)
- Simon Trowitzsch
- Zelluläre Biochemie, Max-Planck-Institut für Biophysikalische Chemie, Am Fassberg 11, D-37077 Göttingen, Germany
| | | | | | | |
Collapse
|
26
|
Trowitzsch S, Weber G, Lührmann R, Wahl MC. An unusual RNA recognition motif acts as a scaffold for multiple proteins in the pre-mRNA retention and splicing complex. J Biol Chem 2008; 283:32317-27. [PMID: 18809678 DOI: 10.1074/jbc.m804977200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The yeast pre-mRNA retention and splicing complex counteracts the escape of unspliced pre-mRNAs from the nucleus and activates splicing of a subset of Mer1p-dependent genes. A homologous complex is present in activated human spliceosomes. In many components of the spliceosome, RNA recognition motifs (RRMs) serve as versatile protein-RNA or protein-protein interaction platforms. Here, we show that in the retention and splicing complex, an atypical RRM of the Snu17p (small nuclear ribonucleoprotein-associated protein 17) subunit acts as a scaffold that organizes the other two constituents, Bud13p (bud site selection 13) and Pml1p (pre-mRNA leakage 1). GST pull-down experiments and size exclusion chromatography revealed that Snu17p constitutes the central platform of the complex, whereas Bud13p and Pml1p do not interact with each other. Fluorimetric structure probing showed the entire Bud13p and the N-terminal third of Pml1p to be natively disordered in isolation. Mutational analysis and tryptophan fluorescence confirmed that a conserved tryptophan-containing motif in the C terminus of Bud13p binds to the core RRM of Snu17p, whereas a different interaction surface encompassing a C-terminal extension of the Snu17p RRM is required to bind an N-terminal peptide of Pml1p. Isothermal titration calorimetry revealed 1:1 interaction stoichiometries, large negative binding entropies, and dissociation constants in the low nanomolar and micromolar ranges for the Snu17p-Bud13p and the Snu17p-Pml1p interactions, respectively. Our results demonstrate that the noncanonical Snu17p RRM concomitantly binds multiple ligand proteins via short, intrinsically unstructured peptide epitopes and thereby acts as a platform that displays functional modules of the ligands, such as a forkhead-associated domain of Pml1p and a conserved polylysine motif of Bud13p.
Collapse
Affiliation(s)
- Simon Trowitzsch
- Zelluläre Biochemie, Max-Planck-Institut für Biophysikalische Chemie, Am Fassberg 11, D-37077 Göttingen, Germany
| | | | | | | |
Collapse
|
27
|
Abstract
The hnRNP K homology (KH) domain was first identified in the protein human heterogeneous nuclear ribonucleoprotein K (hnRNP K) 14 years ago. Since then, KH domains have been identified as nucleic acid recognition motifs in proteins that perform a wide range of cellular functions. KH domains bind RNA or ssDNA, and are found in proteins associated with transcriptional and translational regulation, along with other cellular processes. Several diseases, e.g. fragile X mental retardation syndrome and paraneoplastic disease, are associated with the loss of function of a particular KH domain. Here we discuss the progress made towards understanding both general and specific features of the molecular recognition of nucleic acids by KH domains. The typical binding surface of KH domains is a cleft that is versatile but that can typically accommodate only four unpaired bases. Van der Waals forces and hydrophobic interactions and, to a lesser extent, electrostatic interactions, contribute to the nucleic acid binding affinity. 'Augmented' KH domains or multiple copies of KH domains within a protein are two strategies that are used to achieve greater affinity and specificity of nucleic acid binding. Isolated KH domains have been seen to crystallize as monomers, dimers and tetramers, but no published data support the formation of noncovalent higher-order oligomers by KH domains in solution. Much attention has been given in the literature to a conserved hydrophobic residue (typically Ile or Leu) that is present in most KH domains. The interest derives from the observation that an individual with this Ile mutated to Asn, in the KH2 domain of fragile X mental retardation protein, exhibits a particularly severe form of the syndrome. The structural effects of this mutation in the fragile X mental retardation protein KH2 domain have recently been reported. We discuss the use of analogous point mutations at this position in other KH domains to dissect both structure and function.
Collapse
Affiliation(s)
- Roberto Valverde
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06520, USA
| | | | | |
Collapse
|
28
|
Wang Q, Zhang L, Lynn B, Rymond BC. A BBP-Mud2p heterodimer mediates branchpoint recognition and influences splicing substrate abundance in budding yeast. Nucleic Acids Res 2008; 36:2787-98. [PMID: 18375978 PMCID: PMC2377449 DOI: 10.1093/nar/gkn144] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The 3′ end of mammalian introns is marked by the branchpoint binding protein, SF1, and the U2AF65-U2AF35 heterodimer bound at an adjacent sequence. Baker's yeast has equivalent proteins, branchpoint binding protein (BBP) (SF1) and Mud2p (U2AF65), but lacks an obvious U2AF35 homolog, leaving open the question of whether another protein substitutes during spliceosome assembly. Gel filtration, affinity selection and mass spectrometry were used to show that rather than a U2AF65/U2AF35-like heterodimer, Mud2p forms a complex with BBP without a third (U2AF35-like) factor. Using mutants of MUD2 and BBP, we show that the BBP–Mud2p complex bridges partner-specific Prp39p, Mer1p, Clf1p and Smy2p two-hybrid interactions. In addition to inhibiting Mud2p association, the bbpΔ56 mutation impairs splicing, enhances pre-mRNA release from the nucleus, and similar to a mud2::KAN knockout, suppresses a lethal sub2::KAN mutation. Unexpectedly, rather than exacerbating bbpΔ56, the mud2::KAN mutation partially suppresses a pre-mRNA accumulation defect observed with bbpΔ56. We propose that a BBP–Mud2p heterodimer binds as a unit to the branchpoint in vivo and serves as a target for the Sub2p-DExD/H-box ATPase and for other splicing factors during spliceosome assembly. In addition, our results suggest the possibility that the Mud2p may enhance the turnover of pre-mRNA with impaired BBP-branchpoint association.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Biology and Department of Chemistry, University of Kentucky, Lexington, KY 40506-0225, USA
| | | | | | | |
Collapse
|
29
|
Abstract
Alternative or regulated splicing can be applied to genes that are transcribed but whose products may be deleterious or unnecessary to the cell. In the yeast Saccharomyces cerevisiae, positive splicing regulation occurs during meiosis in which diploid cells divide to form haploid gametes. The Mer1 protein recruits the U1 snRNP to specific pre-mRNAs, permitting spliceosomal assembly and splicing. The mature transcripts are required for meiotic progression and, subsequently, sporulation. We have identified a novel allele (snu56-2) of the essential U1 snRNP protein Snu56p that exhibits a sporulation defect. Using a CUP1 reporter assay and reverse transcriptase PCR, we demonstrate that this allele specifically impairs Mer1p-activated splicing. This is not a reflection of a generally deficient spliceosome, as these cells splice vegetative transcripts efficiently. Furthermore, Snu56p depletion in vivo does not significantly impact mitotic splicing. Thus, its splicing function appears to be limited to Mer1p-activated meiosis-specific splicing. Two-hybrid studies indicate that Snu56p interacts with the other two U1 snRNP factors (Mer1p and Nam8p) required for this process. Interestingly, these two proteins do not interact, suggesting that Snu56p links pre-mRNA-bound Mer1p to Nam8p in the U1 snRNP. This work demonstrates that the Snu56 protein is required for splicing only during meiosis.
Collapse
|
30
|
Bouvrette DJ, Price SJ, Bryda EC. K homology domains of the mouse polycystic kidney disease-related protein, Bicaudal-C (Bicc1), mediate RNA binding in vitro. Nephron Clin Pract 2008; 108:e27-34. [PMID: 18182784 DOI: 10.1159/000112913] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Accepted: 10/08/2007] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS The mouse Bicc1(mBicc1) gene is the orthologue of the DrosophilaBicaudal-C(Bic-C) gene. While the role of Bicc1 in the mouse is unknown, mutations in the mouse Bicc1 gene are associated with polycystic kidney disease (PKD). The mBicc1 protein contains three K homology (KH) domains. Evidence from other KH domain-containing proteins as well as studies involving both Drosophila and Xenopus Bic-C, suggest that this motif is important in interactions with RNA. METHODS RNA-binding assays were used to test whether mouse Bicc1 binds homoribopolymers in vitro. A series of constructs coding for different regions of the mBicc1 protein were used to determine which regions of the mBicc1 protein were important for in vitro RNA binding. RESULTS Mouse Bicc1 binds homoribopolymers in vitro and the third KH domain is necessary and sufficient for in vitro RNA binding. The mutation responsible for PKD in the jcpk mouse model results in a protein that is incapable of binding RNA in vitro. CONCLUSIONS This study demonstrates that mouse Bicc1, a protein associated with PKD, has the ability to bind RNA in vitro. Disruption of this binding capability may be responsible for cyst formation in animals carrying mutations in the mBicc1 gene.
Collapse
Affiliation(s)
- Denise J Bouvrette
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Mo., USA
| | | | | |
Collapse
|
31
|
Keeney S. Spo11 and the Formation of DNA Double-Strand Breaks in Meiosis. GENOME DYNAMICS AND STABILITY 2008; 2:81-123. [PMID: 21927624 PMCID: PMC3172816 DOI: 10.1007/7050_2007_026] [Citation(s) in RCA: 237] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Meiotic recombination is carried out through a specialized pathway for the formation and repair of DNA double-strand breaks made by the Spo11 protein, a relative of archaeal topoisomerase VI. This review summarizes recent studies that provide insight to the mechanism of DNA cleavage by Spo11, functional interactions of Spo11 with other proteins required for break formation, mechanisms that control the timing of recombination initiation, and evolutionary conservation and divergence of these processes.
Collapse
Affiliation(s)
- Scott Keeney
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Ave., New York, NY 10021 USA,
| |
Collapse
|
32
|
Schmidlin T, Kaeberlein M, Kudlow BA, MacKay V, Lockshon D, Kennedy BK. Single-gene deletions that restore mating competence to diploid yeast. FEMS Yeast Res 2007; 8:276-86. [PMID: 17995956 DOI: 10.1111/j.1567-1364.2007.00322.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Using the Saccharomyces cerevisiae MATa/MATalpha ORF deletion collection, homozygous deletion strains were identified that undergo mating with MATa or MATalpha haploids. Seven homozygous deletions were identified that confer enhanced mating. Three of these, lacking CTF8, CTF18, and DCC1, mate at a low frequency with either MATa or MATalpha haploids. The products of these genes form a complex involved in sister chromatid cohesion. Each of these strains also exhibits increased chromosome loss rates, and mating likely occurs due to loss of one copy of chromosome III, which bears the MAT locus. Three other homozygous diploid deletion strains, ylr193cDelta/ylr193cDelta, yor305wDelta/yor305wDelta, and ypr170cDelta/ypr170cDelta, mate at very low frequencies with haploids of either or both mating types. However, an ist3Delta/ist3Delta strain mates only with MATa haploids. It is shown that IST3, previously linked to splicing, is required for efficient processing of the MATa1 message, particularly the first intron. As a result, the ist3Delta/ist3Delta strain expresses unbalanced ratios of Matalpha to Mata proteins and therefore mates with MATa haploids. Accordingly, mating in this diploid can be repressed by introduction of a MATa1 cDNA. In summary, this study underscores and elaborates upon predicted pathways by which mutations restore mating function to yeast diploids and identifies new mutants warranting further study.
Collapse
Affiliation(s)
- Tom Schmidlin
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | |
Collapse
|
33
|
Knorr C, Beuermann C, Beck J, Brenig B. Characterization of the porcine multicopy ribosomal protein SA/37-kDa laminin receptor gene family. Gene 2007; 395:135-43. [PMID: 17434268 DOI: 10.1016/j.gene.2007.02.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2006] [Revised: 02/09/2007] [Accepted: 02/19/2007] [Indexed: 11/16/2022]
Abstract
Prions represent a new class of infectious agents. The pathogenic prion protein (PrPSc) is known as the trigger of bovine transmissible spongiform encephalopathy (TSE). By contrast, an oral transmission of PrPSc and an ensuing infection seems to be blocked in non-ruminants such as pigs. Several investigations postulate that the ribosomal protein SA (RPSA) previously named 37-kDa laminin receptor precursor (LRP)/67-kDa laminin receptor (LR) is the candidate for binding and internalization of externally added cellular prion protein in the gut. We isolated a porcine ribosomal protein SA cDNA that consists of 1064 bp with an open reading frame of 885 bp encoding a 295 aa protein. The alignment of vertebrate ribosomal protein SA sequences displayed interspecies differences between cattle and pigs at positions 241 and 272 in the putative indirect PrP interaction site (aa 180-285) on RPSA. A PAC library screen revealed the existence of two processed ribosomal protein SA pseudogenes (RPSAP1 and RPSAP3) and of one non-processed pseudogene (RPSAP2). The pseudogenes have been assigned to SSC6 and SSC1 by hybrid panel analyses and FISH. Compared with the porcine cDNA 3, 7, and 13 insdels, 36, 25, and 57 single nucleotide exchanges and 6, 10, and 8 premature stop codons have been deciphered for RPSAP1, RPSAP2, and RPSAP3. In the 5', 3', and intron like regions, 2 (RPSAP1), 10 (RPSAP2), and 4 (RPSAP3) repeats have been detected. Basically, the repeats belong to one of the class/family LINE/L1, SINE/tRNA-Glu and DNA/MER1_type. We conclude that the pig genome contains multiple copies of the RPSA sequence probably as a consequence to maintain the multifunctionality of the mature protein.
Collapse
Affiliation(s)
- Christoph Knorr
- Institute of Veterinary Medicine, Georg-August-University of Goettingen, Goettingen, Germany
| | | | | | | |
Collapse
|
34
|
Scherrer FW, Spingola M. A subset of Mer1p-dependent introns requires Bud13p for splicing activation and nuclear retention. RNA (NEW YORK, N.Y.) 2006; 12:1361-72. [PMID: 16738408 PMCID: PMC1484446 DOI: 10.1261/rna.2276806] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
In the yeast Saccharomyces cerevisiae, Mer1p is expressed only during meiosis, and its expression is linked to the splicing of at least three mRNAs: MER2, MER3, and AMA1. Previous evidence suggests that Mer1p activates splicing by directly recruiting snRNPs or stabilizing intermediate splicing complexes formed on pre-mRNA that contains an intronic Mer1p enhancer element. However, some splicing factors, especially accessory/non-snRNP factors, have critical roles in retaining unspliced pre-mRNAs in the nucleus. We tested if Mer1p may indirectly regulate splicing by preventing the export of pre-mRNAs to the cytoplasm and also demonstrated that a second subunit of the Retention and Splicing (RES) complex, Bud13p, has transcript-specific effects on Mer1p-activated splicing. The results indicated that Mer1p can retain unspliced pre-mRNA in the nucleus; however, nuclear retention could not be uncoupled from splicing activation. In the absence of Mer1p, the AMA1 pre-mRNA is exported to the cytoplasm, translated, but not subjected to nonsense-mediated decay (NMD) despite a premature stop codon in the intron. These data imply that Mer1p can retain pre-mRNAs in the nucleus only by facilitating their interaction with the spliceosome and that two subunits of the RES complex modulate Mer1p function on two of the three Mer1p-dependent introns. The results also support models for cytoplasmic degradation of unspliced pre-mRNAs that fail to assemble into spliceosomes in yeast.
Collapse
|
35
|
Wang Q, He J, Lynn B, Rymond BC. Interactions of the yeast SF3b splicing factor. Mol Cell Biol 2005; 25:10745-54. [PMID: 16314500 PMCID: PMC1316957 DOI: 10.1128/mcb.25.24.10745-10754.2005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2005] [Revised: 07/12/2005] [Accepted: 09/21/2005] [Indexed: 11/20/2022] Open
Abstract
The U2 snRNP promotes prespliceosome assembly through interactions that minimally involve the branchpoint binding protein, Mud2p, and the pre-mRNA. We previously showed that seven proteins copurify with the yeast (Saccharomyces cerevisiae) SF3b U2 subcomplex that associates with the pre-mRNA branchpoint region: Rse1p, Hsh155p, Hsh49p, Cus1p, and Rds3p and unidentified subunits p10 and p17. Here proteomic and genetic studies identify Rcp10p as p10 and show that it contributes to SF3b stability and is necessary for normal cellular Cus1p accumulation and for U2 snRNP recruitment in splicing. Remarkably, only the final 53 amino acids of Rcp10p are essential. p17 is shown to be composed of two accessory splicing factors, Bud31p and Ist3p, the latter of which independently associates with the RES complex implicated in the nuclear pre-mRNA retention. A directed two-hybrid screen reveals a network of prospective interactions that includes previously unreported intra-SF3b contacts and SF3b interactions with the RES subunit Bud13p, the Prp5p DExD/H-box protein, Mud2p, and the late-acting nineteen complex. These data establish the concordance of yeast and mammalian SF3b complexes, implicate accessory splicing factors in U2 snRNP function, and support SF3b contribution from early pre-mRNP recognition to late steps in splicing.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Biology, University of Kentucky, Lexington, 40506, USA
| | | | | | | |
Collapse
|
36
|
Averbeck N, Sunder S, Sample N, Wise JA, Leatherwood J. Negative control contributes to an extensive program of meiotic splicing in fission yeast. Mol Cell 2005; 18:491-8. [PMID: 15893732 DOI: 10.1016/j.molcel.2005.04.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2004] [Revised: 12/14/2004] [Accepted: 04/15/2005] [Indexed: 01/23/2023]
Abstract
Despite a high frequency of introns in the fission yeast Schizosaccharomyces pombe, regulated splicing is virtually unknown. We present evidence that splicing constitutes a major mechanism for controlling gene expression during meiosis, as 12 of 96 transcripts tested, which encode known components as well as previously uncharacterized ORFs, retain introns until specific times during differentiation. The meiotically spliced pre-mRNAs include two cyclins, rem1 (discovered by Ayte and Nurse) and crs1. Consistent with the use of regulated splicing to block protein production, expression of crs1 in vegetative cells is toxic. Analyses of gene chimeras indicate that splicing is prevented in mitotically growing cells via inhibition, in contrast to the positive control of meiotic splicing in budding yeast. Most strikingly, splicing of crs1 and rem1 is regulated by sequences located outside the coding regions, far from the target introns, a phenomenon previously observed only in metazoans.
Collapse
Affiliation(s)
- Nicole Averbeck
- Department of Molecular Genetics and Microbiology, School of Medicine, State University of New York at Stony Brook, Stony Brook, New York 11794, USA
| | | | | | | | | |
Collapse
|