1
|
Chen X, Fansler MM, Janjoš U, Ule J, Mayr C. The FXR1 network acts as a signaling scaffold for actomyosin remodeling. Cell 2024; 187:5048-5063.e25. [PMID: 39106863 PMCID: PMC11380585 DOI: 10.1016/j.cell.2024.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 05/24/2024] [Accepted: 07/08/2024] [Indexed: 08/09/2024]
Abstract
It is currently not known whether mRNAs fulfill structural roles in the cytoplasm. Here, we report the fragile X-related protein 1 (FXR1) network, an mRNA-protein (mRNP) network present throughout the cytoplasm, formed by FXR1-mediated packaging of exceptionally long mRNAs. These mRNAs serve as an underlying condensate scaffold and concentrate FXR1 molecules. The FXR1 network contains multiple protein binding sites and functions as a signaling scaffold for interacting proteins. We show that it is necessary for RhoA signaling-induced actomyosin reorganization to provide spatial proximity between kinases and their substrates. Point mutations in FXR1, found in its homolog FMR1, where they cause fragile X syndrome, disrupt the network. FXR1 network disruption prevents actomyosin remodeling-an essential and ubiquitous process for the regulation of cell shape, migration, and synaptic function. Our findings uncover a structural role for cytoplasmic mRNA and show how the FXR1 RNA-binding protein as part of the FXR1 network acts as an organizer of signaling reactions.
Collapse
Affiliation(s)
- Xiuzhen Chen
- Cancer Biology and Genetics Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Mervin M Fansler
- Cancer Biology and Genetics Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Urška Janjoš
- National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia; Biosciences PhD Program, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Jernej Ule
- National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia; UK Dementia Research Institute at King's College London, London SE5 9NU, UK
| | - Christine Mayr
- Cancer Biology and Genetics Program, Sloan Kettering Institute, New York, NY 10065, USA.
| |
Collapse
|
2
|
Chen X, Fansler MM, Janjoš U, Ule J, Mayr C. The FXR1 network acts as signaling scaffold for actomyosin remodeling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.05.565677. [PMID: 37961296 PMCID: PMC10635158 DOI: 10.1101/2023.11.05.565677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
It is currently not known whether mRNAs fulfill structural roles in the cytoplasm. Here, we report the FXR1 network, an mRNA-protein (mRNP) network present throughout the cytoplasm, formed by FXR1-mediated packaging of exceptionally long mRNAs. These mRNAs serve as underlying condensate scaffold and concentrate FXR1 molecules. The FXR1 network contains multiple protein binding sites and functions as a signaling scaffold for interacting proteins. We show that it is necessary for RhoA signaling-induced actomyosin reorganization to provide spatial proximity between kinases and their substrates. Point mutations in FXR1, found in its homolog FMR1, where they cause Fragile X syndrome, disrupt the network. FXR1 network disruption prevents actomyosin remodeling-an essential and ubiquitous process for the regulation of cell shape, migration, and synaptic function. These findings uncover a structural role for cytoplasmic mRNA and show how the FXR1 RNA-binding protein as part of the FXR1 network acts as organizer of signaling reactions.
Collapse
Affiliation(s)
- Xiuzhen Chen
- Cancer Biology and Genetics Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Mervin M. Fansler
- Cancer Biology and Genetics Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Urška Janjoš
- National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia
- Biosciences PhD Program, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Jernej Ule
- National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia
- UK Dementia Research Institute at King’s College London, London, SE5 9NU, UK
| | - Christine Mayr
- Cancer Biology and Genetics Program, Sloan Kettering Institute, New York, NY 10065, USA
| |
Collapse
|
3
|
Zhang T, Wang Z, Liu M, Liu L, Yang X, Zhang Y, Bie J, Li Y, Ren M, Song C, Wang W, Tan H, Luo J. Acetylation dependent translocation of EWSR1 regulates CHK2 alternative splicing in response to DNA damage. Oncogene 2022; 41:3694-3704. [PMID: 35732801 DOI: 10.1038/s41388-022-02383-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 11/09/2022]
Abstract
Ewing sarcoma breakpoint region 1 (EWSR1) is a member of FET (FUS/EWSR1/TAF15) RNA-binding family of proteins. The Ewing sarcoma oncoprotein EWS-FLI1 has been extensively studied, while much less is known about EWSR1 itself, especially the potential role of EWSR1 in response to DNA damage. Here, we found that UV irradiation induces acetylation of EWSR1, which is required for its nucleoli translocation. We identified K423, K432, K438, K640, and K643 as the major acetylation sites, p300/CBP and HDAC3/HDAC10 as the major acetyltransferases and deacetylases, respectively. Mechanically, UV-induced EWSR1 acetylation repressed its interaction with spliceosomal component U1C, which caused abnormal splicing of CHK2, suppressing the activity of CHK2 in response to UV irradiation. Taken together, our findings uncover acetylation as a novel regulatory modification of EWSR1, and is essential for its function in DNA damage response.
Collapse
Affiliation(s)
- Tianzhuo Zhang
- Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing, 100191, China.,Department of Biochemistry and Biophysics, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing, 100191, China
| | - Zhe Wang
- Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing, 100191, China
| | - Minghui Liu
- Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing, 100191, China
| | - Lu Liu
- Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing, 100191, China
| | - Xin Yang
- Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing, 100191, China
| | - Yu Zhang
- Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing, 100191, China
| | - Juntao Bie
- Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing, 100191, China
| | - Yutong Li
- Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing, 100191, China
| | - Mengmeng Ren
- Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing, 100191, China
| | - Chen Song
- Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing, 100191, China
| | - Wengong Wang
- Department of Biochemistry and Biophysics, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing, 100191, China
| | - Hongyu Tan
- Department of Anesthesiology, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| | - Jianyuan Luo
- Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing, 100191, China. .,Department of Biochemistry and Biophysics, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing, 100191, China.
| |
Collapse
|
4
|
Affiliation(s)
- Nicolò Riggi
- From the Institute of Pathology, Faculty of Biology and Medicine, University of Lausanne and Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland (N.R., I.S.); and the Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, and the Broad Institute of Harvard University and the Massachusetts Institute of Technology, Cambridge - both in Massachusetts (M.L.S.)
| | - Mario L Suvà
- From the Institute of Pathology, Faculty of Biology and Medicine, University of Lausanne and Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland (N.R., I.S.); and the Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, and the Broad Institute of Harvard University and the Massachusetts Institute of Technology, Cambridge - both in Massachusetts (M.L.S.)
| | - Ivan Stamenkovic
- From the Institute of Pathology, Faculty of Biology and Medicine, University of Lausanne and Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland (N.R., I.S.); and the Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, and the Broad Institute of Harvard University and the Massachusetts Institute of Technology, Cambridge - both in Massachusetts (M.L.S.)
| |
Collapse
|
5
|
Li KKC, Chau BL, Lee KAW. Differential interaction of PRMT1 with RGG-boxes of the FET family proteins EWS and TAF15. Protein Sci 2017; 27:633-642. [PMID: 29193371 DOI: 10.1002/pro.3354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 11/23/2017] [Accepted: 11/27/2017] [Indexed: 12/31/2022]
Abstract
The FET sub-family (FUS/TLS, EWS, TAF15) of RNA-binding proteins have remarkably similar overall structure but diverse biological and pathological roles. The molecular basis for FET protein specialization is largely unknown. Gly-Arg-Rich regions (RGG-boxes) within FET proteins are targets for methylation by Protein-Arginine-Methyl-Transferase-1 (PRMT1) and substrate capture is thought to involve electrostatic attraction between positively charged polyRGG substrates and negatively charged surface channels of PRMT1. Unlike FUS and EWS, a high proportion of TAF15 RGG-boxes are embedded within neutrally charged YGGDR(S/G)G repeats, suggesting that they might not bind well to PRMT1. This notion runs contrary however to a report that YGGDR(S/G)G repeats are methylated by PRMT1. Using peptide-based polyRGG substrates and a novel 2-hybrid binding assay, we find that the Asp residue in YGGDR(S/G)G repeats confers poor binding to PRMT1. Our results therefore indicate that YGGDR(S/G)G repeats may contribute to TAF15 specialization by enabling differential interactions with PRMT1 and reduced overall levels of TAF15 methylation compared with other FET proteins. By analogy with molecular recognition of other disordered polyvalent ligands by globular protein partners, we also propose a dynamic polyelectrostatic model for substrate capture by PRMT1.
Collapse
Affiliation(s)
- Kim K C Li
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, S.A.R, China
| | - Bess L Chau
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, S.A.R, China
| | - Kevin A W Lee
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, S.A.R, China
| |
Collapse
|
6
|
Harlow ML, Maloney N, Roland J, Guillen Navarro MJ, Easton MK, Kitchen-Goosen SM, Boguslawski EA, Madaj ZB, Johnson BK, Bowman MJ, D'Incalci M, Winn ME, Turner L, Hostetter G, Galmarini CM, Aviles PM, Grohar PJ. Lurbinectedin Inactivates the Ewing Sarcoma Oncoprotein EWS-FLI1 by Redistributing It within the Nucleus. Cancer Res 2016; 76:6657-6668. [PMID: 27697767 DOI: 10.1158/0008-5472.can-16-0568] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 08/31/2016] [Accepted: 09/05/2016] [Indexed: 12/17/2022]
Abstract
There is a great need to develop novel approaches to target oncogenic transcription factors with small molecules. Ewing sarcoma is emblematic of this need, as it depends on the continued activity of the EWS-FLI1 transcription factor to maintain the malignant phenotype. We have previously shown that the small molecule trabectedin interferes with EWS-FLI1. Here, we report important mechanistic advances and a second-generation inhibitor to provide insight into the therapeutic targeting of EWS-FLI1. We discovered that trabectedin functionally inactivated EWS-FLI1 by redistributing the protein within the nucleus to the nucleolus. This effect was rooted in the wild-type functions of the EWSR1, compromising the N-terminal half of the chimeric oncoprotein, which is known to be similarly redistributed within the nucleus in the presence of UV light damage. A second-generation trabectedin analogue lurbinectedin (PM01183) caused the same nuclear redistribution of EWS-FLI1, leading to a loss of activity at the promoter, mRNA, and protein levels of expression. Tumor xenograft studies confirmed this effect, and it was increased in combination with irinotecan, leading to tumor regression and replacement of Ewing sarcoma cells with benign fat cells. The net result of combined lurbinectedin and irinotecan treatment was a complete reversal of EWS-FLI1 activity and elimination of established tumors in 30% to 70% of mice after only 11 days of therapy. Our results illustrate the preclinical safety and efficacy of a disease-specific therapy targeting the central oncogenic driver in Ewing sarcoma. Cancer Res; 76(22); 6657-68. ©2016 AACR.
Collapse
Affiliation(s)
- Matt L Harlow
- Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee
| | - Nichole Maloney
- Department of Pediatrics, Vanderbilt University, Nashville, Tennessee
| | - Joseph Roland
- Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | | | | | | | | | | | - Ben K Johnson
- Van Andel Research Institute, Grand Rapids, Michigan
| | | | | | - Mary E Winn
- Van Andel Research Institute, Grand Rapids, Michigan
| | - Lisa Turner
- Van Andel Research Institute, Grand Rapids, Michigan
| | | | | | | | - Patrick J Grohar
- Department of Pediatrics, Vanderbilt University, Nashville, Tennessee. .,Van Andel Research Institute, Grand Rapids, Michigan.,Helen De Vos Children's Hospital, Grand Rapids, Michigan.,Department of Pediatrics, Michigan State University, Grand Rapids, Michigan
| |
Collapse
|
7
|
Chau BL, Ng KP, Li KKC, Lee KA. RGG boxes within the TET/FET family of RNA-binding proteins are functionally distinct. Transcription 2016; 7:141-51. [PMID: 27159574 PMCID: PMC4984686 DOI: 10.1080/21541264.2016.1183071] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 04/20/2016] [Accepted: 04/21/2016] [Indexed: 01/08/2023] Open
Abstract
The multi-functional TET (TAF15/EWS/TLS) or FET (FUS/EWS/TLS) protein family of higher organisms harbor a transcriptional-activation domain (EAD) and an RNA-binding domain (RBD). The transcriptional activation function is, however, only revealed in oncogenic TET-fusion proteins because in native TET proteins it is auto-repressed by RGG-boxes within the TET RBD. Auto-repression is suggested to involve direct cation-pi interactions between multiple Arg residues within RGG boxes and EAD aromatics. Via analysis of TET transcriptional activity in different organisms, we report herein that repression is not autonomous but instead requires additional trans-acting factors. This finding is not supportive of a proposed model whereby repression occurs via a simple intramolecular EAD/RGG-box interaction. We also show that RGG-boxes present within reiterated YGGDRGG repeats that are unique to TAF15, are defective for repression due to the conserved Asp residue. Thus, RGG boxes within TET proteins can be functionally distinguished. While our results show that YGGDRGG repeats are not involved in TAF15 auto-repression, their remarkable number and conservation strongly suggest that they may confer specialized properties to TAF15 and thus contribute to functional differentiation within the TET/FET protein family.
Collapse
Affiliation(s)
- Bess Ling Chau
- Division of Life Science, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong S.A.R., China
| | - King Pan Ng
- Division of Life Science, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong S.A.R., China
| | - Kim K C Li
- Division of Life Science, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong S.A.R., China
| | - Kevin A.W. Lee
- Division of Life Science, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong S.A.R., China
| |
Collapse
|
8
|
Chen T, Song J, Chan HS. Theoretical perspectives on nonnative interactions and intrinsic disorder in protein folding and binding. Curr Opin Struct Biol 2014; 30:32-42. [PMID: 25544254 DOI: 10.1016/j.sbi.2014.12.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 12/02/2014] [Accepted: 12/02/2014] [Indexed: 11/29/2022]
Abstract
The diverse biological functions of intrinsically disordered proteins (IDPs) have markedly raised our appreciation of protein conformational versatility, whereas the existence of energetically favorable yet functional detrimental nonnative interactions underscores the physical limitations of evolutionary optimization. Here we survey recent advances in using biophysical modeling to gain insight into experimentally observed nonnative behaviors and IDP properties. Simulations of IDP interactions to date focus mostly on coupled folding-binding, which follows essentially the same organizing principle as the local-nonlocal coupling mechanism in cooperative folding of monomeric globular proteins. By contrast, more innovative theories of electrostatic and aromatic interactions are needed for the conceptually novel but less-explored 'fuzzy' complexes in which the functionally bound IDPs remain largely disordered.
Collapse
Affiliation(s)
- Tao Chen
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Physics, University of Toronto, Toronto, Ontario M5S 1A7, Canada
| | - Jianhui Song
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Physics, University of Toronto, Toronto, Ontario M5S 1A7, Canada
| | - Hue Sun Chan
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Physics, University of Toronto, Toronto, Ontario M5S 1A7, Canada.
| |
Collapse
|
9
|
Song J, Ng SC, Tompa P, Lee KAW, Chan HS. Polycation-π interactions are a driving force for molecular recognition by an intrinsically disordered oncoprotein family. PLoS Comput Biol 2013; 9:e1003239. [PMID: 24086122 PMCID: PMC3784488 DOI: 10.1371/journal.pcbi.1003239] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 08/12/2013] [Indexed: 12/20/2022] Open
Abstract
Molecular recognition by intrinsically disordered proteins (IDPs) commonly involves specific localized contacts and target-induced disorder to order transitions. However, some IDPs remain disordered in the bound state, a phenomenon coined “fuzziness”, often characterized by IDP polyvalency, sequence-insensitivity and a dynamic ensemble of disordered bound-state conformations. Besides the above general features, specific biophysical models for fuzzy interactions are mostly lacking. The transcriptional activation domain of the Ewing's Sarcoma oncoprotein family (EAD) is an IDP that exhibits many features of fuzziness, with multiple EAD aromatic side chains driving molecular recognition. Considering the prevalent role of cation-π interactions at various protein-protein interfaces, we hypothesized that EAD-target binding involves polycation- π contacts between a disordered EAD and basic residues on the target. Herein we evaluated the polycation-π hypothesis via functional and theoretical interrogation of EAD variants. The experimental effects of a range of EAD sequence variations, including aromatic number, aromatic density and charge perturbations, all support the cation-π model. Moreover, the activity trends observed are well captured by a coarse-grained EAD chain model and a corresponding analytical model based on interaction between EAD aromatics and surface cations of a generic globular target. EAD-target binding, in the context of pathological Ewing's Sarcoma oncoproteins, is thus seen to be driven by a balance between EAD conformational entropy and favorable EAD-target cation-π contacts. Such a highly versatile mode of molecular recognition offers a general conceptual framework for promiscuous target recognition by polyvalent IDPs. Understanding how proteins recognize each other is central to deciphering the inner workings of living things and for biomedical research. It has long been known that the sequence of a protein, which is a string of different amino acids, can dictate how a protein molecule folds into a well-defined shape required for biological tasks. Many folded proteins recognize and bind with each other by a tight geometric fit similar to that between a lock and its key. Recently, however, it has become clear that some proteins function as a flexible string, in constant motion, without forming a stable shape. Understanding how such “disordered” proteins work is challenging. To gain insight, we studied a disordered protein region that causes a large family of human cancers. Employing an innovative combination of experimental and theoretical techniques, we describe a new mode of protein interaction based on multiple simple contacts between one type of amino acid (aromatic) in the disordered protein and another type (positively charged) on the partner protein. Because this mechanism also underlies the ability of the disordered protein to cause cancer, further investigation of this unprecedented mode of protein-protein interaction may open up new avenues for cancer therapy.
Collapse
Affiliation(s)
- Jianhui Song
- Departments of Biochemistry, Molecular Genetics, and Physics, University of Toronto, Toronto, Ontario, Canada
| | - Sheung Chun Ng
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong S.A.R., China
| | - Peter Tompa
- VIB Department of Structural Biology, Vrije Universiteit Brussel, Brussels, Belgium
- Institute of Enzymology, Hungarian Academy of Sciences, Budapest, Hungary
| | - Kevin A. W. Lee
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong S.A.R., China
- * E-mail: (KAWL); (HSC)
| | - Hue Sun Chan
- Departments of Biochemistry, Molecular Genetics, and Physics, University of Toronto, Toronto, Ontario, Canada
- * E-mail: (KAWL); (HSC)
| |
Collapse
|
10
|
Ewing sarcoma protein: a key player in human cancer. Int J Cell Biol 2013; 2013:642853. [PMID: 24082883 PMCID: PMC3776376 DOI: 10.1155/2013/642853] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Accepted: 07/26/2013] [Indexed: 01/04/2023] Open
Abstract
The Ewing sarcoma protein (EWS) is a well-known player in cancer biology for the specific translocations occurring in sarcomas. The EWS-FLI1 gene fusion is the prototypical translocation that encodes the aberrant, chimeric transcription factor, which is a landmark of Ewing tumors. In all described Ewing sarcoma oncogenes, the EWS RNA binding domains are completely missing; thus RNA binding properties are not retained in the hybrid proteins. However, it is currently unknown whether the absence of EWS function in RNA metabolism plays a role in oncogenic transformation or if EWS plays a role by itself in cancer development besides its contribution to the translocation. In this regard, recent reports have highlighted an essential role for EWS in the regulation of DNA damage response (DDR), a process that counteracts genome stability and is often deregulated in cancer cells. The first part of this review will describe the structural features of EWS and its multiple roles in the regulation of gene expression, which are exerted by coordinating different steps in the synthesis and processing of pre-mRNAs. The second part will examine the role of EWS in the regulation of DDR- and cancer-related genes, with potential implications in cancer therapies. Finally, recent advances on the involvement of EWS in neuromuscular disorders will be discussed. Collectively, the information reviewed herein highlights the broad role of EWS in bridging different cellular processes and underlines the contribution of EWS to genome stability and proper cell-cycle progression in higher eukaryotic cells.
Collapse
|
11
|
Panagopoulos I, Thorsen J, Gorunova L, Micci F, Haugom L, Davidson B, Heim S. RNA sequencing identifies fusion of theEWSR1andYY1genes in mesothelioma with t(14;22)(q32;q12). Genes Chromosomes Cancer 2013; 52:733-40. [DOI: 10.1002/gcc.22068] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 03/25/2013] [Accepted: 03/26/2013] [Indexed: 11/11/2022] Open
|
12
|
Oyoshi T, Kurokawa R. Structure of noncoding RNA is a determinant of function of RNA binding proteins in transcriptional regulation. Cell Biosci 2012; 2:1. [PMID: 22214309 PMCID: PMC3274451 DOI: 10.1186/2045-3701-2-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 01/03/2012] [Indexed: 11/10/2022] Open
Abstract
The majority of the noncoding regions of mammalian genomes have been found to be transcribed to generate noncoding RNAs (ncRNAs), resulting in intense interest in their biological roles. During the past decade, numerous ncRNAs and aptamers have been identified as regulators of transcription. 6S RNA, first described as a ncRNA in E. coli, mimics an open promoter structure, which has a large bulge with two hairpin/stalk structures that regulate transcription through interactions with RNA polymerase. B2 RNA, which has stem-loops and unstructured single-stranded regions, represses transcription of mRNA in response to various stresses, including heat shock in mouse cells. The interaction of TLS (translocated in liposarcoma) with CBP/p300 was induced by ncRNAs that bind to TLS, and this in turn results in inhibition of CBP/p300 histone acetyltransferase (HAT) activity in human cells. Transcription regulator EWS (Ewing's sarcoma), which is highly related to TLS, and TLS specifically bind to G-quadruplex structures in vitro. The carboxy terminus containing the Arg-Gly-Gly (RGG) repeat domains in these proteins are necessary for cis-repression of transcription activation and HAT activity by the N-terminal glutamine-rich domain. Especially, the RGG domain in the carboxy terminus of EWS is important for the G-quadruplex specific binding. Together, these data suggest that functions of EWS and TLS are modulated by specific structures of ncRNAs.
Collapse
Affiliation(s)
- Takanori Oyoshi
- Division of Gene Structure and Function Research Center for Genomic Medicine Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama-Ken, Japan, Mail code 350-1241.
| | | |
Collapse
|
13
|
Lee KAW. Molecular recognition by the EWS transcriptional activation domain. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 725:106-25. [PMID: 22399321 DOI: 10.1007/978-1-4614-0659-4_7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Interactions between Intrinsically Disordered Protein Regions (IDRs) and their targets commonly exhibit localised contacts via target-induced disorder to order transitions. Other more complex IDR target interactions have been termed "fuzzy" because the IDR does not form a well-defined induced structure. In some remarkable cases of fuzziness IDR function is apparently sequence independent and conferred by amino acid composition. Such cases have been referred to as "random fuzziness" but the molecular features involved are poorly characterised. The transcriptional activation domain (EAD) of oncogenic Ewing's Sarcoma Fusion Proteins (EFPs) is an ≈280 residue IDR with a biased composition restricted to Ala, Gly, Gln, Pro, Ser, Thr and Tyr. Multiple aromatic side chains (exclusively from Try residues) and the particular EAD composition are crucial for molecular recognition but there appears to be no other major geometrically constrained requirement. Computational analysis of the EAD using PONDR (Molecular Kinetics, Inc. http://www.pondr. com) complements the functional data and shows, accordingly, that propensity for structural order within the EAD is conferred by Tyr residues. To conclude, molecular recognition by the EAD is extraordinarily malleable and involves multiple aromatic contacts facilitated by a flexible peptide backbone and, most likely, a limited number of weaker contributions from amenable side chains. I propose to refer to this mode of fuzzy recognition as "polyaromatic", noting that it shares some fundamental features with the "polyelectrostatic" (phosphorylation-dependent) interaction of the Sic1 Cdk inhibitor and Cdc4._I will also speculate on more detailed models for molecular recognition by the EAD and their relationship to native (non-oncogenic) EAD function.
Collapse
Affiliation(s)
- Kevin A W Lee
- Department of Biology, Hong Kong University of Science and Technology, Hong Kong, China.
| |
Collapse
|
14
|
Takahama K, Kino K, Arai S, Kurokawa R, Oyoshi T. Identification of Ewing’s sarcoma protein as a G-quadruplex DNA- and RNA-binding protein. FEBS J 2011; 278:988-98. [DOI: 10.1111/j.1742-4658.2011.08020.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
15
|
Sardo L, Lucioli A, Tavazza M, Masenga V, Tavazza R, Accotto GP, Noris E. An RGG sequence in the replication-associated protein (Rep) of Tomato yellow leaf curl Sardinia virus is involved in transcriptional repression and severely impacts resistance in Rep-expressing plants. J Gen Virol 2011; 92:204-9. [PMID: 20943892 DOI: 10.1099/vir.0.025817-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Truncated versions of the replication-associated protein (Rep) of Tomato yellow leaf curl Sardinia virus (TYLCSV) can interfere with various viral functions and the N-terminal 130 aa are sufficient for strongly inhibiting C1-gene transcription and virus replication and confer resistance in transgenic plants. In this work, we analysed the relevance of an RGG sequence at aa 124-126, highly conserved in begomoviruses, in these inhibitory functions as well as in the subcellular localization of Rep. Although no role of this RGG sequence was detected by cell fractionation and immunogold labelling in Rep localization, this sequence appears relevant for the transcriptional control of the C1-gene and for the inhibition of viral replication and dramatically impacts resistance in transgenic plants. These results are discussed in the context of the model of Rep-mediated resistance against TYLCSV.
Collapse
Affiliation(s)
- Luca Sardo
- Istituto di Virologia Vegetale, CNR, Strada delle Cacce 73, 10135 Torino, Italy
| | | | | | | | | | | | | |
Collapse
|
16
|
Dr. Jekyll and Mr. Hyde: The Two Faces of the FUS/EWS/TAF15 Protein Family. Sarcoma 2010; 2011:837474. [PMID: 21197473 PMCID: PMC3005952 DOI: 10.1155/2011/837474] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 10/20/2010] [Accepted: 11/01/2010] [Indexed: 12/13/2022] Open
Abstract
FUS, EWS, and TAF15 form the FET family of RNA-binding proteins whose genes are found rearranged with various transcription factor genes predominantly in sarcomas and in rare hematopoietic and epithelial cancers. The resulting fusion gene products have attracted considerable interest as diagnostic and promising therapeutic targets. So far, oncogenic FET fusion proteins have been regarded as strong transcription factors that aberrantly activate or repress target genes of their DNA-binding fusion partners. However, the role of the transactivating domain in the context of the normal FET proteins is poorly defined, and, therefore, our knowledge on how FET aberrations impact on tumor biology is incomplete. Since we believe that a full understanding of aberrant FET protein function can only arise from looking at both sides of the coin, the good and the evil, this paper summarizes evidence for the central function of FET proteins in bridging RNA transcription, processing, transport, and DNA repair.
Collapse
|
17
|
Arginine methylation controls the subcellular localization and functions of the oncoprotein splicing factor SF2/ASF. Mol Cell Biol 2010; 30:2762-74. [PMID: 20308322 DOI: 10.1128/mcb.01270-09] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Alternative splicing and posttranslational modifications (PTMs) are major sources of protein diversity in eukaryotic proteomes. The SR protein SF2/ASF is an oncoprotein that functions in pre-mRNA splicing, with additional roles in other posttranscriptional and translational events. Functional studies of SR protein PTMs have focused exclusively on the reversible phosphorylation of Ser residues in the C-terminal RS domain. We confirmed that human SF2/ASF is methylated at residues R93, R97, and R109, which were identified in a global proteomic analysis of Arg methylation, and further investigated whether these methylated residues regulate the properties of SF2/ASF. We show that the three arginines additively control the subcellular localization of SF2/ASF and that both the positive charge and the methylation state are important. Mutations that block methylation and remove the positive charge result in the cytoplasmic accumulation of SF2/ASF. The consequent decrease in nuclear SF2/ASF levels prevents it from modulating the alternative splicing of target genes, results in higher translation stimulation, and abrogates the enhancement of nonsense-mediated mRNA decay. This study addresses the mechanisms by which Arg methylation and the associated positive charge regulate the activities of SF2/ASF and emphasizes the significance of localization control for an oncoprotein with multiple functions in different cellular compartments.
Collapse
|
18
|
Yan R, Thomas SE, Tsai JH, Yamada Y, McKee BD. SOLO: a meiotic protein required for centromere cohesion, coorientation, and SMC1 localization in Drosophila melanogaster. J Cell Biol 2010; 188:335-49. [PMID: 20142422 PMCID: PMC2819681 DOI: 10.1083/jcb.200904040] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Accepted: 01/10/2010] [Indexed: 12/24/2022] Open
Abstract
Sister chromatid cohesion is essential to maintain stable connections between homologues and sister chromatids during meiosis and to establish correct centromere orientation patterns on the meiosis I and II spindles. However, the meiotic cohesion apparatus in Drosophila melanogaster remains largely uncharacterized. We describe a novel protein, sisters on the loose (SOLO), which is essential for meiotic cohesion in Drosophila. In solo mutants, sister centromeres separate before prometaphase I, disrupting meiosis I centromere orientation and causing nondisjunction of both homologous and sister chromatids. Centromeric foci of the cohesin protein SMC1 are absent in solo mutants at all meiotic stages. SOLO and SMC1 colocalize to meiotic centromeres from early prophase I until anaphase II in wild-type males, but both proteins disappear prematurely at anaphase I in mutants for mei-S332, which encodes the Drosophila homologue of the cohesin protector protein shugoshin. The solo mutant phenotypes and the localization patterns of SOLO and SMC1 indicate that they function together to maintain sister chromatid cohesion in Drosophila meiosis.
Collapse
Affiliation(s)
- Rihui Yan
- Department of Biochemistry, Cellular, and Molecular Biology and Genome Science and Technology Program, University of Tennessee, Knoxville, TN 37996
| | - Sharon E. Thomas
- Department of Biochemistry, Cellular, and Molecular Biology and Genome Science and Technology Program, University of Tennessee, Knoxville, TN 37996
| | - Jui-He Tsai
- Department of Biochemistry, Cellular, and Molecular Biology and Genome Science and Technology Program, University of Tennessee, Knoxville, TN 37996
| | - Yukihiro Yamada
- Department of Biochemistry, Cellular, and Molecular Biology and Genome Science and Technology Program, University of Tennessee, Knoxville, TN 37996
| | - Bruce D. McKee
- Department of Biochemistry, Cellular, and Molecular Biology and Genome Science and Technology Program, University of Tennessee, Knoxville, TN 37996
| |
Collapse
|
19
|
Pahlich S, Quero L, Roschitzki B, Leemann-Zakaryan RP, Gehring H. Analysis of Ewing sarcoma (EWS)-binding proteins: interaction with hnRNP M, U, and RNA-helicases p68/72 within protein-RNA complexes. J Proteome Res 2010; 8:4455-65. [PMID: 19673543 DOI: 10.1021/pr900235t] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The human Ewing Sarcoma (EWS) protein belongs to the TET family of RNA-binding proteins and consists of an N-terminal transcriptional activation domain (EAD) and a C-terminal RNA-binding domain (RBD), which is extensively methylated at arginine residues. This multifunctional protein acts in transcriptional co-activation, DNA-recombination, -pairing and -repair, in splicing, and mRNA transport. The role of arginine methylation in these processes as well as the time and place of methylation within cells is still unclear. In this study, we show that methylation of recombinant EWS protein in HEK cells occurs immediately after or even during translation. Pull-down experiments with recombinant EWS protein as bait, followed by mass spectrometric analysis identified more than 30 interacting proteins independent of whether the EWS protein was methylated or not. The EWS protein interacts via its RBD with RNase-sensitive protein complexes consisting of mainly heterogeneous nuclear ribonucleoproteins (hnRNPs) and RNA helicases. HnRNP M and U, the RNA-helicases p68 and p72, but also actin and tubulin were found to interact directly with the EWS protein. Co-precipitation experiments with recombinant proteins confirmed the interaction of the EWS protein with p68 via its RBD. Colocalization of the EWS protein and the RNA-helicases in the nucleus of HEK cells was visualized by expressing labeled EWS protein and p68 or p72. When co-expressed, the labeled proteins relocated from the nucleoplasm to nucleolar capping structures. As arginine methylation within the RBD of the EWS protein are neither needed for its subcellular localization nor for its protein-protein interaction, a role of EWS protein methylation in RNA-binding and affecting the activation/repression activity or even in the stabilization of the EWS protein seems very likely.
Collapse
Affiliation(s)
- Steffen Pahlich
- Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | | | | | | | | |
Collapse
|
20
|
Shaw DJ, Morse R, Todd AG, Eggleton P, Lorson CL, Young PJ. Identification of a tripartite import signal in the Ewing Sarcoma protein (EWS). Biochem Biophys Res Commun 2009; 390:1197-201. [PMID: 19879242 DOI: 10.1016/j.bbrc.2009.10.120] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Accepted: 10/23/2009] [Indexed: 12/13/2022]
Abstract
The Ewing Sarcoma (EWS) protein is a ubiquitously expressed RNA processing factor that localises predominantly to the nucleus. However, the mechanism through which EWS enters the nucleus remains unclear, with differing reports identifying three separate import signals within the EWS protein. Here we have utilized a panel of truncated EWS proteins to clarify the reported nuclear localisation signals. We describe three C-terminal domains that are important for efficient EWS nuclear localization: (1) the third RGG-motif; (2) the last 10 amino acids (known as the PY-import motif); and (3) the zinc-finger motif. Although these three domains are involved in nuclear import, they are not independently capable of driving the efficient import of a GFP-moiety. However, collectively they form a complex tripartite signal that efficiently drives GFP-import into the nucleus. This study helps clarify the EWS import signal, and the identification of the involvement of both the RGG- and zinc-finger motifs has wide reaching implications.
Collapse
Affiliation(s)
- Debra J Shaw
- Clinical Neurobiology, IBCS, Peninsula College of Medicine and Dentistry, Exeter EX1 2LU, UK
| | | | | | | | | | | |
Collapse
|
21
|
Tan AY, Manley JL. The TET family of proteins: functions and roles in disease. J Mol Cell Biol 2009; 1:82-92. [PMID: 19783543 DOI: 10.1093/jmcb/mjp025] [Citation(s) in RCA: 204] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Translocated in liposarcoma, Ewing's sarcoma and TATA-binding protein-associated factor 15 constitute an interesting and important family of proteins known as the TET proteins. The proteins function in several aspects of cell growth control, including multiple different steps in gene expression, and they are also found mutated in a number of specific diseases. For example, all contain domains for binding nucleic acids and have been shown to function in both RNA polymerase II-mediated transcription and pre-mRNA splicing, possibly connecting these two processes. Chromosomal translocations in human sarcomas result in a fusion of the amino terminus of these proteins, which contains a transcription activation domain, to the DNA-binding domain of a transcription factor. Although the fusion proteins have been characterized in a clinical environment, the function of the cognate full-length protein in normal cells is a more recent topic of study. The first part of this review will describe the TET proteins, followed by detailed descriptions of their multiple roles in cells. The final sections will examine changes that occur in gene regulation in cells expressing the fusion proteins. The clinical implications and treatment of sarcomas will not be addressed but have recently been reviewed.
Collapse
Affiliation(s)
- Adelene Y Tan
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | |
Collapse
|
22
|
Pahlich S, Zakaryan RP, Gehring H. Identification of proteins interacting with protein arginine methyltransferase 8: the Ewing sarcoma (EWS) protein binds independent of its methylation state. Proteins 2009; 72:1125-37. [PMID: 18320585 DOI: 10.1002/prot.22004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Protein arginine methylation is a eukaryotic posttranslational modification that plays a role in transcription, mRNA splicing and transport, in protein-protein interaction, and cell signaling. The type I protein arginine methyltransferase (PRMT) 8 is the only member of the human PRMT family that is localized at the cell membrane and its endogenous substrates have remained unknown as yet. Although PRMT8 was supposed to be expressed only in brain tissue, its presence in HEK 293 (T) cells could be demonstrated. We identified more than 20 PRMT8-binding partners in pull-down experiments using recombinant PRMT8 as bait followed by mass spectrometric identification of the bound proteins. Among the extracted proteins were several heterogeneous nuclear ribonucleoproteins (hnRNP), RNA-helicases (DEAD box proteins), the TET-family proteins TLS, Ewing's sarcoma (EWS), and TAF(II)68, and caprin, which all contain RGG methylation motifs and are potential substrates of PRMT8. Additionally, actin, tubulin, and heat shock proteins belong to the identified proteins. The interaction between PRMT8 and the EWS protein was characterized in more detail. Although binding of endogenous and recombinant EWS protein to PRMT8 as well as colocalization in HEK cells was observed, in vitro methylation assays revealed a rather poor methyltransferase activity of PRMT8 towards the EWS protein and a synthetic RGG-rich reference peptide (K(m), 1.3 microM; k(cat)/K(m), 2.8 x 10(-4) microM(-1) s(-1)) in comparison to PRMT1 (K(m), 0.8 microM; k(cat)/K(m), 8.1 x 10(-3) microM(-1) s(-1)). In contrast, substrate proteins within a cell extract could be methylated by PRMT8 as efficient as by PRMT1. The main interaction site of the EWS protein with PRMT8 was determined to be the C-terminal RGG box 3. Remarkably, complete methylation of the EWS protein did not abrogate the binding to PRMT8, pointing to an adapter role of PRMT8 for nuclear proteins at the cell membrane in addition to its methyltransferase activity.
Collapse
Affiliation(s)
- Steffen Pahlich
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
| | | | | |
Collapse
|
23
|
Jobert L, Argentini M, Tora L. PRMT1 mediated methylation of TAF15 is required for its positive gene regulatory function. Exp Cell Res 2008; 315:1273-86. [PMID: 19124016 DOI: 10.1016/j.yexcr.2008.12.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Revised: 12/04/2008] [Accepted: 12/07/2008] [Indexed: 01/05/2023]
Abstract
TAF15 (formerly TAF(II)68) is a nuclear RNA-binding protein that is associated with a distinct population of TFIID and RNA polymerase II complexes. TAF15 harbours an N-terminal activation domain, an RNA recognition motif (RRM) and many Arg-Gly-Gly (RGG) repeats at its C-terminal end. The N-terminus of TAF15 serves as an essential transforming domain in the fusion oncoprotein created by chromosomal translocation in certain human chondrosarcomas. Post-transcriptional modifications (PTMs) of proteins are known to regulate their activity, however, nothing is known on how PTMs affect TAF15 function. Here we demonstrate that endogenous human TAF15 is methylated in vivo at its numerous RGG repeats. Furthermore, we identify protein arginine N-methyltransferase 1 (PRMT1) as a TAF15 interactor and the major PRMT responsible for its methylation. In addition, the RGG repeat-containing C-terminus of TAF15 is responsible for the shuttling between the nucleus and the cytoplasm and the methylation of RGG repeats affects the subcellular localization of TAF15. The methylation of TAF15 by PRMT1 is required for the ability of TAF15 to positively regulate the expression of the studied endogenous TAF15-target genes. Our findings demonstrate that arginine methylation of TAF15 by PRMT1 is a crucial event determining its proper localization and gene regulatory function.
Collapse
Affiliation(s)
- Laure Jobert
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR 7104, INSERM U 596, Université Louis Pasteur de Strasbourg, Illkirch Cedex, CU de Strasbourg, France
| | | | | |
Collapse
|
24
|
Leemann-Zakaryan RP, Pahlich S, Sedda MJ, Quero L, Grossenbacher D, Gehring H. Dynamic subcellular localization of the Ewing sarcoma proto-oncoprotein and its association with and stabilization of microtubules. J Mol Biol 2008; 386:1-13. [PMID: 19133275 DOI: 10.1016/j.jmb.2008.12.039] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 12/12/2008] [Accepted: 12/12/2008] [Indexed: 11/27/2022]
Abstract
The Ewing sarcoma (EWS) protein is a member of a large family of RNA-binding proteins. Chimeric EWS oncoproteins generated by chromosomal translocations between the EWS protein and several transcription factors cause various malignant tumors. Due to its multifunctional properties, the EWS protein is involved in such processes as meiotic DNA pairing/recombination, cellular senescence, gene expression, RNA processing and transport, and cell signaling. The EWS protein is predominantly located in the nucleus. It was found in the cytoplasm and associated with the cell membrane. In this study, analysis of the localization of endogenous and fluorescently labeled recombinant EWS protein in different phases of the cell cycle in different cell lines revealed a very dynamic subcellular distribution of the EWS protein. In Cos7 and HeLa cells, an association of the EWS protein with the centrosomal compartments was shown. Furthermore, in HEK (human embryonic kidney)-293 (T) cells, an interaction of the overexpressed recombinant EWS-yellow fluorescent protein fusion protein with microtubules, leading to their stabilization and cell cycle arrest, was demonstrated. As an outlook, the present findings provide an important insight into temporally and spatially regulated functions of the EWS protein and, particularly, into its role in the regulation of the cell cycle and possibly cell differentiation.
Collapse
|
25
|
In vitro interaction between the N-terminus of the Ewing's sarcoma protein and the subunit of RNA polymerase II hsRPB7. Mol Biol Rep 2008; 36:1269-74. [PMID: 18607770 DOI: 10.1007/s11033-008-9308-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Accepted: 06/27/2008] [Indexed: 01/05/2023]
Abstract
In vivo and in vitro expressed N-terminal sequence of EWS (EAD) and hsRPB7 (subunit of human RNA polymerase II) were probed for protein-protein interactions using pull-down assays. In result, it was found that the proteins 57Z (residues 1-57 of EAD) and hsRPB7 interact in vitro forming a stable complex. The direct interaction between 57z and hsRPB7 indicate that DHR-related peptides and other small molecules, targeted to N-terminus of EWS might possess therapeutic potentialities as anti-cancer agents to function as inhibitors of EAD-mediated transactivation.
Collapse
|
26
|
Chen S, Segall JE. EppA, a putative substrate of DdERK2, regulates cyclic AMP relay and chemotaxis in Dictyostelium discoideum. EUKARYOTIC CELL 2006; 5:1136-46. [PMID: 16835457 PMCID: PMC1489283 DOI: 10.1128/ec.00383-05] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The mitogen-activated protein kinase DdERK2 is critical for cyclic AMP (cAMP) relay and chemotaxis to cAMP and folate, but the details downstream of DdERK2 are unclear. To search for targets of DdERK2 in Dictyostelium discoideum, 32PO4(3-)-labeled protein samples from wild-type and Dderk2- cells were resolved by 2-dimensional electrophoresis. Mass spectrometry was used to identify a novel 45-kDa protein, named EppA (ERK2-dependent phosphoprotein A), as a substrate of DdERK2 in Dictyostelium. Mutation of potential DdERK2 phosphorylation sites demonstrated that phosphorylation on serine 250 of EppA is DdERK2 dependent. Changing serine 250 to alanine delayed development of Dictyostelium and reduced Dictyostelium chemotaxis to cAMP. Although overexpression of EppA had no significant effect on the development or chemotaxis of Dictyostelium, disruption of the eppA gene led to delayed development and reduced chemotactic responses to both cAMP and folate. Both eppA gene disruption and overexpression of EppA carrying the serine 250-to-alanine mutation led to inhibition of intracellular cAMP accumulation in response to chemoattractant cAMP, a pivotal process in Dictyostelium chemotaxis and development. Our studies indicate that EppA regulates extracellular cAMP-induced signal relay and chemotaxis of Dictyostelium.
Collapse
Affiliation(s)
- Songyang Chen
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, New York 10461, USA
| | | |
Collapse
|
27
|
Pahlich S, Zakaryan RP, Gehring H. Protein arginine methylation: Cellular functions and methods of analysis. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2006; 1764:1890-903. [PMID: 17010682 DOI: 10.1016/j.bbapap.2006.08.008] [Citation(s) in RCA: 194] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2006] [Revised: 08/10/2006] [Accepted: 08/21/2006] [Indexed: 02/01/2023]
Abstract
During the last few years, new members of the growing family of protein arginine methyltransferases (PRMTs) have been identified and the role of arginine methylation in manifold cellular processes like signaling, RNA processing, transcription, and subcellular transport has been extensively investigated. In this review, we describe recent methods and findings that have yielded new insights into the cellular functions of arginine-methylated proteins, and we evaluate the currently used procedures for the detection and analysis of arginine methylation.
Collapse
Affiliation(s)
- Steffen Pahlich
- Biochemisches Institut, Universität Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | | | | |
Collapse
|
28
|
Zakaryan RP, Gehring H. Identification and characterization of the nuclear localization/retention signal in the EWS proto-oncoprotein. J Mol Biol 2006; 363:27-38. [PMID: 16965792 DOI: 10.1016/j.jmb.2006.08.018] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Revised: 08/03/2006] [Accepted: 08/03/2006] [Indexed: 10/24/2022]
Abstract
Ewing sarcoma (EWS) protein, a member of a large family of RNA-binding proteins, contains an N-terminal transcriptional activation domain (EAD) and a C-terminal RNA-binding domain (RBD). Due to its multifunctional properties EWS protein is involved in processes such as gene expression, RNA processing and transport, and cell signaling. Chimeric EWS proteins generated by chromosomal translocations cause malignant tumors. EWS protein is located predominantly in the nucleus, but was found also in the cytosol and associated with the cell membrane. The determinants responsible for the nuclear localization of the protein were as yet unknown. We identified the nuclear localization signal of EWS protein at its C terminus (C-NLS), which is required for the nuclear import and retention of the protein. The C-NLS sequence is conserved in related proto-oncoproteins suggesting an NLS function also in these proteins. Two arginine residues, due to their positive charge, a proline residue and a tyrosine residue are essential for C-NLS function. The nuclear localization of EWS protein is independent of the regions in RBD containing numerous arginine methylation sites, RNA-recognition and zinc finger motifs. Regions in EAD guide the subnuclear partition of EWS protein and contain another but different NLS that allows nucleocytoplasmic shuttling of the N-terminal domain.
Collapse
Affiliation(s)
- Rouzanna P Zakaryan
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | | |
Collapse
|