1
|
Rega C, Kozik Z, Yu L, Tsitsa I, Martin LA, Choudhary J. Exploring the Spatial Landscape of the Estrogen Receptor Proximal Proteome With Antibody-Based Proximity Labeling. Mol Cell Proteomics 2024; 23:100702. [PMID: 38122900 PMCID: PMC10831774 DOI: 10.1016/j.mcpro.2023.100702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/07/2023] [Accepted: 12/17/2023] [Indexed: 12/23/2023] Open
Abstract
Estrogen receptor α (ERα) drives the transcription of genes involved in breast cancer (BC) progression, relying on coregulatory protein recruitment for its transcriptional and biological activities. Mutation of ERα as well as aberrant recruitment of its regulatory proteins contribute to tumor adaptation and drug resistance. Therefore, understanding the dynamic changes in ERα protein interaction networks is crucial for elucidating drug resistance mechanisms in BC. Despite progress in studying ERα-associated proteins, capturing subcellular transient interactions remains challenging and, as a result, significant number of important interactions remain undiscovered. In this study, we employed biotinylation by antibody recognition (BAR), an innovative antibody-based proximity labeling (PL) approach, coupled with mass spectrometry to investigate the ERα proximal proteome and its changes associated with resistance to aromatase inhibition, a key therapy used in the treatment of ERα-positive BC. We show that BAR successfully detected most of the known ERα interactors and mainly identified nuclear proteins, using either an epitope tag or endogenous antibody to target ERα. We further describe the ERα proximal proteome rewiring associated with resistance applying BAR to a panel of isogenic cell lines modeling tumor adaptation in the clinic. Interestingly, we find that ERα associates with some of the canonical cofactors in resistant cells and several proximal proteome changes are due to increased expression of ERα. Resistant models also show decreased levels of estrogen-regulated genes. Sensitive and resistant cells harboring a mutation in the ERα (Y537C) revealed a similar proximal proteome. We provide an ERα proximal protein network covering several novel ERα-proximal partners. These include proteins involved in highly dynamic processes such as sumoylation and ubiquitination difficult to detect with traditional protein interaction approaches. Overall, we present BAR as an effective approach to investigate the ERα proximal proteome in a spatial context and demonstrate its application in different experimental conditions.
Collapse
Affiliation(s)
- Camilla Rega
- Division of Breast Cancer Research, The Institute of Cancer Research, London, United Kingdom.
| | - Zuzanna Kozik
- Division of Cancer Biology, The Institute of Cancer Research, London, United Kingdom
| | - Lu Yu
- Division of Cancer Biology, The Institute of Cancer Research, London, United Kingdom
| | - Ifigenia Tsitsa
- Division of Cancer Biology, The Institute of Cancer Research, London, United Kingdom
| | - Lesley-Ann Martin
- Division of Breast Cancer Research, The Institute of Cancer Research, London, United Kingdom
| | - Jyoti Choudhary
- Division of Cancer Biology, The Institute of Cancer Research, London, United Kingdom.
| |
Collapse
|
2
|
Dou H, Duan Y, Zhang X, Yu Q, Di Q, Song Y, Li P, Gong Y. Aryl hydrocarbon receptor (AhR) regulates adipocyte differentiation by assembling CRL4B ubiquitin ligase to target PPARγ for proteasomal degradation. J Biol Chem 2019; 294:18504-18515. [PMID: 31653699 DOI: 10.1074/jbc.ra119.009282] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 10/16/2019] [Indexed: 12/17/2022] Open
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) is the central regulator of adipogenesis, and its dysregulation is linked to obesity and metabolic diseases. Identification of the factors that regulate PPARγ expression and activity is therefore crucial for combating obesity. Aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor with a known role in xenobiotic detoxification. Recent studies have suggested that AhR also plays essential roles in energy metabolism. However, the detailed mechanisms remain unclear. We previously reported that experiments with adipocyte-specific Cullin 4b (Cul4b)-knockout mice showed that CUL4B suppresses adipogenesis by targeting PPARγ. Here, using immunoprecipitation, ubiquitination, real-time PCR, and GST-pulldown assays, we report that AhR functions as the substrate receptor in CUL4B-RING E3 ubiquitin ligase (CRL4B) complex and is required for recruiting PPARγ. AhR overexpression reduced PPARγ stability and suppressed adipocyte differentiation, and AhR knockdown stimulated adipocyte differentiation in 3T3-L1 cells. Furthermore, we found that two lysine sites on residues 268 and 293 in PPARγ are targeted for CRL4B-mediated ubiquitination, indicating cross-talk between acetylation and ubiquitination. Our findings establish a critical role of AhR in regulating PPARγ stability and suggest that the AhR-PPARγ interaction may represent a potential therapeutic target for managing metabolic diseases arising from PPARγ dysfunction.
Collapse
Affiliation(s)
- Hao Dou
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Yuyao Duan
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Xiaohui Zhang
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Qian Yu
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Qian Di
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Yu Song
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Peishan Li
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Yaoqin Gong
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
3
|
Zhou T, Yi F, Wang Z, Guo Q, Liu J, Bai N, Li X, Dong X, Ren L, Cao L, Song X. The Functions of DNA Damage Factor RNF8 in the Pathogenesis and Progression of Cancer. Int J Biol Sci 2019; 15:909-918. [PMID: 31182912 PMCID: PMC6535783 DOI: 10.7150/ijbs.31972] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 02/08/2019] [Indexed: 12/31/2022] Open
Abstract
The really interesting new gene (RING) finger protein 8 (RNF8) is a central factor in DNA double strand break (DSB) signal transduction. DSB damage is the most toxic type of DNA damage to cells and is related to genomic instability. Multiple roles for RNF8 have been identified in DNA damage response as well as in other functions, such as telomere protection, cell cycle control and transcriptional regulation. These functions are closely correlated to tumorigenesis and cancer progression. Indeed, deficiency of RNF8 caused spontaneous tumorigenesis in a mouse model. Deciphering these mechanisms of RNF8 may shed light on strategies for cancer treatment. In this review, we summarize the current understanding of both classical and nonclassical functions of RNF8, and discuss its roles in the pathogenesis and progression of tumor.
Collapse
Affiliation(s)
- Tingting Zhou
- Institute of Translational Medicine, China Medical University; Key Laboratory of Medical Cell Biology, Ministry of Education; Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, China
| | - Fei Yi
- Institute of Translational Medicine, China Medical University; Key Laboratory of Medical Cell Biology, Ministry of Education; Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, China
| | - Zhuo Wang
- Institute of Translational Medicine, China Medical University; Key Laboratory of Medical Cell Biology, Ministry of Education; Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, China
| | - Qiqiang Guo
- Institute of Translational Medicine, China Medical University; Key Laboratory of Medical Cell Biology, Ministry of Education; Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, China
| | - Jingwei Liu
- Institute of Translational Medicine, China Medical University; Key Laboratory of Medical Cell Biology, Ministry of Education; Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, China
| | - Ning Bai
- Institute of Translational Medicine, China Medical University; Key Laboratory of Medical Cell Biology, Ministry of Education; Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, China
| | - Xiaoman Li
- Institute of Translational Medicine, China Medical University; Key Laboratory of Medical Cell Biology, Ministry of Education; Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, China
| | - Xiang Dong
- Institute of Translational Medicine, China Medical University; Key Laboratory of Medical Cell Biology, Ministry of Education; Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, China
| | - Ling Ren
- Department of Anus and Intestine Surgery, First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Liu Cao
- Institute of Translational Medicine, China Medical University; Key Laboratory of Medical Cell Biology, Ministry of Education; Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, China
| | - Xiaoyu Song
- Institute of Translational Medicine, China Medical University; Key Laboratory of Medical Cell Biology, Ministry of Education; Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, China
| |
Collapse
|
4
|
Jin G, Mao X, Qiao Z, Chen B, Jin F. RAP80 expression in breast cancer and its relationship with apoptosis in breast cancer cells. Onco Targets Ther 2019; 12:625-634. [PMID: 30705591 PMCID: PMC6343510 DOI: 10.2147/ott.s186981] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background RAP80 is a member of BRCA1-A complex, which plays an important role in regulating the cell cycle checkpoint and DNA damage repair in the nucleus. Method We investigated RAP80 expression in breast cancer and its paired normal breast tissues to further analyze its role in the biological behavior of breast cancer cells. Results RAP80 expression in breast cancer (62.3%, 101/162) was significantly lower than that in adjacent normal breast tissues (P<0.05). RAP80 expression was related to tumor size, lymph node metastasis, TNM stage, and molecular subtype (P<0.05). RAP80 mRNA expression was significantly lower in triple-negative breast cancer than other types. The mRNA and protein of RAP80 were obvious in MCF-7 and very weak in ZR-75 or MDA-MB-231, so we picked MCF-7 to be transfected with RAP80 siRNA. The survival rate of both cells decreased in a dose-dependent manner and the IC50 value for cisplatin in MCF-7 RAP80 siRNA cells was 0.83 µg/mL, and 1.69 µg/mL in wild-type MCF-7 according to MTT. RAP80 siRNA transfection upregulated the apoptosis and downregulated invasive or migrating ability of MCF-7. RAP80 siRNA also upregulated the protein expression of Caspase-3, cleaved Caspase-3, Apaf-1, Cytochrome C, Bax, and Fas, and downregulated the protein expression of Bcl-2. Conclusion RAP80 expression was related to ER or PR activity. Inhibition of RAP80 expression can induce apoptosis in breast cancer cells and improve chemosensitivity to cisplatin. Tumor cells can activate protective responses to inhibit cell cycle progression, which may be related to RAP80, and repair cisplatin-induced DNA damage. RAP80 is related to BRCA1's effect, which can be used as an interesting target for pharmacological modulation that can increase the efficiency of cisplatin chemotherapy.
Collapse
Affiliation(s)
- Guanghua Jin
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, People's Republic of China,
| | - Xiaoyun Mao
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, People's Republic of China,
| | - Zhen Qiao
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, People's Republic of China,
| | - Bo Chen
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, People's Republic of China,
| | - Feng Jin
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, People's Republic of China,
| |
Collapse
|
5
|
Ubiquitin Ligase NEDD4 Regulates PPARγ Stability and Adipocyte Differentiation in 3T3-L1 Cells. Sci Rep 2016; 6:38550. [PMID: 27917940 PMCID: PMC5137149 DOI: 10.1038/srep38550] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 11/09/2016] [Indexed: 12/19/2022] Open
Abstract
Peroxisome proliferator–activated receptor-γ (PPARγ) is a ligand-activated nuclear receptor which controls lipid and glucose metabolism. It is also the master regulator of adipogenesis. In adipocytes, ligand-dependent PPARγ activation is associated with proteasomal degradation; therefore, regulation of PPARγ degradation may modulate its transcriptional activity. Here, we show that neural precursor cell expressed developmentally down-regulated protein 4 (NEDD4), an E3 ubiquitin ligase, interacts with the hinge and ligand binding domains of PPARγ and is a bona fide E3 ligase for PPARγ. NEDD4 increases PPARγ stability through the inhibition of its proteasomal degradation. Knockdown of NEDD4 in 3T3-L1 adipocytes reduces PPARγ protein levels and suppresses adipocyte conversion. PPARγ correlates positively with NEDD4 in obese adipose tissue. Together, these findings support NEDD4 as a novel regulator of adipogenesis by modulating the stability of PPARγ.
Collapse
|
6
|
Stanišić V, Lonard DM, O'Malley BW. Estrogen receptor-α: molecular mechanisms and interactions with the ubiquitin proteasome system. Horm Mol Biol Clin Investig 2015; 1:1-9. [PMID: 25961966 DOI: 10.1515/hmbci.2010.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Accepted: 06/25/2009] [Indexed: 12/25/2022]
Abstract
Estrogen receptor-α (ERα) is a protein with a long history of study that precedes the advent of modern molecular biology. Over the course of 50 years, ERα has been increasingly recognized as a prominent model for the study of the mechanism of gene transcription in vertebrates. It also serves as a regulatory molecule for numerous physiological and disease states. Several fundamental insights have been made using ERα as a model protein, from the discovery that endocrine hormones elicit gene transcription to our understanding of the relationship between ERα-mediated transcription and transcription factor degradation by the ubiquitin proteasome system (UPS). Understanding of receptor protein degradation developed alongside other aspects of its molecular biology, from early observations in the 1960s that ERα is degraded on hormone treatment to the current understanding of ERα transcriptional regulation by the UPS. Here, we present the concept of ERα turnover from the perspective of the historical development of this notion and highlight some of the latest discoveries regarding this process. We discuss the logic and significance of ERα degradation pathways in the context of cell and whole-organism homeostasis.
Collapse
|
7
|
Moran T, Wei J, Cobo M, Qian X, Domine M, Zou Z, Bover I, Wang L, Provencio M, Yu L, Chaib I, You C, Massuti B, Song Y, Vergnenegre A, Lu H, Lopez-Vivanco G, Hu W, Robinet G, Yan J, Insa A, Xu X, Majem M, Chen X, de Las Peñas R, Karachaliou N, Sala MA, Wu Q, Isla D, Zhou Y, Baize N, Zhang F, Garde J, Germonpre P, Rauh S, ALHusaini H, Sanchez-Ronco M, Drozdowskyj A, Sanchez JJ, Camps C, Liu B, Rosell R, Colinet B, De Grève J, Germonpré P, Chen H, Chen X, Du J, Gao Y, Hu J, Hu W, Kong W, Li L, Li R, Li X, Liu B, Liu J, Lu H, Qian X, Ren W, Song Y, Wang L, Wei J, Wen L, Wu Q, Xiao X, Xu X, Yan J, Yang J, Yang M, Yang Y, Yin J, You C, Yu L, Yue X, Zhang F, Zhang J, Zhou Y, Zhu L, Zou Z, Baize N, Bombaron P, Chouaid C, Dansin E, Fournel P, Fraboulet G, Gervais R, Hominal S, Kahlout S, Lecaer H, Lena H, LeTreut J, Locher C, Molinier O, Monnet I, Oliviero G, Robinet G, Schoot R, Thomas P, Vergnènegre A, Berchem G, Rauh S, Al Husaini H, Aparisi F, Arriola E, Ballesteros I, Barneto I, Bernabé R, Blasco A, Bosch-Barrera J, Bover I, Calvo de Juan V, Camps C, Carcereny E, Catot S, Cobo M, De Las Peñas R, Dómine M, Felip E, García-Campelo MR, García-Girón C, García-Gómez R, Garcia-Sevila R, Garde J, Gasco A, Gil J, González-Larriba JL, Hernando-Polo S, Jantus E, Insa A, Isla D, Jiménez B, Lianes P, López-López R, López-Martín A, López-Vivanco G, Macias JA, Majem M, Marti-Ciriquian JL, Massuti B, Montoyo R, Morales-Espinosa D, Morán T, Moreno MA, Pallares C, Parera M, Pérez-Carrión R, Porta R, Provencio M, Reguart N, Rosell R, Rosillo F, Sala MA, Sanchez JM, Sullivan I, Terrasa J, Trigo JM, Valdivia J, Viñolas N, Viteri S, Botia-Castillo M, Mate JL, Perez-Cano M, Ramirez JL, Sanchez-Rodriguez B, Taron M, Tierno-Garcia M, Mijangos E, Ocaña J, Pereira E, Shao J, Sun X, O'Brate R. Two biomarker-directed randomized trials in European and Chinese patients with nonsmall-cell lung cancer: the BRCA1-RAP80 Expression Customization (BREC) studies. Ann Oncol 2014; 25:2147-2155. [PMID: 25164908 DOI: 10.1093/annonc/mdu389] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND In a Spanish Lung Cancer Group (SLCG) phase II trial, the combination of BRCA1 and receptor-associated protein 80 (RAP80) expression was significantly associated with outcome in Caucasian patients with nonsmall-cell lung cancer (NSCLC). The SLCG therefore undertook an industry-independent collaborative randomized phase III trial comparing nonselected cisplatin-based chemotherapy with therapy customized according to BRCA1/RAP80 expression. An analogous randomized phase II trial was carried out in China under the auspices of the SLCG to evaluate the effect of BRCA1/RAP80 expression in Asian patients. PATIENTS AND METHODS Eligibility criteria included stage IIIB-IV NSCLC and sufficient tumor specimen for molecular analysis. Randomization to the control or experimental arm was 1 : 1 in the SLCG trial and 1 : 3 in the Chinese trial. In both trials, patients in the control arm received docetaxel/cisplatin; in the experimental arm, patients with low RAP80 expression received gemcitabine/cisplatin, those with intermediate/high RAP80 expression and low/intermediate BRCA1 expression received docetaxel/cisplatin, and those with intermediate/high RAP80 expression and high BRCA1 expression received docetaxel alone. The primary end point was progression-free survival (PFS). RESULTS Two hundred and seventy-nine patients in the SLCG trial and 124 in the Chinese trial were assessable for PFS. PFS in the control and experimental arms in the SLCG trial was 5.49 and 4.38 months, respectively [log rank P = 0.07; hazard ratio (HR) 1.28; P = 0.03]. In the Chinese trial, PFS was 4.74 and 3.78 months, respectively (log rank P = 0.82; HR 0.95; P = 0.82). CONCLUSION Accrual was prematurely closed on the SLCG trial due to the absence of clinical benefit in the experimental over the control arm. However, the BREC studies provide proof of concept that an international, nonindustry, biomarker-directed trial is feasible. Thanks to the groundwork laid by these studies, we expect that ongoing further research on alternative biomarkers to elucidate DNA repair mechanisms will help define novel therapeutic approaches. TRIAL REGISTRATION NCT00617656/GECP-BREC and ChiCTR-TRC-12001860/BREC-CHINA.
Collapse
Affiliation(s)
- T Moran
- Catalan Institute of Oncology, Medical Oncology Service, Hospital Germans Trias i Pujol, Badalona, Spain
| | - J Wei
- The Comprehensive Cancer Centre, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - M Cobo
- Medical Oncology Service, Hospital Carlos Haya, Malaga
| | - X Qian
- The Comprehensive Cancer Centre, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - M Domine
- Medical Oncology Service, Fundacion Jimenez Diaz, Madrid
| | - Z Zou
- The Comprehensive Cancer Centre, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - I Bover
- Medical Oncology Service, Hospital Son Llatzer, Palma de Mallorca
| | - L Wang
- The Comprehensive Cancer Centre, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - M Provencio
- Medical Oncology Service, Hospital Puerta de Hierro, Madrid, Spain
| | - L Yu
- The Comprehensive Cancer Centre, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - I Chaib
- Catalan Institute of Oncology, Medical Oncology Service, Hospital Germans Trias i Pujol, Badalona, Spain
| | - C You
- Department of Oncology, Suqian General Hospital, Suqian, China
| | - B Massuti
- Medical Oncology Service, Hospital General de Alicante, Alicante, Spain
| | - Y Song
- Department of Pneumology, Jinling Hospital, Nanjing, China
| | - A Vergnenegre
- Service de Pathologie Respiratoire et d'Allergologie, CHU Limoges, Limoges, France
| | - H Lu
- Department of Pneumology, Taizhou General Hospital, Taizhou, China
| | | | - W Hu
- The Comprehensive Cancer Centre, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - G Robinet
- Service Pneumologie, CHU Brest, Brest, France
| | - J Yan
- The Comprehensive Cancer Centre, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - A Insa
- Medical Oncology Service, Hospital Clinico de Valencia, Valencia, Spain
| | - X Xu
- Department of Pneumology, Northern Jiangsu People's Hospital, Yangzhou, China
| | - M Majem
- Medical Oncology Service, Hospital Sant Pau, Barcelona, Spain
| | - X Chen
- Department of Oncology, Huaian General Hospital, Huaian, China
| | - R de Las Peñas
- Medical Oncology Service, Hospital Provincial de Castellon, Castellon, Spain
| | - N Karachaliou
- Translational Research Unit, Dr Rosell Oncology Institute, Quiron-Dexeus University Hospital, Barcelona
| | - M A Sala
- Medical Oncology Service, Hospital de Basurto, Bilbao, Spain
| | - Q Wu
- Department of Oncology, Yixin General Hospital, Yixin, China
| | - D Isla
- Medical Oncology Service, Hospital Lozano Blesa, Zaragoza, Spain
| | - Y Zhou
- Department of Oncology, Yixin General Hospital, Yixin, China
| | - N Baize
- Department de Pneumologie, CHU Angers, Angers, France
| | - F Zhang
- Department of Oncology, Maanshan General Hospital, Maanshan, China
| | - J Garde
- Medical Oncology Service, Hospital Arnau de Vilanova, Valencia, Spain
| | - P Germonpre
- Department of Pulmonary Medicine, Antwerp University Hospital, Edegem, Belgium
| | - S Rauh
- Department of Internal Medicine and Oncology, Centre Hospitalier Emile Mayrisch, Luxembourg, Luxembourg
| | - H ALHusaini
- Oncology Center, King Faisal Cancer Center, Riyadh, Saudi Arabia
| | - M Sanchez-Ronco
- Department of Health and Medicosocial Sciences, University of Alcala, Madrid
| | | | - J J Sanchez
- Department of Preventive Medicine, Autonomous University of Madrid, Madrid
| | - C Camps
- Medical Oncology Service, Hospital General de Valencia, Valencia
| | - B Liu
- The Comprehensive Cancer Centre, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - R Rosell
- Catalan Institute of Oncology, Cancer Biology and Precision Medicine Program, Hospital Germans Trias i Pujol, Badalona; MORe Foundation, Barcelona, Spain; Cancer Therapeutic Innovation Group, New York,USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Structural and functional implication of RAP80 ΔGlu81 mutation. PLoS One 2013; 8:e72707. [PMID: 24039796 PMCID: PMC3767628 DOI: 10.1371/journal.pone.0072707] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 07/15/2013] [Indexed: 11/22/2022] Open
Abstract
Receptor Associated Protein 80 (RAP80) is a member of RAP80-BRCA1-CCDC98 complex family and helps in its recruitment to the DNA damage site for effective homologous recombination repair. It encompasses two tandem UIMs (UIM1 and UIM2) motif at its N-terminus, which interact with K-63 linked polyubiquitin chain(s) on H2AX and thereby assemble the RAP80-BRCA1 complex at the damage site. Nevertheless, how RAP80 helps in the structural integrity of BRCA1 complex is still elusive. Considering the role of RAP80 in the recruitment of BRCA1 complex at the DNA damage site, we attempted to explore the molecular mechanism associated with RAP80 and mutation that causes chromosomal aberrations due to its loss of function. There is a significant loss in structural characteristics of RAP80 ΔE81, which impairs its binding affinity with the polyubiquitin chain. This leads to the defective recruitment of RAP80 and BRCA1 complex at the DNA damage site. The results presented here are very useful in understanding the cause of various repair defects (chromosomal aberration) that arise due to this mutation. Comparative study of wild type and ΔE81 could be helpful in designing the small molecules that can potentially compensate the deleterious effect(s) of ΔE81 and hence useful for therapeutic application.
Collapse
|
9
|
Yin Z, Menendez D, Resnick MA, French JE, Janardhan KS, Jetten AM. RAP80 is critical in maintaining genomic stability and suppressing tumor development. Cancer Res 2012; 72:5080-90. [PMID: 22896338 DOI: 10.1158/0008-5472.can-12-1484] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The ubiquitin interaction motif-containing protein RAP80 was recently found to play a key role in DNA damage response (DDR) signaling by facilitating the translocation of several DDR mediators, including BRCA1, to ionizing irradiation (IR)-induced foci. In this study, we examine the effect of the loss of RAP80 on genomic stability and the susceptibility to cancer development in RAP80 null (RAP80(-/-)) mice. RAP80(-/-) mice are viable and did not exhibit any apparent developmental defects. Mouse embryonic fibroblasts (MEF) derived from RAP80(-/-) mice underwent premature senescence compared with wild-type (WT) MEFs, were more sensitive to IR, and exhibited a higher level of spontaneous and IR-induced genomic instability. RAP80(-/-) thymocytes were more sensitive to IR-induced cell death than WT thymocytes. RAP80(-/-) mice were more susceptible to spontaneous lymphoma development and the development of 7,12-dimethylbenz(a)anthracene-induced mammary gland tumors. Moreover, the loss of RAP80 accelerated tumor formation in both p53(-/-) and p53(+/-) mice. Our data indicate that RAP80-deficiency promotes genomic instability and causes an increase in cancer risk consistent with the concept that RAP80 exhibits a tumor suppressor function.
Collapse
Affiliation(s)
- Zhengyu Yin
- Laboratory of Respiratory Biology, National Institute of Environmental Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | | | |
Collapse
|
10
|
Thompson LH. Recognition, signaling, and repair of DNA double-strand breaks produced by ionizing radiation in mammalian cells: the molecular choreography. Mutat Res 2012; 751:158-246. [PMID: 22743550 DOI: 10.1016/j.mrrev.2012.06.002] [Citation(s) in RCA: 261] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 06/09/2012] [Accepted: 06/16/2012] [Indexed: 12/15/2022]
Abstract
The faithful maintenance of chromosome continuity in human cells during DNA replication and repair is critical for preventing the conversion of normal diploid cells to an oncogenic state. The evolution of higher eukaryotic cells endowed them with a large genetic investment in the molecular machinery that ensures chromosome stability. In mammalian and other vertebrate cells, the elimination of double-strand breaks with minimal nucleotide sequence change involves the spatiotemporal orchestration of a seemingly endless number of proteins ranging in their action from the nucleotide level to nucleosome organization and chromosome architecture. DNA DSBs trigger a myriad of post-translational modifications that alter catalytic activities and the specificity of protein interactions: phosphorylation, acetylation, methylation, ubiquitylation, and SUMOylation, followed by the reversal of these changes as repair is completed. "Superfluous" protein recruitment to damage sites, functional redundancy, and alternative pathways ensure that DSB repair is extremely efficient, both quantitatively and qualitatively. This review strives to integrate the information about the molecular mechanisms of DSB repair that has emerged over the last two decades with a focus on DSBs produced by the prototype agent ionizing radiation (IR). The exponential growth of molecular studies, heavily driven by RNA knockdown technology, now reveals an outline of how many key protein players in genome stability and cancer biology perform their interwoven tasks, e.g. ATM, ATR, DNA-PK, Chk1, Chk2, PARP1/2/3, 53BP1, BRCA1, BRCA2, BLM, RAD51, and the MRE11-RAD50-NBS1 complex. Thus, the nature of the intricate coordination of repair processes with cell cycle progression is becoming apparent. This review also links molecular abnormalities to cellular pathology as much a possible and provides a framework of temporal relationships.
Collapse
Affiliation(s)
- Larry H Thompson
- Biology & Biotechnology Division, L452, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94551-0808, United States.
| |
Collapse
|
11
|
Wang B. BRCA1 tumor suppressor network: focusing on its tail. Cell Biosci 2012; 2:6. [PMID: 22369660 PMCID: PMC3315748 DOI: 10.1186/2045-3701-2-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 02/27/2012] [Indexed: 02/07/2023] Open
Abstract
Germline mutations of the BRCA1 tumor suppressor gene are a major cause of familial breast and ovarian cancer. BRCA1 plays critical roles in the DNA damage response that regulates activities of multiple repair and checkpoint pathways for maintaining genome stability. The BRCT domains of BRCA1 constitute a phospho-peptide binding domain recognizing a phospho-SPxF motif (S, serine; P, proline; × varies; F, phenylalanine). The BRCT domains are frequently targeted by clinically important mutations and most of these mutations disrupt the binding surface of the BRCT domains to phosphorylated peptides. The BRCT domain and its capability to bind phosphorylated protein is required for the tumor suppressor function of BRCA1. Through its BRCT phospho-binding ability BRCA1 forms at least three mutually exclusive complexes by binding to phosphorylated proteins Abraxas, Bach1 and CTIP. The A, B and C complexes, at lease partially undertake BRCA1's role in mechanisms of cell cycle checkpoint and DNA repair that maintain genome stability, thus may play important roles in BRCA1's tumor suppressor function.
Collapse
Affiliation(s)
- Bin Wang
- Department of Genetics, The University of Texas M,D, Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1010, Houston, TX 77030, USA.
| |
Collapse
|
12
|
La Rosa P, Acconcia F. Signaling functions of ubiquitin in the 17β-estradiol (E2):estrogen receptor (ER) α network. J Steroid Biochem Mol Biol 2011; 127:223-30. [PMID: 21824518 DOI: 10.1016/j.jsbmb.2011.07.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 07/23/2011] [Accepted: 07/26/2011] [Indexed: 02/07/2023]
Abstract
Protein posttranslational modifications (PTMs) are signaling alterations that allow coordinating the cellular responses with the changes in the extracellular environment. In this way, the posttranslationally-modified protein becomes a switch node in the transduction network activated by the specific extracellular stimuli. It is now clear that this is the case also for protein ubiquitination: this extremely versatile PTM controls cell physiology through the modulation of protein stability as well as through the modulation of the dynamics of the intracellular signaling cascades. Recent evidence clearly indicates that such a complex scheme appears to be valid also for the 17β-estradiol (E2):estrogen receptor (ER) α signal transduction pathways. Indeed, beside the long standing notion that ERα ubiquitination is required for the regulation of receptor stability, several laboratories, including our own, have clearly indicated that ERα ubiquitination also serves non-degradative functions. This review will reconsider the role of ubiquitination in E2:ERα signaling by particularly highlighting how the functions of the non-degradative ubiquitination impact on ERα activities and contribute to the modulation of E2-dependent physiological processes.
Collapse
Affiliation(s)
- Piergiorgio La Rosa
- Department of Biology, University Roma Tre, Viale Guglielmo Marconi, 446, I-00146 Rome, Italy
| | | |
Collapse
|
13
|
MDC1 is ubiquitylated on its tandem BRCT domain and directly binds RAP80 in a UBC13-dependent manner. DNA Repair (Amst) 2011; 10:806-14. [DOI: 10.1016/j.dnarep.2011.04.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 03/22/2011] [Accepted: 04/15/2011] [Indexed: 11/21/2022]
|
14
|
Nakamura K, Kato A, Kobayashi J, Yanagihara H, Sakamoto S, Oliveira DVNP, Shimada M, Tauchi H, Suzuki H, Tashiro S, Zou L, Komatsu K. Regulation of homologous recombination by RNF20-dependent H2B ubiquitination. Mol Cell 2011; 41:515-28. [PMID: 21362548 DOI: 10.1016/j.molcel.2011.02.002] [Citation(s) in RCA: 281] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 10/11/2010] [Accepted: 12/13/2010] [Indexed: 10/18/2022]
Abstract
The E3 ubiquitin ligase RNF20 regulates chromatin structure by monoubiquitinating histone H2B in transcription. Here, we show that RNF20 is localized to double-stranded DNA breaks (DSBs) independently of H2AX and is required for the DSB-induced H2B ubiquitination. In addition, RNF20 is required for the methylation of H3K4 at DSBs and the recruitment of the chromatin-remodeling factor SNF2h. Depletion of RNF20, depletion of SNF2h, or expression of the H2B mutant lacking the ubiquitination site (K120R) compromises resection of DNA ends and recruitment of RAD51 and BRCA1. Consequently, cells lacking RNF20 or SNF2h and cells expressing H2B K120R exhibit pronounced defects in homologous recombination repair (HRR) and enhanced sensitivity to radiation. Finally, the function of RNF20 in HRR can be partially bypassed by forced chromatin relaxation. Thus, the RNF20-mediated H2B ubiquitination at DSBs plays a critical role in HRR through chromatin remodeling.
Collapse
Affiliation(s)
- Kyosuke Nakamura
- Radiation Biology Center, Kyoto University, Yoshida-konoecho, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
A recent meta-analysis of 11,107 patients with non-small cell lung cancer who had undergone surgical resection showed that the 5-year survival benefit of adjuvant chemotherapy was 4%, and that of adjuvant chemoradiotherapy was 5%. Two trials have shown a trend toward improved survival with adjuvant paclitaxel plus carboplatin. However, the benefit of adjuvant treatment remains suboptimal. We must distinguish between patients who will not relapse-and who can thus be spared adjuvant treatment-and those who will-for whom adjuvant treatment must be personalized. Several gene expression signatures, generally containing nonoverlapping genes, provide similar predictive information on clinical outcome, and a model combining several signatures did not perform better than did each of the signatures separately. The invasiveness gene signature, containing 186 genes, includes genes involved in the nuclear factor κB pathway, the RAS-mitogen-activated protein kinase pathway, and epigenetic control of gene expression. A 15-gene signature has identified JBR.10 patients who are more sensitive to adjuvant chemotherapy.
Collapse
|
16
|
Patterson-Fortin J, Shao G, Bretscher H, Messick TE, Greenberg RA. Differential regulation of JAMM domain deubiquitinating enzyme activity within the RAP80 complex. J Biol Chem 2010; 285:30971-81. [PMID: 20656689 PMCID: PMC2945588 DOI: 10.1074/jbc.m110.135319] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 07/16/2010] [Indexed: 11/06/2022] Open
Abstract
BRCC36 is a JAMM (JAB1/MPN/Mov34 metalloenzyme) domain, lysine 63-ubiquitin (K63-Ub)-specific deubiquitinating enzyme (DUB) and a member of two protein complexes: the DNA damage-responsive BRCA1-RAP80 complex, and the cytoplasmic BRCC36 isopeptidase complex (BRISC). The presence of several identical constituents in both complexes suggests common regulatory mechanisms and potential competition between K63-Ub-related signaling in cytoplasmic and nuclear compartments. Surprisingly, we discover that BRCC36 DUB activity requires different interactions within the context of each complex. Abraxas and BRCC45 were essential for BRCC36 DUB activity within the RAP80 complex, whereas KIAA0157/Abro was the only interaction required for DUB activity within the BRISC. Poh1 also required protein interactions for activity, suggesting a common regulatory mechanism for JAMM domain DUBs. Finally, BRISC deficiency enhanced formation of the BRCA1-RAP80 complex in vivo, increasing BRCA1 levels at DNA double strand breaks. These findings reveal that JAMM domain DUB activity and K63-Ub levels are regulated by multiple mechanisms within the cell.
Collapse
Affiliation(s)
- Jeffrey Patterson-Fortin
- From the Departments of Cancer Biology and
- the School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6160
| | - Genze Shao
- From the Departments of Cancer Biology and
| | | | | | - Roger A. Greenberg
- From the Departments of Cancer Biology and
- Pathology, Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6160 and
| |
Collapse
|
17
|
Emerging roles of the ubiquitin proteasome system in nuclear hormone receptor signaling. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 87:117-35. [PMID: 20374703 DOI: 10.1016/s1877-1173(09)87004-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nuclear receptor (NR)-mediated transcription is intimately tied to the ubiquitin proteasome system (UPS). The UPS targets numerous NR and coregulator proteins, regulating their stability and altering their transcriptional activities through the posttranslational placement of ubiquitin marks on them. Differences in the manner in which ubiquitin is attached to target proteins or itself have distinct regulatory consequences. Protein monoubiquitination, polyubiquitination, the site of ubiquitin attachment to a target protein, and the type of polyubiquitin chain linkage all lead to different biological outcomes and have an important regulatory function in NR-mediated transcription. Consistent with its role in protein degradation, the UPS is able to limit the biological actions of both NRs and coregulators by reducing their protein concentrations in the cell. However, in spite of its destructive capabilities, the UPS can play a positive role in facilitating NR-mediated transcription as well. In addition, ubiquitin-like modifications such as SUMOylation also modify and regulate NRs and coregulators. The UPS forms a key biological system that underlies a sophisticated postranslational regulatory scheme from which complex and dynamic regulation of NR-mediated transcription can occur.
Collapse
|
18
|
Understanding the functions of BRCA1 in the DNA-damage response. Biochem Soc Trans 2009; 37:597-604. [PMID: 19442256 DOI: 10.1042/bst0370597] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Inheritance of a mutation in BRCA1 (breast cancer 1 early-onset) results in predisposition to early-onset breast and ovarian cancer. Tumours in these individuals arise after somatic mutation or loss of the wild-type allele. Loss of BRCA1 function leads to a profound increase in genomic instability involving the accumulation of mutations, DNA breaks and gross chromosomal rearrangements. Accordingly, BRCA1 has been implicated as an important factor involved in both the repair of DNA lesions and in the regulation of cell-cycle checkpoints in response to DNA damage. However, the molecular mechanism through which BRCA1 functions to preserve genome stability remains unclear. In the present article, we examine the different ways in which BRCA1 might influence the repair of DNA damage and the preservation of genome integrity, taking into account what is currently known about its interactions with other proteins, its biochemical activity and its nuclear localization.
Collapse
|
19
|
Yan J, Menendez D, Yang XP, Resnick MA, Jetten AM. A regulatory loop composed of RAP80-HDM2-p53 provides RAP80-enhanced p53 degradation by HDM2 in response to DNA damage. J Biol Chem 2009; 284:19280-9. [PMID: 19433585 DOI: 10.1074/jbc.m109.013102] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The ubiquitin interaction motif-containing protein RAP80 plays a key role in DNA damage response signaling. Using genomic and functional analysis, we established that the expression of the RAP80 gene is regulated in a DNA damage-responsive manner by the master regulator p53. This regulation occurs at the transcriptional level through a noncanonical p53 response element in the RAP80 promoter. Although it is inducible by p53, RAP80 is also able to regulate p53 through an association with both p53 and the E3 ubiquitin ligase HDM2, providing HDM2-dependent enhancement of p53 polyubiquitination. Depletion of RAP80 by small interfering RNA stabilizes p53, which, following DNA damage, results in an increased transactivation of several p53 target genes as well as greater apoptosis. Consistent with these observations, exogenous expression of RAP80 selectively inhibits p53-dependent transactivation of target genes in an mdm2-dependent manner in MEF cells. Thus, we identify a new DNA damage-associated role for RAP80. It can function in an autoregulatory loop consisting of RAP80, HDM2, and the p53 master regulatory network, implying an important role for this loop in genome stability and oncogenesis.
Collapse
Affiliation(s)
- Jun Yan
- Cell Biology Section, Laboratory of Respiratory Biology, Chromosome Stability Group, Laboratory of Molecular Genetics, Division of Intramural Research, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | |
Collapse
|
20
|
Wang B, Hurov K, Hofmann K, Elledge SJ. NBA1, a new player in the Brca1 A complex, is required for DNA damage resistance and checkpoint control. Genes Dev 2009; 23:729-39. [PMID: 19261749 DOI: 10.1101/gad.1770309] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The ability to sense and respond to DNA damage is critical to maintenance of genomic stability and the prevention of cancer. In this study, we employed a genetic screen to identify a gene, NBA1 (new component of the BRCA1 A complex), that is required for resistance to ionizing radiation. The NBA1 protein localizes to sites of DNA damage and is required for G2/M checkpoint control. Proteomic analysis revealed that NBA1 is a component of the BRCA1 A complex, which also contains Brca1/Bard1, Abra1, RAP80, BRCC36, and BRE. NBA1 is required to maintain BRE and Abra1 abundance and for the recruitment of BRCA1 to sites of DNA damage. In depth bioinformatics analysis revealed that the BRCA1 A complex bears striking similarities to the 19S proteasome complex. Furthermore, we show that four members of the BRCA1-A complex possess a polyubiquitin chain-binding capability, thus forming a complex that might facilitate the deubiquitinating activity of the deubiquitination enzyme BRCC36 or the E3 ligase activity of the BRCA1/BARD1 ligase. These findings provide a new perspective from which to view the BRCA1 A complex.
Collapse
Affiliation(s)
- Bin Wang
- Department of Genetics, Howard Hughes Medical Institute, Center for Genetics and Genomics, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
21
|
Yan J, Yang XP, Kim YS, Jetten AM. RAP80 responds to DNA damage induced by both ionizing radiation and UV irradiation and is phosphorylated at Ser 205. Cancer Res 2008; 68:4269-76. [PMID: 18519686 DOI: 10.1158/0008-5472.can-07-5950] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Receptor-associated protein (RAP80), a nuclear protein containing two ubiquitin-interacting motifs (UIM), was recently found to be associated with breast cancer-1 (BRCA1) and to translocate to ionizing radiation-induced foci (IRIF). In this study, we show that the BRCT mutant of BRCA1, R1699W, which is associated with increased risk of breast cancer, is unable to interact with RAP80. Previously, we showed that ataxia-telangiectasia mutated protein kinase (ATM) can phosphorylate RAP80 in vitro at Ser(205), but whether this site is a target of ATM in whole cells was not established. To address this question, we generated an anti-RAP80Ser205(P) antibody that specifically recognizes RAP80 phosphorylated at Ser(205). Our data show that RAP80 becomes phosphorylated at Ser(205) in cells exposed to ionizing irradiation and that RAP80Ser205(P) translocates to IRIF. We show that this phosphorylation is mediated by ATM and does not require a functional BRCA1. The phosphorylation occurs within 5 minutes after irradiation, long before the translocation of RAP80 to IRIF. In addition, we show that UV irradiation induces translocation of RAP80 to DNA damage foci that colocalize with gamma-H2AX. We further show that this translocation is also dependent on the UIMs of RAP80 and that the UV-induced phosphorylation of RAP80 at Ser(205) is mediated by ATM- and RAD3-related kinase, not ATM. These findings suggest that RAP80 has a more general role in different types of DNA damage responses.
Collapse
Affiliation(s)
- Jun Yan
- Cell Biology Section, Laboratory of Respiratory Biology, Division of Intramural Research, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina 27709, USA
| | | | | | | |
Collapse
|
22
|
Novak DJ, Sabbaghian N, Maillet P, Chappuis PO, Foulkes WD, Tischkowitz M. Analysis of the genes coding for the BRCA1-interacting proteins, RAP80 and Abraxas (CCDC98), in high-risk, non-BRCA1/2, multiethnic breast cancer cases. Breast Cancer Res Treat 2008; 117:453-9. [PMID: 18695986 DOI: 10.1007/s10549-008-0134-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Accepted: 07/11/2008] [Indexed: 01/15/2023]
Abstract
Background Around half of familial breast cancer cases are caused by germ-line mutations in genes which are critically involved in the maintenance of genome stability. Mutations in related genes functioning in DNA repair may account for currently unattributed cases. Two such genes, RAP80 and Abraxas, have recently been identified to be in a complex with BRCA1, and are required for the localization of BRCA1 to DNA damage foci. Methods RAP80 and Abraxas variants were screened for in a cohort of 95 high risk, non-BRCA1/2 breast cancer cases of varying ethnicity: those of Ashkenazi Jewish (n = 35), mixed Canadian (n = 34) and Swiss descent (n = 26). Results We have identified four missense variants, four silent SNPs, three SNPs in the UTRs and seven intronic variants in RAP80. Two of the previously reported RAP80 variants were further investigated. In Abraxas, we have identified two missense, nine intronic and two variants in the 3' UTR. Conclusions Overall, it seems unlikely that moderate to highly penetrant alleles of either RAP80 or Abraxas, confer a significantly high relative risk of breast cancer.
Collapse
Affiliation(s)
- David J Novak
- Departments of Oncology and Human Genetics, Program in Cancer Genetics, McGill University, Montreal, QC, Canada H2W 1S6
| | | | | | | | | | | |
Collapse
|
23
|
Yan J, Jetten AM. RAP80 and RNF8, key players in the recruitment of repair proteins to DNA damage sites. Cancer Lett 2008; 271:179-90. [PMID: 18550271 DOI: 10.1016/j.canlet.2008.04.046] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Revised: 03/18/2008] [Accepted: 04/28/2008] [Indexed: 11/27/2022]
Abstract
Chromosomal double-strand breaks (DSBs) in eukaryotes provoke a rapid, extensive modification in chromatin flanking the breaks. The DNA damage response (DDR) coordinates activation of cell cycle checkpoints, apoptosis, and DNA repair networks, to ensure accurate repair and genomic integrity. The checkpoint kinase ATM plays a critical role in the initiation of DDR in response to DSBs. The early ATM-mediated phosphorylation of the histone variant H2AX proteins near DSBs leads to the subsequent binding of MDC1, which functions as a scaffold for the recruitment and assembly of many DDR mediators and effectors, including BRCA1. Recent studies have provided new insights into the mechanism by which BRCA1 and associated proteins are recruited to DNA damage foci and revealed key roles for the receptor-associated protein 80 (RAP80) and the E3 ligase RNF8 in this process. RAP80 is an ubiquitin-interaction motif (UIM) containing protein that is associated with a BRCA1/BARD1 complex through its interaction with CCDC98 (Abraxas). The UIMs of RAP80 are critical for targeting this protein complex to DSB sites. Additional studies revealed that after binding gamma-H2AX, ATM-phosphorylated MDC1 is recognized by the FHA domain of RNF8, which subsequently binds the E2 conjugating enzyme UBC13. This complex catalyzes K63-linked polyubiquitination of histones H2A and gamma-H2AX, which are then recognized by the UIMs of RAP80, thereby facilitating the recruitment of the BRCA1/BARD1/CCDC98/RAP80 protein complex to DSB sites. Depletion of RAP80 or RNF8 impairs the translocation of BRCA1 to DNA damage sites and results in defective cell cycle checkpoint control and DSB repair. In this review, we discuss this cascade of protein phosphorylation and ubiquitination and the role it plays in the control of cellular responses to genotoxic stress by regulating the interactions, localization, and function of DDR proteins.
Collapse
Affiliation(s)
- Jun Yan
- Cell Biology Section, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, United States
| | | |
Collapse
|
24
|
Wu W, Koike A, Takeshita T, Ohta T. The ubiquitin E3 ligase activity of BRCA1 and its biological functions. Cell Div 2008; 3:1. [PMID: 18179693 PMCID: PMC2254412 DOI: 10.1186/1747-1028-3-1] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2007] [Accepted: 01/07/2008] [Indexed: 12/21/2022] Open
Abstract
The basal-like breast cancer, a new category of breast cancer associated with poor prognosis and possibly unique chemosensitivity, is a current topic in the breast cancer field. Evidence from multiple sources strongly indicate that impairment of BRCA1 pathways is responsible for this phenotype, implying the importance of BRCA1 not only in familial breast cancers but also in sporadic cancers. BRCA1 acts as a hub protein that coordinates a diverse range of cellular pathways to maintain genomic stability. BRCA1 participates in multiple cellular supercomplexes to execute its tasks and, in most of the complexes, BRCA1 exists as a RING heterodimer with BARD1 to provide ubiquitin E3 ligase activity that is required for its tumor suppressor function. It was revealed recently that the BRCA1 RING finger is capable of catalyzing multiple types of ubiquitination depending upon the interacting E2, the ubiquitin carrier protein. BRCA1 may catalyze distinct ubiquitination on different substrates as the situation demands. On the other hand, in response to DNA double-strand breaks where BRCA1 plays its major role for homologous recombination repair, recent evidence showed that ubiquitination is a critical step to recruit BRCA1 to the damaged site through UIM (ubiquitin interacting motif) containing protein RAP80. Thus, ubiquitin and BRCA1 likely affect each other in many ways to perform cellular functions. Elucidation of this mechanism in relation to cell survival is now much anticipated because it could be a key to predict chemosensitivity of basal-like breast cancer.
Collapse
Affiliation(s)
- Wenwen Wu
- Division of Breast and Endocrine Surgery, St, Marianna University School of Medicine, Kawasaki, 216-8511, Japan.
| | | | | | | |
Collapse
|
25
|
Yan J, Yang XP, Kim YS, Joo JH, Jetten AM. RAP80 interacts with the SUMO-conjugating enzyme UBC9 and is a novel target for sumoylation. Biochem Biophys Res Commun 2007; 362:132-138. [PMID: 17698038 PMCID: PMC2049087 DOI: 10.1016/j.bbrc.2007.07.158] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2007] [Accepted: 07/30/2007] [Indexed: 11/21/2022]
Abstract
RAP80, a nuclear protein with two functional ubiquitin-interaction motifs (UIMs) at its N-terminus, plays a critical role in the regulation of estrogen receptor alpha and DNA damage response signaling. A yeast two-hybrid screen identified the SUMO-conjugating enzyme UBC9 as a protein interacting with RAP80. The interaction of RAP80 with UBC9 was confirmed by co-immunoprecipitation and GST pull-down analyses. The region between aa 122-204 was critical for the interaction of RAP80 with UBC9. In addition, we demonstrate that RAP80 is a target for SUMO-1 modification in intact cells. Expression of UBC9 enhanced RAP80 mono-sumoylation and also induced multi-sumoylation of RAP80. In addition to SUMO-1, RAP80 was efficiently conjugated to SUMO-3 but was only a weak substrate for SUMO-2 conjugation. These findings suggest that sumoylation plays a role in the regulation of RAP80 functions.
Collapse
Affiliation(s)
- Jun Yan
- Cell Biology Section, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Xiao-Ping Yang
- Cell Biology Section, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Yong-Sik Kim
- Cell Biology Section, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Joung Hyuck Joo
- Cell Biology Section, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Anton M Jetten
- Cell Biology Section, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
26
|
Yan J, Kim YS, Yang XP, Li LP, Liao G, Xia F, Jetten AM. The ubiquitin-interacting motif containing protein RAP80 interacts with BRCA1 and functions in DNA damage repair response. Cancer Res 2007; 67:6647-56. [PMID: 17621610 PMCID: PMC2391092 DOI: 10.1158/0008-5472.can-07-0924] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
In this study, we examine the potential role of receptor-associated protein 80 (RAP80), a nuclear protein containing two ubiquitin-interacting motifs (UIM), in DNA damage response and double-strand break (DSB) repair. We show that following ionizing radiation and treatment with DNA-damaging agents, RAP80 translocates to discrete nuclear foci that colocalize with those of gamma-H2AX. The UIMs and the region of amino acids 204 to 304 are critical for the relocalization of RAP80 to ionizing radiation-induced foci (IRIF). These observations suggest that RAP80 becomes part of a DNA repair complex at the sites of IRIF. We also show that RAP80 forms a complex with the tumor repressor BRCA1 and that this interaction is mediated through the BRCA1 COOH-terminal repeats of BRCA1. The UIMs are not required for the interaction of RAP80 with BRCA1. Knockdown of RAP80 in HEK293 cells significantly reduced DSB-induced homology-directed recombination (HDR). Moreover, inhibition of RAP80 expression by small interfering RNA increased radiosensitivity, whereas increased radioresistance was observed in human breast cancer MCF-7 cells with overexpression of RAP80. Taken together, our data suggest that RAP80 plays an important role in DNA damage response signaling and HDR-mediated DSB repair. We further show that RAP80 can function as a substrate of the ataxia-telangiectasia mutated protein kinase in vitro, which phosphorylates RAP80 at Ser(205) and Ser(402). We show that this phosphorylation is not required for the migration of RAP80 to IRIF.
Collapse
Affiliation(s)
- Jun Yan
- Cell Biology Section, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709
| | - Yong-Sik Kim
- Cell Biology Section, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709
| | - Xiao-Ping Yang
- Cell Biology Section, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709
| | - Li-Ping Li
- Department of Radiation Oncology, Vanderbilt University Medical Center, 1301 22 Avenue South, Nashville, TN 37232
| | - Grace Liao
- Cell Biology Section, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709
| | - Fen Xia
- Department of Radiation Oncology, Vanderbilt University Medical Center, 1301 22 Avenue South, Nashville, TN 37232
| | - Anton M. Jetten
- Cell Biology Section, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709
- To whom correspondence should be addressed, Tel: 919-541-2768; Fax: 919-541-4133, E-mail:
| |
Collapse
|
27
|
Shebzukhov YV, Koroleva EP, Khlgatian SV, Belousov PV, Sazykin AY, Kadachigova TS, Pomerantseva EA, Lagarkova MA, Nedospasov SA, Kuprash DV. RAP80/UIMC1 as cancer-associated antigen: alternative splice variants and their immunogenicity. Cancer Lett 2007; 255:255-62. [PMID: 17562356 DOI: 10.1016/j.canlet.2007.04.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2007] [Revised: 04/27/2007] [Accepted: 04/30/2007] [Indexed: 12/24/2022]
Abstract
We have identified RAP80/UIMC1, the protein highly expressed in testis, as a new cancer-associated antigen. Sera from 5% to 10% of patients with different types of cancer contain specific antibodies to RAP80/UIMC1. In order to investigate the possible reasons for RAP80/UIMC1 immunogenicity, we characterized its numerous splice isoforms and mapped immunogenic regions of the protein. The majority of RAP80/UIMC1 transcripts was detected both in normal tissues and in colon tumors. There are several RAP80/UIMC1 isoforms that are predominantly expressed in testis, however we did not observe elevated expression of these transcripts in tumors from seropositive patients. We mapped the major immunogenic region of RAP80/UIMC1 to the central part of the protein encoded by exon 9 which is present in a number of ubiquitous splice forms. Thus, based on our data, autoreactivity to RAP80/UIMC1 is related to reasons other than overexpression or tumor-specific splicing.
Collapse
MESH Headings
- Alternative Splicing
- Amino Acid Sequence
- Antibodies, Neoplasm/blood
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/metabolism
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/immunology
- Biomarkers, Tumor/metabolism
- Carrier Proteins/genetics
- Carrier Proteins/immunology
- Carrier Proteins/metabolism
- DNA-Binding Proteins
- Epitope Mapping
- Epitopes, B-Lymphocyte/genetics
- Epitopes, B-Lymphocyte/immunology
- Epitopes, B-Lymphocyte/metabolism
- Female
- Histone Chaperones
- Humans
- Male
- Molecular Sequence Data
- Neoplasms/immunology
- Nuclear Proteins/genetics
- Nuclear Proteins/immunology
- Nuclear Proteins/metabolism
- Testis/metabolism
Collapse
Affiliation(s)
- Yuriy V Shebzukhov
- Department of Molecular Immunology, Belozersky Institute of Physico-Chemical Biology, Moscow State University, Vorobjovy Gory, Moscow 119899, Russia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Wang B, Matsuoka S, Ballif B, Zhang D, Smogorzewska A, Giyi S, Elledge SJ. Abraxas and RAP80 form a BRCA1 protein complex required for the DNA damage response. Science 2007; 316:1194-8. [PMID: 17525340 PMCID: PMC3573690 DOI: 10.1126/science.1139476] [Citation(s) in RCA: 556] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The BRCT repeats of the breast and ovarian cancer predisposition protein BRCA1 are essential for tumor suppression. Phosphopeptide affinity proteomic analysis identified a protein, Abraxas, that directly binds the BRCA1 BRCT repeats through a phospho-Ser-X-X-Phe motif. Abraxas binds BRCA1 to the mutual exclusion of BACH1 (BRCA1-associated C-terminal helicase) and CtIP (CtBP-interacting protein), forming a third type of BRCA1 complex. Abraxas recruits the ubiquitin-interacting motif (UIM)-containing protein RAP80 to BRCA1. Both Abraxas and RAP80 were required for DNA damage resistance, G(2)-M checkpoint control, and DNA repair. RAP80 was required for optimal accumulation of BRCA1 on damaged DNA (foci) in response to ionizing radiation, and the UIM domains alone were capable of foci formation. The RAP80-Abraxas complex may help recruit BRCA1 to DNA damage sites in part through recognition of ubiquitinated proteins.
Collapse
Affiliation(s)
- Bin Wang
- Department of Genetics, Howard Hughes Medical Institute, Center for Genetics and Genomics, Brigham and Women's Hospital, Harvard University Medical School, Boston, MA 02115
| | - Shuhei Matsuoka
- Department of Genetics, Howard Hughes Medical Institute, Center for Genetics and Genomics, Brigham and Women's Hospital, Harvard University Medical School, Boston, MA 02115
| | - Bryan Ballif
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, Massachusetts 02115, USA
| | - Dong Zhang
- Department of Genetics, Howard Hughes Medical Institute, Center for Genetics and Genomics, Brigham and Women's Hospital, Harvard University Medical School, Boston, MA 02115
| | - Agata Smogorzewska
- Department of Genetics, Howard Hughes Medical Institute, Center for Genetics and Genomics, Brigham and Women's Hospital, Harvard University Medical School, Boston, MA 02115
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02214
| | - Steven Giyi
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, Massachusetts 02115, USA
| | - Stephen J. Elledge
- Department of Genetics, Howard Hughes Medical Institute, Center for Genetics and Genomics, Brigham and Women's Hospital, Harvard University Medical School, Boston, MA 02115
| |
Collapse
|