1
|
Lau NC, Macias VM. Transposon and Transgene Tribulations in Mosquitoes: A Perspective of piRNA Proportions. DNA 2024; 4:104-128. [PMID: 39076684 PMCID: PMC11286205 DOI: 10.3390/dna4020006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Mosquitoes, like Drosophila, are dipterans, the order of "true flies" characterized by a single set of two wings. Drosophila are prime model organisms for biomedical research, while mosquito researchers struggle to establish robust molecular biology in these that are arguably the most dangerous vectors of human pathogens. Both insects utilize the RNA interference (RNAi) pathway to generate small RNAs to silence transposons and viruses, yet details are emerging that several RNAi features are unique to each insect family, such as how culicine mosquitoes have evolved extreme genomic feature differences connected to their unique RNAi features. A major technical difference in the molecular genetic studies of these insects is that generating stable transgenic animals are routine in Drosophila but still variable in stability in mosquitoes, despite genomic DNA-editing advances. By comparing and contrasting the differences in the RNAi pathways of Drosophila and mosquitoes, in this review we propose a hypothesis that transgene DNAs are possibly more intensely targeted by mosquito RNAi pathways and chromatin regulatory pathways than in Drosophila. We review the latest findings on mosquito RNAi pathways, which are still much less well understood than in Drosophila, and we speculate that deeper study into how mosquitoes modulate transposons and viruses with Piwi-interacting RNAs (piRNAs) will yield clues to improving transgene DNA expression stability in transgenic mosquitoes.
Collapse
Affiliation(s)
- Nelson C. Lau
- Department of Biochemistry and Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
- Genome Science Institute and National Emerging Infectious Disease Laboratory, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
| | - Vanessa M. Macias
- Department of Biology, University of North Texas, Denton, TX 76205, USA
- Advanced Environmental Research Institute, University of North Texas, Denton, TX 76205, USA
| |
Collapse
|
2
|
Yoth M, Maupetit-Méhouas S, Akkouche A, Gueguen N, Bertin B, Jensen S, Brasset E. Reactivation of a somatic errantivirus and germline invasion in Drosophila ovaries. Nat Commun 2023; 14:6096. [PMID: 37773253 PMCID: PMC10541861 DOI: 10.1038/s41467-023-41733-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 09/15/2023] [Indexed: 10/01/2023] Open
Abstract
Most Drosophila transposable elements are LTR retrotransposons, some of which belong to the genus Errantivirus and share structural and functional characteristics with vertebrate endogenous retroviruses. Like endogenous retroviruses, it is unclear whether errantiviruses retain some infectivity and transposition capacity. We created conditions where control of the Drosophila ZAM errantivirus through the piRNA pathway was abolished leading to its de novo reactivation in somatic gonadal cells. After reactivation, ZAM invaded the oocytes and severe fertility defects were observed. While ZAM expression persists in the somatic gonadal cells, the germline then set up its own adaptive genomic immune response by producing piRNAs against the constantly invading errantivirus, restricting invasion. Our results suggest that although errantiviruses are continuously repressed by the piRNA pathway, they may retain their ability to infect the germline and transpose, thus allowing them to efficiently invade the germline if they are expressed.
Collapse
Affiliation(s)
- Marianne Yoth
- iGReD, Université Clermont Auvergne, CNRS, INSERM, Faculté de Médecine, 63000, Clermont-Ferrand, France
| | | | - Abdou Akkouche
- iGReD, Université Clermont Auvergne, CNRS, INSERM, Faculté de Médecine, 63000, Clermont-Ferrand, France
| | - Nathalie Gueguen
- iGReD, Université Clermont Auvergne, CNRS, INSERM, Faculté de Médecine, 63000, Clermont-Ferrand, France
| | - Benjamin Bertin
- LIMAGRAIN EUROPE, Centre de recherche, 63720, Chappes, France
| | - Silke Jensen
- iGReD, Université Clermont Auvergne, CNRS, INSERM, Faculté de Médecine, 63000, Clermont-Ferrand, France.
| | - Emilie Brasset
- iGReD, Université Clermont Auvergne, CNRS, INSERM, Faculté de Médecine, 63000, Clermont-Ferrand, France.
| |
Collapse
|
3
|
Yoth M, Jensen S, Brasset E. The Intricate Evolutionary Balance between Transposable Elements and Their Host: Who Will Kick at Goal and Convert the Next Try? BIOLOGY 2022; 11:710. [PMID: 35625438 PMCID: PMC9138309 DOI: 10.3390/biology11050710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/15/2022] [Accepted: 04/26/2022] [Indexed: 11/29/2022]
Abstract
Transposable elements (TEs) are mobile DNA sequences that can jump from one genomic locus to another and that have colonized the genomes of all living organisms. TE mobilization and accumulation are an important source of genomic innovations that greatly contribute to the host species evolution. To ensure their maintenance and amplification, TE transposition must occur in the germ cell genome. As TE transposition is also a major threat to genome integrity, the outcome of TE mobility in germ cell genomes could be highly dangerous because such mutations are inheritable. Thus, organisms have developed specialized strategies to protect the genome integrity from TE transposition, particularly in germ cells. Such effective TE silencing, together with ongoing mutations and negative selection, should result in the complete elimination of functional TEs from genomes. However, TEs have developed efficient strategies for their maintenance and spreading in populations, particularly by using horizontal transfer to invade the genome of novel species. Here, we discuss how TEs manage to bypass the host's silencing machineries to propagate in its genome and how hosts engage in a fightback against TE invasion and propagation. This shows how TEs and their hosts have been evolving together to achieve a fine balance between transposition and repression.
Collapse
Affiliation(s)
| | | | - Emilie Brasset
- iGReD, CNRS, INSERM, Faculté de Médecine, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (M.Y.); (S.J.)
| |
Collapse
|
4
|
New insights from the virome of Halyomorpha halys (Stål, 1855). Virus Res 2022; 316:198802. [DOI: 10.1016/j.virusres.2022.198802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 11/20/2022]
|
5
|
Palazzo A, Lorusso P, Miskey C, Walisko O, Gerbino A, Marobbio CMT, Ivics Z, Marsano RM. Transcriptionally promiscuous "blurry" promoters in Tc1/ mariner transposons allow transcription in distantly related genomes. Mob DNA 2019; 10:13. [PMID: 30988701 PMCID: PMC6446368 DOI: 10.1186/s13100-019-0155-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 03/26/2019] [Indexed: 12/04/2022] Open
Abstract
Background We have recently described a peculiar feature of the promoters in two Drosophila Tc1-like elements, Bari1 and Bari3. The AT-richness and the presence of weak core-promoter motifs make these promoters, that we have defined “blurry”, able to activate transcription of a reporter gene in cellular systems as diverse as fly, human, yeast and bacteria. In order to clarify whether the blurry promoter is a specific feature of the Bari transposon family, we have extended this study to promoters isolated from three additional DNA transposon and from two additional LTR retrotransposons. Results Here we show that the blurry promoter is also a feature of two vertebrate transposable elements, Sleeping Beauty and Hsmar1, belonging to the Tc1/mariner superfamily. In contrast, this feature is not shared by the promoter of the hobo transposon, which belongs to the hAT superfamily, nor by LTR retrotransposon-derived promoters, which, in general, do not activate transcription when introduced into non-related genomes. Conclusions Our results suggest that the blurry promoter could be a shared feature of the members of the Tc1/mariner superfamily with possible evolutionary and biotechnological implications. Electronic supplementary material The online version of this article (10.1186/s13100-019-0155-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Antonio Palazzo
- 1Department of Biology, University of Bari "Aldo Moro", via Orabona 4, 70125 Bari, Italy.,Present address: Laboratory of Translational Nanotechnology, "Istituto Tumori Giovanni Paolo II" I.R.C.C.S, Viale Orazio Flacco 65, 70125 Bari, Italy
| | - Patrizio Lorusso
- 1Department of Biology, University of Bari "Aldo Moro", via Orabona 4, 70125 Bari, Italy
| | - Csaba Miskey
- 2Transposition and Genome Engineering, Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, Germany
| | - Oliver Walisko
- 2Transposition and Genome Engineering, Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, Germany
| | - Andrea Gerbino
- 3Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy
| | | | - Zoltán Ivics
- 2Transposition and Genome Engineering, Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, Germany
| | | |
Collapse
|
6
|
Mugat B, Akkouche A, Serrano V, Armenise C, Li B, Brun C, Fulga TA, Van Vactor D, Pélisson A, Chambeyron S. MicroRNA-Dependent Transcriptional Silencing of Transposable Elements in Drosophila Follicle Cells. PLoS Genet 2015; 11:e1005194. [PMID: 25993106 PMCID: PMC4451950 DOI: 10.1371/journal.pgen.1005194] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 04/02/2015] [Indexed: 12/21/2022] Open
Abstract
RNA interference-related silencing mechanisms concern very diverse and distinct biological processes, from gene regulation (via the microRNA pathway) to defense against molecular parasites (through the small interfering RNA and the Piwi-interacting RNA pathways). Small non-coding RNAs serve as specificity factors that guide effector proteins to ribonucleic acid targets via base-pairing interactions, to achieve transcriptional or post-transcriptional regulation. Because of the small sequence complementarity required for microRNA-dependent post-transcriptional regulation, thousands of microRNA (miRNA) putative targets have been annotated in Drosophila. In Drosophila somatic ovarian cells, genomic parasites, such as transposable elements (TEs), are transcriptionally repressed by chromatin changes induced by Piwi-interacting RNAs (piRNAs) that prevent them from invading the germinal genome. Here we show, for the first time, that a functional miRNA pathway is required for the piRNA-mediated transcriptional silencing of TEs in this tissue. Global miRNA depletion, caused by tissue- and stage-specific knock down of drosha (involved in miRNA biogenesis), AGO1 or gawky (both responsible for miRNA activity), resulted in loss of TE-derived piRNAs and chromatin-mediated transcriptional de-silencing of TEs. This specific TE de-repression was also observed upon individual titration (by expression of the complementary miRNA sponge) of two miRNAs (miR-14 and miR-34) as well as in a miR-14 loss-of-function mutant background. Interestingly, the miRNA defects differentially affected TE- and 3' UTR-derived piRNAs. To our knowledge, this is the first indication of possible differences in the biogenesis or stability of TE- and 3' UTR-derived piRNAs. This work is one of the examples of detectable phenotypes caused by loss of individual miRNAs in Drosophila and the first genetic evidence that miRNAs have a role in the maintenance of genome stability via piRNA-mediated TE repression.
Collapse
Affiliation(s)
- Bruno Mugat
- Institut de Génétique Humaine, Centre National de la Recherche Scientifique, Montpellier, France
| | - Abdou Akkouche
- Institut de Génétique Humaine, Centre National de la Recherche Scientifique, Montpellier, France
| | - Vincent Serrano
- Institut de Génétique Humaine, Centre National de la Recherche Scientifique, Montpellier, France
| | - Claudia Armenise
- Institut de Génétique Humaine, Centre National de la Recherche Scientifique, Montpellier, France
| | - Blaise Li
- Institut de Génétique Humaine, Centre National de la Recherche Scientifique, Montpellier, France
| | - Christine Brun
- Institut de Génétique Humaine, Centre National de la Recherche Scientifique, Montpellier, France
| | - Tudor A. Fulga
- Department of Cell Biology and Program in Neuroscience, Harvard Medical School, Boston, Massachusetts, United States of America
| | - David Van Vactor
- Department of Cell Biology and Program in Neuroscience, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Alain Pélisson
- Institut de Génétique Humaine, Centre National de la Recherche Scientifique, Montpellier, France
| | - Séverine Chambeyron
- Institut de Génétique Humaine, Centre National de la Recherche Scientifique, Montpellier, France
| |
Collapse
|
7
|
Sytnikova YA, Rahman R, Chirn GW, Clark JP, Lau NC. Transposable element dynamics and PIWI regulation impacts lncRNA and gene expression diversity in Drosophila ovarian cell cultures. Genome Res 2014; 24:1977-90. [PMID: 25267525 PMCID: PMC4248314 DOI: 10.1101/gr.178129.114] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Piwi proteins and Piwi-interacting RNAs (piRNAs) repress transposable elements (TEs) from mobilizing in gonadal cells. To determine the spectrum of piRNA-regulated targets that may extend beyond TEs, we conducted a genome-wide survey for transcripts associated with PIWI and for transcripts affected by PIWI knockdown in Drosophila ovarian somatic sheet (OSS) cells, a follicle cell line expressing the Piwi pathway. Despite the immense sequence diversity among OSS cell piRNAs, our analysis indicates that TE transcripts are the major transcripts associated with and directly regulated by PIWI. However, several coding genes were indirectly regulated by PIWI via an adjacent de novo TE insertion that generated a nascent TE transcript. Interestingly, we noticed that PIWI-regulated genes in OSS cells greatly differed from genes affected in a related follicle cell culture, ovarian somatic cells (OSCs). Therefore, we characterized the distinct genomic TE insertions across four OSS and OSC lines and discovered dynamic TE landscapes in gonadal cultures that were defined by a subset of active TEs. Particular de novo TEs appeared to stimulate the expression of novel candidate long noncoding RNAs (lncRNAs) in a cell lineage-specific manner, and some of these TE-associated lncRNAs were associated with PIWI and overlapped PIWI-regulated genes. Our analyses of OSCs and OSS cells demonstrate that despite having a Piwi pathway to suppress endogenous mobile elements, gonadal cell TE landscapes can still dramatically change and create transcriptome diversity.
Collapse
Affiliation(s)
- Yuliya A Sytnikova
- Department of Biology and Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts 02454, USA
| | - Reazur Rahman
- Department of Biology and Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts 02454, USA
| | - Gung-Wei Chirn
- Department of Biology and Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts 02454, USA
| | - Josef P Clark
- Department of Biology and Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts 02454, USA
| | - Nelson C Lau
- Department of Biology and Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts 02454, USA
| |
Collapse
|
8
|
Desset S, Buchon N, Meignin C, Coiffet M, Vaury C. In Drosophila melanogaster the COM locus directs the somatic silencing of two retrotransposons through both Piwi-dependent and -independent pathways. PLoS One 2008; 3:e1526. [PMID: 18253480 PMCID: PMC2211404 DOI: 10.1371/journal.pone.0001526] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Accepted: 01/01/2008] [Indexed: 11/19/2022] Open
Abstract
Background In the Drosophila germ line, repeat-associated small interfering RNAs (rasiRNAs) ensure genomic stability by silencing endogenous transposable elements. This RNA silencing involves small RNAs of 26-30 nucleotides that are mainly produced from the antisense strand and function through the Piwi protein. Piwi belongs to the subclass of the Argonaute family of RNA interference effector proteins, which are expressed in the germline and in surrounding somatic tissues of the reproductive apparatus. In addition to this germ-line expression, Piwi has also been implicated in diverse functions in somatic cells. Principal Findings Here, we show that two LTR retrotransposons from Drosophila melanogaster, ZAM and Idefix, are silenced by an RNA silencing pathway that has characteristics of the rasiRNA pathway and that specifically recognizes and destroys the sense-strand RNAs of the retrotransposons. This silencing depends on Piwi in the follicle cells surrounding the oocyte. Interestingly, this silencing is active in all the somatic tissues examined from embryos to adult flies. In these somatic cells, while the silencing still involves the strict recognition of sense-strand transcripts, it displays the marked difference of being independent of the Piwi protein. Finally, we present evidence that in all the tissues examined, the repression is controlled by the heterochromatic COM locus. Conclusion Our data shed further light on the silencing mechanism that acts to target Drosophila LTR retrotransposons in somatic cells throughout fly development. They demonstrate that different RNA silencing pathways are involved in ovarian versus other somatic tissues, since Piwi is necessary for silencing in the former tissues but is dispensable in the latter. They further demonstrate that these pathways are controlled by the heterochromatic COM locus which ensures the overall protection of Drosophila against the detrimental effects of random retrotransposon mobilization.
Collapse
Affiliation(s)
- Sophie Desset
- Centre National de la Recherche Scientifique (CNRS), UMR6247-GReD, Clermont Université; INSERM, Faculté de Médecine, BP38, Clermont-Ferrand, France
| | - Nicolas Buchon
- Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Carine Meignin
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Michael Coiffet
- Centre National de la Recherche Scientifique (CNRS), UMR6247-GReD, Clermont Université; INSERM, Faculté de Médecine, BP38, Clermont-Ferrand, France
| | - Chantal Vaury
- Centre National de la Recherche Scientifique (CNRS), UMR6247-GReD, Clermont Université; INSERM, Faculté de Médecine, BP38, Clermont-Ferrand, France
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
9
|
Pearson MN, Rohrmann GF. Envelope gene capture and insect retrovirus evolution: The relationship between errantivirus and baculovirus envelope proteins. Virus Res 2006; 118:7-15. [PMID: 16343674 DOI: 10.1016/j.virusres.2005.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2005] [Revised: 10/20/2005] [Accepted: 11/03/2005] [Indexed: 10/25/2022]
Abstract
In this report the evolution of insect retroviruses (errantiviruses) is reviewed with particular emphasis on the relationship between their env protein and a baculovirus envelope fusion protein. In addition, selected features of the env protein from the errantivirus Dme17.6V are examined. These include characterization of the 21 amino acid predicted fusion peptide sequence that is highly homologous to a region of baculovirus envelope fusion proteins. We found that, although this sequence could not substitute for the homologous sequence in the baculovirus LD130 envelope fusion protein, by changing four amino acids, the hybrid construct became active for low-pH induced cell fusion. In addition, a Dme17.6V env-egfp construct was found to localize to cell membranes.
Collapse
Affiliation(s)
- Margot N Pearson
- Department of Microbiology, Oregon State University Corvallis, 97331-3804, USA
| | | |
Collapse
|
10
|
Lipatov M, Lenkov K, Petrov DA, Bergman CM. Paucity of chimeric gene-transposable element transcripts in the Drosophila melanogaster genome. BMC Biol 2005; 3:24. [PMID: 16283942 PMCID: PMC1308810 DOI: 10.1186/1741-7007-3-24] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2005] [Accepted: 11/12/2005] [Indexed: 11/27/2022] Open
Abstract
Background Recent analysis of the human and mouse genomes has shown that a substantial proportion of protein coding genes and cis-regulatory elements contain transposable element (TE) sequences, implicating TE domestication as a mechanism for the origin of genetic novelty. To understand the general role of TE domestication in eukaryotic genome evolution, it is important to assess the acquisition of functional TE sequences by host genomes in a variety of different species, and to understand in greater depth the population dynamics of these mutational events. Results Using an in silico screen for host genes that contain TE sequences, we identified a set of 63 mature "chimeric" transcripts supported by expressed sequence tag (EST) evidence in the Drosophila melanogaster genome. We found a paucity of chimeric TEs relative to expectations derived from non-chimeric TEs, indicating that the majority (~80%) of TEs that generate chimeric transcripts are deleterious and are not observed in the genome sequence. Using a pooled-PCR strategy to assay the presence of gene-TE chimeras in wild strains, we found that over half of the observed chimeric TE insertions are restricted to the sequenced strain, and ~15% are found at high frequencies in North American D. melanogaster populations. Estimated population frequencies of chimeric TEs did not differ significantly from non-chimeric TEs, suggesting that the distribution of fitness effects for the observed subset of chimeric TEs is indistinguishable from the general set of TEs in the genome sequence. Conclusion In contrast to mammalian genomes, we found that fewer than 1% of Drosophila genes produce mRNAs that include bona fide TE sequences. This observation can be explained by the results of our population genomic analysis, which indicates that most potential chimeric TEs in D. melanogaster are deleterious but that a small proportion may contribute to the evolution of novel gene sequences such as nested or intercalated gene structures. Our results highlight the need to establish the fixity of putative cases of TE domestication identified using genome sequences in order to demonstrate their functional importance, and reveal that the contribution of TE domestication to genome evolution may vary drastically among animal taxa.
Collapse
Affiliation(s)
- Mikhail Lipatov
- Department of Biological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Kapa Lenkov
- Department of Biological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Dmitri A Petrov
- Department of Biological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Casey M Bergman
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|