1
|
Dunkelmann DL, Chin JW. Engineering Pyrrolysine Systems for Genetic Code Expansion and Reprogramming. Chem Rev 2024; 124:11008-11062. [PMID: 39235427 PMCID: PMC11467909 DOI: 10.1021/acs.chemrev.4c00243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 09/06/2024]
Abstract
Over the past 16 years, genetic code expansion and reprogramming in living organisms has been transformed by advances that leverage the unique properties of pyrrolysyl-tRNA synthetase (PylRS)/tRNAPyl pairs. Here we summarize the discovery of the pyrrolysine system and describe the unique properties of PylRS/tRNAPyl pairs that provide a foundation for their transformational role in genetic code expansion and reprogramming. We describe the development of genetic code expansion, from E. coli to all domains of life, using PylRS/tRNAPyl pairs, and the development of systems that biosynthesize and incorporate ncAAs using pyl systems. We review applications that have been uniquely enabled by the development of PylRS/tRNAPyl pairs for incorporating new noncanonical amino acids (ncAAs), and strategies for engineering PylRS/tRNAPyl pairs to add noncanonical monomers, beyond α-L-amino acids, to the genetic code of living organisms. We review rapid progress in the discovery and scalable generation of mutually orthogonal PylRS/tRNAPyl pairs that can be directed to incorporate diverse ncAAs in response to diverse codons, and we review strategies for incorporating multiple distinct ncAAs into proteins using mutually orthogonal PylRS/tRNAPyl pairs. Finally, we review recent advances in the encoded cellular synthesis of noncanonical polymers and macrocycles and discuss future developments for PylRS/tRNAPyl pairs.
Collapse
Affiliation(s)
- Daniel L. Dunkelmann
- Medical
Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, England, United Kingdom
- Max
Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Jason W. Chin
- Medical
Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, England, United Kingdom
| |
Collapse
|
2
|
Koch NG, Budisa N. Evolution of Pyrrolysyl-tRNA Synthetase: From Methanogenesis to Genetic Code Expansion. Chem Rev 2024; 124:9580-9608. [PMID: 38953775 PMCID: PMC11363022 DOI: 10.1021/acs.chemrev.4c00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 07/04/2024]
Abstract
Over 20 years ago, the pyrrolysine encoding translation system was discovered in specific archaea. Our Review provides an overview of how the once obscure pyrrolysyl-tRNA synthetase (PylRS) tRNA pair, originally responsible for accurately translating enzymes crucial in methanogenic metabolic pathways, laid the foundation for the burgeoning field of genetic code expansion. Our primary focus is the discussion of how to successfully engineer the PylRS to recognize new substrates and exhibit higher in vivo activity. We have compiled a comprehensive list of ncAAs incorporable with the PylRS system. Additionally, we also summarize recent successful applications of the PylRS system in creating innovative therapeutic solutions, such as new antibody-drug conjugates, advancements in vaccine modalities, and the potential production of new antimicrobials.
Collapse
Affiliation(s)
- Nikolaj G. Koch
- Department
of Chemistry, Institute of Physical Chemistry, University of Basel, 4058 Basel, Switzerland
- Department
of Biosystems Science and Engineering, ETH
Zurich, 4058 Basel, Switzerland
| | - Nediljko Budisa
- Biocatalysis
Group, Institute of Chemistry, Technische
Universität Berlin, 10623 Berlin, Germany
- Chemical
Synthetic Biology Chair, Department of Chemistry, University of Manitoba, Winnipeg MB R3T 2N2, Canada
| |
Collapse
|
3
|
Sigal M, Matsumoto S, Beattie A, Katoh T, Suga H. Engineering tRNAs for the Ribosomal Translation of Non-proteinogenic Monomers. Chem Rev 2024; 124:6444-6500. [PMID: 38688034 PMCID: PMC11122139 DOI: 10.1021/acs.chemrev.3c00894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/21/2024] [Accepted: 04/10/2024] [Indexed: 05/02/2024]
Abstract
Ribosome-dependent protein biosynthesis is an essential cellular process mediated by transfer RNAs (tRNAs). Generally, ribosomally synthesized proteins are limited to the 22 proteinogenic amino acids (pAAs: 20 l-α-amino acids present in the standard genetic code, selenocysteine, and pyrrolysine). However, engineering tRNAs for the ribosomal incorporation of non-proteinogenic monomers (npMs) as building blocks has led to the creation of unique polypeptides with broad applications in cellular biology, material science, spectroscopy, and pharmaceuticals. Ribosomal polymerization of these engineered polypeptides presents a variety of challenges for biochemists, as translation efficiency and fidelity is often insufficient when employing npMs. In this Review, we will focus on the methodologies for engineering tRNAs to overcome these issues and explore recent advances both in vitro and in vivo. These efforts include increasing orthogonality, recruiting essential translation factors, and creation of expanded genetic codes. After our review on the biochemical optimizations of tRNAs, we provide examples of their use in genetic code manipulation, with a focus on the in vitro discovery of bioactive macrocyclic peptides containing npMs. Finally, an analysis of the current state of tRNA engineering is presented, along with existing challenges and future perspectives for the field.
Collapse
Affiliation(s)
- Maxwell Sigal
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Satomi Matsumoto
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Adam Beattie
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takayuki Katoh
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
4
|
Krahn N, Zhang J, Melnikov SV, Tharp JM, Villa A, Patel A, Howard R, Gabir H, Patel T, Stetefeld J, Puglisi J, Söll D. tRNA shape is an identity element for an archaeal pyrrolysyl-tRNA synthetase from the human gut. Nucleic Acids Res 2024; 52:513-524. [PMID: 38100361 PMCID: PMC10810272 DOI: 10.1093/nar/gkad1188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/23/2023] [Accepted: 11/29/2023] [Indexed: 12/17/2023] Open
Abstract
Protein translation is orchestrated through tRNA aminoacylation and ribosomal elongation. Among the highly conserved structure of tRNAs, they have distinguishing features which promote interaction with their cognate aminoacyl tRNA synthetase (aaRS). These key features are referred to as identity elements. In our study, we investigated the tRNA:aaRS pair that installs the 22nd amino acid, pyrrolysine (tRNAPyl:PylRS). Pyrrolysyl-tRNA synthetases (PylRSs) are naturally encoded in some archaeal and bacterial genomes to acylate tRNAPyl with pyrrolysine. Their large amino acid binding pocket and poor recognition of the tRNA anticodon have been instrumental in incorporating >200 noncanonical amino acids. PylRS enzymes can be divided into three classes based on their genomic structure. Two classes contain both an N-terminal and C-terminal domain, however the third class (ΔpylSn) lacks the N-terminal domain. In this study we explored the tRNA identity elements for a ΔpylSn tRNAPyl from Candidatus Methanomethylophilus alvus which drives the orthogonality seen with its cognate PylRS (MaPylRS). From aminoacylation and translation assays we identified five key elements in ΔpylSn tRNAPyl necessary for MaPylRS activity. The absence of a base (position 8) and a G-U wobble pair (G28:U42) were found to affect the high-resolution structure of the tRNA, while molecular dynamic simulations led us to acknowledge the rigidity imparted from the G-C base pairs (G3:C70 and G5:C68).
Collapse
Affiliation(s)
- Natalie Krahn
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Jingji Zhang
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sergey V Melnikov
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Jeffery M Tharp
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Alessandra Villa
- PDC-Center for High Performance Computing, KTH-Royal Institute of Technology, Stockholm, SE-100 44, Sweden
| | - Armaan Patel
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Rebecca J Howard
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna, SE-171 65, Sweden
| | - Haben Gabir
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Trushar R Patel
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, AB T1K 2E1, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Department of Microbiology, Immunology & Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Jörg Stetefeld
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Joseph Puglisi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
5
|
Gong X, Zhang H, Shen Y, Fu X. Update of the Pyrrolysyl-tRNA Synthetase/tRNA Pyl Pair and Derivatives for Genetic Code Expansion. J Bacteriol 2023; 205:e0038522. [PMID: 36695595 PMCID: PMC9945579 DOI: 10.1128/jb.00385-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The cotranslational incorporation of pyrrolysine (Pyl), the 22nd proteinogenic amino acid, into proteins in response to the UAG stop codon represents an outstanding example of natural genetic code expansion. Genetic encoding of Pyl is conducted by the pyrrolysyl-tRNA synthetase (PylRS) and its cognate tRNA, tRNAPyl. Owing to the high tolerance of PylRS toward diverse amino acid substrates and great orthogonality in various model organisms, the PylRS/tRNAPyl-derived pairs are ideal for genetic code expansion to insert noncanonical amino acids (ncAAs) into proteins of interest. Since the discovery of cellular components involved in the biosynthesis and genetic encoding of Pyl, synthetic biologists have been enthusiastic about engineering PylRS/tRNAPyl-derived pairs to rewrite the genetic code of living cells. Recently, considerable progress has been made in understanding the molecular phylogeny, biochemical properties, and structural features of the PylRS/tRNAPyl pair, guiding its further engineering and optimization. In this review, we cover the basic and updated knowledge of the PylRS/tRNAPyl pair's unique characteristics that make it an outstanding tool for reprogramming the genetic code. In addition, we summarize the recent efforts to create efficient and (mutually) orthogonal PylRS/tRNAPyl-derived pairs for incorporation of diverse ncAAs by genome mining, rational design, and advanced directed evolution methods.
Collapse
Affiliation(s)
- Xuemei Gong
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI Research-Shenzhen, BGI, Shenzhen, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen, China
| | - Haolin Zhang
- BGI Research-Shenzhen, BGI, Shenzhen, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen, China
| | - Yue Shen
- BGI Research-Shenzhen, BGI, Shenzhen, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen, China
- BGI Research-Changzhou, BGI, Changzhou, China
| | - Xian Fu
- BGI Research-Shenzhen, BGI, Shenzhen, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen, China
- BGI Research-Changzhou, BGI, Changzhou, China
| |
Collapse
|
6
|
Giegé R, Eriani G. The tRNA identity landscape for aminoacylation and beyond. Nucleic Acids Res 2023; 51:1528-1570. [PMID: 36744444 PMCID: PMC9976931 DOI: 10.1093/nar/gkad007] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 12/21/2022] [Accepted: 01/03/2023] [Indexed: 02/07/2023] Open
Abstract
tRNAs are key partners in ribosome-dependent protein synthesis. This process is highly dependent on the fidelity of tRNA aminoacylation by aminoacyl-tRNA synthetases and relies primarily on sets of identities within tRNA molecules composed of determinants and antideterminants preventing mischarging by non-cognate synthetases. Such identity sets were discovered in the tRNAs of a few model organisms, and their properties were generalized as universal identity rules. Since then, the panel of identity elements governing the accuracy of tRNA aminoacylation has expanded considerably, but the increasing number of reported functional idiosyncrasies has led to some confusion. In parallel, the description of other processes involving tRNAs, often well beyond aminoacylation, has progressed considerably, greatly expanding their interactome and uncovering multiple novel identities on the same tRNA molecule. This review highlights key findings on the mechanistics and evolution of tRNA and tRNA-like identities. In addition, new methods and their results for searching sets of multiple identities on a single tRNA are discussed. Taken together, this knowledge shows that a comprehensive understanding of the functional role of individual and collective nucleotide identity sets in tRNA molecules is needed for medical, biotechnological and other applications.
Collapse
Affiliation(s)
- Richard Giegé
- Correspondence may also be addressed to Richard Giegé.
| | | |
Collapse
|
7
|
Ranji Charna A, Des Soye BJ, Ntai I, Kelleher NL, Jewett MC. An efficient cell-free protein synthesis platform for producing proteins with pyrrolysine-based noncanonical amino acids. Biotechnol J 2022; 17:e2200096. [PMID: 35569121 PMCID: PMC9452482 DOI: 10.1002/biot.202200096] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/04/2022] [Accepted: 05/09/2022] [Indexed: 11/08/2022]
Abstract
Incorporation of noncanonical amino acids (ncAAs) into proteins opens new opportunities in biotechnology and synthetic biology. Pyrrolysine (Pyl)-based ncAAs are some of the most predominantly used, but expression systems suffer from low yields. Here, we report a highly efficient cell-free protein synthesis (CFPS) platform for site-specific incorporation of Pyl-based ncAAs into proteins using amber suppression. This platform is based on cellular extracts derived from genomically recoded Escherichia coli lacking release factor 1 and enhanced through deletion of endonuclease A. To enable ncAA incorporation, orthogonal translation system (OTS) components (i.e., the orthogonal transfer RNA [tRNA] and orthogonal aminoacyl tRNA synthetase) were coexpressed in the source strain prior to lysis and the orthogonal tRNACUA Pyl that decodes the amber codon was further enriched in the CFPS reaction via co-synthesis with the product. Using this platform, we demonstrate production of up to 442 ± 23 µg/mL modified superfolder green fluorescent protein (sfGFP) containing a single Pyl-based ncAA at high (>95%) suppression efficiency, as well as sfGFP variants harboring multiple, identical ncAAs. Our CFPS platform can be used for the synthesis of modified proteins containing multiple precisely positioned, genetically encoded Pyl-based ncAAs. We anticipate that it will facilitate more general use of CFPS in synthetic biology.
Collapse
Affiliation(s)
- Arnaz Ranji Charna
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, USA
| | - Benjamin J Des Soye
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, USA
| | - Ioanni Ntai
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, USA
| | - Neil L Kelleher
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, USA
- Department of Chemistry, Northwestern University, Evanston, Illinois, USA
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois, USA
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, USA
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois, USA
- Member, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
8
|
Zhang H, Gong X, Zhao Q, Mukai T, Vargas-Rodriguez O, Zhang H, Zhang Y, Wassel P, Amikura K, Maupin-Furlow J, Ren Y, Xu X, Wolf YI, Makarova K, Koonin E, Shen Y, Söll D, Fu X. The tRNA discriminator base defines the mutual orthogonality of two distinct pyrrolysyl-tRNA synthetase/tRNAPyl pairs in the same organism. Nucleic Acids Res 2022; 50:4601-4615. [PMID: 35466371 PMCID: PMC9071458 DOI: 10.1093/nar/gkac271] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/01/2022] [Accepted: 04/07/2022] [Indexed: 12/24/2022] Open
Abstract
Site-specific incorporation of distinct non-canonical amino acids into proteins via genetic code expansion requires mutually orthogonal aminoacyl-tRNA synthetase/tRNA pairs. Pyrrolysyl-tRNA synthetase (PylRS)/tRNAPyl pairs are ideal for genetic code expansion and have been extensively engineered for developing mutually orthogonal pairs. Here, we identify two novel wild-type PylRS/tRNAPyl pairs simultaneously present in the deep-rooted extremely halophilic euryarchaeal methanogen Candidatus Methanohalarchaeum thermophilum HMET1, and show that both pairs are functional in the model halophilic archaeon Haloferax volcanii. These pairs consist of two different PylRS enzymes and two distinct tRNAs with dissimilar discriminator bases. Surprisingly, these two PylRS/tRNAPyl pairs display mutual orthogonality enabled by two unique features, the A73 discriminator base of tRNAPyl2 and a shorter motif 2 loop in PylRS2. In vivo translation experiments show that tRNAPyl2 charging by PylRS2 is defined by the enzyme's shortened motif 2 loop. Finally, we demonstrate that the two HMET1 PylRS/tRNAPyl pairs can simultaneously decode UAG and UAA codons for incorporation of two distinct noncanonical amino acids into protein. This example of a single base change in a tRNA leading to additional coding capacity suggests that the growth of the genetic code is not yet limited by the number of identity elements fitting into the tRNA structure.
Collapse
Affiliation(s)
| | | | | | - Takahito Mukai
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Oscar Vargas-Rodriguez
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Huiming Zhang
- BGI-Shenzhen, Shenzhen, 518083, China,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuxing Zhang
- BGI-Shenzhen, Shenzhen, 518083, China,Sino-Danish College, University of the Chinese Academy of Sciences, Beijing, China
| | - Paul Wassel
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Kazuaki Amikura
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Julie Maupin-Furlow
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA,Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| | - Yan Ren
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Xun Xu
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Yue Shen
- Correspondence may also be addressed to Yue Shen.
| | - Dieter Söll
- To whom correspondence should be addressed. Tel: +1 203 4326200;
| | - Xian Fu
- Correspondence may also be addressed to Xian Fu.
| |
Collapse
|
9
|
Bacterial translation machinery for deliberate mistranslation of the genetic code. Proc Natl Acad Sci U S A 2021; 118:2110797118. [PMID: 34413202 DOI: 10.1073/pnas.2110797118] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Inaccurate expression of the genetic code, also known as mistranslation, is an emerging paradigm in microbial studies. Growing evidence suggests that many microbial pathogens can deliberately mistranslate their genetic code to help invade a host or evade host immune responses. However, discovering different capacities for deliberate mistranslation remains a challenge because each group of pathogens typically employs a unique mistranslation mechanism. In this study, we address this problem by studying duplicated genes of aminoacyl-transfer RNA (tRNA) synthetases. Using bacterial prolyl-tRNA synthetase (ProRS) genes as an example, we identify an anomalous ProRS isoform, ProRSx, and a corresponding tRNA, tRNAProA, that are predominately found in plant pathogens from Streptomyces species. We then show that tRNAProA has an unusual hybrid structure that allows this tRNA to mistranslate alanine codons as proline. Finally, we provide biochemical, genetic, and mass spectrometric evidence that cells which express ProRSx and tRNAProA can translate GCU alanine codons as both alanine and proline. This dual use of alanine codons creates a hidden proteome diversity due to stochastic Ala→Pro mutations in protein sequences. Thus, we show that important plant pathogens are equipped with a tool to alter the identity of their sense codons. This finding reveals the initial example of a natural tRNA synthetase/tRNA pair for dedicated mistranslation of sense codons.
Collapse
|
10
|
Krahn N, Fischer JT, Söll D. Naturally Occurring tRNAs With Non-canonical Structures. Front Microbiol 2020; 11:596914. [PMID: 33193279 PMCID: PMC7609411 DOI: 10.3389/fmicb.2020.596914] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 09/29/2020] [Indexed: 11/13/2022] Open
Abstract
Transfer RNA (tRNA) is the central molecule in genetically encoded protein synthesis. Most tRNA species were found to be very similar in structure: the well-known cloverleaf secondary structure and L-shaped tertiary structure. Furthermore, the length of the acceptor arm, T-arm, and anticodon arm were found to be closely conserved. Later research discovered naturally occurring, active tRNAs that did not fit the established 'canonical' tRNA structure. This review discusses the non-canonical structures of some well-characterized natural tRNA species and describes how these structures relate to their role in translation. Additionally, we highlight some newly discovered tRNAs in which the structure-function relationship is not yet fully understood.
Collapse
Affiliation(s)
- Natalie Krahn
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| | - Jonathan T Fischer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States.,Department of Chemistry, Yale University, New Haven, CT, United States
| |
Collapse
|
11
|
Abstract
Within the broad field of synthetic biology, genetic code expansion (GCE) techniques enable creation of proteins with an expanded set of amino acids. This may be invaluable for applications in therapeutics, bioremediation, and biocatalysis. Central to GCE are aminoacyl-tRNA synthetases (aaRSs) as they link a non-canonical amino acid (ncAA) to their cognate tRNA, allowing ncAA incorporation into proteins on the ribosome. The ncAA-acylating aaRSs and their tRNAs should not cross-react with 20 natural aaRSs and tRNAs in the host, i.e., they need to function as an orthogonal translating system. All current orthogonal aaRS•tRNA pairs have been engineered from naturally occurring molecules to change the aaRS's amino acid specificity or assign the tRNA to a liberated codon of choice. Here we discuss the importance of orthogonality in GCE, laboratory techniques employed to create designer aaRSs and tRNAs, and provide an overview of orthogonal aaRS•tRNA pairs for GCE purposes.
Collapse
Affiliation(s)
- Natalie Krahn
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| | - Jeffery M Tharp
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| | - Ana Crnković
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States.
| |
Collapse
|
12
|
Jiang HK, Lee MN, Tsou JC, Chang KW, Tseng HW, Chen KP, Li YK, Wang YS. Linker and N-Terminal Domain Engineering of Pyrrolysyl-tRNA Synthetase for Substrate Range Shifting and Activity Enhancement. Front Bioeng Biotechnol 2020; 8:235. [PMID: 32322577 PMCID: PMC7156790 DOI: 10.3389/fbioe.2020.00235] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/06/2020] [Indexed: 12/16/2022] Open
Abstract
The Methanosarcina mazei pyrrolysyl-tRNA synthetase (PylRS)⋅tRNAPyl pair can be used to incorporate non-canonical amino acids (ncAAs) into proteins at installed amber stop codons. Although engineering of the PylRS active site generates diverse binding pockets, the substrate ranges are found similar in charging lysine and phenylalanine analogs. To expand the diversity of the ncAA side chains that can be incorporated via the PylRS⋅tRNAPyl pair, exploring remote interactions beyond the active site is an emerging approach in expanding the genetic code research. In this work, remote interactions between tRNAPyl, the tRNA binding domain of PylRS, and/or an introduced non-structured linker between the N- and C-terminus of PylRS were studied. The substrate range of the PylRS⋅tRNAPyl pair was visualized by producing sfGFP-UAG gene products, which also indicated amber suppression efficiencies and substrate specificity. The unstructured loop linking the N-terminal and C-terminal domains (CTDs) of PylRS has been suggested to regulate the interaction between PylRS and tRNAPyl. In exploring the detailed role of the loop region, different lengths of the linker were inserted into the junction between the N-terminal and the C-terminal domains of PylRS to unearth the impact on remote effects. Our findings suggest that the insertion of a moderate-length linker tunes the interface between PylRS and tRNAPyl and subsequently leads to improved suppression efficiencies. The suppression activity and the substrate specificity of PylRS were altered by introducing three mutations at or near the N-terminal domain of PylRS (N-PylRS). Using a N-PylRS⋅tRNAPyl pair, three ncAA substrates, two S-benzyl cysteine and a histidine analog, were incorporated into the protein site specifically.
Collapse
Affiliation(s)
- Han-Kai Jiang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.,Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan.,Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan
| | - Man-Nee Lee
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Jo-Chu Tsou
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Kuan-Wen Chang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Hsueh-Wei Tseng
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Kuang-Po Chen
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan
| | - Yaw-Kuen Li
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan
| | - Yane-Shih Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.,Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan.,Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
13
|
Sharma V, Zeng Y, Wang WW, Qiao Y, Kurra Y, Liu WR. Evolving the N-Terminal Domain of Pyrrolysyl-tRNA Synthetase for Improved Incorporation of Noncanonical Amino Acids. Chembiochem 2017; 19:26-30. [PMID: 29096043 DOI: 10.1002/cbic.201700268] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Indexed: 11/10/2022]
Abstract
By evolving the N-terminal domain of Methanosarcina mazei pyrrolysyl-tRNA synthetase (PylRS) that directly interacts with tRNAPyl , a mutant clone displaying improved amber-suppression efficiency for the genetic incorporation of Nϵ -(tert-butoxycarbonyl)-l-lysine threefold more than the wild type was identified. The identified mutations were R19H/H29R/T122S. Direct transfer of these mutations to two other PylRS mutants that were previously evolved for the genetic incorporation of Nϵ -acetyl-l-lysine and Nϵ -(4-azidobenzoxycarbonyl)-l-δ,ϵ-dehydrolysine also improved the incorporation efficiency of these two noncanonical amino acids. As the three identified mutations were found in the N-terminal domain of PylRS that was separated from its catalytic domain for charging tRNAPyl with a noncanonical amino acid, they could potentially be introduced to all other PylRS mutants to improve the incorporation efficiency of their corresponding noncanonical amino acids. Therefore, it represents a general strategy to optimize the pyrrolysine incorporation system-based noncanonical amino-acid mutagenesis.
Collapse
Affiliation(s)
- Vangmayee Sharma
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Yu Zeng
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - W Wesley Wang
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Yuchen Qiao
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Yadagiri Kurra
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Wenshe R Liu
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
14
|
Abstract
Pyrrolysine is the 22nd proteinogenic amino acid encoded into proteins in response to amber (TAG) codons in a small number of archaea and bacteria. The incorporation of pyrrolysine is facilitated by a specialized aminoacyl-tRNA synthetase (PylRS) and its cognate tRNA (tRNAPyl). The secondary structure of tRNAPyl contains several unique features not found in canonical tRNAs. Numerous studies have demonstrated that the PylRS/tRNAPyl pair from archaea is orthogonal in E. coli and eukaryotic hosts, which has led to the widespread use of this pair for the genetic incorporation of non-canonical amino acids. In this brief review we examine the work that has been done to elucidate the structure of tRNAPyl, its interaction with PylRS, and survey recent progress on the use of tRNAPyl as a tool for genetic code expansion.
Collapse
Affiliation(s)
- Jeffery M Tharp
- a Department of Chemistry , Texas A&M University , College Station , TX , USA
| | - Andreas Ehnbom
- a Department of Chemistry , Texas A&M University , College Station , TX , USA
| | - Wenshe R Liu
- a Department of Chemistry , Texas A&M University , College Station , TX , USA
| |
Collapse
|
15
|
Reynolds NM, Vargas-Rodriguez O, Söll D, Crnković A. The central role of tRNA in genetic code expansion. Biochim Biophys Acta Gen Subj 2017; 1861:3001-3008. [PMID: 28323071 DOI: 10.1016/j.bbagen.2017.03.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 03/14/2017] [Indexed: 10/19/2022]
Abstract
BACKGROUND The development of orthogonal translation systems (OTSs) for genetic code expansion (GCE) has allowed for the incorporation of a diverse array of non-canonical amino acids (ncAA) into proteins. Transfer RNA, the central molecule in the translation of the genetic message into proteins, plays a significant role in the efficiency of ncAA incorporation. SCOPE OF REVIEW Here we review the biochemical basis of OTSs for genetic code expansion. We focus on the role of tRNA and discuss strategies used to engineer tRNA for the improvement of ncAA incorporation into proteins. MAJOR CONCLUSIONS The engineering of orthogonal tRNAs for GCE has significantly improved the incorporation of ncAAs. However, there are numerous unintended consequences of orthogonal tRNA engineering that cannot be predicted ab initio. GENERAL SIGNIFICANCE Genetic code expansion has allowed for the incorporation of a great diversity of ncAAs and novel chemistries into proteins, making significant contributions to our understanding of biological molecules and interactions. This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue.
Collapse
Affiliation(s)
- Noah M Reynolds
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA.
| | - Oscar Vargas-Rodriguez
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA; Department of Chemistry, Yale University, New Haven, CT 06520-8114, USA
| | - Ana Crnković
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA.
| |
Collapse
|
16
|
Crnković A, Suzuki T, Söll D, Reynolds NM. Pyrrolysyl-tRNA synthetase, an aminoacyl-tRNA synthetase for genetic code expansion. CROAT CHEM ACTA 2016; 89:163-174. [PMID: 28239189 PMCID: PMC5321558 DOI: 10.5562/cca2825] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Genetic code expansion (GCE) has become a central topic of synthetic biology. GCE relies on engineered aminoacyl-tRNA synthetases (aaRSs) and a cognate tRNA species to allow codon reassignment by co-translational insertion of non-canonical amino acids (ncAAs) into proteins. Introduction of such amino acids increases the chemical diversity of recombinant proteins endowing them with novel properties. Such proteins serve in sophisticated biochemical and biophysical studies both in vitro and in vivo, they may become unique biomaterials or therapeutic agents, and they afford metabolic dependence of genetically modified organisms for biocontainment purposes. In the Methanosarcinaceae the incorporation of the 22nd genetically encoded amino acid, pyrrolysine (Pyl), is facilitated by pyrrolysyl-tRNA synthetase (PylRS) and the cognate UAG-recognizing tRNAPyl. This unique aaRS•tRNA pair functions as an orthogonal translation system (OTS) in most model organisms. The facile directed evolution of the large PylRS active site to accommodate many ncAAs, and the enzyme's anticodon-blind specific recognition of the cognate tRNAPyl make this system highly amenable for GCE purposes. The remarkable polyspecificity of PylRS has been exploited to incorporate >100 different ncAAs into proteins. Here we review the Pyl-OT system and selected GCE applications to examine the properties of an effective OTS.
Collapse
Affiliation(s)
- Ana Crnković
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | - Tateki Suzuki
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | - Dieter Söll
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06520-8114, USA
- Department of Chemistry, Yale University, New Haven, CT 06520-8114, USA
| | - Noah M. Reynolds
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| |
Collapse
|
17
|
Carter CW, Wolfenden R. tRNA acceptor-stem and anticodon bases embed separate features of amino acid chemistry. RNA Biol 2015; 13:145-51. [PMID: 26595350 DOI: 10.1080/15476286.2015.1112488] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
The universal genetic code is a translation table by which nucleic acid sequences can be interpreted as polypeptides with a wide range of biological functions. That information is used by aminoacyl-tRNA synthetases to translate the code. Moreover, amino acid properties dictate protein folding. We recently reported that digital correlation techniques could identify patterns in tRNA identity elements that govern recognition by synthetases. Our analysis, and the functionality of truncated synthetases that cannot recognize the tRNA anticodon, support the conclusion that the tRNA acceptor stem houses an independent code for the same 20 amino acids that likely functioned earlier in the emergence of genetics. The acceptor-stem code, related to amino acid size, is distinct from a code in the anticodon that is related to amino acid polarity. Details of the acceptor-stem code suggest that it was useful in preserving key properties of stereochemically-encoded peptides that had developed the capacity to interact catalytically with RNA. The quantitative embedding of the chemical properties of amino acids into tRNA bases has implications for the origins of molecular biology.
Collapse
Affiliation(s)
- Charles W Carter
- a Department of Biochemistry and Biophysics , University of North Carolina at Chapel Hill , Chapel Hill , NC 27599-7260
| | - Richard Wolfenden
- a Department of Biochemistry and Biophysics , University of North Carolina at Chapel Hill , Chapel Hill , NC 27599-7260
| |
Collapse
|
18
|
Fan C, Xiong H, Reynolds NM, Söll D. Rationally evolving tRNAPyl for efficient incorporation of noncanonical amino acids. Nucleic Acids Res 2015; 43:e156. [PMID: 26250114 PMCID: PMC4678846 DOI: 10.1093/nar/gkv800] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 07/27/2015] [Indexed: 12/29/2022] Open
Abstract
Genetic encoding of noncanonical amino acids (ncAAs) into proteins is a powerful approach to study protein functions. Pyrrolysyl-tRNA synthetase (PylRS), a polyspecific aminoacyl-tRNA synthetase in wide use, has facilitated incorporation of a large number of different ncAAs into proteins to date. To make this process more efficient, we rationally evolved tRNAPyl to create tRNAPyl-opt with six nucleotide changes. This improved tRNA was tested as substrate for wild-type PylRS as well as three characterized PylRS variants (Nϵ-acetyllysyl-tRNA synthetase [AcKRS], 3-iodo-phenylalanyl-tRNA synthetase [IFRS], a broad specific PylRS variant [PylRS-AA]) to incorporate ncAAs at UAG codons in super-folder green fluorescence protein (sfGFP). tRNAPyl-opt facilitated a 5-fold increase in AcK incorporation into two positions of sfGFP simultaneously. In addition, AcK incorporation into two target proteins (Escherichia coli malate dehydrogenase and human histone H3) caused homogenous acetylation at multiple lysine residues in high yield. Using tRNAPyl-opt with PylRS and various PylRS variants facilitated efficient incorporation of six other ncAAs into sfGFP. Kinetic analyses revealed that the mutations in tRNAPyl-opt had no significant effect on the catalytic efficiency and substrate binding of PylRS enzymes. Thus tRNAPyl-opt should be an excellent replacement of wild-type tRNAPyl for future ncAA incorporation by PylRS enzymes.
Collapse
Affiliation(s)
- Chenguang Fan
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8144, USA
| | - Hai Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8144, USA
| | - Noah M Reynolds
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8144, USA
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8144, USA Department of Chemistry, Yale University, New Haven, CT 06520-8144, USA
| |
Collapse
|
19
|
Fournier GP, Andam CP, Gogarten JP. Ancient horizontal gene transfer and the last common ancestors. BMC Evol Biol 2015; 15:70. [PMID: 25897759 PMCID: PMC4427996 DOI: 10.1186/s12862-015-0350-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 04/14/2015] [Indexed: 01/22/2023] Open
Abstract
Background The genomic history of prokaryotic organismal lineages is marked by extensive horizontal gene transfer (HGT) between groups of organisms at all taxonomic levels. These HGT events have played an essential role in the origin and distribution of biological innovations. Analyses of ancient gene families show that HGT existed in the distant past, even at the time of the organismal last universal common ancestor (LUCA). Most gene transfers originated in lineages that have since gone extinct. Therefore, one cannot assume that the last common ancestors of each gene were all present in the same cell representing the cellular ancestor of all extant life. Results Organisms existing as part of a diverse ecosystem at the time of LUCA likely shared genetic material between lineages. If these other lineages persisted for some time, HGT with the descendants of LUCA could have continued into the bacterial and archaeal lineages. Phylogenetic analyses of aminoacyl-tRNA synthetase protein families support the hypothesis that the molecular common ancestors of the most ancient gene families did not all coincide in space and time. This is most apparent in the evolutionary histories of seryl-tRNA synthetase and threonyl-tRNA synthetase protein families, each containing highly divergent “rare” forms, as well as the sparse phylogenetic distributions of pyrrolysyl-tRNA synthetase, and the bacterial heterodimeric form of glycyl-tRNA synthetase. These topologies and phyletic distributions are consistent with horizontal transfers from ancient, likely extinct branches of the tree of life. Conclusions Of all the organisms that may have existed at the time of LUCA, by definition only one lineage is survived by known progeny; however, this lineage retains a genomic record of heterogeneous genetic origins. The evolutionary histories of aminoacyl-tRNA synthetases (aaRS) are especially informative in detecting this signal, as they perform primordial biological functions, have undergone several ancient HGT events, and contain many sites with low substitution rates allowing deep phylogenetic reconstruction. We conclude that some aaRS families contain groups that diverge before LUCA. We propose that these ancient gene variants be described by the term “hypnologs”, reflecting their ancient, reticulate origin from a time in life history that has been all but erased”. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0350-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gregory P Fournier
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Cheryl P Andam
- Department of Epidemiology, School of Public Health, Harvard University, Boston, MA, 02115, USA.
| | - Johann Peter Gogarten
- Department of Molecular and Cell Biology, and the Institute for Systems Genomics, University of Connecticut, 91 North Eagleville Road, Storrs, CT, 06269-3125, USA.
| |
Collapse
|
20
|
Sárkány Z, Silva A, Pereira PJB, Macedo-Ribeiro S. Ser or Leu: structural snapshots of mistranslation in Candida albicans. Front Mol Biosci 2014; 1:27. [PMID: 25988168 PMCID: PMC4428446 DOI: 10.3389/fmolb.2014.00027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 12/04/2014] [Indexed: 11/29/2022] Open
Abstract
Candida albicans is a polymorphic opportunistic fungal pathogen normally residing as commensal on mucosal surfaces, skin and gastrointestinal and genitourinary tracts. However, in immunocompromised patients C. albicans can cause superficial mucosal infections or life-threatening disseminated candidemia. A change in physiological conditions triggers a cascade of molecular events leading to morphogenetic alterations and increased resistance to damage induced by host defenses. The complex biology of this human pathogen is reflected in its morphological plasticity and reinforced by the ability to ambiguously translate the universal leucine CUG codon predominantly as serine, but also as leucine. Mistranslation affects more than half of C. albicans proteome and it is widespread across many biological processes. A previous analysis of CTG-codon containing gene products in C. albicans suggested that codon ambiguity subtly shapes protein function and might have a pivotal role in signaling cascades associated with morphological changes and pathogenesis. In this review we further explore this hypothesis by highlighting the role of ambiguous decoding in macromolecular recognition of key effector proteins associated with the regulation of signal transduction cascades and the cell cycle, which are critical processes for C. albicans morphogenic plasticity under a variety of environmental conditions.
Collapse
Affiliation(s)
- Zsuzsa Sárkány
- Protein Crystallography Group, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto Porto, Portugal
| | - Alexandra Silva
- Protein Crystallography Group, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto Porto, Portugal
| | - Pedro J B Pereira
- Biomolecular Structure Group, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto Porto, Portugal
| | - Sandra Macedo-Ribeiro
- Protein Crystallography Group, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto Porto, Portugal
| |
Collapse
|
21
|
Unique characteristics of the pyrrolysine system in the 7th order of methanogens: implications for the evolution of a genetic code expansion cassette. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2014; 2014:374146. [PMID: 24669202 PMCID: PMC3941956 DOI: 10.1155/2014/374146] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 10/19/2013] [Indexed: 02/06/2023]
Abstract
Pyrrolysine (Pyl), the 22nd proteogenic amino acid, was restricted until recently to few organisms. Its translational use necessitates the presence of enzymes for synthesizing it from lysine, a dedicated amber stop codon suppressor tRNA, and a specific amino-acyl tRNA synthetase. The three genomes of the recently proposed Thermoplasmata-related 7th order of methanogens contain the complete genetic set for Pyl synthesis and its translational use. Here, we have analyzed the genomic features of the Pyl-coding system in these three genomes with those previously known from Bacteria and Archaea and analyzed the phylogeny of each component. This shows unique peculiarities, notably an amber tRNAPyl with an imperfect anticodon stem and a shortened tRNAPyl synthetase. Phylogenetic analysis indicates that a Pyl-coding system was present in the ancestor of the seventh order of methanogens and appears more closely related to Bacteria than to Methanosarcinaceae, suggesting the involvement of lateral gene transfer in the spreading of pyrrolysine between the two prokaryotic domains. We propose that the Pyl-coding system likely emerged once in Archaea, in a hydrogenotrophic and methanol-H2-dependent methylotrophic methanogen. The close relationship between methanogenesis and the Pyl system provides a possible example of expansion of a still evolving genetic code, shaped by metabolic requirements.
Collapse
|
22
|
Krishnakumar R, Ling J. Experimental challenges of sense codon reassignment: an innovative approach to genetic code expansion. FEBS Lett 2013; 588:383-8. [PMID: 24333334 DOI: 10.1016/j.febslet.2013.11.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 11/19/2013] [Accepted: 11/27/2013] [Indexed: 10/25/2022]
Abstract
The addition of new and versatile chemical and biological properties to proteins pursued through incorporation of non-canonical amino acids is at present primarily achieved by stop codon suppression. However, it is critical to find new "blank" codons to increase the variety and efficiency of such insertions, thereby taking 'sense codon recoding' to center stage in the field of genetic code expansion. Current thought optimistically suggests the use of the pyrrolysine system coupled with re-synthesis of genomic information towards achieving sense codon reassignment. Upon review of the serious experimental challenges reported in recent studies, we propose that success in this area will depend on the re-synthesis of genomes, but also on 'rewiring' the mechanism of protein synthesis and of its quality control.
Collapse
Affiliation(s)
- Radha Krishnakumar
- Synthetic Biology and Bioenergy, J. Craig Venter Institute, Rockville, MD 20850, USA.
| | - Jiqiang Ling
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, The University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
23
|
Highlights on trypanosomatid aminoacyl-tRNA synthesis. Subcell Biochem 2013; 74:271-304. [PMID: 24264250 DOI: 10.1007/978-94-007-7305-9_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Aminoacyl-tRNA synthetases aaRSs are responsible for the aminoacylation of tRNAs in the first step of protein synthesis. They comprise a group of enzymes that catalyze the formation of each possible aminoacyl-tRNA necessary for messenger RNA decoding in a cell. These enzymes have been divided into two classes according to structural features of their active sites and, although each class shares a common active site core, they present an assorted array of appended domains that makes them sufficiently diverse among the different living organisms. Here we will explore what is known about the diversity encountered among trypanosomatids' aaRSs that has helped us not only to understand better the biology of these parasites but can be used rationally for the design of drugs against these protozoa.
Collapse
|
24
|
Ko JH, Wang YS, Nakamura A, Guo LT, Söll D, Umehara T. Pyrrolysyl-tRNA synthetase variants reveal ancestral aminoacylation function. FEBS Lett 2013; 587:3243-8. [PMID: 23994531 DOI: 10.1016/j.febslet.2013.08.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 07/23/2013] [Accepted: 08/13/2013] [Indexed: 10/26/2022]
Abstract
Pyrrolysyl-tRNA synthetase (PylRS) is a class IIc aminoacyl-tRNA synthetase that is related to phenylalanyl-tRNA synthetase (PheRS). Genetic selection provided PylRS variants with a broad range of specificity for diverse non-canonical amino acids (ncAAs). One variant is a specific phenylalanine-incorporating enzyme. Structural models of the PylRSamino acid complex show that the small pocket size and π-interaction play an important role in specific recognition of Phe and the engineered PylRS active site resembles that of Escherichia coli PheRS.
Collapse
Affiliation(s)
- Jae-hyeong Ko
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | | | | | | | | | | |
Collapse
|
25
|
Krzycki JA. The path of lysine to pyrrolysine. Curr Opin Chem Biol 2013; 17:619-25. [PMID: 23856058 DOI: 10.1016/j.cbpa.2013.06.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 06/12/2013] [Accepted: 06/17/2013] [Indexed: 01/05/2023]
Abstract
Pyrrolysine is the 22nd genetically encoded amino acid. For many years, its biosynthesis has been primarily a matter for conjecture. Recently, a pathway for the synthesis of pyrrolysine from two molecules of lysine was outlined in which a radical SAM enzyme acts as a lysine mutase to generate a methylated ornithine from lysine, which is then ligated to form an amide with the ɛ-amine of a second lysine. Oxidation of the isopeptide gives rise to pyrrolysine. Mechanisms have been proposed for both the mutase and the ligase, and structures now exist for each, setting the stage for a more detailed understanding of how pyrrolysine is synthesized and functions in bacteria and archaea.
Collapse
Affiliation(s)
- Joseph A Krzycki
- Department of Microbiology, 484 West 12th Avenue, Columbus, OH 43210, United States.
| |
Collapse
|
26
|
Reversion of a fungal genetic code alteration links proteome instability with genomic and phenotypic diversification. Proc Natl Acad Sci U S A 2013; 110:11079-84. [PMID: 23776239 DOI: 10.1073/pnas.1302094110] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Many fungi restructured their proteomes through incorporation of serine (Ser) at thousands of protein sites coded by the leucine (Leu) CUG codon. How these fungi survived this potentially lethal genetic code alteration and its relevance for their biology are not understood. Interestingly, the human pathogen Candida albicans maintains variable Ser and Leu incorporation levels at CUG sites, suggesting that this atypical codon assignment flexibility provided an effective mechanism to alter the genetic code. To test this hypothesis, we have engineered C. albicans strains to misincorporate increasing levels of Leu at protein CUG sites. Tolerance to the misincorporations was very high, and one strain accommodated the complete reversion of CUG identity from Ser back to Leu. Increasing levels of Leu misincorporation decreased growth rate, but production of phenotypic diversity on a phenotypic array probing various metabolic networks, drug resistance, and host immune cell responses was impressive. Genome resequencing revealed an increasing number of genotype changes at polymorphic sites compared with the control strain, and 80% of Leu misincorporation resulted in complete loss of heterozygosity in a large region of chromosome V. The data unveil unanticipated links between gene translational fidelity, proteome instability and variability, genome diversification, and adaptive phenotypic diversity. They also explain the high heterozygosity of the C. albicans genome and open the door to produce microorganisms with genetic code alterations for basic and applied research.
Collapse
|
27
|
Abstract
Despite the fact that the genetic code is known to vary between organisms in rare cases, it is believed that in the lifetime of a single cell the code is stable. We found Acetohalobium arabaticum cells grown on pyruvate genetically encode 20 amino acids, but in the presence of trimethylamine (TMA), A. arabaticum dynamically expands its genetic code to 21 amino acids including pyrrolysine (Pyl). A. arabaticum is the only known organism that modulates the size of its genetic code in response to its environment and energy source. The gene cassette pylTSBCD, required to biosynthesize and genetically encode UAG codons as Pyl, is present in the genomes of 24 anaerobic archaea and bacteria. Unlike archaeal Pyl-decoding organisms that constitutively encode Pyl, we observed that A. arabaticum controls Pyl encoding by down-regulating transcription of the entire Pyl operon under growth conditions lacking TMA, to the point where no detectable Pyl-tRNA(Pyl) is made in vivo. Pyl-decoding archaea adapted to an expanded genetic code by minimizing TAG codon frequency to typically ~5% of ORFs, whereas Pyl-decoding bacteria (~20% of ORFs contain in-frame TAGs) regulate Pyl-tRNA(Pyl) formation and translation of UAG by transcriptional deactivation of genes in the Pyl operon. We further demonstrate that Pyl encoding occurs in a bacterium that naturally encodes the Pyl operon, and identified Pyl residues by mass spectrometry in A. arabaticum proteins including two methylamine methyltransferases.
Collapse
|
28
|
O'Donoghue P, Prat L, Heinemann IU, Ling J, Odoi K, Liu WR, Söll D. Near-cognate suppression of amber, opal and quadruplet codons competes with aminoacyl-tRNAPyl for genetic code expansion. FEBS Lett 2012; 586:3931-7. [PMID: 23036644 DOI: 10.1016/j.febslet.2012.09.033] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 09/19/2012] [Accepted: 09/20/2012] [Indexed: 10/27/2022]
Abstract
Over 300 amino acids are found in proteins in nature, yet typically only 20 are genetically encoded. Reassigning stop codons and use of quadruplet codons emerged as the main avenues for genetically encoding non-canonical amino acids (NCAAs). Canonical aminoacyl-tRNAs with near-cognate anticodons also read these codons to some extent. This background suppression leads to 'statistical protein' that contains some natural amino acid(s) at a site intended for NCAA. We characterize near-cognate suppression of amber, opal and a quadruplet codon in common Escherichia coli laboratory strains and find that the PylRS/tRNA(Pyl) orthogonal pair cannot completely outcompete contamination by natural amino acids.
Collapse
Affiliation(s)
- Patrick O'Donoghue
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, United States
| | | | | | | | | | | | | |
Collapse
|
29
|
Jiang R, Krzycki JA. PylSn and the homologous N-terminal domain of pyrrolysyl-tRNA synthetase bind the tRNA that is essential for the genetic encoding of pyrrolysine. J Biol Chem 2012; 287:32738-46. [PMID: 22851181 DOI: 10.1074/jbc.m112.396754] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pyrrolysine is represented by an amber codon in genes encoding proteins such as the methylamine methyltransferases present in some Archaea and Bacteria. Pyrrolysyl-tRNA synthetase (PylRS) attaches pyrrolysine to the amber-suppressing tRNA(Pyl). Archaeal PylRS, encoded by pylS, has a catalytic C-terminal domain but an N-terminal region of unknown function and structure. In Bacteria, homologs of the N- and C-terminal regions of archaeal PylRS are respectively encoded by pylSn and pylSc. We show here that wild type PylS from Methanosarcina barkeri and PylSn from Desulfitobacterium hafniense bind tRNA(Pyl) in EMSA with apparent K(d) values of 0.12 and 0.13 μM, respectively. Truncation of the N-terminal region of PylS eliminated detectable tRNA(Pyl) binding as measured by EMSA, but not catalytic activity. A chimeric protein with PylSn fused to the N terminus of truncated PylS regained EMSA-detectable tRNA(Pyl) binding. PylSn did not bind other D. hafniense tRNAs, nor did the competition by the Escherichia coli tRNA pool interfere with tRNA(Pyl) binding. Further indicating the specificity of PylSn interaction with tRNA(Pyl), substitutions of conserved residues in tRNA(Pyl) in the variable loop, D stem, and T stem and loop had significant impact in binding, whereas those having base changes in the acceptor stem or anticodon stem and loop still retained the ability to complex with PylSn. PylSn and the N terminus of PylS comprise the protein superfamily TIGR03129. The members of this family are not similar to any known RNA-binding protein, but our results suggest their common function involves specific binding of tRNA(Pyl).
Collapse
Affiliation(s)
- Ruisheng Jiang
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, USA
| | | |
Collapse
|
30
|
Bhattacharyya M, Vishveshwara S. Probing the allosteric mechanism in pyrrolysyl-tRNA synthetase using energy-weighted network formalism. Biochemistry 2011; 50:6225-36. [PMID: 21650159 DOI: 10.1021/bi200306u] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pyrrolysyl-tRNA synthetase (PylRS) is an atypical enzyme responsible for charging tRNA(Pyl) with pyrrolysine, despite lacking precise tRNA anticodon recognition. This dimeric protein exhibits allosteric regulation of function, like any other tRNA synthetases. In this study we examine the paths of allosteric communication at the atomic level, through energy-weighted networks of Desulfitobacterium hafniense PylRS (DhPylRS) and its complexes with tRNA(Pyl) and activated pyrrolysine. We performed molecular dynamics simulations of the structures of these complexes to obtain an ensemble conformation-population perspective. Weighted graph parameters relevant to identifying key players and ties in the context of social networks such as edge/node betweenness, closeness index, and the concept of funneling are explored in identifying key residues and interactions leading to shortest paths of communication in the structure networks of DhPylRS. Further, the changes in the status of important residues and connections and the costs of communication due to ligand induced perturbations are evaluated. The optimal, suboptimal, and preexisting paths are also investigated. Many of these parameters have exhibited an enhanced asymmetry between the two subunits of the dimeric protein, especially in the pretransfer complex, leading us to conclude that encoding of function goes beyond the sequence/structure of proteins. The local and global perturbations mediated by appropriate ligands and their influence on the equilibrium ensemble of conformations also have a significant role to play in the functioning of proteins. Taking a comprehensive view of these observations, we propose that the origin of many functional aspects (allostery and half-sites reactivity in the case of DhPylRS) lies in subtle rearrangements of interactions and dynamics at a global level.
Collapse
|
31
|
Bhattacharyya M, Vishveshwara S. Quantum clustering and network analysis of MD simulation trajectories to probe the conformational ensembles of protein-ligand interactions. MOLECULAR BIOSYSTEMS 2011; 7:2320-30. [PMID: 21617814 DOI: 10.1039/c1mb05038a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In this article, we present a novel application of a quantum clustering (QC) technique to objectively cluster the conformations, sampled by molecular dynamics simulations performed on different ligand bound structures of the protein. We further portray each conformational population in terms of dynamically stable network parameters which beautifully capture the ligand induced variations in the ensemble in atomistic detail. The conformational populations thus identified by the QC method and verified by network parameters are evaluated for different ligand bound states of the protein pyrrolysyl-tRNA synthetase (DhPylRS) from D. hafniense. The ligand/environment induced re-distribution of protein conformational ensembles forms the basis for understanding several important biological phenomena such as allostery and enzyme catalysis. The atomistic level characterization of each population in the conformational ensemble in terms of the re-orchestrated networks of amino acids is a challenging problem, especially when the changes are minimal at the backbone level. Here we demonstrate that the QC method is sensitive to such subtle changes and is able to cluster MD snapshots which are similar at the side-chain interaction level. Although we have applied these methods on simulation trajectories of a modest time scale (20 ns each), we emphasize that our methodology provides a general approach towards an objective clustering of large-scale MD simulation data and may be applied to probe multistate equilibria at higher time scales, and to problems related to protein folding for any protein or protein-protein/RNA/DNA complex of interest with a known structure.
Collapse
|
32
|
The pyrrolysine translational machinery as a genetic-code expansion tool. Curr Opin Chem Biol 2011; 15:387-91. [PMID: 21507706 DOI: 10.1016/j.cbpa.2011.03.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 03/14/2011] [Accepted: 03/15/2011] [Indexed: 11/20/2022]
Abstract
The discovery of pyrrolysine not only expanded the set of the known proteinogenic amino acids but also revealed unusual features of its encoding mechanism. The engagement of a canonical stop codon and a unique aminoacyl-tRNA synthetase-tRNA pair that can be used to accommodate a broad range of unnatural amino acids while maintaining strict orthogonality in a variety of prokaryotic and eukaryotic expression systems has proven an invaluable combination. Within a few years since its properties were elucidated, the pyrrolysine translational machinery has become a popular choice for the synthesis of recombinant proteins bearing a wide variety of otherwise hard-to-introduce functional groups. It is also central to the development of new synthetic strategies that rely on stop-codon suppression.
Collapse
|
33
|
Liu WR, Wang YS, Wan W. Synthesis of proteins with defined posttranslational modifications using the genetic noncanonical amino acid incorporation approach. MOLECULAR BIOSYSTEMS 2010; 7:38-47. [PMID: 21088799 DOI: 10.1039/c0mb00216j] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Posttranslational modifications modulate the activities of most eukaryotic proteins and play a critical role in all aspects of cellular life. Understanding functional roles of these modifications requires homogeneously modified proteins that are usually difficult to purify from their natural sources. An emerging powerful tool for synthesis of proteins with defined posttranslational modifications is to genetically encode modified amino acids in living cells and incorporate them directly into proteins during the protein translation process. Using this approach, homogenous proteins with tyrosine sulfation, tyrosine phosphorylation mimics, tyrosine nitration, lysine acetylation, lysine methylation, and ubiquitination have been synthesized in large quantities. In this review, we provide a brief introduction to protein posttranslational modifications and the genetic noncanonical amino acid (NAA) incorporation technique, then discuss successful applications of the genetic NAA incorporation approach to produce proteins with defined modifications, and end with challenges and ongoing methodology developments for synthesis of proteins with other modifications.
Collapse
Affiliation(s)
- Wenshe R Liu
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA.
| | | | | |
Collapse
|
34
|
Wang YS, Wu B, Wang Z, Huang Y, Wan W, Russell WK, Pai PJ, Moe YN, Russell DH, Liu WR. A genetically encoded photocaged Nepsilon-methyl-L-lysine. MOLECULAR BIOSYSTEMS 2010; 6:1557-60. [PMID: 20711534 DOI: 10.1039/c002155e] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A photocaged N(epsilon)-methyl-L-lysine has been genetically incorporated into proteins at amber codon positions in Escherichia coli using an evolved pyrrolysyl-tRNA synthetase-pylT pair. Its genetic incorporation and following photolysis to recover N(epsilon)-methyl-L-lysine at physiological pH provide a convenient method for the biosynthesis of proteins with monomethylated lysines at specific sites.
Collapse
Affiliation(s)
- Yane-Shih Wang
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Yuan J, O'Donoghue P, Ambrogelly A, Gundllapalli S, Sherrer RL, Palioura S, Simonović M, Söll D. Distinct genetic code expansion strategies for selenocysteine and pyrrolysine are reflected in different aminoacyl-tRNA formation systems. FEBS Lett 2009; 584:342-9. [PMID: 19903474 DOI: 10.1016/j.febslet.2009.11.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 11/03/2009] [Accepted: 11/04/2009] [Indexed: 11/26/2022]
Abstract
Selenocysteine and pyrrolysine, known as the 21st and 22nd amino acids, are directly inserted into growing polypeptides during translation. Selenocysteine is synthesized via a tRNA-dependent pathway and decodes UGA (opal) codons. The incorporation of selenocysteine requires the concerted action of specific RNA and protein elements. In contrast, pyrrolysine is ligated directly to tRNA(Pyl) and inserted into proteins in response to UAG (amber) codons without the need for complex re-coding machinery. Here we review the latest updates on the structure and mechanisms of molecules involved in Sec-tRNA(Sec) and Pyl-tRNA(Pyl) formation as well as the distribution of the Pyl-decoding trait.
Collapse
Affiliation(s)
- Jing Yuan
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Das S, Mukherjee R, Sahoo S, Thakkar R, Chakrabarti J. Structural Clones of UAG Decoding RNA. J Biomol Struct Dyn 2009; 27:381-90. [DOI: 10.1080/07391102.2009.10507324] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
37
|
Fournier GP, Huang J, Gogarten JP. Horizontal gene transfer from extinct and extant lineages: biological innovation and the coral of life. Philos Trans R Soc Lond B Biol Sci 2009; 364:2229-39. [PMID: 19571243 PMCID: PMC2873001 DOI: 10.1098/rstb.2009.0033] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Horizontal gene transfer (HGT) is often considered to be a source of error in phylogenetic reconstruction, causing individual gene trees within an organismal lineage to be incongruent, obfuscating the 'true' evolutionary history. However, when identified as such, HGTs between divergent organismal lineages are useful, phylogenetically informative characters that can provide insight into evolutionary history. Here, we discuss several distinct HGT events involving all three domains of life, illustrating the selective advantages that can be conveyed via HGT, and the utility of HGT in aiding phylogenetic reconstruction and in dating the relative sequence of speciation events. We also discuss the role of HGT from extinct lineages, and its impact on our understanding of the evolution of life on Earth. Organismal phylogeny needs to incorporate reticulations; a simple tree does not provide an accurate depiction of the processes that have shaped life's history.
Collapse
Affiliation(s)
- Gregory P. Fournier
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269-31258, USA
| | - Jinling Huang
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - J. Peter Gogarten
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269-31258, USA
| |
Collapse
|
38
|
Vasil'eva IA, Semenova EA, Moor NA. Interaction of human phenylalanyl-tRNA synthetase with specific tRNA according to thiophosphate footprinting. BIOCHEMISTRY (MOSCOW) 2009; 74:175-85. [PMID: 19267673 DOI: 10.1134/s0006297909020084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The interaction of human cytoplasmic phenylalanyl-tRNA synthetase (an enzyme with yet unknown 3D-structure) with homologous tRNA(Phe) under functional conditions was studied by footprinting based on iodine cleavage of thiophosphate-substituted tRNA transcripts. Most tRNA(Phe) nucleotides recognized by the enzyme in the anticodon (G34), anticodon stem (G30-C40, A31-U39), and D-loop (G20) have effectively or moderately protected phosphates. Other important specificity elements (A35 and A36) were found to form weak nonspecific contacts. The D-stem, T-arm, and acceptor stem are also among continuous contacts of the tRNA(Phe) backbone with the enzyme, thus suggesting the presence of additional recognition elements in these regions. The data indicate that mechanisms of interaction between phenylalanyl-tRNA synthetases and specific tRNAs are different in prokaryotes and eukaryotes.
Collapse
Affiliation(s)
- I A Vasil'eva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | | | | |
Collapse
|
39
|
Abstract
Horizontal gene transfer (HGT) is a driving force in the evolution of metabolic pathways, allowing novel enzymatic functions that provide a selective advantage to be rapidly incorporated into an organism's physiology. Here, the role of two HGT events in the evolution of methanogenesis is described. First, the acetoclastic sub-pathway of methanogenesis is shown to have evolved via a transfer of the ackA and pta genes from a cellulolytic clostridia to a family of methanogenic archaea. Second, the system for encoding the amino acid pyrrolysine, used for the synthesis of enzymes for methanogenesis from methylamines, is shown to likely have evolved via transfer from an ancient, unknown, deeply branching organismal lineage.
Collapse
Affiliation(s)
- Greg Fournier
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
40
|
Nozawa K, O'Donoghue P, Gundllapalli S, Araiso Y, Ishitani R, Umehara T, Söll D, Nureki O. Pyrrolysyl-tRNA synthetase-tRNA(Pyl) structure reveals the molecular basis of orthogonality. Nature 2008; 457:1163-7. [PMID: 19118381 PMCID: PMC2648862 DOI: 10.1038/nature07611] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Accepted: 11/04/2008] [Indexed: 11/17/2022]
Abstract
Pyrrolysine (Pyl), the 22nd natural amino acid, is genetically encoded by UAG and inserted into proteins by the unique suppressor tRNAPyl1. The Methanosarcinaceae produce Pyl and express Pyl-containing methyltransferases that allow growth on methylamines2. Homologous methyltransferases and the Pyl biosynthetic and coding machinery are also found in two bacterial species1,3. Pyl coding is maintained by pyrrolysyl-tRNA synthetase (PylRS), which catalyzes the formation of Pyl-tRNAPyl4,5. Pyl is not a recent addition to the genetic code. PylRS was already present in the last universal common ancestor6; it then persisted in organisms that utilize methylamines as energy sources. Recent protein engineering efforts added non-canonical amino acids to the genetic code7,8. This technology relies on the directed evolution of an ‘orthogonal’ tRNA synthetase:tRNA pair in which an engineered aminoacyl-tRNA synthetase (aaRS) specifically and exclusively acylates the orthogonal tRNA with a non-canonical amino acid. For Pyl the natural evolutionary process developed such a system some 3 billion years ago. When transformed into Escherichia coli, Methanosarcina barkeri PylRS and tRNAPyl function as an orthogonal pair in vivo5,9. Here we demonstrate that Desulfitobacterium hafniense PylRS:tRNAPyl is an orthogonal pair in vitro and in vivo, and present the crystal structure of this orthogonal pair. The ancient emergence of PylRS:tRNAPyl allowed for the evolution of unique structural features in both the protein and the tRNA. These structural elements manifest an intricate, specialized aaRS:tRNA interaction surface highly distinct from those observed in any other known aaRS:tRNA complex; it is this general property that underlies the molecular basis of orthogonality.
Collapse
Affiliation(s)
- Kayo Nozawa
- Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, B34 4259 Nagatsuta-cho, Midori-ku, Yokohama-shi, Kanagawa 226-8501, Japan
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Li WT, Mahapatra A, Longstaff DG, Bechtel J, Zhao G, Kang PT, Chan MK, Krzycki JA. Specificity of pyrrolysyl-tRNA synthetase for pyrrolysine and pyrrolysine analogs. J Mol Biol 2008; 385:1156-64. [PMID: 19063902 DOI: 10.1016/j.jmb.2008.11.032] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Revised: 11/13/2008] [Accepted: 11/14/2008] [Indexed: 11/25/2022]
Abstract
Pyrrolysine, the 22nd amino acid, is encoded by amber (TAG=UAG) codons in certain methanogenic archaea and bacteria. PylS, the pyrrolysyl-tRNA synthetase, ligates pyrrolysine to tRNA(Pyl) for amber decoding as pyrrolysine. PylS and tRNA(Pyl) have potential utility in making tailored recombinant proteins. Here, we probed interactions necessary for recognition of substrates by archaeal PylS via synthesis of close pyrrolysine analogs and testing their reactivity in amino acid activation assays. Replacement of the methylpyrroline ring of pyrrolysine with cyclopentane indicated that solely hydrophobic interactions with the ring-binding pocket of PylS are sufficient for substrate recognition. However, a 100-fold increase in the specificity constant of PylS was observed with an analog, 2-amino-6-((R)-tetrahydrofuran-2-carboxamido)hexanoic acid (2Thf-lys), in which tetrahydrofuran replaced the pyrrolysine methylpyrroline ring. Other analogs in which the electronegative atom was moved to different positions suggested PylS preference for a hydrogen-bond-accepting group at the imine nitrogen position in pyrrolysine. 2Thf-lys was a preferred substrate over a commonly employed pyrrolysine analog, but the specificity constant for 2Thf-lys was 10-fold lower than for pyrrolysine itself, largely due to the change in K(m). The in vivo activity of the analogs in supporting UAG suppression in Escherichia coli bearing genes for PylS and tRNA(Pyl) was similar to in vitro results, with L-pyrrolysine and 2Thf-lys supporting the highest amounts of UAG translation. Increasing concentrations of either PylS substrate resulted in a linear increase in UAG suppression, providing a facile method to assay bioactive pyrrolysine analogs. These results illustrate the relative importance of the H-bonding and hydrophobic interactions in the recognition of the methylpyrroline ring of pyrrolysine and provide a promising new series of easily synthesized pyrrolysine analogs that can serve as scaffolds for the introduction of novel functional groups into recombinant proteins.
Collapse
Affiliation(s)
- Wen-Tai Li
- Department of Chemistry, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Gundllapalli S, Ambrogelly A, Umehara T, Li D, Polycarpo C, Söll D. Misacylation of pyrrolysine tRNA in vitro and in vivo. FEBS Lett 2008; 582:3353-8. [PMID: 18775710 DOI: 10.1016/j.febslet.2008.08.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Revised: 08/22/2008] [Accepted: 08/22/2008] [Indexed: 11/28/2022]
Abstract
Methanosarcina barkeri inserts pyrrolysine (Pyl) at an in-frame UAG codon in its monomethylamine methyltransferase gene. Pyrrolysyl-tRNA synthetase acylates Pyl onto tRNAPyl, the amber suppressor pyrrolysine Pyl tRNA. Here we show that M. barkeri Fusaro tRNAPyl can be misacylated with serine by the M. barkeri bacterial-type seryl-tRNA synthetase in vitro and in vivo in Escherichia coli. Compared to the M. barkeri Fusaro tRNA, the M. barkeri MS tRNAPyl contains two base changes; a G3:U70 pair, the known identity element for E. coli alanyl-tRNA synthetase (AlaRS). While M. barkeri MS tRNAPyl cannot be alanylated by E. coli AlaRS, mutation of the MS tRNAPyl A4:U69 pair into C4:G69 allows aminoacylation by E. coli AlaRS both in vitro and in vivo.
Collapse
Affiliation(s)
- Sarath Gundllapalli
- Departments of Molecular Biophysics and Biochemistry, Yale University, P.O. Box 208114, 266 Whitney Avenue, New Haven, CT 06520-8114, USA
| | | | | | | | | | | |
Collapse
|
43
|
Ledoux S, Uhlenbeck OC. [3'-32P]-labeling tRNA with nucleotidyltransferase for assaying aminoacylation and peptide bond formation. Methods 2008; 44:74-80. [PMID: 18241789 DOI: 10.1016/j.ymeth.2007.08.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Accepted: 08/04/2007] [Indexed: 11/19/2022] Open
Abstract
The analysis of reactions involving amino acids esterified to tRNAs traditionally uses radiolabeled amino acids. We describe here an alternative assay involving [3'-32P]-labeled tRNA followed by nuclease digestion and TLC analysis that permits aminoacylation to be monitored in an efficient, quantitative manner while circumventing many of the problems faced when using radiolabeled amino acids. We also describe a similar assay using [3'-32P]-labeled aa-tRNAs to determine the rate of peptide bond formation on the ribosome. This type of assay can also potentially be adapted to study other reactions involving an amino acid or peptide esterified to tRNA.
Collapse
Affiliation(s)
- Sarah Ledoux
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, IL 60208, USA
| | | |
Collapse
|
44
|
Yanagisawa T, Ishii R, Fukunaga R, Kobayashi T, Sakamoto K, Yokoyama S. Crystallographic studies on multiple conformational states of active-site loops in pyrrolysyl-tRNA synthetase. J Mol Biol 2008; 378:634-52. [PMID: 18387634 DOI: 10.1016/j.jmb.2008.02.045] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Revised: 01/24/2008] [Accepted: 02/21/2008] [Indexed: 11/25/2022]
Abstract
Pyrrolysine, a lysine derivative with a bulky pyrroline ring, is the "22nd" genetically encoded amino acid. In the present study, the carboxy-terminal catalytic fragment of Methanosarcina mazei pyrrolysyl-tRNA synthetase (PylRS) was analyzed by X-ray crystallography and site-directed mutagenesis. The catalytic fragment ligated tRNA(Pyl) with pyrrolysine nearly as efficiently as the full-length PylRS. We determined the crystal structures of the PylRS catalytic fragment in the substrate-free, ATP analogue (AMPPNP)-bound, and AMPPNP/pyrrolysine-bound forms, and compared them with the previously-reported PylRS structures. The ordering loop and the motif-2 loop undergo conformational changes from the "open" states to the "closed" states upon AMPPNP binding. On the other hand, the beta 7-beta 8 hairpin exhibits multiple conformational states, the open, intermediate (beta 7-open/beta 8-open and beta 7-closed/beta 8-open), and closed states, which are not induced upon substrate binding. The PylRS structures with a docked tRNA suggest that the active-site pocket can accommodate the CCA terminus of tRNA when the motif-2 loop is in the closed state and the beta 7-beta 8 hairpin is in the open or intermediate state. The entrance of the active-site pocket is nearly closed in the closed state of the beta 7-beta 8 hairpin, which may protect the pyrrolysyladenylate intermediate in the absence of tRNA(Pyl). Moreover, a structure-based mutational analysis revealed that hydrophobic residues in the amino acid-binding tunnel are important for accommodating the pyrrolysine side chain and that Asn346 is essential for anchoring the side-chain carbonyl and alpha-amino groups of pyrrolysine. In addition, a docking model of PylRS with tRNA was constructed based on the aspartyl-tRNA synthetase/tRNA structure, and was confirmed by a mutational analysis.
Collapse
Affiliation(s)
- Tatsuo Yanagisawa
- Protein Research Group, Genomic Sciences Center, Yokohama Institute, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | | | | | | | | | | |
Collapse
|
45
|
Namy O, Zhou Y, Gundllapalli S, Polycarpo CR, Denise A, Rousset JP, Söll D, Ambrogelly A. Adding pyrrolysine to the Escherichia coli genetic code. FEBS Lett 2007; 581:5282-8. [PMID: 17967457 DOI: 10.1016/j.febslet.2007.10.022] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2007] [Accepted: 10/10/2007] [Indexed: 11/24/2022]
Abstract
Pyrrolysyl-tRNA synthetase and its cognate suppressor tRNA(Pyl) mediate pyrrolysine (Pyl) insertion at in frame UAG codons. The presence of an RNA hairpin structure named Pyl insertion structure (PYLIS) downstream of the suppression site has been shown to stimulate the insertion of Pyl in archaea. We study here the impact of the presence of PYLIS on the level of Pyl and the Pyl analog N-epsilon-cyclopentyloxycarbonyl-l-lysine (Cyc) incorporation using a quantitative lacZ-luc tandem reporter system in an Escherichia coli context. We show that PYLIS has no effect on the level of neither Pyl nor Cyc incorporation. Exogenously supplying our reporter system with d-ornithine significantly increases suppression efficiency, indicating that d-ornithine is a direct precursor to Pyl.
Collapse
Affiliation(s)
- Olivier Namy
- Institut de Genetique et Microbiologie, Université Paris-Sud, CNRS UMR8621, Orsay F-91405, France
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Herring S, Ambrogelly A, Gundllapalli S, O'Donoghue P, Polycarpo CR, Söll D. The amino-terminal domain of pyrrolysyl-tRNA synthetase is dispensable in vitro but required for in vivo activity. FEBS Lett 2007; 581:3197-203. [PMID: 17582401 PMCID: PMC2074874 DOI: 10.1016/j.febslet.2007.06.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Revised: 06/01/2007] [Accepted: 06/04/2007] [Indexed: 11/22/2022]
Abstract
Pyrrolysine (Pyl) is co-translationally inserted into a subset of proteins in the Methanosarcinaceae and in Desulfitobacterium hafniense programmed by an in-frame UAG stop codon. Suppression of this UAG codon is mediated by the Pyl amber suppressor tRNA, tRNA(Pyl), which is aminoacylated with Pyl by pyrrolysyl-tRNA synthetase (PylRS). We compared the behavior of several archaeal and bacterial PylRS enzymes towards tRNA(Pyl). Equilibrium binding analysis revealed that archaeal PylRS proteins bind tRNA(Pyl) with higher affinity (K(D)=0.1-1.0 microM) than D. hafniense PylRS (K(D)=5.3-6.9 microM). In aminoacylation the archaeal PylRS enzymes did not distinguish between archaeal and bacterial tRNA(Pyl) species, while the bacterial PylRS displays a clear preference for the homologous cognate tRNA. We also show that the amino-terminal extension present in archaeal PylRSs is dispensable for in vitro activity, but required for PylRS function in vivo.
Collapse
Affiliation(s)
- Stephanie Herring
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | - Alexandre Ambrogelly
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | - Sarath Gundllapalli
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | - Patrick O'Donoghue
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | - Carla R. Polycarpo
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | - Dieter Söll
- Department of Chemistry, Yale University, New Haven, CT 06520-8114, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| |
Collapse
|
47
|
Ambrogelly A, Gundllapalli S, Herring S, Polycarpo C, Frauer C, Söll D. Pyrrolysine is not hardwired for cotranslational insertion at UAG codons. Proc Natl Acad Sci U S A 2007; 104:3141-6. [PMID: 17360621 PMCID: PMC1805618 DOI: 10.1073/pnas.0611634104] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Pyrrolysine (Pyl), the 22nd naturally encoded amino acid, gets acylated to its distinctive UAG suppressor tRNA(Pyl) by the cognate pyrrolysyl-tRNA synthetase (PylRS). Here we determine the RNA elements required for recognition and aminoacylation of tRNA(Pyl) in vivo by using the Pyl analog N-epsilon-cyclopentyloxycarbonyl-l-lysine. Forty-two Methanosarcina barkeri tRNA(Pyl) variants were tested in Escherichia coli for suppression of the lac amber A24 mutation; then relevant tRNA(Pyl) mutants were selected to determine in vivo binding to M. barkeri PylRS in a yeast three-hybrid system and to measure in vitro tRNA(Pyl) aminoacylation. tRNA(Pyl) identity elements include the discriminator base, the first base pair of the acceptor stem, the T-stem base pair G51:C63, and the anticodon flanking nucleotides U33 and A37. Transplantation of the tRNA(Pyl) identity elements into the mitochondrial bovine tRNA(Ser) scaffold yielded chimeric tRNAs active both in vitro and in vivo. Because the anticodon is not important for PylRS recognition, a tRNA(Pyl) variant could be constructed that efficiently suppressed the lac opal U4 mutation in E. coli. These data suggest that tRNA(Pyl) variants may decode numerous codons and that tRNA(Pyl):PylRS is a fine orthogonal tRNA:synthetase pair that facilitated the late addition of Pyl to the genetic code.
Collapse
Affiliation(s)
| | | | | | | | - Carina Frauer
- Departments of *Molecular Biophysics and Biochemistry and
| | - Dieter Söll
- Departments of *Molecular Biophysics and Biochemistry and
- Chemistry, Yale University, New Haven, CT 06520-8114
- To whom correspondence should be addressed at:
Department of Molecular Biophysics and Biochemistry, Yale University, P.O. Box 208114, 266 Whitney Avenue, New Haven, CT 06520-8114. E-mail:
| |
Collapse
|