1
|
Nguyen MC, Rostamian H, Raman A, Wei P, Becht DC, Erbse AH, Klein BJ, Gilbert TM, Zhang G, Blanco MA, Strahl BD, Taverna SD, Kutateladze TG. Molecular insight into interactions between the Taf14, Yng1 and Sas3 subunits of the NuA3 complex. Nat Commun 2024; 15:5335. [PMID: 38914563 PMCID: PMC11196586 DOI: 10.1038/s41467-024-49730-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 06/17/2024] [Indexed: 06/26/2024] Open
Abstract
The NuA3 complex is a major regulator of gene transcription and the cell cycle in yeast. Five core subunits are required for complex assembly and function, but it remains unclear how these subunits interact to form the complex. Here, we report that the Taf14 subunit of the NuA3 complex binds to two other subunits of the complex, Yng1 and Sas3, and describe the molecular mechanism by which the extra-terminal domain of Taf14 recognizes the conserved motif present in Yng1 and Sas3. Structural, biochemical, and mutational analyses show that two motifs are sandwiched between the two extra-terminal domains of Taf14. The head-to-toe dimeric complex enhances the DNA binding activity of Taf14, and the formation of the hetero-dimer involving the motifs of Yng1 and Sas3 is driven by sequence complementarity. In vivo assays in yeast demonstrate that the interactions of Taf14 with both Sas3 and Yng1 are required for proper function of the NuA3 complex in gene transcription and DNA repair. Our findings suggest a potential basis for the assembly of three core subunits of the NuA3 complex, Taf14, Yng1 and Sas3.
Collapse
Affiliation(s)
- Minh Chau Nguyen
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Hosein Rostamian
- Department of Biochemistry & Biophysics, The University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
- Curriculum in Genetics and Molecular Biology, The University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Ana Raman
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Pengcheng Wei
- Department of Biomedical Research, National Jewish Health, Denver, CO, 80206, USA
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, 530004, China
| | - Dustin C Becht
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Annette H Erbse
- Department of Biochemistry, University of Colorado, Boulder, CO, 80303, USA
| | - Brianna J Klein
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Tonya M Gilbert
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Gongyi Zhang
- Department of Biomedical Research, National Jewish Health, Denver, CO, 80206, USA
| | - M Andres Blanco
- Department of Biomedical Sciences, University of Pennsylvania, School of Veterinary Medicine, Philadelphia, PA, 19104, USA
| | - Brian D Strahl
- Department of Biochemistry & Biophysics, The University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Sean D Taverna
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, 72202, USA
| | - Tatiana G Kutateladze
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA.
| |
Collapse
|
2
|
Nguyen MC, Wang D, Klein BJ, Chen Y, Kutateladze TG. Differences and similarities in recognition of co-factors by Taf14. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194961. [PMID: 37482120 DOI: 10.1016/j.bbagrm.2023.194961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/25/2023]
Abstract
Taf14 is a subunit of multiple fundamental complexes implicated in transcriptional regulation and DNA damage repair in yeast cells. Here, we investigate the association of Taf14 with the consensus sequence present in other subunits of these complexes and describe the mechanistic features that affect this association. We demonstrate that the precise molecular mechanisms and biological outcomes underlying the Taf14 interactions depend on the accessibility of binding interfaces, the ability to recognize other ligands, and a degree of sensitivity to temperature and chemical and osmotic stresses. Our findings aid in a better understanding of how the distribution of Taf14 among the complexes is mediated.
Collapse
Affiliation(s)
- Minh Chau Nguyen
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Duo Wang
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Brianna J Klein
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Yong Chen
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Tatiana G Kutateladze
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
3
|
Shao DJ, Wei YM, Yu ZQ, Dai X, Gao XQ. Arabidopsis AtPRP17 functions in embryo development by regulating embryonic patterning. PLANTA 2021; 254:58. [PMID: 34426887 DOI: 10.1007/s00425-021-03702-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Arabidopsis AtPRP17, a homolog of yeast splicing factor gene PRP17, is expressed in siliques and embryos and functions in embryo development via regulating embryonic patterning. Yeast splicing factor PRP17/CDC40 is essential for cell growth through involvement in cell cycle regulation. Arabidopsis genome encodes a homolog of PRP17, AtPRP17; however, its function in Arabidopsis development is unknown. This study showed that AtPRP17 was highly expressed in siliques and embryos, and the protein was localized in the nucleus. The loss-of-function mutation of AtPRP17 led to shrunken seeds in Arabidopsis mature siliques. Further analysis revealed that the defective mature seeds of the mutant resulted from abnormal embryos with shriveled cotyledons, unequal cotyledons, swollen and shortened hypocotyls, or shortened radicles. During embryogenesis, mutant embryos showed delayed development and defective patterning of the apical and base domains, such as inhibited cotyledons and disorganized quiescent center cells and columella. Our results suggested that AtPRP17 functions in Arabidopsis embryo development via regulating embryonic patterning.
Collapse
Affiliation(s)
- Dong Jie Shao
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Yi Ming Wei
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Zhong Qing Yu
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Xinren Dai
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China
| | - Xin-Qi Gao
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China.
| |
Collapse
|
4
|
Zheng Q, Chen X, Qiao C, Wang M, Chen W, Luan X, Yan Y, Shen C, Fang J, Hu X, Zheng B, Wu Y, Yu J. Somatic CG6015 mediates cyst stem cell maintenance and germline stem cell differentiation via EGFR signaling in Drosophila testes. Cell Death Discov 2021; 7:68. [PMID: 33824283 PMCID: PMC8024382 DOI: 10.1038/s41420-021-00452-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/21/2021] [Accepted: 03/18/2021] [Indexed: 11/09/2022] Open
Abstract
Stem cell niche is regulated by intrinsic and extrinsic factors. In the Drosophila testis, cyst stem cells (CySCs) support the differentiation of germline stem cells (GSCs). However, the underlying mechanisms remain unclear. In this study, we found that somatic CG6015 is required for CySC maintenance and GSC differentiation in a Drosophila model. Knockdown of CG6015 in CySCs caused aberrant activation of dpERK in undifferentiated germ cells in the Drosophila testis, and disruption of key downstream targets of EGFR signaling (Dsor1 and rl) in CySCs results in a phenotype resembling that of CG6015 knockdown. CG6015, Dsor1, and rl are essential for the survival of Drosophila cell line Schneider 2 (S2) cells. Our data showed that somatic CG6015 regulates CySC maintenance and GSC differentiation via EGFR signaling, and inhibits aberrant activation of germline dpERK signals. These findings indicate regulatory mechanisms of stem cell niche homeostasis in the Drosophila testis.
Collapse
Affiliation(s)
- Qianwen Zheng
- Department of Gynecology, the Affiliated Hospital of Jiangsu University, Jiangsu University, 212001, Zhenjiang, Jiangsu, P.R. China
| | - Xia Chen
- Department of Gynecology, the Affiliated Hospital of Jiangsu University, Jiangsu University, 212001, Zhenjiang, Jiangsu, P.R. China
| | - Chen Qiao
- Department of Clinical Pharmacy, the Affiliated Hospital of Jiangsu University, Jiangsu University, 212001, Zhenjiang, Jiangsu, P.R. China
| | - Min Wang
- Department of Gynecology, the Affiliated Hospital of Jiangsu University, Jiangsu University, 212001, Zhenjiang, Jiangsu, P.R. China
| | - Wanyin Chen
- Department of Gynecology, the Affiliated Hospital of Jiangsu University, Jiangsu University, 212001, Zhenjiang, Jiangsu, P.R. China
| | - Xiaojin Luan
- Department of Gynecology, the Affiliated Hospital of Jiangsu University, Jiangsu University, 212001, Zhenjiang, Jiangsu, P.R. China
| | - Yidan Yan
- Department of Gynecology, the Affiliated Hospital of Jiangsu University, Jiangsu University, 212001, Zhenjiang, Jiangsu, P.R. China
| | - Cong Shen
- State Key Laboratory of Reproductive Medicine, Center for Reproduction and Genetics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, 215002, Suzhou, Jiangsu, P.R. China
| | - Jie Fang
- Department of Gynecology, the Affiliated Hospital of Jiangsu University, Jiangsu University, 212001, Zhenjiang, Jiangsu, P.R. China
| | - Xing Hu
- Department of Gynecology, the Affiliated Hospital of Jiangsu University, Jiangsu University, 212001, Zhenjiang, Jiangsu, P.R. China
| | - Bo Zheng
- State Key Laboratory of Reproductive Medicine, Center for Reproduction and Genetics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, 215002, Suzhou, Jiangsu, P.R. China.
| | - Yibo Wu
- Human Reproductive and Genetic Center, Affiliated Hospital of Jiangnan University, 214062, Wuxi, Jiangsu, P.R. China.
| | - Jun Yu
- Department of Gynecology, the Affiliated Hospital of Jiangsu University, Jiangsu University, 212001, Zhenjiang, Jiangsu, P.R. China.
| |
Collapse
|
5
|
Miocene Diversification and High-Altitude Adaptation of Parnassius Butterflies (Lepidoptera: Papilionidae) in Qinghai-Tibet Plateau Revealed by Large-Scale Transcriptomic Data. INSECTS 2020; 11:insects11110754. [PMID: 33153157 PMCID: PMC7693471 DOI: 10.3390/insects11110754] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/27/2020] [Accepted: 10/30/2020] [Indexed: 12/01/2022]
Abstract
Simple Summary Parnassius butterflies have contributed to fundamental studies in biogeography, insect–plant interactions, and other fields of conservation biology and ecology. However, the early evolutionary pattern and molecular adaptation mechanism of this alpine butterfly group to high altitudes in Qinghai–Tibet Plateau are poorly understood up to now. In this study, we report for the first time, a relatively large-scale transcriptomic dataset of eight Parnassius species and their two closely related papilionid species, a dated phylogeny based on hundreds of gene sequences, and potential genetic mechanisms underlying the high-altitude adaptation by investigating changes in evolutionary rates and positively selected genes. Overall, our findings indicate that the transcriptome data sets reported here can provide some new insights into the spatiotemporally evolutionary pattern and high altitude adaptation of Parnassius butterflies from the extrinsic and intrinsic view, and will support further expressional and functional studies that will help interested researchers to address evolution, biodiversity and conservation questions concerning Parnassius and other butterfly species. Abstract The early evolutionary pattern and molecular adaptation mechanism of alpine Parnassius butterflies to high altitudes in Qinghai–Tibet Plateau are poorly understood up to now, due to difficulties in sampling, limited sequence data, and time calibration issues. Here, we present large-scale transcriptomic datasets of eight representative Parnassius species to reveal the phylogenetic timescale and potential genetic basis for high-altitude adaptation with multiple analytic strategies using 476 orthologous genes. Our phylogenetic results strongly supported that the subgenus Parnassius formed a well-resolved basal clade, and the subgenera Tadumia and Kailasius were closely related in the phylogenetic trees. In addition, molecular dating analyses showed that the Parnassius began to diverge at about 13.0 to 14.3 million years ago (middle Miocene), correlated with their hostplant’s spatiotemporal distributions, as well as geological and palaeoenvironmental changes of the Qinghai–Tibet Plateau. Moreover, the accelerated evolutionary rate, candidate positively selected genes and their potentially functional changes were detected, probably contributed to the high-altitude adaptation of Parnassius species. Overall, our study provided some new insights into the spatiotemporally evolutionary pattern and high altitude adaptation of Parnassius butterflies from the extrinsic and intrinsic view, which will help to address evolution, biodiversity, and conservation questions concerning Parnassius and other butterfly species.
Collapse
|
6
|
Petasny M, Bentata M, Pawellek A, Baker M, Kay G, Salton M. Splicing to Keep Cycling: The Importance of Pre-mRNA Splicing during the Cell Cycle. Trends Genet 2020; 37:266-278. [PMID: 32950269 DOI: 10.1016/j.tig.2020.08.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/09/2020] [Accepted: 08/18/2020] [Indexed: 12/16/2022]
Abstract
Pre-mRNA splicing is a fundamental process in mammalian gene expression, and alternative splicing plays an extensive role in generating protein diversity. Because the majority of genes undergo pre-mRNA splicing, most cellular processes depend on proper spliceosome function. We focus on the cell cycle and describe its dependence on pre-mRNA splicing and accurate alternative splicing. We outline the key cell-cycle factors and their known alternative splicing isoforms. We discuss different levels of pre-mRNA splicing regulation such as post-translational modifications and changes in the expression of splicing factors. We describe the effect of chromatin dynamics on pre-mRNA splicing during the cell cycle. In addition, we focus on spliceosome component SF3B1, which is mutated in many types of cancer, and describe the link between SF3B1 and its inhibitors and the cell cycle.
Collapse
Affiliation(s)
- Mayra Petasny
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Mercedes Bentata
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Andrea Pawellek
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Mai Baker
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Gillian Kay
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Maayan Salton
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel.
| |
Collapse
|
7
|
Depletion of the MFAP1/SPP381 Splicing Factor Causes R-Loop-Independent Genome Instability. Cell Rep 2020; 28:1551-1563.e7. [PMID: 31390568 PMCID: PMC6693559 DOI: 10.1016/j.celrep.2019.07.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 03/18/2019] [Accepted: 07/01/2019] [Indexed: 01/19/2023] Open
Abstract
THO/TREX is a conserved complex with a role in messenger ribonucleoprotein biogenesis that links gene expression and genome instability. Here, we show that human THO interacts with MFAP1 (microfibrillar-associated protein 1), a spliceosome-associated factor. Interestingly, MFAP1 depletion impairs cell proliferation and genome integrity, increasing γH2AX foci and DNA breaks. This phenotype is not dependent on either transcription or RNA-DNA hybrids. Mutations in the yeast orthologous gene SPP381 cause similar transcription-independent genome instability, supporting a conserved role. MFAP1 depletion has a wide effect on splicing and gene expression in human cells, determined by transcriptome analyses. MFAP1 depletion affects a number of DNA damage response (DDR) genes, which supports an indirect role of MFAP1 on genome integrity. Our work defines a functional interaction between THO and RNA processing and argues that splicing factors may contribute to genome integrity indirectly by regulating the expression of DDR genes rather than by a direct role.
Collapse
|
8
|
Chen G, Wang D, Wu B, Yan F, Xue H, Wang Q, Quan S, Chen Y. Taf14 recognizes a common motif in transcriptional machineries and facilitates their clustering by phase separation. Nat Commun 2020; 11:4206. [PMID: 32826896 PMCID: PMC7442819 DOI: 10.1038/s41467-020-18021-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 07/31/2020] [Indexed: 12/17/2022] Open
Abstract
Saccharomyces cerevisiae TBP associated factor 14 (Taf14) is a well-studied transcriptional regulator that controls diverse physiological processes and that physically interacts with at least seven nuclear complexes in yeast. Despite multiple previous Taf14 structural studies, the nature of its disparate transcriptional regulatory functions remains opaque. Here, we demonstrate that the extra-terminal (ET) domain of Taf14 (Taf14ET) recognizes a common motif in multiple transcriptional coactivator proteins from several nuclear complexes, including RSC, SWI/SNF, INO80, NuA3, TFIID, and TFIIF. Moreover, we show that such partner binding promotes liquid-liquid phase separation (LLPS) of Taf14ET, in a mechanism common to YEATS-associated ET domains (e.g., AF9ET) but not Bromo-associated ET domains from BET-family proteins. Thus, beyond identifying the molecular mechanism by which Taf14ET associates with many transcriptional regulators, our study suggests that Taf14 may function as a versatile nuclear hub that orchestrates transcriptional machineries to spatiotemporally regulate diverse cellular pathways. S. cerevisiae TBP associated factor 14 (Taf14) is a transcriptional regulator that interacts with multiple nuclear complexes. Here, the authors report that the extra-terminal domain of Taf14 (Taf14ET) recognizes a common motif in various transcriptional coactivator proteins and they solve the NMR structure of Taf14ET bound the ET-binding motif of Sth1, the catalytic subunit of the RSC (Remodel the Structure of Chromatin) complex, and furthermore show that Taf14ET undergoes liquid-liquid phase separation, which is enhanced by Taf14 interaction partners.
Collapse
Affiliation(s)
- Guochao Chen
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Duo Wang
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bin Wu
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Fuxiang Yan
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongjuan Xue
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Quanmeng Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shu Quan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yong Chen
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China. .,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
9
|
Zhang Z, Ji M, Lv Y, Feng Q, Zheng P, Mao Y, Xu Y, He G, Xu J. A signature predicting relapse based on integrated analysis on relapse-associated alternative mRNA splicing in I-III rectal cancer. Genomics 2020; 112:3274-3283. [PMID: 32544549 DOI: 10.1016/j.ygeno.2020.06.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/03/2020] [Accepted: 06/10/2020] [Indexed: 12/22/2022]
Abstract
Researches focusing on the effects of alternative splicing (AS) on relapse of rectal cancer is little and signature based on the AS is blank. In this study, bioinformatic analysis was performed to identify and analyze the relapse-associated ASs, a signature was also constructed. In conclusion, 829 relapse-associated ASs of 676 mRNA were identified. 603 proteins with 2119 interactions were involved in the PPI (protein-protein interactions) network. 43 relapse-associated ASs and 64 SFs (splicing factors) with 160 interactions were indicated. Finally, we built a robust signature to predict the relapse of I-III rectal cancer with a high AUC (0.98) of ROC at 1 year. Based on the ASs involved in the signature, 4 molecular subgroups that could distinguish the relapse rate in diverse groups were identified. Our research provided an overview of relapse-associated ASs in I-III rectal cancer.
Collapse
Affiliation(s)
- Zhiyuan Zhang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Meiling Ji
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yang Lv
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qingyang Feng
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Peng Zheng
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yihao Mao
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuqiu Xu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guodong He
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jianmin Xu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
10
|
Wang Q, Verma J, Vidan N, Wang Y, Tucey TM, Lo TL, Harrison PF, See M, Swaminathan A, Kuchler K, Tscherner M, Song J, Powell DR, Sopta M, Beilharz TH, Traven A. The YEATS Domain Histone Crotonylation Readers Control Virulence-Related Biology of a Major Human Pathogen. Cell Rep 2020; 31:107528. [PMID: 32320659 DOI: 10.1016/j.celrep.2020.107528] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 01/31/2020] [Accepted: 03/27/2020] [Indexed: 12/13/2022] Open
Abstract
Identification of multiple histone acylations diversifies transcriptional control by metabolism, but their functions are incompletely defined. Here we report evidence of histone crotonylation in the human fungal pathogen Candida albicans. We define the enzymes that regulate crotonylation and show its dynamic control by environmental signals: carbon sources, the short-chain fatty acids butyrate and crotonate, and cell wall stress. Crotonate regulates stress-responsive transcription and rescues C. albicans from cell wall stress, indicating broad impact on cell biology. The YEATS domain crotonylation readers Taf14 and Yaf9 are required for C. albicans virulence, and Taf14 controls gene expression, stress resistance, and invasive growth via its chromatin reader function. Blocking the Taf14 C terminus with a tag reduced virulence, suggesting that inhibiting Taf14 interactions with chromatin regulators impairs function. Our findings shed light on the regulation of histone crotonylation and the functions of the YEATS proteins in eukaryotic pathogen biology and fungal infections.
Collapse
Affiliation(s)
- Qi Wang
- Infection and Immunity Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton 3800 VIC, Australia
| | - Jiyoti Verma
- Infection and Immunity Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton 3800 VIC, Australia
| | - Nikolina Vidan
- Infection and Immunity Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton 3800 VIC, Australia; Department of Molecular Biology, Rudjer Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia
| | - Yanan Wang
- Infection and Immunity Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton 3800 VIC, Australia
| | - Timothy M Tucey
- Infection and Immunity Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton 3800 VIC, Australia
| | - Tricia L Lo
- Infection and Immunity Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton 3800 VIC, Australia
| | - Paul F Harrison
- Bioinformatics Platform, Monash University, Clayton 3800 VIC, Australia
| | - Michael See
- Bioinformatics Platform, Monash University, Clayton 3800 VIC, Australia
| | - Angavai Swaminathan
- Development and Stem Cells Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton 3800 VIC, Australia
| | - Karl Kuchler
- Medical University of Vienna, Center for Medical Biochemistry, Max Perutz Labs, Campus Vienna Biocenter, Dr. Bohr-Gasse 9/2, Vienna, Austria
| | - Michael Tscherner
- Medical University of Vienna, Center for Medical Biochemistry, Max Perutz Labs, Campus Vienna Biocenter, Dr. Bohr-Gasse 9/2, Vienna, Austria
| | - Jiangning Song
- Infection and Immunity Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton 3800 VIC, Australia
| | - David R Powell
- Bioinformatics Platform, Monash University, Clayton 3800 VIC, Australia
| | - Mary Sopta
- Department of Molecular Biology, Rudjer Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia
| | - Traude H Beilharz
- Development and Stem Cells Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton 3800 VIC, Australia
| | - Ana Traven
- Infection and Immunity Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton 3800 VIC, Australia.
| |
Collapse
|
11
|
Tam AS, Stirling PC. Splicing, genome stability and disease: splice like your genome depends on it! Curr Genet 2019; 65:905-912. [PMID: 30953124 DOI: 10.1007/s00294-019-00964-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 03/27/2019] [Accepted: 03/28/2019] [Indexed: 12/21/2022]
Abstract
The spliceosome has been implicated in genome maintenance for decades. Recently, a surge in discoveries in cancer has suggested that the oncogenic mechanism of spliceosomal defects may involve defective genome stability. The action of the core spliceosome prevents R-loop accumulation, and regulates the expression of genome stability factors. At the same time, specific spliceosomal components have non-canonical functions in genome maintenance. Here we review these different models, highlighting their discovery in different model systems, and describing their potential impact on human disease states.
Collapse
Affiliation(s)
- Annie S Tam
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Peter C Stirling
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, Canada.
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
12
|
Mishra SK, Thakran P. Intron specificity in pre-mRNA splicing. Curr Genet 2018; 64:777-784. [PMID: 29299619 DOI: 10.1007/s00294-017-0802-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 12/26/2017] [Accepted: 12/27/2017] [Indexed: 02/06/2023]
Abstract
The occurrence of spliceosomal introns in eukaryotic genomes is highly diverse and ranges from few introns in an organism to multiple introns per gene. Introns vary with respect to their lengths, strengths of splicing signals, and position in resident genes. Higher intronic density and diversity in genetically complex organisms relies on increased efficiency and accuracy of spliceosomes for pre-mRNA splicing. Since intron diversity is critical for functions in RNA stability, regulation of gene expression and alternative splicing, RNA-binding proteins, spliceosomal regulatory factors and post-translational modifications of splicing factors ought to make the splicing process intron-specific. We recently reported function and regulation of a ubiquitin fold harboring splicing regulator, Sde2, which following activation by ubiquitin-specific proteases facilitates excision of selected introns from a subset of multi-intronic genes in Schizosaccharomyces pombe (Thakran et al. EMBO J, https://doi.org/10.15252/embj.201796751 , 2017). By reviewing our findings with understandings of intron functions and regulated splicing processes, we propose possible functions and mechanism of intron-specific pre-mRNA splicing and suggest that this process is crucial to highlight importance of introns in eukaryotic genomes.
Collapse
Affiliation(s)
- Shravan Kumar Mishra
- Max Planck, DST Partner Group, Centre for Protein Science Design and Engineering, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Punjab, 140306, India.
| | - Poonam Thakran
- Max Planck, DST Partner Group, Centre for Protein Science Design and Engineering, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Punjab, 140306, India
| |
Collapse
|
13
|
Bae NS, Seberg AP, Carroll LP, Swanson MJ. Identification of Genes in Saccharomyces cerevisiae that Are Haploinsufficient for Overcoming Amino Acid Starvation. G3 (BETHESDA, MD.) 2017; 7:1061-1084. [PMID: 28209762 PMCID: PMC5386856 DOI: 10.1534/g3.116.037416] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 02/11/2017] [Indexed: 12/17/2022]
Abstract
The yeast Saccharomyces cerevisiae responds to amino acid deprivation by activating a pathway conserved in eukaryotes to overcome the starvation stress. We have screened the entire yeast heterozygous deletion collection to identify strains haploinsufficient for growth in the presence of sulfometuron methyl, which causes starvation for isoleucine and valine. We have discovered that cells devoid of MET15 are sensitive to sulfometuron methyl, and loss of heterozygosity at the MET15 locus can complicate screening the heterozygous deletion collection. We identified 138 cases of loss of heterozygosity in this screen. After eliminating the issues of the MET15 loss of heterozygosity, strains isolated from the collection were retested on sulfometuron methyl. To determine the general effect of the mutations for a starvation response, SMM-sensitive strains were tested for the ability to grow in the presence of canavanine, which induces arginine starvation, and strains that were MET15 were also tested for growth in the presence of ethionine, which causes methionine starvation. Many of the genes identified in our study were not previously identified as starvation-responsive genes, including a number of essential genes that are not easily screened in a systematic way. The genes identified span a broad range of biological functions, including many involved in some level of gene expression. Several unnamed proteins have also been identified, giving a clue as to possible functions of the encoded proteins.
Collapse
Affiliation(s)
- Nancy S Bae
- Department of Biochemistry, Arizona College of Osteopathic Medicine, Midwestern University, Glendale, Arizona 85308
| | - Andrew P Seberg
- Department of Biological Science, Florida State University, Tallahassee, Florida 32306-4295
| | - Leslie P Carroll
- Division of Basic Medical Sciences, Mercer University School of Medicine, Macon, Georgia 31207
| | - Mark J Swanson
- Department of Biochemistry, Arizona College of Osteopathic Medicine, Midwestern University, Glendale, Arizona 85308
- Division of Basic Medical Sciences, Mercer University School of Medicine, Macon, Georgia 31207
| |
Collapse
|
14
|
Wang KY, Ma J, Zhang FX, Yu MJ, Xue JS, Zhao JS. MicroRNA-378 inhibits cell growth and enhances L-OHP-induced apoptosis in human colorectal cancer. IUBMB Life 2015; 66:645-54. [PMID: 25328987 DOI: 10.1002/iub.1317] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Revised: 09/16/2014] [Accepted: 09/19/2014] [Indexed: 12/12/2022]
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that participate in a variety of biological processes, and dysregulation of miRNAs is widely associated with cancer development and progression. MiR-378 is frequently downregulated in colorectal cancer (CRC) and colorectal cell lines; however, it has high serum levels. Bioinformatics analysis further deduced that CDC40 is a potential target of miR-378, and luciferase reporter assays confirmed the direct regulation of CDC40 by miR-378. CDC40 plays a key role in cell cycle progression through G1/S and G2/M and pre-mRNA splicing. Subsequently, we determined that miR-378 inhibits cell growth and the G1/S transition in CRC cells and that these effects were CDC40-dependent. Finally, miR-378 increased cell apoptosis induced by the chemotherapeutic drug L-OHP. Our data highlight the potential application of miR-378 as a tumor suppressor for CRC therapy and overcoming chemoresistance, and it may also be a potential tumor marker for CRC prognosis.
Collapse
Affiliation(s)
- Kai-Yu Wang
- Department of Gastrointestinal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China; Department of General Surgery, Affiliated Hospital of Beihua University, Jilin, China
| | | | | | | | | | | |
Collapse
|
15
|
Qin T, Matmati N, Tsoi LC, Mohanty BK, Gao N, Tang J, Lawson AB, Hannun YA, Zheng WJ. Finding pathway-modulating genes from a novel Ontology Fingerprint-derived gene network. Nucleic Acids Res 2014; 42:e138. [PMID: 25063300 PMCID: PMC4191379 DOI: 10.1093/nar/gku678] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
To enhance our knowledge regarding biological pathway regulation, we took an integrated approach, using the biomedical literature, ontologies, network analyses and experimental investigation to infer novel genes that could modulate biological pathways. We first constructed a novel gene network via a pairwise comparison of all yeast genes' Ontology Fingerprints--a set of Gene Ontology terms overrepresented in the PubMed abstracts linked to a gene along with those terms' corresponding enrichment P-values. The network was further refined using a Bayesian hierarchical model to identify novel genes that could potentially influence the pathway activities. We applied this method to the sphingolipid pathway in yeast and found that many top-ranked genes indeed displayed altered sphingolipid pathway functions, initially measured by their sensitivity to myriocin, an inhibitor of de novo sphingolipid biosynthesis. Further experiments confirmed the modulation of the sphingolipid pathway by one of these genes, PFA4, encoding a palmitoyl transferase. Comparative analysis showed that few of these novel genes could be discovered by other existing methods. Our novel gene network provides a unique and comprehensive resource to study pathway modulations and systems biology in general.
Collapse
Affiliation(s)
- Tingting Qin
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nabil Matmati
- The Stony Brook University Cancer Center and the Department of Medicine, Stony Brook, NY 11794, USA
| | - Lam C Tsoi
- Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Bidyut K Mohanty
- Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Nan Gao
- Department of Computer Science and Engineering, University of South Carolina, Columbia, SC 29208, USA
| | - Jijun Tang
- Department of Computer Science and Engineering, University of South Carolina, Columbia, SC 29208, USA Tianjin Key Laboratory of Cognitive Computing and Application, Tianjin University, Tianjin, China
| | - Andrew B Lawson
- Department of Public Health Science, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Yusuf A Hannun
- The Stony Brook University Cancer Center and the Department of Medicine, Stony Brook, NY 11794, USA
| | - W Jim Zheng
- School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
16
|
Ehsani A, Alluin JV, Rossi JJ. Cell cycle abnormalities associated with differential perturbations of the human U5 snRNP associated U5-200kD RNA helicase. PLoS One 2013; 8:e62125. [PMID: 23637979 PMCID: PMC3639242 DOI: 10.1371/journal.pone.0062125] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 03/19/2013] [Indexed: 12/04/2022] Open
Abstract
Splicing of pre-messenger RNAs into functional messages requires a concerted assembly of proteins and small RNAs that identify the splice junctions and facilitate cleavage of exon-intron boundaries and ligation of exons. One of the key steps in the splicing reaction is the recruitment of a tri-snRNP harboring the U5/U4/U6 snRNPs. The U5 snRNP is also required for both steps of splicing and exon-exon joining. One of the key components of the tri-snRNP is the U5 200kd helicase. The human U5-200kD gene isolated from Hela cells encodes a 200 kDa protein with putative RNA helicase function. Surprisingly, little is known about the functional role of this protein in humans. Therefore, we have investigated the role of the U5-200kD RNA helicase in mammalian cell culture. We created and expressed a dominant negative domain I mutant of the RNA helicase in HEK293 cells and used RNAi to downregulate expression of the endogenous protein. Transient and stable expression of the domain I mutant U5-200kD protein using an ecdysone-inducible system and transient expression of an anti-U5-200kD short hairpin RNA (shRNA) resulted in differential splicing and growth defects in the 293/EcR cells. Cell cycle analysis of the dominant negative clones revealed delayed exit from the G2/M phase of the cell cycle due to a mild splicing defect. In contrast to the domain I dominant negative mutant expressing cells, transient expression of an anti-U5-200kD shRNA resulted in a pronounced S phase arrest and a minute splicing defect. Collectively, this work demonstrates for the first time establishment of differential human cell culture splicing and cell cycle defect models due to perturbed levels of an essential core splicing factor.
Collapse
Affiliation(s)
- Ali Ehsani
- Department of Molecular and Cellular Biology, and Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, California, United States of America
| | - Jessica V. Alluin
- Department of Molecular and Cellular Biology, and Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, California, United States of America
| | - John J. Rossi
- Department of Molecular and Cellular Biology, and Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, California, United States of America
- * E-mail:
| |
Collapse
|
17
|
Saha D, Banerjee S, Bashir S, Vijayraghavan U. Context dependent splicing functions of Bud31/Ycr063w define its role in budding and cell cycle progression. Biochem Biophys Res Commun 2012; 424:579-85. [PMID: 22789856 DOI: 10.1016/j.bbrc.2012.06.156] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 06/30/2012] [Indexed: 11/25/2022]
Abstract
The yeast Bud31 protein, a Prp19 complex (NTC) member, aids spliceosome assembly and thus promotes efficient pre-mRNA splicing. The bud31 null cells show mild budding abnormalities at optimal growth temperatures and, at higher temperatures, have growth defects with aberrant budding. Here we have assessed cell cycle transitions which require Bud31. We find Bud31 facilitates passage through G1-S regulatory point (Start) but is not needed for G2-M transition or for exit from mitosis. To co-relate Bud31 functions in cell division with splicing, we studied the splicing status of transcripts that encode proteins involved in budding. We find Bud31 promotes efficient splicing of only some of these pre-mRNAs, for example, ARP2 and SRC1. Wild type cells have a long and a short isoform of SRC1 mRNA and protein, out of which the shorter mRNA splice variant is predominant. bud31Δ cells show inefficient SRC1 splicing and entirely lack the shorter SRC1 spliced mRNA isoform. Yeast PRP17, another NTC sub-complex member, is also required for G1-S and G2-M cell cycle transitions. We examined genetic interactions between BUD31 and PRP17. While both factors were needed for efficient cell cycle dependent gene expression, our data indicate that distinct pre-mRNAs depend on each of these non-essential splicing factors.
Collapse
Affiliation(s)
- Debjani Saha
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | | | | | | |
Collapse
|
18
|
Mosakhani N, Sarhadi VK, Borze I, Karjalainen-Lindsberg ML, Sundström J, Ristamäki R, Osterlund P, Knuutila S. MicroRNA profiling differentiates colorectal cancer according to KRAS status. Genes Chromosomes Cancer 2011; 51:1-9. [PMID: 21922590 DOI: 10.1002/gcc.20925] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 08/08/2011] [Indexed: 02/06/2023] Open
Abstract
Recent studies have shown the important role of microRNAs (miRNAs) in a variety of biological processes, and in its ability to distinguish tumors according to their prognostic and predictive properties. To identify miRNA signatures associated with colorectal carcinoma (CRC) and with KRAS status, we studied, using Agilent's miRNA microarrays, miRNA expression in primary tumors from 55 metastatic CRC patients, including 15 with mutant and 40 with wild-type KRAS. Comparing these with normal colon tissue, we identified 49 miRNAs--including 19 novel miRNAs--significantly deregulated in tumor tissue. The presence of the KRAS mutation was associated with up-regulation of miR-127-3p, miR-92a, and miR-486-3p and down-regulation of miR-378. Increased expression of miR-127-3p and miR-92a in KRAS mutant tumors was significantly confirmed by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) (P < 0.05). We identified some predicted target genes of differentially expressed miRNAs between mutated and wild-type KRAS, such as RSG3 and TOB1, which are involved in apoptosis and proliferation. Target prediction and pathway analysis suggest a possible role for deregulated miRNAs in nicotinamide adenine dinucleotide phosphate (NADPH) regeneration and G protein-coupled receptor signaling pathways.
Collapse
Affiliation(s)
- Neda Mosakhani
- Department of Pathology, Haartman Institute and HUSLAB, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Hofmann JC, Husedzinovic A, Gruss OJ. The function of spliceosome components in open mitosis. Nucleus 2010; 1:447-59. [PMID: 21327086 DOI: 10.4161/nucl.1.6.13328] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 08/09/2010] [Accepted: 08/13/2010] [Indexed: 12/15/2022] Open
Abstract
Spatial separation of eukaryotic cells into the nuclear and cytoplasmic compartment permits uncoupling of DNA transcription from translation of mRNAs and allows cells to modify newly transcribed pre mRNAs extensively. Intronic sequences (introns), which interrupt the coding elements (exons), are excised ("spliced") from pre-mRNAs in the nucleus to yield mature mRNAs. This not only enables alternative splicing as an important source of proteome diversity, but splicing is also an essential process in all eukaryotes and knock-out or knock-down of splicing factors frequently results in defective cell proliferation and cell division. However, higher eukaryotes progress through cell division only after breakdown of the nucleus ("open mitosis"). Open mitosis suppresses basic nuclear functions such as transcription and splicing, but allows separate, mitotic functions of nuclear proteins in cell division. Mitotic defects arising after loss-of-function of splicing proteins therefore could be an indirect consequence of compromised splicing in the closed nucleus of the preceding interphase or reflect a direct contribution of splicing proteins to open mitosis. Although experiments to directly distinguish between these two alternatives have not been reported, indirect evidence exists for either hypotheses. In this review, we survey published data supporting an indirect function of splicing in open mitosis or arguing for a direct function of spliceosomal proteins in cell division.
Collapse
|
20
|
Kerins JA, Hanazawa M, Dorsett M, Schedl T. PRP-17 and the pre-mRNA splicing pathway are preferentially required for the proliferation versus meiotic development decision and germline sex determination in Caenorhabditis elegans. Dev Dyn 2010; 239:1555-72. [PMID: 20419786 PMCID: PMC3097115 DOI: 10.1002/dvdy.22274] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
In C. elegans, the decision between germline stem cell proliferation and entry into meiosis is controlled by GLP-1 Notch signaling, which promotes proliferation through repression of the redundant GLD-1 and GLD-2 pathways that direct meiotic entry. We identify prp-17 as another gene functioning downstream of GLP-1 signaling that promotes meiotic entry, largely by acting on the GLD-1 pathway, and that also functions in female germline sex determination. PRP-17 is orthologous to the yeast and human pre-mRNA splicing factor PRP17/CDC40 and can rescue the temperature-sensitive lethality of yeast PRP17. This link to splicing led to an RNAi screen of predicted C. elegans splicing factors in sensitized genetic backgrounds. We found that many genes throughout the splicing cascade function in the proliferation/meiotic entry decision and germline sex determination indicating that splicing per se, rather than a novel function of a subset of splicing factors, is necessary for these processes.
Collapse
|
21
|
Schulze JM, Kane CM, Ruiz-Manzano A. The YEATS domain of Taf14 in Saccharomyces cerevisiae has a negative impact on cell growth. Mol Genet Genomics 2010; 283:365-80. [PMID: 20179968 PMCID: PMC2839515 DOI: 10.1007/s00438-010-0523-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Accepted: 01/28/2010] [Indexed: 12/15/2022]
Abstract
The role of a highly conserved YEATS protein motif is explored in the context of the Taf14 protein of Saccharomyces cerevisiae. In S. cerevisiae, Taf14 is a protein physically associated with many critical multisubunit complexes including the general transcription factors TFIID and TFIIF, the chromatin remodeling complexes SWI/SNF, Ino80 and RSC, Mediator and the histone modification enzyme NuA3. Taf14 is a member of the YEATS superfamily, conserved from bacteria to eukaryotes and thought to have a transcription stimulatory activity. However, besides its ubiquitous presence and its links with transcription, little is known about Taf14’s role in the nucleus. We use structure–function and mutational analysis to study the function of Taf14 and its well conserved N-terminal YEATS domain. We show here that the YEATS domain is not necessary for Taf14’s association with these transcription and chromatin remodeling complexes, and that its presence in these complexes is dependent only on its C-terminal domain. Our results also indicate that Taf14’s YEATS domain is not necessary for complementing the synthetic lethality between TAF14 and the general transcription factor TFIIS (encoded by DST1). Furthermore, we present evidence that the YEATS domain of Taf14 has a negative impact on cell growth: its absence enables cells to grow better than wild-type cells under stress conditions, like the microtubule destabilizing drug benomyl. Moreover, cells expressing solely the YEATS domain grow worser than cells expressing any other Taf14 construct tested, including the deletion mutant. Thus, this highly conserved domain should be considered part of a negative regulatory loop in cell growth.
Collapse
Affiliation(s)
- Julia M Schulze
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3202, USA
| | | | | |
Collapse
|
22
|
Brems H, Park C, Maertens O, Pemov A, Messiaen L, Upadhyaya M, Claes K, Beert E, Peeters K, Mautner V, Sloan JL, Yao L, Lee CCR, Sciot R, De Smet L, Legius E, Stewart DR. Glomus tumors in neurofibromatosis type 1: genetic, functional, and clinical evidence of a novel association. Cancer Res 2009; 69:7393-401. [PMID: 19738042 DOI: 10.1158/0008-5472.can-09-1752] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Neurofibromatosis type 1 (NF1) is a common disorder that arises secondary to mutations in the tumor suppressor gene NF1. Glomus tumors are small, benign but painful tumors that originate from the glomus body, a thermoregulatory shunt concentrated in the fingers and toes. We report 11 individuals with NF1 who harbored 20 glomus tumors of the fingers and 1 in the toe; 5 individuals had multiple glomus tumors. We hypothesized that biallelic inactivation of NF1 underlies the pathogenesis of these tumors. In 12 NF1-associated glomus tumors, we used cell culture and laser capture microdissection to isolate DNA. We also analyzed two sporadic (not NF1-associated) glomus tumors. Genetic analysis showed germ line and somatic NF1 mutations in seven tumors. RAS mitogen-activated protein kinase hyperactivation was observed in cultured NF1(-/-) glomus cells, reflecting a lack of inhibition of the pathway by functional neurofibromin, the protein product of NF1. No abnormalities in NF1 or RAS mitogen-activated protein kinase activation were found in sporadic glomus tumors. By comparative genomic hybridization, we observed amplification of the 3'-end of CRTAC1 and a deletion of the 5'-end of WASF1 in two NF1-associated glomus tumors. For the first time, we show that loss of neurofibromin function is crucial in the pathogenesis of glomus tumors in NF1. Glomus tumors of the fingers or toes should be considered as part of the tumor spectrum of NF1.
Collapse
Affiliation(s)
- Hilde Brems
- Department of Human Genetics, Catholic University Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Ungar L, Yosef N, Sela Y, Sharan R, Ruppin E, Kupiec M. A genome-wide screen for essential yeast genes that affect telomere length maintenance. Nucleic Acids Res 2009; 37:3840-9. [PMID: 19386622 PMCID: PMC2709559 DOI: 10.1093/nar/gkp259] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Telomeres are structures composed of repetitive DNA and proteins that protect the chromosomal ends in eukaryotic cells from fusion or degradation, thus contributing to genomic stability. Although telomere length varies between species, in all organisms studied telomere length appears to be controlled by a dynamic equilibrium between elongating mechanisms (mainly addition of repeats by the enzyme telomerase) and nucleases that shorten the telomeric sequences. Two previous studies have analyzed a collection of yeast deletion strains (deleted for nonessential genes) and found over 270 genes that affect telomere length (Telomere Length Maintenance or TLM genes). Here we complete the list of TLM by analyzing a collection of strains carrying hypomorphic alleles of most essential genes (DAmP collection). We identify 87 essential genes that affect telomere length in yeast. These genes interact with the nonessential TLM genes in a significant manner, and provide new insights on the mechanisms involved in telomere length maintenance. The newly identified genes span a variety of cellular processes, including protein degradation, pre-mRNA splicing and DNA replication.
Collapse
Affiliation(s)
- Lior Ungar
- Department of Molecular Microbiology and Biotechnology, Tel-Aviv University, Tel-Aviv 69978, Israel
| | | | | | | | | | | |
Collapse
|
24
|
Schulze JM, Wang AY, Kobor MS. YEATS domain proteins: a diverse family with many links to chromatin modification and transcriptionThis paper is one of a selection of papers published in this Special Issue, entitled CSBMCB’s 51st Annual Meeting – Epigenetics and Chromatin Dynamics, and has undergone the Journal’s usual peer review process. Biochem Cell Biol 2009; 87:65-75. [DOI: 10.1139/o08-111] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Chromatin modifications play crucial roles in various biological processes. An increasing number of conserved protein domains, often found in multisubunit protein complexes, are involved in establishing and recognizing different chromatin modifications. The YEATS domain is one of these domains, and its role in chromatin modifications and transcription is just beginning to be appreciated. The YEATS domain family of proteins, conserved from yeast to human, contains over 100 members in more than 70 eukaryotic species. Yaf9, Taf14, and Sas5 are the only YEATS domain proteins in Saccharomyces cerevisiae. Human YEATS domain family members, such as GAS41, ENL, and AF9, have a strong link to cancer. GAS41 is amplified in glioblastomas and astrocytomas; ENL and AF9 are among the most frequent translocation partners of the mixed lineage leukemia (MLL) gene. This review will focus on the best characterized YEATS proteins, discuss their diverse roles, and reflect potential functions of the YEATS domain.
Collapse
Affiliation(s)
- Julia M. Schulze
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Alice Y. Wang
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Michael S. Kobor
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| |
Collapse
|
25
|
Hebeisen M, Drysdale J, Roy R. Suppressors of the cdc-25.1(gf)-associated intestinal hyperplasia reveal important maternal roles for prp-8 and a subset of splicing factors in C. elegans. RNA (NEW YORK, N.Y.) 2008; 14:2618-2633. [PMID: 18945809 PMCID: PMC2590948 DOI: 10.1261/rna.1168408] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Accepted: 08/21/2008] [Indexed: 05/27/2023]
Abstract
The maternal contribution of gene products enables embryos to initiate their developmental program in the absence of zygotic gene expression. In Caenorhabditis elegans, maternal CDC-25.1 levels are tightly regulated to promote early cell divisions, while stabilization of this phosphatase by gain-of-function mutations gives rise to intestinal-specific hyperplasia. To identify regulators of CDC-25.1 levels and/or function, we performed a modifier screen of the cdc-25.1(gf)-dependent hyperplasia. One of the isolated suppressor mutants possesses a donor splice site mutation in prp-8, a key splicing factor of the U5-specific snRNP. prp-8(rr40) produces aberrant prp-8 splice variants that generate C-terminal truncations at the expense of wild-type prp-8. Levels of maternal transcripts are reduced, including cdc-25.1, while zygotic transcripts appear unperturbed, suggesting a germ-line-specific role for this splicing factor in regulating the splicing, and consequently, the steady-state levels of maternal transcripts. Using a novel feeding RNAi strategy we found that only a subset of splicing factors suppress cdc-25.1(gf), suggesting that they too may play specific roles in germ-line spliceosome function. In humans, mutations in the corresponding hPrp8 C-terminal domain result in retinitis pigmentosa, a retinal-specific disorder. Intriguingly, despite affecting the general splicing apparatus, both human and C. elegans show tissue-specific defects resulting from mutations in this key splicing component. Our findings suggest that in addition to its important regulatory function in the C. elegans germ line, prp-8(rr40) may provide further insight into the etiology of this splicing-associated human disorder.
Collapse
Affiliation(s)
- Michaël Hebeisen
- Department of Biology, McGill University, Montreal, Quebec, H3A 1B1, Canada
| | | | | |
Collapse
|
26
|
Erlich RL, Fry RC, Begley TJ, Daee DL, Lahue RS, Samson LD. Anc1, a protein associated with multiple transcription complexes, is involved in postreplication repair pathway in S. cerevisiae. PLoS One 2008; 3:e3717. [PMID: 19005567 PMCID: PMC2579579 DOI: 10.1371/journal.pone.0003717] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Accepted: 10/21/2008] [Indexed: 11/18/2022] Open
Abstract
Yeast strains lacking Anc1, a member of the YEATS protein family, are sensitive to several DNA damaging agents. The YEATS family includes two human genes that are common fusion partners with MLL in human acute leukemias. Anc1 is a member of seven multi-protein complexes involved in transcription, and the damage sensitivity observed in anc1Δ cells is mirrored in strains deleted for some other non-essential members of several of these complexes. Here we show that ANC1 is in the same epistasis group as SRS2 and RAD5, members of the postreplication repair (PRR) pathway, but has additive or synergistic interactions with several other members of this pathway. Although PRR is traditionally divided into an “error-prone” and an “error-free” branch, ANC1 is not epistatic with all members of either established branch, and instead defines a new error-free branch of the PRR pathway. Like several genes involved in PRR, an intact ANC1 gene significantly suppresses spontaneous mutation rates, including the expansion of (CAG)25 repeats. Anc1's role in the PRR pathway, as well as its role in suppressing triplet repeats, point to a possible mechanism for a protein of potential medical interest.
Collapse
Affiliation(s)
- Rachel L. Erlich
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Rebecca C. Fry
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Thomas J. Begley
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Danielle L. Daee
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Robert S. Lahue
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Leona D. Samson
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
27
|
Andersen DS, Tapon N. Drosophila MFAP1 is required for pre-mRNA processing and G2/M progression. J Biol Chem 2008; 283:31256-67. [PMID: 18765666 DOI: 10.1074/jbc.m803512200] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The mammalian spliceosome has mainly been studied using proteomics. The isolation and comparison of different splicing intermediates has revealed the dynamic association of more than 200 splicing factors with the spliceosome, relatively few of which have been studied in detail. Here, we report the characterization of the Drosophila homologue of microfibril-associated protein 1 (dMFAP1), a previously uncharacterized protein found in some human spliceosomal fractions ( Jurica, M. S., and Moore, M. J. (2003) Mol. Cell 12, 5-14 ). We show that dMFAP1 binds directly to the Drosophila homologue of Prp38p (dPrp38), a tri-small nuclear ribonucleoprotein component ( Xie, J., Beickman, K., Otte, E., and Rymond, B. C. (1998) EMBO J. 17, 2938-2946 ), and is required for pre-mRNA processing. dMFAP1, like dPrp38, is essential for viability, and our in vivo data show that cells with reduced levels of dMFAP1 or dPrp38 proliferate more slowly than normal cells and undergo apoptosis. Consistent with this, double-stranded RNA-mediated depletion of dPrp38 or dMFAP1 causes cells to arrest in G(2)/M, and this is paralleled by a reduction in mRNA levels of the mitotic phosphatase string/cdc25. Interestingly double-stranded RNA-mediated depletion of a wide range of core splicing factors elicits a similar phenotype, suggesting that the observed G(2)/M arrest might be a general consequence of interfering with spliceosome function.
Collapse
Affiliation(s)
- Ditte S Andersen
- Cancer Research UK, London Research Institute, London WC2A 3PX, UK
| | | |
Collapse
|
28
|
Kaplan Y, Kupiec M. A role for the yeast cell cycle/splicing factor Cdc40 in the G1/S transition. Curr Genet 2006; 51:123-40. [PMID: 17171376 DOI: 10.1007/s00294-006-0113-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2006] [Revised: 11/26/2006] [Accepted: 11/27/2006] [Indexed: 10/23/2022]
Abstract
The CDC40 (PRP17) gene of S. cerevisiae encodes a splicing factor required for multiple events in the mitotic and meiotic cell cycles, linking splicing with cell cycle control. cdc40 mutants exhibit a delayed G(1)/S transition, progress slowly through S-phase and arrest at a restrictive temperature in the G(2) phase. In addition, they are hypersensitive to genotoxic agents such as methylmethane sulfonate (MMS) and Hydroxyurea (HU). CDC40 has been suggested to control cell cycle through splicing of intron-containing pre-mRNAs that encode proteins important for cell cycle progression. We screened a cDNA overexpression library and isolated cDNAs that specifically suppress the HU/MMS-sensitivity of cdc40 mutants. Most of these cDNAs surprisingly encode chaperones, translation initiation factors and glycolytic enzymes, and none of them is encoded by an intron-containing gene. Interestingly, the cDNAs suppress the G(1)/S transition delay of cdc40 cells, which is exacerbated by HU, suggesting that cdc40 mutants are HU/MMS-sensitive due to their S-phase entry defect. A role of Cdc40p in passage through G(1)/S (START) is further supported by the enhanced temperature sensitivity and G(1)/S transition phenotype of a cdc40 strain lacking the G(1) cyclin, Cln2p. We provide evidence that the mechanism of suppression by the isolated cDNAs does not (at least solely) involve up-regulation of the known positive START regulators CLN2, CLN3, DCR2 and GID8, or of the large and small essential ribonucleotide reductase (RNR) subunits, RNR1 and RNR2. Finally, we discuss possible mechanisms of suppression by the cDNAs that imply cell cycle regulation by apparently unrelated processes, such as splicing, translation initiation and glycolysis.
Collapse
Affiliation(s)
- Yosef Kaplan
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv, 69978, Israel
| | | |
Collapse
|
29
|
Pacheco TR, Moita LF, Gomes AQ, Hacohen N, Carmo-Fonseca M. RNA interference knockdown of hU2AF35 impairs cell cycle progression and modulates alternative splicing of Cdc25 transcripts. Mol Biol Cell 2006; 17:4187-99. [PMID: 16855028 PMCID: PMC1635340 DOI: 10.1091/mbc.e06-01-0036] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
U2AF is a heterodimeric splicing factor composed of a large (U2AF65) and a small (U2AF35) subunit. In humans, alternative splicing generates two U2AF35 variants, U2AF35a and U2AF35b. Here, we used RNA interference to specifically ablate the expression of each isoform in HeLa cells. Our results show that knockdown of the major U2AF35a isoform reduced cell viability and impaired mitotic progression, leading to accumulation of cells in prometaphase. Microarray analysis revealed that knockdown of U2AF35a affected the expression level of approximately 500 mRNAs, from which >90% were underrepresented relative to the control. Among mRNAs underrepresented in U2AF35a-depleted cells we identified an essential cell cycle gene, Cdc27, for which there was an increase in the ratio between unspliced and spliced RNA and a significant reduction in protein level. Furthermore, we show that depletion of either U2AF35a or U2AF35b altered the ratios of alternatively spliced isoforms of Cdc25B and Cdc25C transcripts. Taken together our results demonstrate that U2AF35a is essential for HeLa cell division and suggest a novel role for both U2AF35 protein isoforms as regulators of alternative splicing of a specific subset of genes.
Collapse
Affiliation(s)
- Teresa Raquel Pacheco
- *Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Luís Ferreira Moita
- *Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Charlestown, MA 02129; and
| | - Anita Quintal Gomes
- *Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
- Departamento de Ciências da Saúde, Universidade da Madeira, 9000-390 Funchal, Portugal
| | - Nir Hacohen
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Charlestown, MA 02129; and
| | - Maria Carmo-Fonseca
- *Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| |
Collapse
|
30
|
Rasheva VI, Knight D, Bozko P, Marsh K, Frolov MV. Specific role of the SR protein splicing factor B52 in cell cycle control in Drosophila. Mol Cell Biol 2006; 26:3468-77. [PMID: 16611989 PMCID: PMC1447424 DOI: 10.1128/mcb.26.9.3468-3477.2006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
E2F and retinoblastoma tumor suppressor protein pRB are important regulators of cell proliferation; however, the regulation of these proteins in vivo is not well understood. In Drosophila there are two E2F genes, an activator, de2f1, and a repressor, de2f2. The loss of de2f1 gives rise to the G(1)/S block accompanied by the repression of E2F-dependent transcription. These defects can be suppressed by mutation of de2f2. In this work, we show that the de2f1 mutant phenotype is rescued by the loss of the pre-mRNA splicing factor SR protein B52. Mutations in B52 restore S phase in clones of de2f1 mutant cells and phenocopy the loss of the de2f2 function. B52 acts upstream of de2f2 and plays a specific role in regulation of de2f2 pre-mRNA splicing. In B52-deficient cells, the level of dE2F2 protein is severely reduced and the expression of dE2F2-dependent genes is deregulated. Reexpression of the intronless copy of dE2F2 in B52-deficient cells restores the dE2F2-mediated repression. These results uncover a previously unrecognized role of the splicing factor in maintaining the G(1)/S block in vivo by specific regulation of the dE2F2 repressor function.
Collapse
Affiliation(s)
- Vanya I Rasheva
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, MBRB 2352, MC 669, 900 S. Ashland Ave., Chicago, IL 60607, USA
| | | | | | | | | |
Collapse
|
31
|
Li X, Wang J, Manley JL. Loss of splicing factor ASF/SF2 induces G2 cell cycle arrest and apoptosis, but inhibits internucleosomal DNA fragmentation. Genes Dev 2005; 19:2705-14. [PMID: 16260492 PMCID: PMC1283963 DOI: 10.1101/gad.1359305] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
ASF/SF2 is an SR protein splicing factor that participates in constitutive and alternative pre-mRNA splicing and is essential for cell viability. Using a genetically modified chicken B-cell line, DT40-ASF, we now show that ASF/SF2 inactivation results in a G2-phase cell cycle arrest and subsequent programmed cell death. However, although several hallmarks of apoptosis are apparent, internucleosomal DNA fragmentation was not detected. Furthermore, inactivation of ASF/SF2 also blocks DNA fragmentation normally induced by a variety of apoptotic stimuli. Notably, mRNA encoding the inhibitor of caspase-activated DNase-L (ICAD-L), which acts as an inhibitor as well as a chaperone of caspase-activated DNase (CAD), decreased in abundance, whereas the level of mRNA encoding ICAD-S, which has only inhibitory activity, increased upon ASF/SF2 depletion. Strikingly, expression of appropriate levels of exogenous human ICAD-L restored apoptotic DNA laddering in ASF/SF2-depleted cells. These results not only indicate that loss of an SR protein splicing factor can induce cell cycle arrest and apoptosis, but also illustrate the important role of ICAD and its regulation by alternative splicing in the process of apoptotic DNA fragmentation.
Collapse
Affiliation(s)
- Xialu Li
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | | | |
Collapse
|
32
|
Sapra AK, Arava Y, Khandelia P, Vijayraghavan U. Genome-wide Analysis of Pre-mRNA Splicing. J Biol Chem 2004; 279:52437-46. [PMID: 15452114 DOI: 10.1074/jbc.m408815200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Removal of pre-mRNA introns is an essential step in eukaryotic genome interpretation. The spliceosome, a ribonucleoprotein performs this critical function; however, precise roles for many of its proteins remain unknown. Genome-wide consequences triggered by the loss of a specific factor can elucidate its function in splicing and its impact on other cellular processes. We have employed splicing-sensitive DNA microarrays, with yeast open reading frames and intron sequences, to detect changes in splicing efficiency and global expression. Comparison of expression profiles, for intron-containing transcripts, among mutants of two second-step factors, Prp17 and Prp22, reveals their unique and shared effects on global splicing. This analysis enabled the identification of substrates dependent on Prp17. We find a significant Prp17 role in splicing of introns which are longer than 200nts and note its dispensability when introns have a < or =13-nucleotide spacing between their branch point nucleotide and 3 ' splice site. In vitro splicing of substrates with varying branch nucleotide to 3 ' splice site distances supports the differential Prp17 dependencies inferred from the in vivo analysis. Furthermore, we tested the predicted dispensability of Prp17 for splicing short introns in the evolutionarily distant yeast, Schizosaccharomyces pombe, where the genome contains predominantly short introns. SpPrp17 was non-essential at all growth temperatures implying that functional evolution of splicing factors is integrated with genome evolution. Together our studies point to a role for budding yeast Prp17 in splicing of subsets of introns and have predictive value for deciphering the functions of splicing factors in gene expression and regulation in other eukaryotes.
Collapse
Affiliation(s)
- Aparna K Sapra
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | | | | | | |
Collapse
|
33
|
Ivanov AI, Rovescalli AC, Pozzi P, Yoo S, Mozer B, Li HP, Yu SH, Higashida H, Guo V, Spencer M, Nirenberg M. Genes required for Drosophila nervous system development identified by RNA interference. Proc Natl Acad Sci U S A 2004; 101:16216-21. [PMID: 15534205 PMCID: PMC528945 DOI: 10.1073/pnas.0407188101] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
RNA interference was used to screen 3,314 Drosophila double-stranded RNAs, corresponding to approximately 25% of Drosophila genes, for genes that affect the development of the embryonic nervous system. RNA-interference-mediated gene silencing in Drosophila embryos resulted in loss-of-function mutant phenotypes for 43 genes, which is 1.3% of the genes that were screened. We found 18 genes that were not known previously to affect the development of the nervous system. The functions of some of the genes are unknown. Other genes encode protein kinases, transcription factors, and signaling proteins, as well as proteins with other functions.
Collapse
Affiliation(s)
- Andrej I Ivanov
- Laboratory of Biochemical Genetics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Current awareness on yeast. Yeast 2004; 21:1233-40. [PMID: 15580707 DOI: 10.1002/yea.1096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
35
|
Abstract
Alternative splicing creates transcriptome diversification, possibly leading to speciation. A large fraction of the protein-coding genes of multicellular organisms are alternatively spliced, although no regulated splicing has been detected in unicellular eukaryotes such as yeasts. A comparative analysis of unicellular and multicellular eukaryotic 5' splice sites has revealed important differences - the plasticity of the 5' splice sites of multicellular eukaryotes means that these sites can be used in both constitutive and alternative splicing, and for the regulation of the inclusion/skipping ratio in alternative splicing. So, alternative splicing might have originated as a result of relaxation of the 5' splice site recognition in organisms that originally could support only constitutive splicing.
Collapse
Affiliation(s)
- Gil Ast
- Department of Human Genetics and Molecular Medicine, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel.
| |
Collapse
|