1
|
Brooks WH. Polyamine Dysregulation and Nucleolar Disruption in Alzheimer's Disease. J Alzheimers Dis 2024; 98:837-857. [PMID: 38489184 DOI: 10.3233/jad-231184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
A hypothesis of Alzheimer's disease etiology is proposed describing how cellular stress induces excessive polyamine synthesis and recycling which can disrupt nucleoli. Polyamines are essential in nucleolar functions, such as RNA folding and ribonucleoprotein assembly. Changes in the nucleolar pool of anionic RNA and cationic polyamines acting as counterions can cause significant nucleolar dynamics. Polyamine synthesis reduces S-adenosylmethionine which, at low levels, triggers tau phosphorylation. Also, polyamine recycling reduces acetyl-CoA needed for acetylcholine, which is low in Alzheimer's disease. Extraordinary nucleolar expansion and/or contraction can disrupt epigenetic control in peri-nucleolar chromatin, such as chromosome 14 with the presenilin-1 gene; chromosome 21 with the amyloid precursor protein gene; chromosome 17 with the tau gene; chromosome 19 with the APOE4 gene; and the inactive X chromosome (Xi; aka "nucleolar satellite") with normally silent spermine synthase (polyamine synthesis) and spermidine/spermine-N1-acetyltransferase (polyamine recycling) alleles. Chromosomes 17, 19 and the Xi have high concentrations of Alu elements which can be transcribed by RNA polymerase III if positioned nucleosomes are displaced from the Alu elements. A sudden flood of Alu RNA transcripts can competitively bind nucleolin which is usually bound to Alu sequences in structural RNAs that stabilize the nucleolar heterochromatic shell. This Alu competition leads to loss of nucleolar integrity with leaking of nucleolar polyamines that cause aggregation of phosphorylated tau. The hypothesis was developed with key word searches (e.g., PubMed) using relevant terms (e.g., Alzheimer's, lupus, nucleolin) based on a systems biology approach and exploring autoimmune disease tautology, gaining synergistic insights from other diseases.
Collapse
|
2
|
Dörner K, Badertscher L, Horváth B, Hollandi R, Molnár C, Fuhrer T, Meier R, Sárazová M, van den Heuvel J, Zamboni N, Horvath P, Kutay U. Genome-wide RNAi screen identifies novel players in human 60S subunit biogenesis including key enzymes of polyamine metabolism. Nucleic Acids Res 2022; 50:2872-2888. [PMID: 35150276 PMCID: PMC8934630 DOI: 10.1093/nar/gkac072] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/18/2022] [Accepted: 01/25/2022] [Indexed: 12/19/2022] Open
Abstract
Ribosome assembly is an essential process that is linked to human congenital diseases and tumorigenesis. While great progress has been made in deciphering mechanisms governing ribosome biogenesis in eukaryotes, an inventory of factors that support ribosome synthesis in human cells is still missing, in particular regarding the maturation of the large 60S subunit. Here, we performed a genome-wide RNAi screen using an imaging-based, single cell assay to unravel the cellular machinery promoting 60S subunit assembly in human cells. Our screen identified a group of 310 high confidence factors. These highlight the conservation of the process across eukaryotes and reveal the intricate connectivity of 60S subunit maturation with other key cellular processes, including splicing, translation, protein degradation, chromatin organization and transcription. Intriguingly, we also identified a cluster of hits comprising metabolic enzymes of the polyamine synthesis pathway. We demonstrate that polyamines, which have long been used as buffer additives to support ribosome assembly in vitro, are required for 60S maturation in living cells. Perturbation of polyamine metabolism results in early defects in 60S but not 40S subunit maturation. Collectively, our data reveal a novel function for polyamines in living cells and provide a rich source for future studies on ribosome synthesis.
Collapse
Affiliation(s)
- Kerstin Dörner
- Institute of Biochemistry, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
- Molecular Life Sciences Ph.D. Program, 8057 Zurich, Switzerland
| | - Lukas Badertscher
- Institute of Biochemistry, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
- Molecular Life Sciences Ph.D. Program, 8057 Zurich, Switzerland
| | - Bianka Horváth
- Institute of Biochemistry, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
- Molecular Life Sciences Ph.D. Program, 8057 Zurich, Switzerland
| | - Réka Hollandi
- Synthetic and Systems Biology Unit, Biological Research Center, 6726 Szeged, Hungary
| | - Csaba Molnár
- Synthetic and Systems Biology Unit, Biological Research Center, 6726 Szeged, Hungary
| | - Tobias Fuhrer
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Roger Meier
- ScopeM, ETH Zürich, 8093 Zürich, Switzerland
| | - Marie Sárazová
- Institute of Biochemistry, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Jasmin van den Heuvel
- Institute of Biochemistry, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Nicola Zamboni
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Peter Horvath
- Synthetic and Systems Biology Unit, Biological Research Center, 6726 Szeged, Hungary
- Institute for Molecular Medicine Finland, University of Helsinki, 00014 Helsinki, Finland
| | - Ulrike Kutay
- Institute of Biochemistry, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
3
|
Brooks W. An Epigenetics-Based Hypothesis of Autoantigen Development in Systemic Lupus Erythematosus. EPIGENOMES 2020; 4:epigenomes4020006. [PMID: 34968240 PMCID: PMC8594704 DOI: 10.3390/epigenomes4020006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/20/2020] [Indexed: 11/16/2022] Open
Abstract
Currently, we have a limited understanding of mechanisms leading to systemic lupus erythematosus, but we know that genetics, environmental factors, and epigenetics contribute to the disease. One common aspect of the various environmental triggers is that they can cause cellular stress. When extraordinary stress occurs, such as viral activation, a cell's response can include increased nucleolar volume and activity to produce more machinery (e.g., ribosomes) to help the cell recover. However, nucleolar expansion can disrupt the epigenetic control in neighboring heterochromatin that comprises the nucleolar shell. This disruption can open underlying vulnerabilities that provoke an autoimmune reaction. Here, we review the "X chromosome-nucleolus nexus" hypothesis, which explains how nucleolar stress can disrupt epigenetically silenced chromatin, especially the neighboring inactive X chromosome (aka the nucleolar satellite). Chromatin disruption can lead to the expression of sequestered DNA, such as Alu elements and fully functional LINE-1 reverse transcriptase genes. In addition, Alu transcripts can disrupt the nucleolar structural integrity, leading to nucleolar disintegration. Such disintegration can leave nucleolar components and products in autoantigenic forms, such as abnormal conformations or incomplete macromolecular assemblies. Recent research on DNA sensing pathways can now be incorporated into the hypothesis to provide further details explaining how autoantibodies to endogenous nucleic acids arise.
Collapse
Affiliation(s)
- Wesley Brooks
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
| |
Collapse
|
4
|
Filippova EV, Weigand S, Kiryukhina O, Wolfe AJ, Anderson WF. Analysis of crystalline and solution states of ligand-free spermidine N-acetyltransferase (SpeG) from Escherichia coli. Acta Crystallogr D Struct Biol 2019; 75:545-553. [PMID: 31205017 PMCID: PMC6580228 DOI: 10.1107/s2059798319006545] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 05/08/2019] [Indexed: 11/10/2022] Open
Abstract
Spermidine N-acetyltransferase (SpeG) transfers an acetyl group from acetyl-coenzyme A to an N-terminal amino group of intracellular spermidine. This acetylation inactivates spermidine, reducing the polyamine toxicity that tends to occur under certain chemical and physical stresses. The structure of the SpeG protein from Vibrio cholerae has been characterized: while the monomer possesses a structural fold similar to those of other Gcn5-related N-acetyltransferase superfamily members, its dodecameric structure remains exceptional. In this paper, structural analyses of SpeG isolated from Escherichia coli are described. Like V. cholerae SpeG, E. coli SpeG forms dodecamers, as revealed by two crystal structures of the ligand-free E. coli SpeG dodecamer determined at 1.75 and 2.9 Å resolution. Although both V. cholerae SpeG and E. coli SpeG can adopt an asymmetric open dodecameric state, solution analysis showed that the oligomeric composition of ligand-free E. coli SpeG differs from that of ligand-free V. cholerae SpeG. Based on these data, it is proposed that the equilibrium balance of SpeG oligomers in the absence of ligands differs from one species to another and thus might be important for SpeG function.
Collapse
Affiliation(s)
- Ekaterina V. Filippova
- Center for Structural Genomics of Infectious Diseases, Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Steven Weigand
- DND-CAT Synchrotron Research Center, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Olga Kiryukhina
- Center for Structural Genomics of Infectious Diseases, Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Alan J. Wolfe
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL 60153, USA
| | - Wayne F. Anderson
- Center for Structural Genomics of Infectious Diseases, Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
5
|
Poidevin L, Unal D, Belda-Palazón B, Ferrando A. Polyamines as Quality Control Metabolites Operating at the Post-Transcriptional Level. PLANTS 2019; 8:plants8040109. [PMID: 31022874 PMCID: PMC6524035 DOI: 10.3390/plants8040109] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 04/17/2019] [Accepted: 04/19/2019] [Indexed: 01/04/2023]
Abstract
Plant polyamines (PAs) have been assigned a large number of physiological functions with unknown molecular mechanisms in many cases. Among the most abundant and studied polyamines, two of them, namely spermidine (Spd) and thermospermine (Tspm), share some molecular functions related to quality control pathways for tightly regulated mRNAs at the level of translation. In this review, we focus on the roles of Tspm and Spd to facilitate the translation of mRNAs containing upstream ORFs (uORFs), premature stop codons, and ribosome stalling sequences that may block translation, thus preventing their degradation by quality control mechanisms such as the nonsense-mediated decay pathway and possible interactions with other mRNA quality surveillance pathways.
Collapse
Affiliation(s)
- Laetitia Poidevin
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, 46022 Valencia, Spain.
| | - Dilek Unal
- Biotechnology Application and Research Center, and Department of Molecular Biology, Faculty of Science and Letter, Bilecik Seyh Edebali University, 11230 Bilecik, Turkey.
| | - Borja Belda-Palazón
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, 46022 Valencia, Spain.
| | - Alejandro Ferrando
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, 46022 Valencia, Spain.
| |
Collapse
|
6
|
Giannopoulou PC, Missiri DA, Kournoutou GG, Sazakli E, Papadopoulos GE, Papaioannou D, Dinos GP, Athanassopoulos CM, Kalpaxis DL. New Chloramphenicol Derivatives from the Viewpoint of Anticancer and Antimicrobial Activity. Antibiotics (Basel) 2019; 8:antibiotics8010009. [PMID: 30699905 PMCID: PMC6466596 DOI: 10.3390/antibiotics8010009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/21/2019] [Accepted: 01/23/2019] [Indexed: 12/26/2022] Open
Abstract
Over the last years, we have been focused on chloramphenicol conjugates that combine in their structure chloramphenicol base with natural polyamines, spermine, spermidine and putrescine, and their modifications. Conjugate 3, with spermidine (SPD) as a natural polyamine linked to chloramphenicol base, showed the best antibacterial and anticancer properties. Using 3 as a prototype, we here explored the influence of the antibacterial and anticancer activity of additional benzyl groups on N1 amino moiety together with modifications of the alkyl length of the aminobutyl fragment of SPD. Our data demonstrate that the novel modifications did not further improve the antibacterial activity of the prototype. However, one of the novel conjugates (4) showed anticancer activity without affecting bacterial growth, thus emerging as a promising anticancer agent, with no adverse effects on bacterial microflora when taken orally.
Collapse
Affiliation(s)
| | - Dionissia A Missiri
- Laboratory of Synthetic Organic Chemistry, Department of Chemistry, University of Patras, GR-26504 Patras, Greece.
| | - Georgia G Kournoutou
- Department of Biochemistry, School of Medicine, University of Patras, GR-26504 Patras, Greece.
| | - Eleni Sazakli
- Laboratory of Public Health, School of Medicine, University of Patras, 26504 Patras, Greece.
| | - Georgios E Papadopoulos
- Department of Biochemistry & Biotechnology, University of Thessaly, Biopolis, GR-41500 Larissa, Greece.
| | - Dionissios Papaioannou
- Laboratory of Synthetic Organic Chemistry, Department of Chemistry, University of Patras, GR-26504 Patras, Greece.
| | - George P Dinos
- Department of Biochemistry, School of Medicine, University of Patras, GR-26504 Patras, Greece.
| | | | - Dimitrios L Kalpaxis
- Department of Biochemistry, School of Medicine, University of Patras, GR-26504 Patras, Greece.
| |
Collapse
|
7
|
Abstract
Polyamines are organic polycations that bind to a variety of cellular molecules, including nucleic acids. Within cells, polyamines contribute to both the efficiency and fidelity of protein synthesis. In addition to directly acting on the translation apparatus to stimulate protein synthesis, the polyamine spermidine serves as a precursor for the essential post-translational modification of the eukaryotic translation factor 5A (eIF5A), which is required for synthesis of proteins containing problematic amino acid sequence motifs, including polyproline tracts, and for termination of translation. The impact of polyamines on translation is highlighted by autoregulation of the translation of mRNAs encoding key metabolic and regulatory proteins in the polyamine biosynthesis pathway, including S-adenosylmethionine decarboxylase (AdoMetDC), antizyme (OAZ), and antizyme inhibitor 1 (AZIN1). Here, we highlight the roles of polyamines in general translation and also in the translational regulation of polyamine biosynthesis.
Collapse
Affiliation(s)
- Thomas E Dever
- From the Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Ivaylo P Ivanov
- From the Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
8
|
Ivanov IP, Shin BS, Loughran G, Tzani I, Young-Baird SK, Cao C, Atkins JF, Dever TE. Polyamine Control of Translation Elongation Regulates Start Site Selection on Antizyme Inhibitor mRNA via Ribosome Queuing. Mol Cell 2018; 70:254-264.e6. [PMID: 29677493 PMCID: PMC5916843 DOI: 10.1016/j.molcel.2018.03.015] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 02/06/2018] [Accepted: 03/14/2018] [Indexed: 12/31/2022]
Abstract
Translation initiation is typically restricted to AUG codons, and scanning eukaryotic ribosomes inefficiently recognize near-cognate codons. We show that queuing of scanning ribosomes behind a paused elongating ribosome promotes initiation at upstream weak start sites. Ribosomal profiling reveals polyamine-dependent pausing of elongating ribosomes on a conserved Pro-Pro-Trp (PPW) motif in an inhibitory non-AUG-initiated upstream conserved coding region (uCC) of the antizyme inhibitor 1 (AZIN1) mRNA, encoding a regulator of cellular polyamine synthesis. Mutation of the PPW motif impairs initiation at the uCC's upstream near-cognate AUU start site and derepresses AZIN1 synthesis, whereas substitution of alternate elongation pause sequences restores uCC translation. Impairing ribosome loading reduces uCC translation and paradoxically derepresses AZIN1 synthesis. Finally, we identify the translation factor eIF5A as a sensor and effector for polyamine control of uCC translation. We propose that stalling of elongating ribosomes triggers queuing of scanning ribosomes and promotes initiation by positioning a ribosome near the start codon.
Collapse
Affiliation(s)
- Ivaylo P Ivanov
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA; School of Biochemistry and Cell Biology, University College Cork, Cork T12 YT57, Ireland.
| | - Byung-Sik Shin
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gary Loughran
- School of Biochemistry and Cell Biology, University College Cork, Cork T12 YT57, Ireland
| | - Ioanna Tzani
- School of Biochemistry and Cell Biology, University College Cork, Cork T12 YT57, Ireland
| | - Sara K Young-Baird
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chune Cao
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - John F Atkins
- School of Biochemistry and Cell Biology, University College Cork, Cork T12 YT57, Ireland
| | - Thomas E Dever
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
9
|
Affiliation(s)
- Raili Ruonala
- Institute of Biotechnology and Department of Biosciences, University of Helsinki, 00014 Helsinki, Finland
- The Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom;, ,
| | - Donghwi Ko
- The Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom;, ,
| | - Ykä Helariutta
- Institute of Biotechnology and Department of Biosciences, University of Helsinki, 00014 Helsinki, Finland
- The Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom;, ,
| |
Collapse
|
10
|
Shin BS, Katoh T, Gutierrez E, Kim JR, Suga H, Dever TE. Amino acid substrates impose polyamine, eIF5A, or hypusine requirement for peptide synthesis. Nucleic Acids Res 2017; 45:8392-8402. [PMID: 28637321 PMCID: PMC5737446 DOI: 10.1093/nar/gkx532] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 06/05/2017] [Accepted: 06/08/2017] [Indexed: 01/20/2023] Open
Abstract
Whereas ribosomes efficiently catalyze peptide bond synthesis by most amino acids, the imino acid proline is a poor substrate for protein synthesis. Previous studies have shown that the translation factor eIF5A and its bacterial ortholog EF-P bind in the E site of the ribosome where they contact the peptidyl-tRNA in the P site and play a critical role in promoting the synthesis of polyproline peptides. Using misacylated Pro-tRNAPhe and Phe-tRNAPro, we show that the imino acid proline and not tRNAPro imposes the primary eIF5A requirement for polyproline synthesis. Though most proline analogs require eIF5A for efficient peptide synthesis, azetidine-2-caboxylic acid, a more flexible four-membered ring derivative of proline, shows relaxed eIF5A dependency, indicating that the structural rigidity of proline might contribute to the requirement for eIF5A. Finally, we examine the interplay between eIF5A and polyamines in promoting translation elongation. We show that eIF5A can obviate the polyamine requirement for general translation elongation, and that this activity is independent of the conserved hypusine modification on eIF5A. Thus, we propose that the body of eIF5A functionally substitutes for polyamines to promote general protein synthesis and that the hypusine modification on eIF5A is critically important for poor substrates like proline.
Collapse
Affiliation(s)
- Byung-Sik Shin
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Takayuki Katoh
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Erik Gutierrez
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joo-Ran Kim
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Thomas E. Dever
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
11
|
Torres-Nuñez A, Faulds K, Graham D, Alvarez-Puebla RA, Guerrini L. Silver colloids as plasmonic substrates for direct label-free surface-enhanced Raman scattering analysis of DNA. Analyst 2016; 141:5170-80. [DOI: 10.1039/c6an00911e] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Unraveling the role played by the surface chemistry of silver colloids in the direct SERS analysis of DNA.
Collapse
Affiliation(s)
- A. Torres-Nuñez
- Medcom Advance
- 08840 Viladecans
- Spain
- Centro Tecnológico de la Química de Catalunya
- 43007 Tarragona
| | - K. Faulds
- Department of Pure and Applied Chemistry
- Technology and Innovation Centre
- University of Strathclyde
- Glasgow G1 1RD
- UK
| | - D. Graham
- Department of Pure and Applied Chemistry
- Technology and Innovation Centre
- University of Strathclyde
- Glasgow G1 1RD
- UK
| | - R. A. Alvarez-Puebla
- Medcom Advance
- 08840 Viladecans
- Spain
- Centro Tecnológico de la Química de Catalunya
- 43007 Tarragona
| | - L. Guerrini
- Medcom Advance
- 08840 Viladecans
- Spain
- Department of Pure and Applied Chemistry
- Technology and Innovation Centre
| |
Collapse
|
12
|
Magoulas GE, Kostopoulou ON, Garnelis T, Athanassopoulos CM, Kournoutou GG, Leotsinidis M, Dinos GP, Papaioannou D, Kalpaxis DL. Synthesis and antimicrobial activity of chloramphenicol-polyamine conjugates. Bioorg Med Chem 2015; 23:3163-74. [PMID: 26001343 DOI: 10.1016/j.bmc.2015.04.069] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 04/23/2015] [Accepted: 04/24/2015] [Indexed: 10/23/2022]
Abstract
A series of chloramphenicol (CAM) amides with polyamines (PAs), suitable for structure-activity relationship studies, were synthesized either by direct attachment of the PA chain on the 2-aminopropane-1,3-diol backbone of CAM, previously oxidized selectively at its primary hydroxyl group, or from chloramphenicol base (CLB) through acylation with succinic or phthalic anhydride and finally coupling with a PA. Conjugates 4 and 5, in which the CLB moiety was attached on N4 and N1 positions, respectively, of the N(8),N(8)-dibenzylated spermidine through the succinate linker, were the most potent antibacterial agents. Both conjugates were internalized into Escherichia coli cells by using the spermidine-preferential uptake system and caused decrease in protein and polyamine content of the cells. Noteworthy, conjugate 4 displayed comparable activity to CAM in MRSA or wild-type strains of Staphylococcus aureus and Escherichia coli, but superior activity in E. coli strains possessing ribosomal mutations or expressing the CAM acetyltransferase (cat) gene. Lead compounds, and in particular conjugate 4, have been therefore discovered during the course of the present work with clinical potential.
Collapse
Affiliation(s)
- George E Magoulas
- Laboratory of Synthetic Organic Chemistry, Department of Chemistry, University of Patras, GR-26504 Patras, Greece
| | - Ourania N Kostopoulou
- Department of Biochemistry, School of Medicine, University of Patras, GR-26504 Patras, Greece
| | - Thomas Garnelis
- Laboratory of Synthetic Organic Chemistry, Department of Chemistry, University of Patras, GR-26504 Patras, Greece
| | | | - Georgia G Kournoutou
- Department of Biochemistry, School of Medicine, University of Patras, GR-26504 Patras, Greece
| | - Michael Leotsinidis
- Department of Public Health, School of Medicine, University of Patras, GR-26504 Patras, Greece
| | - George P Dinos
- Department of Biochemistry, School of Medicine, University of Patras, GR-26504 Patras, Greece
| | - Dionissios Papaioannou
- Laboratory of Synthetic Organic Chemistry, Department of Chemistry, University of Patras, GR-26504 Patras, Greece.
| | - Dimitrios L Kalpaxis
- Department of Biochemistry, School of Medicine, University of Patras, GR-26504 Patras, Greece.
| |
Collapse
|
13
|
Brooks WH, Renaudineau Y. Epigenetics and autoimmune diseases: the X chromosome-nucleolus nexus. Front Genet 2015; 6:22. [PMID: 25763008 PMCID: PMC4329817 DOI: 10.3389/fgene.2015.00022] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 01/16/2015] [Indexed: 12/18/2022] Open
Abstract
Autoimmune diseases occur more often in females, suggesting a key role for the X chromosome. X chromosome inactivation, a major epigenetic feature in female cells that provides dosage compensation of X-linked genes to avoid overexpression, presents special vulnerabilities that can contribute to the disease process. Disruption of X inactivation can result in loss of dosage compensation with expression from previously sequestered genes, imbalance of gene products, and altered endogenous material out of normal epigenetic context. In addition, the human X has significant differences compared to other species and these differences can contribute to the frequency and intensity of the autoimmune disease in humans as well as the types of autoantigens encountered. Here a link is demonstrated between autoimmune diseases, such as systemic lupus erythematosus, and the X chromosome by discussing cases in which typically non-autoimmune disorders complicated with X chromosome abnormalities also present lupus-like symptoms. The discussion is then extended to the reported spatial and temporal associations of the inactive X chromosome with the nucleolus. When frequent episodes of cellular stress occur, the inactive X chromosome may be disrupted and inadvertently become involved in the nucleolar stress response. Development of autoantigens, many of which are at least transiently components of the nucleolus, is then described. Polyamines, which aid in nucleoprotein complex assembly in the nucleolus, increase further during cell stress, and appear to have an important role in the autoimmune disease process. Autoantigenic endogenous material can potentially be stabilized by polyamines. This presents a new paradigm for autoimmune diseases: that many are antigen-driven and the autoantigens originate from altered endogenous material due to episodes of cellular stress that disrupt epigenetic control. This suggests that epigenetics and the X chromosome are important aspects of autoimmune diseases.
Collapse
Affiliation(s)
- Wesley H Brooks
- Department of Chemistry, University of South Florida Tampa, FL, USA
| | - Yves Renaudineau
- Research Unit INSERM ERI29/EA2216, SFR ScinBios, Labex Igo "Immunotherapy Graft, Oncology", Réseau Épigénétique et Réseau Canaux Ioniques du Cancéropole Grand Ouest, European University of Brittany Brest, France ; Laboratory of Immunology and Immunotherapy, Hôpital Morvan Brest, France
| |
Collapse
|
14
|
Abstract
Recent progress with techniques for monitoring RNA structure in cells such as ‘DMS-Seq’ and ‘Structure-Seq’ suggests that a new era of RNA structure-function exploration is on the horizon. This will also include systematic investigation of the factors required for the structural integrity of RNA. In this context, much evidence accumulated over 50 years suggests that polyamines play important roles as modulators of RNA structure. Here, we summarize and discuss recent literature relating to the roles of these small endogenous molecules in RNA function. We have included studies directed at understanding the binding interactions of polyamines with polynucleotides, tRNA, rRNA, mRNA and ribozymes using chemical, biochemical and spectroscopic tools. In brief, polyamines bind RNA in a sequence-selective fashion and induce changes in RNA structure in context-dependent manners. In some cases the functional consequences of these interactions have been observed in cells. Most notably, polyamine-mediated effects on RNA are frequently distinct from those of divalent cations (i.e. Mg2+) confirming their roles as independent molecular entities which help drive RNA-mediated processes.
Collapse
Affiliation(s)
- Helen L Lightfoot
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zürich, CH-8093, Zürich, Switzerland
| | - Jonathan Hall
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zürich, CH-8093, Zürich, Switzerland
| |
Collapse
|
15
|
Kostopoulou ON, Kouvela EC, Magoulas GE, Garnelis T, Panagoulias I, Rodi M, Papadopoulos G, Mouzaki A, Dinos GP, Papaioannou D, Kalpaxis DL. Conjugation with polyamines enhances the antibacterial and anticancer activity of chloramphenicol. Nucleic Acids Res 2014; 42:8621-34. [PMID: 24939899 PMCID: PMC4117768 DOI: 10.1093/nar/gku539] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Chloramphenicol (CAM) is a broad-spectrum antibiotic, limited to occasional only use in developed countries because of its potential toxicity. To explore the influence of polyamines on the uptake and activity of CAM into cells, a series of polyamine–CAM conjugates were synthesized. Both polyamine architecture and the position of CAM-scaffold substitution were crucial in augmenting the antibacterial and anticancer potency of the synthesized conjugates. Compounds 4 and 5, prepared by replacement of dichloro-acetyl group of CAM with succinic acid attached to N4 and N1 positions of N8,N8-dibenzylspermidine, respectively, exhibited higher activity than CAM in inhibiting the puromycin reaction in a bacterial cell-free system. Kinetic and footprinting analysis revealed that whereas the CAM-scaffold preserved its role in competing with the binding of aminoacyl-tRNA 3′-terminus to ribosomal A-site, the polyamine-tail could interfere with the rotatory motion of aminoacyl-tRNA 3′-terminus toward the P-site. Compared to CAM, compounds 4 and 5 exhibited comparable or improved antibacterial activity, particularly against CAM-resistant strains. Compound 4 also possessed enhanced toxicity against human cancer cells, and lower toxicity against healthy human cells. Thus, the designed conjugates proved to be suitable tools in investigating the ribosomal catalytic center plasticity and some of them exhibited greater efficacy than CAM itself.
Collapse
Affiliation(s)
- Ourania N Kostopoulou
- Department of Biochemistry, School of Medicine, University of Patras, GR-26504 Patras, Greece
| | - Ekaterini C Kouvela
- Department of Biochemistry, School of Medicine, University of Patras, GR-26504 Patras, Greece
| | - George E Magoulas
- Division of Hematology, Department of Internal Medicine, School of Medicine, University of Patras, GR-26504 Patras, Greece
| | - Thomas Garnelis
- Division of Hematology, Department of Internal Medicine, School of Medicine, University of Patras, GR-26504 Patras, Greece
| | - Ioannis Panagoulias
- Laboratory of Synthetic Organic Chemistry, Department of Chemistry, University of Patras, GR-26504 Patras, Greece
| | - Maria Rodi
- Laboratory of Synthetic Organic Chemistry, Department of Chemistry, University of Patras, GR-26504 Patras, Greece
| | - Georgios Papadopoulos
- Department of Biochemistry and Biotechnology, University of Thessaly, Ploutonos 26, GR-41221 Larissa, Greece
| | - Athanasia Mouzaki
- Laboratory of Synthetic Organic Chemistry, Department of Chemistry, University of Patras, GR-26504 Patras, Greece
| | - George P Dinos
- Department of Biochemistry, School of Medicine, University of Patras, GR-26504 Patras, Greece
| | - Dionissios Papaioannou
- Division of Hematology, Department of Internal Medicine, School of Medicine, University of Patras, GR-26504 Patras, Greece
| | - Dimitrios L Kalpaxis
- Department of Biochemistry, School of Medicine, University of Patras, GR-26504 Patras, Greece
| |
Collapse
|
16
|
Kaddour H, Vergne J, Herve G, Maurel MC. Inhibition by polyamines of the hammerhead ribozyme from a Chrysanthemum chlorotic mottle viroid. Biochim Biophys Acta Gen Subj 2014; 1840:1670-5. [PMID: 24412330 DOI: 10.1016/j.bbagen.2014.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 12/26/2013] [Accepted: 01/02/2014] [Indexed: 12/17/2022]
Abstract
BACKGROUND Viroids are the smallest pathogens known to date. They infect plants and cause considerable economic losses. The members of the Avsunviroidae family are known for their capability to form hammerhead ribozymes (HHR) that catalyze self-cleavage during their rolling circle replication. METHODS In vitro inhibition assays, based on the self-cleavage kinetics of the hammerhead ribozyme from a Chrysanthemum chlorotic mottle viroid (CChMVd-HHR) were performed in the presence of various putative inhibitors. RESULTS Aminated compounds appear to be inhibitors of the self-cleavage activity of the CChMVd HHR. Surprisingly the spermine, a known activator of the autocatalytic activity of another hammerhead ribozyme in the presence or absence of divalent cations, is a potent inhibitor of the CChMVd-HHR with Ki of 17±5μM. Ruthenium hexamine and TMPyP4 are also efficient inhibitors with Ki of 32±5μM and IC50 of 177±5nM, respectively. CONCLUSIONS This study shows that polyamines are inhibitors of the CChMVd-HHR self-cleavage activity, with an efficiency that increases with the number of their amino groups. GENERAL SIGNIFICANCE This fundamental investigation is of interest in understanding the catalytic activity of HHR as it is now known that HHR are present in the three domains of life including in the human genome. In addition these results emphasize again the remarkable plasticity and adaptability of ribozymes, a property which might have played a role in the early developments of life and must be also of significance nowadays for the multiple functions played by non-coding RNAs.
Collapse
Affiliation(s)
- Hussein Kaddour
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7205, F-75005 Paris, France
| | - Jacques Vergne
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7205, F-75005 Paris, France
| | - Guy Herve
- Laboratoire BIOSIPE, CNRS, ER3 UPMC Université Paris 06, France
| | | |
Collapse
|
17
|
Hayashi Y, Sugiyama H, Suganami A, Higashi K, Kashiwagi K, Igarashi K, Kawauchi S, Tamura Y. Prediction of the interaction between spermidine and the G-G mismatch containing acceptor stem in tRNA(Ile): molecular modeling, density functional theory, and molecular dynamics study. Biochem Biophys Res Commun 2013; 441:999-1004. [PMID: 24239547 DOI: 10.1016/j.bbrc.2013.11.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 11/03/2013] [Indexed: 11/26/2022]
Abstract
Polyamines, putrescine, spermidine (SPD), and spermine are closely linked to cell growth, and highly regulate the levels of transcription, translation and protein turnover. We propose that SPD stimulates the formation of Ile-tRNA(Ile) by inducing a selective structural change of the G-G mismatch containing acceptor stem in tRNA(Ile). Here, we provide insight into how SPD recognizes and stabilizes the G-G mismatch containing acceptor stem in tRNA(Ile) with molecular modeling (MM), density functional theory (DFT) calculations, and molecular dynamics (MD) simulations. The results of the MM and DFT calculations indicate that the negatively charged region of the G-G mismatch containing acceptor stem in tRNA(Ile) is preferentially recognized by positively charged SPD. In addition, MD simulations indicate that all of the positively charged amino groups of SPD under physiological conditions (N1(NH3(+)), N5(NH2(+)), and N10(NH3(+)) could form hydrogen bonds with tRNA(Ile) and trigger the SPD-induced stabilization and structural change of the G-G mismatch containing acceptor stem in tRNA(Ile). Thus, this approach should be useful for determining the preferential binding site and appropriate binding mode of polyamines on tRNA(Ile).
Collapse
Affiliation(s)
- Yoshihiro Hayashi
- Department of Organic and Polymeric Materials, Graduate School of Science and Engineering, Tokyo Institute of Technology, Tokyo 152-8522, Japan
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Kabir A, Suresh Kumar G. Binding of the biogenic polyamines to deoxyribonucleic acids of varying base composition: base specificity and the associated energetics of the interaction. PLoS One 2013; 8:e70510. [PMID: 23894663 PMCID: PMC3722294 DOI: 10.1371/journal.pone.0070510] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 06/24/2013] [Indexed: 11/18/2022] Open
Abstract
Background The thermodynamics of the base pair specificity of the binding of the polyamines spermine, spermidine, putrescine, and cadaverine with three genomic DNAs Clostridium perfringens, 27% GC, Escherichia coli, 50% GC and Micrococcus lysodeikticus, 72% GC have been studied using titration calorimetry and the data supplemented with melting studies, ethidium displacement and circular dichroism spectroscopy results. Methodology/Principal Findings Isothermal titration calorimetry, differential scanning calorimetry, optical melting studies, ethidium displacement, circular dichroism spectroscopy are the various techniques employed to characterize the interaction of four polyamines, spermine, spermidine, putersine and cadaverine with the DNAs. Polyamines bound stronger with AT rich DNA compared to the GC rich DNA and the binding varied depending on the charge on the polyamine as spermine>spermidine >putrescine>cadaverine. Thermodynamics of the interaction revealed that the binding was entropy driven with small enthalpy contribution. The binding was influenced by salt concentration suggesting the contribution from electrostatic forces to the Gibbs energy of binding to be the dominant contributor. Each system studied exhibited enthalpy-entropy compensation. The negative heat capacity changes suggested a role for hydrophobic interactions which may arise due to the non polar interactions between DNA and polyamines. Conclusion/Significance From a thermodynamic analysis, the AT base specificity of polyamines to DNAs has been elucidated for the first time and supplemented by structural studies.
Collapse
Affiliation(s)
- Ayesha Kabir
- Biophysical Chemistry Laboratory, Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Gopinatha Suresh Kumar
- Biophysical Chemistry Laboratory, Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- * E-mail:
| |
Collapse
|
19
|
γ-glutamyl Spermine Synthetase PauA2 as a potential target of antibiotic development against Pseudomonas aeruginosa. Antimicrob Agents Chemother 2012; 56:5309-14. [PMID: 22869561 DOI: 10.1128/aac.01158-12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Polyamines are absolute requirements for cell growth. When in excess, Pseudomonas aeruginosa possesses six γ-glutamylpolyamine synthetases (GPSs) encoded by the pauA1-pauA7 genes to initiate polyamine catabolism. Recently, the pauA2 mutant was reported to lose the capability to grow on spermine (Spm) and spermidine (Spd) as sole carbon and nitrogen sources. Although this mutant grew normally in defined minimal medium and LB broth, growth was completely abolished by the addition of Spm or Spd. These two compounds exert a bactericidal effect (Spm > Spd) on the mutants as demonstrated by MIC measurements (over 500-fold reduction) and time-killing curves. Spm toxicity in the pauA2 mutant was attenuated when the major uptake system was further deleted from the strain, suggesting cytoplasmic targets of toxicity. In addition, the synergistic effect of Spm and carbenicillin in the wild-type strain PAO1 was diminished in mutants without functional PauA2. Furthermore, Spm MIC was reduced by 8-fold when the Spm uptake system was deleted from the wild-type strain, suggesting a second target of Spm toxicity in the periplasm. Experiments were also conducted to test the hypothesis that native Spm and Spd in human serum may be sufficient to kill the pauA2 mutant. Growth of the mutant was completely inhibited by 40% (vol/vol) human serum, whereas the parental strain required 80%. Colony counts indicated that the mutant but not the parent was in fact killed by human plasma. In addition, carbenicillin MIC against the mutant was reduced by 16-fold in the presence of 20% human serum while that of the parental strain remained unchanged. Taking PauA2 as the template, sequence comparison indicates that putative PauA2 homologues are widespread in a variety of Gram-negative bacteria. In summary, this study reveals the importance of GPS in alleviation of polyamine toxicity when in excess, and it provides strong support to the feasibility of GPS as a molecular target for new antibiotic development.
Collapse
|
20
|
Kostopoulou ON, Petropoulos AD, Dinos GP, Choli-Papadopoulou T, Kalpaxis DL. Investigating the entire course of telithromycin binding to Escherichia coli ribosomes. Nucleic Acids Res 2012; 40:5078-87. [PMID: 22362747 PMCID: PMC3367204 DOI: 10.1093/nar/gks174] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Applying kinetics and footprinting analysis, we show that telithromycin, a ketolide antibiotic, binds to Escherichia coli ribosomes in a two-step process. During the first, rapidly equilibrated step, telithromycin binds to a low-affinity site (KT = 500 nM), in which the lactone ring is positioned at the upper portion of the peptide exit tunnel, while the alkyl–aryl side chain of the drug inserts a groove formed by nucleotides A789 and U790 of 23S rRNA. During the second step, telithromycin shifts slowly to a high-affinity site (KT* = 8.33 nM), in which the lactone ring remains essentially at the same position, while the side chain interacts with the base pair U2609:A752 and the extended loop of protein L22. Consistently, mutations perturbing either the base pair U2609:A752 or the L22-loop hinder shifting of telithromycin to the final position, without affecting the initial step of binding. In contrast, mutation Lys63Glu in protein L4 placed on the opposite side of the tunnel, exerts only a minor effect on telithromycin binding. Polyamines disfavor both sequential steps of binding. Our data correlate well with recent crystallographic data and rationalize the changes in the accessibility of ribosomes to telithromycin in response to ribosomal mutations and ionic changes.
Collapse
Affiliation(s)
- Ourania N Kostopoulou
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | | | | | | | | |
Collapse
|
21
|
Balatsos N, Vlachakis D, Chatzigeorgiou V, Manta S, Komiotis D, Vlassi M, Stathopoulos C. Kinetic and in silico analysis of the slow-binding inhibition of human poly(A)-specific ribonuclease (PARN) by novel nucleoside analogues. Biochimie 2012; 94:214-21. [DOI: 10.1016/j.biochi.2011.10.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 10/17/2011] [Indexed: 11/16/2022]
|
22
|
Kolotilin I, Koltai H, Bar-Or C, Chen L, Nahon S, Shlomo H, Levin I, Reuveni M. Expressing yeast SAMdc gene confers broad changes in gene expression and alters fatty acid composition in tomato fruit. PHYSIOLOGIA PLANTARUM 2011; 142:211-23. [PMID: 21338368 DOI: 10.1111/j.1399-3054.2011.01458.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Tomato (Solanum lycopersicum) fruits expressing a yeast S-adenosyl methionine decarboxylase (ySAMdc) gene under control of a ripening-induced promoter show altered phytonutrient content and broad changes in gene expression. Genome-wide transcriptional alterations in pericarp tissues of the ySAMdc-expressing fruits are shown. Consistent with the ySAMdc expression pattern from the ripening-induced promoter, very minor transcriptional alterations were detected at the mature green developmental stage. At the breaker and red stages, altered levels of numerous transcripts were observed with a general tendency toward upregulation in the transgenic fruits. Ontological analysis of up- and downregulated transcript groups revealed various affected metabolic processes, mainly carbohydrate and amino acid metabolism, and protein synthesis, which appeared to be intensified in the ripening transgenic fruits. Other functional ontological categories of altered transcripts represented signal transduction, transcription regulation, RNA processing, molecular transport and stress response, as well as metabolism of lipids, glycans, xenobiotics, energy, cofactors and vitamins. In addition, transcript levels of genes encoding structural enzymes for several biosynthetic pathways showed strong correlations to levels of specific metabolites that displayed altered levels in transgenic fruits. Increased transcript levels of fatty acid biosynthesis enzymes were accompanied by a change in the fatty acid profile of transgenic fruits, most notably increasing ω-3 fatty acids at the expense of other lipids. Thus, SAMdc is a prime target in manipulating the nutritional value of tomato fruits. Combined with analyses of selected metabolites in the overripe fruits, a model of enhanced homeostasis of the pericarp tissue in the polyamine-accumulating tomatoes is proposed.
Collapse
Affiliation(s)
- Igor Kolotilin
- Vegetable Research Department, Institute of Plant Sciences, ARO Volcani Center, Bet Dagan, Israel
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Rato C, Amirova SR, Bates DG, Stansfield I, Wallace HM. Translational recoding as a feedback controller: systems approaches reveal polyamine-specific effects on the antizyme ribosomal frameshift. Nucleic Acids Res 2011; 39:4587-97. [PMID: 21303766 PMCID: PMC3113565 DOI: 10.1093/nar/gkq1349] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The antizyme protein, Oaz1, regulates synthesis of the polyamines putrescine, spermidine and spermine by controlling stability of the polyamine biosynthetic enzyme, ornithine decarboxylase. Antizyme mRNA translation depends upon a polyamine-stimulated +1 ribosomal frameshift, forming a complex negative feedback system in which the translational frameshifting event may be viewed in engineering terms as a feedback controller for intracellular polyamine concentrations. In this article, we present the first systems level study of the characteristics of this feedback controller, using an integrated experimental and modeling approach. Quantitative analysis of mutant yeast strains in which polyamine synthesis and interconversion were blocked revealed marked variations in frameshift responses to the different polyamines. Putrescine and spermine, but not spermidine, showed evidence of co-operative stimulation of frameshifting and the existence of multiple ribosome binding sites. Combinatorial polyamine treatments showed polyamines compete for binding to common ribosome sites. Using concepts from enzyme kinetics and control engineering, a mathematical model of the translational controller was developed to describe these complex ribosomal responses to combinatorial polyamine effects. Each one of a range of model predictions was successfully validated against experimental frameshift frequencies measured in S-adenosylmethionine-decarboxylase and antizyme mutants, as well as in the wild-type genetic background.
Collapse
Affiliation(s)
- Claudia Rato
- Institute of Medical Sciences, School of Medical Sciences, University of Aberdeen, UK
| | | | | | | | | |
Collapse
|
24
|
Liu Y, Stepanov VG, Strych U, Willson RC, Jackson GW, Fox GE. DNAzyme-mediated recovery of small recombinant RNAs from a 5S rRNA-derived chimera expressed in Escherichia coli. BMC Biotechnol 2010; 10:85. [PMID: 21134283 PMCID: PMC3019158 DOI: 10.1186/1472-6750-10-85] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Accepted: 12/06/2010] [Indexed: 01/24/2023] Open
Abstract
Background Manufacturing large quantities of recombinant RNAs by overexpression in a bacterial host is hampered by their instability in intracellular environment. To overcome this problem, an RNA of interest can be fused into a stable bacterial RNA for the resulting chimeric construct to accumulate in the cytoplasm to a sufficiently high level. Being supplemented with cost-effective procedures for isolation of the chimera from cells and recovery of the recombinant RNA from stabilizing scaffold, this strategy might become a viable alternative to the existing methods of chemical or enzymatic RNA synthesis. Results Sequence encoding a 71-nucleotide recombinant RNA was inserted into a plasmid-borne deletion mutant of the Vibrio proteolyticus 5S rRNA gene in place of helix III - loop C segment of the original 5S rRNA. After transformation into Escherichia coli, the chimeric RNA (3×pen aRNA) was expressed constitutively from E. coli rrnB P1 and P2 promoters. The RNA chimera accumulated to levels that exceeded those of the host's 5S rRNA. A novel method relying on liquid-solid partitioning of cellular constituents was developed for isolation of total RNA from bacterial cells. This protocol avoids toxic chemicals, and is therefore more suitable for large scale RNA purification than traditional methods. A pair of biotinylated 8-17 DNAzymes was used to bring about the quantitative excision of the 71-nt recombinant RNA from the chimera. The recombinant RNA was isolated by sequence-specific capture on beads with immobilized complementary deoxyoligonucleotide, while DNAzymes were recovered by biotin affinity chromatography for reuse. Conclusions The feasibility of a fermentation-based approach for manufacturing large quantities of small RNAs in vivo using a "5S rRNA scaffold" strategy is demonstrated. The approach provides a route towards an economical method for the large-scale production of small RNAs including shRNAs, siRNAs and aptamers for use in clinical and biomedical research.
Collapse
Affiliation(s)
- Yamei Liu
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | | | | | | | | | | |
Collapse
|
25
|
The effect of spermine on the initiation of mitochondrial protein synthesis. Biochem Biophys Res Commun 2009; 391:942-6. [PMID: 19962967 DOI: 10.1016/j.bbrc.2009.11.169] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Accepted: 11/27/2009] [Indexed: 11/23/2022]
Abstract
Polyamines are important in both prokaryotic and eukaryotic translational systems. Spermine is a quaternary aliphatic amine that is cationic under physiological conditions. In this paper, we demonstrate that spermine stimulates fMet-tRNA binding to mammalian mitochondrial 55S ribosomes. The stimulatory effect of spermine is independent of the identity of the mRNA. The degree of stimulation of spermine is the same at all concentrations of mitochondrial initiation factor 2 (IF2(mt)) and mitochondrial initiation factor 3 (IF3(mt)). This observation indicates that IF2(mt) and IF3(mt), while essential for initiation, are not the primary components of the translation initiation system affected by spermine. IF3(mt) dissociates 55S ribosomes detectably in the absence of spermine, but this effect is strongly inhibited in the presence of spermine. This observation indicates that the positive effect of spermine on initiation is not due to an increase in the availability of the small subunits for initiation. Spermine also promotes fMet-tRNA binding to small subunits of the mitochondrial ribosome in the presence of IF2(mt). The major effect of spermine in promoting initiation complex formation thus appears to be on the interaction of fMet-tRNA with the ribosome.
Collapse
|
26
|
The cad locus of Enterobacteriaceae: More than just lysine decarboxylation. Anaerobe 2009; 15:1-6. [DOI: 10.1016/j.anaerobe.2008.05.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Revised: 03/27/2008] [Accepted: 05/08/2008] [Indexed: 11/19/2022]
|
27
|
Vourekas A, Stamatopoulou V, Toumpeki C, Tsitlaidou M, Drainas D. Insights into functional modulation of catalytic RNA activity. IUBMB Life 2008; 60:669-83. [PMID: 18636557 DOI: 10.1002/iub.105] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
RNA molecules play critical roles in cell biology, and novel findings continuously broaden their functional repertoires. Apart from their well-documented participation in protein synthesis, it is now apparent that several noncoding RNAs (i.e., micro-RNAs and riboswitches) also participate in the regulation of gene expression. The discovery of catalytic RNAs had profound implications on our views concerning the evolution of life on our planet at a molecular level. A characteristic attribute of RNA, probably traced back to its ancestral origin, is the ability to interact with and be modulated by several ions and molecules of different sizes. The inhibition of ribosome activity by antibiotics has been extensively used as a therapeutical approach, while activation and substrate-specificity alteration have the potential to enhance the versatility of ribozyme-based tools in translational research. In this review, we will describe some representative examples of such modulators to illustrate the potential of catalytic RNAs as tools and targets in research and clinical approaches.
Collapse
Affiliation(s)
- Anastassios Vourekas
- Department of Biological Chemistry, School of Medicine, University of Patras, Rio-Patras, Greece
| | | | | | | | | |
Collapse
|
28
|
Petropoulos AD, Kouvela EC, Starosta AL, Wilson DN, Dinos GP, Kalpaxis DL. Time-resolved binding of azithromycin to Escherichia coli ribosomes. J Mol Biol 2008; 385:1179-92. [PMID: 19071138 DOI: 10.1016/j.jmb.2008.11.042] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Revised: 11/13/2008] [Accepted: 11/18/2008] [Indexed: 11/19/2022]
Abstract
Azithromycin is a semisynthetic derivative of erythromycin that inhibits bacterial protein synthesis by binding within the peptide exit tunnel of the 50S ribosomal subunit. Nevertheless, there is still debate over what localization is primarily responsible for azithromycin binding and as to how many molecules of the drug actually bind per ribosome. In the present study, kinetic methods and footprinting analysis are coupled together to provide time-resolved details of the azithromycin binding process. It is shown that azithromycin binds to Escherichia coli ribosomes in a two-step process: The first-step involves recognition of azithromycin by the ribosomal machinery and places the drug in a low-affinity site located in the upper part of the exit tunnel. The second step corresponds to the slow formation of a final complex that is both much tighter and more potent in hindering the progression of the nascent peptide through the exit tunnel. Substitution of uracil by cytosine at nucleoside 2609 of 23S rRNA, a base implicated in the high-affinity site, facilitates the shift of azithromycin to this site. In contrast, mutation U754A hardly affects the binding process. Binding of azithromycin to both sites is hindered by high concentrations of Mg(2+) ions. Unlike Mg(2+) ions, polyamines do not significantly affect drug binding to the low-affinity site but attenuate the formation of the final complex. The low- and high-affinity sites of azithromycin binding are mutually exclusive, which means that one molecule of the drug binds per E. coli ribosome at a time. In contrast, kinetic and binding data indicate that in Deinococcus radiodurans, two molecules of azithromycin bind cooperatively to the ribosome. This finding confirms previous crystallographic results and supports the notion that species-specific structural differences may primarily account for the apparent discrepancies between the antibiotic binding modes obtained for different organisms.
Collapse
|
29
|
Kurihara S, Oda S, Tsuboi Y, Kim HG, Oshida M, Kumagai H, Suzuki H. gamma-Glutamylputrescine synthetase in the putrescine utilization pathway of Escherichia coli K-12. J Biol Chem 2008; 283:19981-90. [PMID: 18495664 DOI: 10.1074/jbc.m800133200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glutamate-putrescine ligase (gamma-glutamylputrescine synthetase, PuuA, EC 6.3.1.11) catalyzes the gamma-glutamylation of putrescine, the first step in a novel putrescine utilization pathway involving gamma-glutamylated intermediates, the Puu pathway, in Escherichia coli. In this report, the character and physiological importance of PuuA are described. Purified non-tagged PuuA catalyzed the ATP-dependent gamma-glutamylation of putrescine. The K(m) values for glutamate, ATP, and putrescine are 2.07, 2.35, and 44.6 mm, respectively. There are two putrescine utilization pathways in E. coli: the Puu pathway and the pathway without gamma-glutamylation. Gene deletion experiments of puuA, however, indicated that the Puu pathway was more critical in utilizing putrescine as a sole carbon or nitrogen source. The transcription of puuA was induced by putrescine and in a puuR-deleted strain. The amino acid sequences of PuuA and glutamine synthetase (GS) show high similarity. The molecular weights of the monomers of the two enzymes are quite similar, and PuuA exists as a dodecamer as does GS. Moreover the two amino acid residues of E. coli GS that are important for the metal-catalyzed oxidation of the enzyme molecule involved in protein turnover are conserved in PuuA, and it was experimentally shown that the corresponding amino acid residues in PuuA were involved in the metal-catalyzed oxidation similarly to GS. It is suggested that the intracellular concentration of putrescine is optimized by PuuA transcriptionally and posttranslationally and that excess putrescine is converted to a nutrient source by the Puu pathway.
Collapse
Affiliation(s)
- Shin Kurihara
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | |
Collapse
|
30
|
Petropoulos AD, Kouvela EC, Dinos GP, Kalpaxis DL. Stepwise binding of tylosin and erythromycin to Escherichia coli ribosomes, characterized by kinetic and footprinting analysis. J Biol Chem 2007; 283:4756-65. [PMID: 18079110 DOI: 10.1074/jbc.m708371200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Erythromycin and tylosin are 14- and 16-membered lactone ring macrolides, respectively. The current work shows by means of kinetic and chemical footprinting analysis that both antibiotics bind to Escherichia coli ribosomes in a two-step process. The first step established rapidly, involves a low-affinity binding site placed at the entrance of the exit tunnel in the large ribosomal subunit, where macrolides bind primarily through their hydrophobic portions. Subsequently, slow conformational changes mediated by the antibiotic hydrophilic portion push the drugs deeper into the tunnel, in a high-affinity site. Compared with erythromycin, tylosin shifts to the high-affinity site more rapidly, due to the interaction of the mycinose sugar of the drug with the loop of H35 in domain II of 23 S rRNA. Consistently, mutations of nucleosides U2609 and U754 implicated in the high-affinity site reduce the shift of tylosin to this site and destabilize, respectively, the final drug-ribosome complex. The weak interaction between tylosin and the ribosome is Mg2+ independent, unlike the tight binding. In contrast, both interactions between erythromycin and the ribosome are reduced by increasing concentrations of Mg2+ ions. Polyamines attenuate erythromycin affinity for the ribosome at both sequential steps of binding. In contrast, polyamines facilitate the initial binding of tylosin, but exert a detrimental, more pronounced, effect on the drug accommodation at its final position. Our results emphasize the role of the particular interactions that side chains of tylosin and erythromycin establish with 23 S rRNA, which govern the exact binding process of each drug and its response to the ionic environment.
Collapse
|
31
|
Kouvela EC, Gerbanas GV, Xaplanteri MA, Petropoulos AD, Dinos GP, Kalpaxis DL. Changes in the conformation of 5S rRNA cause alterations in principal functions of the ribosomal nanomachine. Nucleic Acids Res 2007; 35:5108-19. [PMID: 17652323 PMCID: PMC1976436 DOI: 10.1093/nar/gkm546] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
5S rRNA is an integral component of the large ribosomal subunit in virtually all living organisms. Polyamine binding to 5S rRNA was investigated by cross-linking of N1-azidobenzamidino (ABA)-spermine to naked 5S rRNA or 50S ribosomal subunits and whole ribosomes from Escherichia coli cells. ABA-spermine cross-linking sites were kinetically measured and their positions in 5S rRNA were localized by primer extension analysis. Helices III and V, and loops A, C, D and E in naked 5S rRNA were found to be preferred polyamine binding sites. When 50S ribosomal subunits or poly(U)-programmed 70S ribosomes bearing tRNAPhe at the E-site and AcPhe-tRNA at the P-site were targeted, the susceptibility of 5S rRNA to ABA-spermine was greatly reduced. Regardless of 5S rRNA assembly status, binding of spermine induced significant changes in the 5S rRNA conformation; loop A adopted an apparent ‘loosening’ of its structure, while loops C, D, E and helices III and V achieved a more compact folding. Poly(U)-programmed 70S ribosomes possessing 5S rRNA cross-linked with spermine were more efficient than control ribosomes in tRNA binding, peptidyl transferase activity and translocation. Our results support the notion that 5S rRNA serves as a signal transducer between regions of 23S rRNA responsible for principal ribosomal functions.
Collapse
|
32
|
Hirokawa G, Kaji H, Kaji A. Inhibition of antiassociation activity of translation initiation factor 3 by paromomycin. Antimicrob Agents Chemother 2006; 51:175-80. [PMID: 17088492 PMCID: PMC1797670 DOI: 10.1128/aac.01096-06] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The effect of paromomycin on the interaction of ribosomal subunits was studied. Paromomycin inhibited the antiassociation activity of initiation factor 3 (IF3). Furthermore, ribosomal subunits were associated to form 70S ribosomes by paromomycin even in the presence of 1 mM Mg(2+). Paromomycin did not inhibit the binding of IF3 to the 30S ribosomal subunits. On the other hand, IF3 bound to the 30S subunits was expelled by paromomycin-induced subunit association (70S formation). These results indicate that the stabilization of 70S ribosomes by paromomycin may in part be responsible for its inhibitory effects on translocation and ribosome recycling.
Collapse
Affiliation(s)
- Go Hirokawa
- Department of Biochemistry and Molecular Biology, Jefferson Medical College, Thomas Jefferson University, 1020 Locust Street, JAH 456A, Philadelphia, PA 19107, USA
| | | | | |
Collapse
|
33
|
Kouvela EC, Petropoulos AD, Kalpaxis DL. Unraveling New Features of Clindamycin Interaction with Functional Ribosomes and Dependence of the Drug Potency on Polyamines. J Biol Chem 2006; 281:23103-10. [PMID: 16760473 DOI: 10.1074/jbc.m603263200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The effect of spermine on the inhibition of peptide-bond formation by clindamycin, an antibiotic of the Macrolide-Lincosamide-StreptograminsB family, was investigated in a cell-free system derived from Escherichia coli. In this system peptide bond is formed between puromycin, a pseudo-substrate of the A-site, and acetylphenylalanyl-tRNA, bound at the P-site of poly(U)-programmed 70 S ribosomes. Biphasic kinetics revealed that one molecule of clindamycin, after a transient interference with the A-site of ribosomes, is slowly accommodated near the P-site and perturbs the 70 S/acetylphenylalanyl-tRNA complex so that a peptide bond is still formed but with a lower velocity compared with that observed in the absence of the drug. The above mechanism requires a high temperature (25 degrees C as opposed to 5 degrees C). If this is not met, the inhibition is simple competitive. It was found that at 25 degrees C spermine favors the clindamycin binding to ribosomes; the affinity of clindamycin for the A-site becomes 5 times higher, whereas the overall inhibition constant undergoes a 3-fold decrease. Similar results were obtained when ribosomes labeled with N1-azidobenzamidinospermine, a photo-reactive analogue of spermine, were used or when a mixture of spermine and spermidine was added in the reaction mixture instead of spermine alone. Polyamines cannot compensate for the loss of biphasic kinetics at 5 degrees C nor can they stimulate the clindamycin binding to ribosomes. Our kinetic results correlate well with photoaffinity labeling data, suggesting that at 25 degrees C polyamines bound at the vicinity of the drug binding pocket affect the tertiary structure of ribosomes and influence their interaction with clindamycin.
Collapse
Affiliation(s)
- Ekaterini C Kouvela
- Laboratory of Biochemistry, School of Medicine, University of Patras, 26500 Patras, Greece
| | | | | |
Collapse
|
34
|
Kasiotis KM, Mendorou C, Haroutounian SA, Alexis MN. High affinity 17alpha-substituted estradiol derivatives: synthesis and evaluation of estrogen receptor agonist activity. Steroids 2006; 71:249-55. [PMID: 16360721 DOI: 10.1016/j.steroids.2005.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2005] [Revised: 10/25/2005] [Accepted: 10/31/2005] [Indexed: 11/22/2022]
Abstract
We synthesized four derivatives of 17beta-estradiol (E2) with an azide substitution on a 17alpha-side chain of varying length, namely 17alpha-(azidopropargyl)-3,17beta-estradiol (5), its 17beta-azido derivative (diazide 7), 17alpha-(5-azido-pent-1-ynyl)-3,17beta-estradiol (6) and 17alpha-(azidopentyn-2-yl)-3,17beta-estradiol (10). While most of the derivatives had low (7) or marginal (6 and 10) relative binding affinity (RBA) for both types of estrogen receptor (ERalpha and ERbeta), the RBAalpha and RBAbeta of 5 were practically identical to those of E2. The estrogenic activity of the derivatives was assessed using estrogen-responsive breast (MCF-7) and endometrial cancer (Ishikawa) cells. While 5 was a potent and effective inducer of alkaline phosphatase in Ishikawa cells and 7 was less potent but as effective as 5, 6 was marginally active and 10 was totally inactive in this respect. In the presence of 0.1 nM E2, however, 6 exhibited some ER antagonist activity at the highest concentration tested (1 microM). Similar results were obtained as regards the potency and efficacy of stimulation of MCF-7 cell proliferation and induction of luciferase gene expression in MCF-7:D5L cells, a clone stably transfected with an estrogen-responsive form of the gene. These data suggest that, while 5, 6, 7 and 10 interact with either type of ER in isolation, only 5 and 7 exhibit substantial ER agonist activity in the different estrogen-target cells examined, which could provide for photoaffinity labelling of the receptor in the cell as well as in isolation.
Collapse
|
35
|
Umekage S, Ueda T. Spermidine inhibits transient and stable ribosome subunit dissociation. FEBS Lett 2006; 580:1222-6. [PMID: 16442102 DOI: 10.1016/j.febslet.2006.01.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2005] [Revised: 01/04/2006] [Accepted: 01/12/2006] [Indexed: 10/25/2022]
Abstract
Recent light-scattering experiments and sucrose density gradient centrifugational analyses suggested that the 70S ribosome undergoes RRF- and EF-G-triggered transient subunit dissociation that is followed by IF3-induced stable dissociation. However, the experimental conditions did not include the ubiquitous cellular polyamine spermidine, which is required for efficient translation. We found that when spermidine was present, the transient dissociation was inhibited. Moreover, the published experiments used ribosome concentrations that were far lower than the physiological concentration. We found that when spermidine and higher ribosome concentrations were included in the experimental conditions, only very limited stable subunit dissociation was observed. These results suggest that neither transient nor stable dissociation occurs under physiological conditions applied here.
Collapse
Affiliation(s)
- So Umekage
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, FSB401, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | | |
Collapse
|
36
|
Yohannes E, Thurber AE, Wilks JC, Tate DP, Slonczewski JL. Polyamine stress at high pH in Escherichia coli K-12. BMC Microbiol 2005; 5:59. [PMID: 16223443 PMCID: PMC1274320 DOI: 10.1186/1471-2180-5-59] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2005] [Accepted: 10/13/2005] [Indexed: 12/04/2022] Open
Abstract
Background Polyamines such as spermine and spermidine are required for growth of Escherichia coli; they interact with nucleic acids, and they bind to ribosomes. Polyamines block porins and decrease membrane permeability, activities that may protect cells in acid. At high concentrations, however, polyamines impair growth. They impair growth more severely at high pH, probably due to their increased uptake as membrane-permeant weak bases. The role of pH is critical in understanding polyamine stress. Results The effect of polyamines was tested on survival of Escherichia coli K-12 W3110 in extreme acid or base (pH conditions outside the growth range). At pH 2, 10 mM spermine increased survival by 2-fold, and putrescine increased survival by 30%. At pH 9.8, however, E. coli survival was decreased 100-fold by 10 mM spermine, putrescine, cadaverine, or spermidine. At pH 8.5, spermine decreased the growth rate substantially, whereas little effect was seen at pH 5.5. Spermidine required ten-fold higher concentrations to impair growth. On proteomic 2-D gels, spermine and spermidine caused differential expression of 31 different proteins. During log-phase growth at pH 7.0, 1 mM spermine induced eight proteins, including PykF, GlpK, SerS, DeaD, OmpC and OmpF. Proteins repressed included acetate-inducible enzymes (YfiD, Pta, Lpd) as well as RapA (HepA), and FabB. At pH 8.5, spermine induced additional proteins: TnaA, OmpA, YrdA and NanA (YhcJ) and also repressed 17 proteins. Four of the proteins that spermine induced (GlpK, OmpA, OmpF, TnaA) and five that were repressed (Lpd, Pta, SucB, TpiA, YfiD) show similar induction or repression, respectively, in base compared to acid. Most of these base stress proteins were also regulated by spermidine, but only at ten-fold higher concentration (10 mM) at high pH (pH 8.5). Conclusion Polyamines increase survival in extreme acid, but decrease E. coli survival in extreme base. Growth inhibition by spermine and spermidine requires neutral or higher pH. At or above pH 7, spermine and spermidine regulate specific proteins, many of which are known to be regulated by base stress. High pH amplifies polyamine stress; and naturally occurring polyamines may play an important role in base stress.
Collapse
Affiliation(s)
| | - Amy E Thurber
- Department of Biology, Kenyon College, Gambier, OH 43022
| | | | - Daniel P Tate
- Department of Biology, Kenyon College, Gambier, OH 43022
| | | |
Collapse
|