1
|
Huang D, Zuo Y, Zhang C, Sun G, Jing Y, Lei J, Ma S, Sun S, Lu H, Cai Y, Zhang W, Gao F, Peng Xiang A, Belmonte JCI, Liu GH, Qu J, Wang S. A single-nucleus transcriptomic atlas of primate testicular aging reveals exhaustion of the spermatogonial stem cell reservoir and loss of Sertoli cell homeostasis. Protein Cell 2023; 14:888-907. [PMID: 36929025 PMCID: PMC10691849 DOI: 10.1093/procel/pwac057] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/29/2022] [Indexed: 11/19/2022] Open
Abstract
The testis is pivotal for male reproduction, and its progressive functional decline in aging is associated with infertility. However, the regulatory mechanism underlying primate testicular aging remains largely elusive. Here, we resolve the aging-related cellular and molecular alterations of primate testicular aging by establishing a single-nucleus transcriptomic atlas. Gene-expression patterns along the spermatogenesis trajectory revealed molecular programs associated with attrition of spermatogonial stem cell reservoir, disturbed meiosis and impaired spermiogenesis along the sequential continuum. Remarkably, Sertoli cell was identified as the cell type most susceptible to aging, given its deeply perturbed age-associated transcriptional profiles. Concomitantly, downregulation of the transcription factor Wilms' Tumor 1 (WT1), essential for Sertoli cell homeostasis, was associated with accelerated cellular senescence, disrupted tight junctions, and a compromised cell identity signature, which altogether may help create a hostile microenvironment for spermatogenesis. Collectively, our study depicts in-depth transcriptomic traits of non-human primate (NHP) testicular aging at single-cell resolution, providing potential diagnostic biomarkers and targets for therapeutic interventions against testicular aging and age-related male reproductive diseases.
Collapse
Grants
- 2022M712216 National Key Research and Development Program of China
- 81921006, 82125011, 92149301, 92168201, 91949209, 92049304, 92049116, 32121001, 82192863, 82122024, 82071588, 32000500, 31900523, 82201714, 82271600, 82201727 National Natural Science Foundation of China
- 11000022T000000461062 Beijing-affiliated Medical Research
- CAS-WX2021SF-0301, CAS-WX2021SF-0101, CAS-WX2022SDC-XK14 Youth Innovation Promotion Association
- CAS-WX2021SF-0301 Youth Innovation Promotion Association
Collapse
Affiliation(s)
- Daoyuan Huang
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Yuesheng Zuo
- University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
| | - Chen Zhang
- The Fifth People’s Hospital of Chongqing, Chongqing 400062, China
| | - Guoqiang Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Jing
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinghui Lei
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Shuai Ma
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Institute for Stem cell and Regeneration, CAS, Beijing 100101, China
- Aging Biomarker Consortium, China
| | - Shuhui Sun
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Institute for Stem cell and Regeneration, CAS, Beijing 100101, China
| | - Huifen Lu
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Yusheng Cai
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Institute for Stem cell and Regeneration, CAS, Beijing 100101, China
| | - Weiqi Zhang
- University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem cell and Regeneration, CAS, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, China
- Sino-Danish Center for Education and Research, Beijing 101408, China
- Aging Biomarker Consortium, China
| | - Fei Gao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Institute for Stem cell and Regeneration, CAS, Beijing 100101, China
| | - Andy Peng Xiang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510000, China
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510000, China
| | | | - Guang-Hui Liu
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Institute for Stem cell and Regeneration, CAS, Beijing 100101, China
- Aging Biomarker Consortium, China
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Institute for Stem cell and Regeneration, CAS, Beijing 100101, China
- Aging Biomarker Consortium, China
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- The Fifth People’s Hospital of Chongqing, Chongqing 400062, China
- Aging Biomarker Consortium, China
| |
Collapse
|
2
|
Jiang G, Zhang L, Zhao J, Li L, Huang Z, Wang Z. Dynamic Autophagy Map in Mouse Female Germ Cells Throughout the Fetal to Postnatal Life. Reprod Sci 2023; 30:169-180. [PMID: 35501593 DOI: 10.1007/s43032-022-00940-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/08/2022] [Indexed: 01/06/2023]
Abstract
Autophagy plays vital roles in mouse female germ cells, but the potential mechanism is largely unknown. In this study, by interrogating single-cell RNA-seq dataset, we investigated the dynamic expression of autophagy-related genes in seven types of germ cells (mitosis, pre-leptotene, leptotene, zygotene, pachytene, diplotene, and dictyate) and discovered stage-specific autophagy-related genes. Using immunofluorescence (IF) and transmission electron microscopy (TEM), autophagy activity and autophagosome numbers were revealed from mitosis to follicular assembly (E12.5 (embryonic day 12.5) to P5 (postnatal day 5)). Furthermore, single-sample gene set enrichment analysis (ssGSEA) was performed to validate the autophagy kinetics from E12.5 to P5. Our study proved that the mitosis, diplotene, and dictyate female germ cells had relatively higher autophagy activity among the seven subtypes. In summary, our work provided an autophagy map, suggesting that autophagy was complicated in mouse female germ cell development from the fetal to postnatal life, which paved a new insight for deciphering the autophagy regulatory networks for cell-fate transition and female infertility issues like primary ovarian insufficiency (POI).
Collapse
Affiliation(s)
- Gurong Jiang
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Li Zhang
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, Southern Medical University, Guangzhou, 510515, China
| | - Jiexiang Zhao
- Dongguan People's Hospital, Southern Medical University, Dongguan, 523059, China.,Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Lin Li
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, Southern Medical University, Guangzhou, 510515, China
| | - Zhenqin Huang
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zhijian Wang
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
3
|
Ma H, Li T, Xie X, Jiang L, Ye J, Gong C, Jiang H, Fan S, Zhang H, Shi B, Zhang B, Jiang X, Li Y, Zhou J, Xu J, Zhang X, Hou X, Yin H, Zhang Y, Shi Q. RAD51AP2 is required for efficient meiotic recombination between X and Y chromosomes. SCIENCE ADVANCES 2022; 8:eabk1789. [PMID: 35020426 PMCID: PMC8754306 DOI: 10.1126/sciadv.abk1789] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Faithful segregation of X and Y chromosomes requires meiotic recombination to form a crossover between them in the pseudoautosomal region (PAR). Unlike autosomes that have approximately 10-fold more double-strand breaks (DSBs) than crossovers, one crossover must be formed from the one or two DSBs in PARs, implying the existence of a sex chromosome–specific recombination mechanism. Here, we found that RAD51AP2, a meiosis-specific partner of RAD51, is specifically required for the crossover formation on the XY chromosomes, but not autosomes. The decreased crossover formation between X and Y chromosomes in Rad51ap2 mutant mice results from compromised DSB repair in PARs due to destabilization of recombination intermediates rather than defects in DSB generation or synapsis. Our findings provide direct experimental evidence that XY recombination may use a PAR-specific DSB repair mechanism mediated by factors that are not essential for recombination on autosomes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Hao Yin
- Corresponding author. (Q.S.); (Y.Z.); (H.Y.)
| | | | - Qinghua Shi
- Corresponding author. (Q.S.); (Y.Z.); (H.Y.)
| |
Collapse
|
4
|
Pires E, Sharma N, Selemenakis P, Wu B, Huang Y, Alimbetov DS, Zhao W, Wiese C. RAD51AP1 mediates RAD51 activity through nucleosome interaction. J Biol Chem 2021; 297:100844. [PMID: 34058198 PMCID: PMC8233230 DOI: 10.1016/j.jbc.2021.100844] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 05/18/2021] [Accepted: 05/26/2021] [Indexed: 10/31/2022] Open
Abstract
RAD51-associated protein 1 (RAD51AP1) is a key protein in the homologous recombination (HR) DNA repair pathway. Loss of RAD51AP1 leads to defective HR, genome instability, and telomere erosion. RAD51AP1 physically interacts with the RAD51 recombinase and promotes RAD51-mediated capture of donor DNA, synaptic complex assembly, and displacement-loop formation when tested with nucleosome-free DNA substrates. In cells, however, DNA is packaged into chromatin, posing an additional barrier to the complexities of the HR reaction. In this study, we show that RAD51AP1 binds to nucleosome core particles (NCPs), the minimum basic unit of chromatin in which approximately two superhelical turns of 147 bp double-stranded DNA are wrapped around one histone octamer with no free DNA ends remaining. We identified a C-terminal region in RAD51AP1, including its previously mapped DNA-binding domain, as critical for mediating the association between RAD51AP1 and both the NCP and the histone octamer. Using in vitro surrogate assays of HR activity, we show that RAD51AP1 is capable of promoting duplex DNA capture and initiating joint-molecule formation with the NCP and chromatinized template DNA, respectively. Together, our results suggest that RAD51AP1 directly assists in the RAD51-mediated search for donor DNA in chromatin. We present a model, in which RAD51AP1 anchors the DNA template through affinity for its nucleosomes to the RAD51-ssDNA nucleoprotein filament.
Collapse
Affiliation(s)
- Elena Pires
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado, USA; Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, Colorado, USA
| | - Neelam Sharma
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Platon Selemenakis
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado, USA; Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, Colorado, USA
| | - Bo Wu
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Yuxin Huang
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Dauren S Alimbetov
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Weixing Zhao
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Claudia Wiese
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado, USA.
| |
Collapse
|
5
|
Maranon DG, Sharma N, Huang Y, Selemenakis P, Wang M, Altina N, Zhao W, Wiese C. NUCKS1 promotes RAD54 activity in homologous recombination DNA repair. J Cell Biol 2021; 219:152064. [PMID: 32876692 PMCID: PMC7659731 DOI: 10.1083/jcb.201911049] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 05/04/2020] [Accepted: 06/18/2020] [Indexed: 12/13/2022] Open
Abstract
NUCKS1 (nuclear ubiquitous casein kinase and cyclin-dependent kinase substrate 1) is a chromatin-associated, vertebrate-specific, and multifunctional protein with a role in DNA damage signaling and repair. Previously, we have shown that NUCKS1 helps maintain homologous recombination (HR) DNA repair in human cells and functions as a tumor suppressor in mice. However, the mechanisms by which NUCKS1 positively impacts these processes had remained unclear. Here, we show that NUCKS1 physically and functionally interacts with the DNA motor protein RAD54. Upon exposure of human cells to DNA-damaging agents, NUCKS1 controls the resolution of RAD54 foci. In unperturbed cells, NUCKS1 prevents RAD54's inappropriate engagement with RAD51AP1. In vitro, NUCKS1 stimulates the ATPase activity of RAD54 and the RAD51-RAD54-mediated strand invasion step during displacement loop formation. Taken together, our data demonstrate that the NUCKS1 protein is an important new regulator of the spatiotemporal events in HR.
Collapse
Affiliation(s)
- David G Maranon
- Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO
| | - Neelam Sharma
- Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO
| | - Yuxin Huang
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX
| | - Platon Selemenakis
- Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO.,Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO
| | - Meiling Wang
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX
| | - Noelia Altina
- Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO.,Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO
| | - Weixing Zhao
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX
| | - Claudia Wiese
- Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO.,Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO
| |
Collapse
|
6
|
Two distinct pathways of pregranulosa cell differentiation support follicle formation in the mouse ovary. Proc Natl Acad Sci U S A 2020; 117:20015-20026. [PMID: 32759216 PMCID: PMC7443898 DOI: 10.1073/pnas.2005570117] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
This paper improves knowledge of the somatic and germ cells of the developing mouse ovary that assemble into ovarian follicles, by determining cellular gene expression, and tracing lineage relationships. The study covers the last week of fetal development through the first five days of postnatal development. During this time, many critically important processes take place, including sex determination, follicle assembly, and the initial events of meiosis. We report expression differences between pregranulosa cells of wave 1 follicles that function at puberty and wave 2 follicles that sustain fertility. These studies illuminate ovarian somatic cells and provide a resource to study the development, physiology, and evolutionary conservation of mammalian ovarian follicle formation. We sequenced more than 52,500 single cells from embryonic day 11.5 (E11.5) postembryonic day 5 (P5) gonads and performed lineage tracing to analyze primordial follicles and wave 1 medullar follicles during mouse fetal and perinatal oogenesis. Germ cells clustered into six meiotic substages, as well as dying/nurse cells. Wnt-expressing bipotential precursors already present at E11.5 are followed at each developmental stage by two groups of ovarian pregranulosa (PG) cells. One PG group, bipotential pregranulosa (BPG) cells, derives directly from bipotential precursors, expresses Foxl2 early, and associates with cysts throughout the ovary by E12.5. A second PG group, epithelial pregranulosa (EPG) cells, arises in the ovarian surface epithelium, ingresses cortically by E12.5 or earlier, expresses Lgr5, but delays robust Foxl2 expression until after birth. By E19.5, EPG cells predominate in the cortex and differentiate into granulosa cells of quiescent primordial follicles. In contrast, medullar BPG cells differentiate along a distinct pathway to become wave 1 granulosa cells. Reflecting their separate somatic cellular lineages, second wave follicles were ablated by diptheria toxin treatment of Lgr5-DTR-EGFP mice at E16.5 while first wave follicles developed normally and supported fertility. These studies provide insights into ovarian somatic cells and a resource to study the development, physiology, and evolutionary conservation of mammalian ovarian follicles.
Collapse
|
7
|
Role of Rad51 and DNA repair in cancer: A molecular perspective. Pharmacol Ther 2020; 208:107492. [PMID: 32001312 DOI: 10.1016/j.pharmthera.2020.107492] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/13/2020] [Accepted: 01/22/2020] [Indexed: 12/24/2022]
Abstract
The maintenance of genome integrity is essential for any organism survival and for the inheritance of traits to offspring. To the purpose, cells have developed a complex DNA repair system to defend the genetic information against both endogenous and exogenous sources of damage. Accordingly, multiple repair pathways can be aroused from the diverse forms of DNA lesions, which can be effective per se or via crosstalk with others to complete the whole DNA repair process. Deficiencies in DNA healing resulting in faulty repair and/or prolonged DNA damage can lead to genes mutations, chromosome rearrangements, genomic instability, and finally carcinogenesis and/or cancer progression. Although it might seem paradoxical, at the same time such defects in DNA repair pathways may have therapeutic implications for potential clinical practice. Here we provide an overview of the main DNA repair pathways, with special focus on the role played by homologous repair and the RAD51 recombinase protein in the cellular DNA damage response. We next discuss the recombinase structure and function per se and in combination with all its principal mediators and regulators. Finally, we conclude with an analysis of the manifold roles that RAD51 plays in carcinogenesis, cancer progression and anticancer drug resistance, and conclude this work with a survey of the most promising therapeutic strategies aimed at targeting RAD51 in experimental oncology.
Collapse
|
8
|
Jung M, Wells D, Rusch J, Ahmad S, Marchini J, Myers SR, Conrad DF. Unified single-cell analysis of testis gene regulation and pathology in five mouse strains. eLife 2019; 8:e43966. [PMID: 31237565 PMCID: PMC6615865 DOI: 10.7554/elife.43966] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 06/17/2019] [Indexed: 12/13/2022] Open
Abstract
To fully exploit the potential of single-cell functional genomics in the study of development and disease, robust methods are needed to simplify the analysis of data across samples, time-points and individuals. Here we introduce a model-based factor analysis method, SDA, to analyze a novel 57,600 cell dataset from the testes of wild-type mice and mice with gonadal defects due to disruption of the genes Mlh3, Hormad1, Cul4a or Cnp. By jointly analyzing mutant and wild-type cells we decomposed our data into 46 components that identify novel meiotic gene-regulatory programs, mutant-specific pathological processes, and technical effects, and provide a framework for imputation. We identify, de novo, DNA sequence motifs associated with individual components that define temporally varying modes of gene expression control. Analysis of SDA components also led us to identify a rare population of macrophages within the seminiferous tubules of Mlh3-/- and Hormad1-/- mice, an area typically associated with immune privilege.
Collapse
Affiliation(s)
- Min Jung
- Department of GeneticsWashington University School of MedicineSt. LouisUnited States
| | - Daniel Wells
- The Wellcome Centre for Human GeneticsUniversity of OxfordOxfordUnited Kingdom
- Department of StatisticsUniversity of OxfordOxfordUnited Kingdom
| | - Jannette Rusch
- Department of GeneticsWashington University School of MedicineSt. LouisUnited States
| | - Suhaira Ahmad
- Department of GeneticsWashington University School of MedicineSt. LouisUnited States
| | - Jonathan Marchini
- The Wellcome Centre for Human GeneticsUniversity of OxfordOxfordUnited Kingdom
- Department of StatisticsUniversity of OxfordOxfordUnited Kingdom
| | - Simon R Myers
- The Wellcome Centre for Human GeneticsUniversity of OxfordOxfordUnited Kingdom
- Department of StatisticsUniversity of OxfordOxfordUnited Kingdom
| | - Donald F Conrad
- Department of GeneticsWashington University School of MedicineSt. LouisUnited States
- Division of Genetics, Oregon National Primate Research CenterOregon Health & Science UniversityPortlandUnited States
| |
Collapse
|
9
|
Pires E, Sung P, Wiese C. Role of RAD51AP1 in homologous recombination DNA repair and carcinogenesis. DNA Repair (Amst) 2017; 59:76-81. [PMID: 28963981 PMCID: PMC5643253 DOI: 10.1016/j.dnarep.2017.09.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/01/2017] [Accepted: 09/21/2017] [Indexed: 12/11/2022]
Abstract
Homologous recombination (HR) serves to repair DNA double-strand breaks and damaged replication forks and is essential for maintaining genome stability and tumor suppression. HR capacity also determines the efficacy of anticancer therapy. Hence, there is an urgent need to better understand all HR proteins and sub-pathways. An emerging protein that is critical for RAD51-mediated HR is RAD51-associated protein 1 (RAD51AP1). Although much has been learned about its biochemical attributes, the precise molecular role of RAD51AP1 in the HR reaction is not yet fully understood. The available literature also suggests that RAD51AP1 expression may be relevant for cancer development and progression. Here, we review the efforts that led to the discovery of RAD51AP1 and elaborate on our current understanding of its biochemical profile and biological function. We also discuss how RAD51AP1 may help to promote cancer development and why it could potentially represent a promising new target for therapeutic intervention.
Collapse
Affiliation(s)
- Elena Pires
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA; Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Patrick Sung
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Claudia Wiese
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
10
|
Zhao W, Steinfeld JB, Liang F, Chen X, Maranon DG, Ma CJ, Kwon Y, Rao T, Wang W, Chen S, Song X, Deng Y, Jimenez-Sainz J, Lu L, Jensen RB, Xiong Y, Kupfer GM, Wiese C, Greene EC, Sung P. BRCA1-BARD1 promotes RAD51-mediated homologous DNA pairing. Nature 2017; 550:360-365. [PMID: 28976962 PMCID: PMC5800781 DOI: 10.1038/nature24060] [Citation(s) in RCA: 248] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 09/08/2017] [Indexed: 12/18/2022]
Abstract
The tumour suppressor complex BRCA1-BARD1 functions in the repair of DNA double-stranded breaks by homologous recombination. During this process, BRCA1-BARD1 facilitates the nucleolytic resection of DNA ends to generate a single-stranded template for the recruitment of another tumour suppressor complex, BRCA2-PALB2, and the recombinase RAD51. Here, by examining purified wild-type and mutant BRCA1-BARD1, we show that both BRCA1 and BARD1 bind DNA and interact with RAD51, and that BRCA1-BARD1 enhances the recombinase activity of RAD51. Mechanistically, BRCA1-BARD1 promotes the assembly of the synaptic complex, an essential intermediate in RAD51-mediated DNA joint formation. We provide evidence that BRCA1 and BARD1 are indispensable for RAD51 stimulation. Notably, BRCA1-BARD1 mutants with weakened RAD51 interactions show compromised DNA joint formation and impaired mediation of homologous recombination and DNA repair in cells. Our results identify a late role of BRCA1-BARD1 in homologous recombination, an attribute of the tumour suppressor complex that could be targeted in cancer therapy.
Collapse
Affiliation(s)
- Weixing Zhao
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Justin B. Steinfeld
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Fengshan Liang
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
- Section of Hematology-Oncology, Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Xiaoyong Chen
- Section of Hematology-Oncology, Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - David G. Maranon
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Chu Jian Ma
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Youngho Kwon
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Timsi Rao
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Weibin Wang
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Sheng Chen
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Xuemei Song
- Yale Center for Analytical Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Yanhong Deng
- Yale Center for Analytical Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Judit Jimenez-Sainz
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Lucy Lu
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Ryan B. Jensen
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Gary M. Kupfer
- Section of Hematology-Oncology, Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Claudia Wiese
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Eric C. Greene
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Patrick Sung
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
11
|
Parplys AC, Zhao W, Sharma N, Groesser T, Liang F, Maranon DG, Leung SG, Grundt K, Dray E, Idate R, Østvold AC, Schild D, Sung P, Wiese C. NUCKS1 is a novel RAD51AP1 paralog important for homologous recombination and genome stability. Nucleic Acids Res 2015; 43:9817-34. [PMID: 26323318 PMCID: PMC4787752 DOI: 10.1093/nar/gkv859] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 07/09/2015] [Accepted: 08/17/2015] [Indexed: 01/20/2023] Open
Abstract
NUCKS1 (nuclear casein kinase and cyclin-dependent kinase substrate 1) is a 27 kD chromosomal, vertebrate-specific protein, for which limited functional data exist. Here, we demonstrate that NUCKS1 shares extensive sequence homology with RAD51AP1 (RAD51 associated protein 1), suggesting that these two proteins are paralogs. Similar to the phenotypic effects of RAD51AP1 knockdown, we find that depletion of NUCKS1 in human cells impairs DNA repair by homologous recombination (HR) and chromosome stability. Depletion of NUCKS1 also results in greatly increased cellular sensitivity to mitomycin C (MMC), and in increased levels of spontaneous and MMC-induced chromatid breaks. NUCKS1 is critical to maintaining wild type HR capacity, and, as observed for a number of proteins involved in the HR pathway, functional loss of NUCKS1 leads to a slow down in DNA replication fork progression with a concomitant increase in the utilization of new replication origins. Interestingly, recombinant NUCKS1 shares the same DNA binding preference as RAD51AP1, but binds to DNA with reduced affinity when compared to RAD51AP1. Our results show that NUCKS1 is a chromatin-associated protein with a role in the DNA damage response and in HR, a DNA repair pathway critical for tumor suppression.
Collapse
Affiliation(s)
- Ann C Parplys
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Weixing Zhao
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Neelam Sharma
- Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Torsten Groesser
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Fengshan Liang
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - David G Maranon
- Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Stanley G Leung
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kirsten Grundt
- Department of Molecular Medicine, Institute of Basic Medical Science, University of Oslo, 0317 Oslo, Norway
| | - Eloïse Dray
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Rupa Idate
- Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Anne Carine Østvold
- Department of Molecular Medicine, Institute of Basic Medical Science, University of Oslo, 0317 Oslo, Norway
| | - David Schild
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Patrick Sung
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Claudia Wiese
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
12
|
Parplys AC, Kratz K, Speed MC, Leung SG, Schild D, Wiese C. RAD51AP1-deficiency in vertebrate cells impairs DNA replication. DNA Repair (Amst) 2014; 24:87-97. [PMID: 25288561 DOI: 10.1016/j.dnarep.2014.09.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 09/06/2014] [Accepted: 09/16/2014] [Indexed: 01/03/2023]
Abstract
RAD51-associated protein 1 (RAD51AP1) is critical for homologous recombination (HR) by interacting with and stimulating the activities of the RAD51 and DMC1 recombinases. In human somatic cells, knockdown of RAD51AP1 results in increased sensitivity to DNA damaging agents and to impaired HR, but the formation of DNA damage-induced RAD51 foci is unaffected. Here, we generated a genetic model system, based on chicken DT40 cells, to assess the phenotype of fully inactivated RAD51AP1 in vertebrate cells. Targeted inactivation of both RAD51AP1 alleles has no effect on either viability or doubling-time in undamaged cells, but leads to increased levels of cytotoxicity after exposure to cisplatin or to ionizing radiation. Interestingly, ectopic expression of GgRAD51AP1, but not of HsRAD51AP1 is able to fully complement in cell survival assays. Notably, in RAD51AP1-deficient DT40 cells the resolution of DNA damage-induced RAD51 foci is greatly slowed down, while their formation is not impaired. We also identify, for the first time, an important role for RAD51AP1 in counteracting both spontaneous and DNA damage-induced replication stress. In human and in chicken cells, RAD51AP1 is required to maintain wild type speed of replication fork progression, and both RAD51AP1-depleted human cells and RAD51AP1-deficient DT40 cells respond to replication stress by a slow-down of replication fork elongation rates. However, increased firing of replication origins occurs in RAD51AP1-/- DT40 cells, likely to ensure the timely duplication of the entire genome. Taken together, our results may explain why RAD51AP1 commonly is overexpressed in tumor cells and tissues, and we speculate that the disruption of RAD51AP1 function could be a promising approach in targeted tumor therapy.
Collapse
Affiliation(s)
- Ann C Parplys
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Katja Kratz
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Michael C Speed
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Stanley G Leung
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - David Schild
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States.
| | - Claudia Wiese
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States.
| |
Collapse
|
13
|
Krejci L, Altmannova V, Spirek M, Zhao X. Homologous recombination and its regulation. Nucleic Acids Res 2012; 40:5795-818. [PMID: 22467216 PMCID: PMC3401455 DOI: 10.1093/nar/gks270] [Citation(s) in RCA: 456] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Homologous recombination (HR) is critical both for repairing DNA lesions in mitosis and for chromosomal pairing and exchange during meiosis. However, some forms of HR can also lead to undesirable DNA rearrangements. Multiple regulatory mechanisms have evolved to ensure that HR takes place at the right time, place and manner. Several of these impinge on the control of Rad51 nucleofilaments that play a central role in HR. Some factors promote the formation of these structures while others lead to their disassembly or the use of alternative repair pathways. In this article, we review these mechanisms in both mitotic and meiotic environments and in different eukaryotic taxa, with an emphasis on yeast and mammal systems. Since mutations in several proteins that regulate Rad51 nucleofilaments are associated with cancer and cancer-prone syndromes, we discuss how understanding their functions can lead to the development of better tools for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Lumir Krejci
- Department of Biology, Masaryk University, Brno, Czech Republic.
| | | | | | | |
Collapse
|
14
|
Dunlop MH, Dray E, Zhao W, San Filippo J, Tsai MS, Leung SG, Schild D, Wiese C, Sung P. Mechanistic insights into RAD51-associated protein 1 (RAD51AP1) action in homologous DNA repair. J Biol Chem 2012; 287:12343-7. [PMID: 22375013 DOI: 10.1074/jbc.c112.352161] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Homologous recombination catalyzed by the RAD51 recombinase is essential for maintaining genome integrity upon the induction of DNA double strand breaks and other DNA lesions. By enhancing the recombinase activity of RAD51, RAD51AP1 (RAD51-associated protein 1) serves a key role in homologous recombination-mediated chromosome damage repair. We show here that RAD51AP1 harbors two distinct DNA binding domains that are both needed for maximal protein activity under physiological conditions. We have finely mapped the two DNA binding domains in RAD51AP1 and generated mutant variants that are impaired in either or both of the DNA binding domains. Examination of these mutants reveals that both domains are indispensable for RAD51AP1 function in cells. These and other results illuminate the mechanistic basis of RAD51AP1 action in homologous DNA repair.
Collapse
Affiliation(s)
- Myun Hwa Dunlop
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Dunlop MH, Dray E, Zhao W, Tsai MS, Wiese C, Schild D, Sung P. RAD51-associated protein 1 (RAD51AP1) interacts with the meiotic recombinase DMC1 through a conserved motif. J Biol Chem 2011; 286:37328-34. [PMID: 21903585 DOI: 10.1074/jbc.m111.290015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Homologous recombination (HR) reactions mediated by the RAD51 recombinase are essential for DNA and replication fork repair, genome stability, and tumor suppression. RAD51-associated protein 1 (RAD51AP1) is an important HR factor that associates with and stimulates the recombinase activity of RAD51. We have recently shown that RAD51AP1 also partners with the meiotic recombinase DMC1, displaying isoform-specific interactions with DMC1. Here, we have characterized the DMC1 interaction site in RAD51AP1 by a series of truncations and point mutations to uncover a highly conserved WVPP motif critical for DMC1 interaction but dispensable for RAD51 association. This RAD51AP1 motif is reminiscent of the FVPP motif in the tumor suppressor protein BRCA2 that mediates DMC1 interaction. These results further implicate RAD51AP1 in meiotic HR via RAD51 and DMC1.
Collapse
Affiliation(s)
- Myun Hwa Dunlop
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Dray E, Dunlop MH, Kauppi L, Filippo JS, Wiese C, Tsai MS, Begovic S, Schild D, Jasin M, Keeney S, Sung P. Molecular basis for enhancement of the meiotic DMC1 recombinase by RAD51 associated protein 1 (RAD51AP1). Proc Natl Acad Sci U S A 2011; 108:3560-5. [PMID: 21307306 PMCID: PMC3048120 DOI: 10.1073/pnas.1016454108] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Homologous recombination is needed for meiotic chromosome segregation, genome maintenance, and tumor suppression. RAD51AP1 (RAD51 associated protein 1) has been shown to interact with and enhance the recombinase activity of RAD51. Accordingly, genetic ablation of RAD51AP1 leads to enhanced sensitivity to and also chromosome aberrations upon DNA damage, demonstrating a role for RAD51AP1 in mitotic homologous recombination. Here we show physical association of RAD51AP1 with the meiosis-specific recombinase DMC1 and a stimulatory effect of RAD51AP1 on the DMC1-mediated D-loop reaction. Mechanistic studies have revealed that RAD51AP1 enhances the ability of the DMC1 presynaptic filament to capture the duplex-DNA partner and to assemble the synaptic complex, in which the recombining DNA strands are homologously aligned. We also provide evidence that functional cooperation is dependent on complex formation between DMC1 and RAD51AP1 and that distinct epitopes in RAD51AP1 mediate interactions with RAD51 and DMC1. Finally, we show that RAD51AP1 is expressed in mouse testes, and that RAD51AP1 foci colocalize with a subset of DMC1 foci in spermatocytes. These results suggest that RAD51AP1 also serves an important role in meiotic homologous recombination.
Collapse
Affiliation(s)
- Eloïse Dray
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520
| | - Myun Hwa Dunlop
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520
| | - Liisa Kauppi
- Molecular Biology Program, Memorial Sloan–Kettering Cancer Center, New York, NY 10065
| | - Joseph San Filippo
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520
| | - Claudia Wiese
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720; and
| | - Miaw-Sheue Tsai
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720; and
| | - Sead Begovic
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520
| | - David Schild
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720; and
| | - Maria Jasin
- Molecular Biology Program, Memorial Sloan–Kettering Cancer Center, New York, NY 10065
| | - Scott Keeney
- Molecular Biology Program, Memorial Sloan–Kettering Cancer Center, New York, NY 10065
- Howard Hughes Medical Institute, Memorial Sloan–Kettering Cancer Center, New York, NY 10065
| | - Patrick Sung
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520
| |
Collapse
|
17
|
Gildemeister OS, Sage JM, Knight KL. Cellular redistribution of Rad51 in response to DNA damage: novel role for Rad51C. J Biol Chem 2009; 284:31945-52. [PMID: 19783859 DOI: 10.1074/jbc.m109.024646] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Exposure of cells to DNA-damaging agents results in a rapid increase in the formation of subnuclear complexes containing Rad51. To date, it has not been determined to what extent DNA damage-induced cytoplasmic to nuclear transport of Rad51 may contribute to this process. We have analyzed subcellular fractions of HeLa and HCT116 cells and found a significant increase in nuclear Rad51 levels following exposure to a modest dose of ionizing radiation (2 grays). We also observed a DNA damage-induced increase in nuclear Rad51 in the Brca2-defective cell line Capan-1. To address a possible Brca2-independent mechanism for Rad51 nuclear transport, we analyzed subcellular fractions for two other Rad51-interacting proteins, Rad51C and Xrcc3. Rad51C has a functional nuclear localization signal, and although we found that the subcellular distribution of Xrcc3 was not significantly affected by DNA damage, there was a damage-induced increase in nuclear Rad51C. Furthermore, RNA interference-mediated depletion of Rad51C in HeLa and Capan-1 cells resulted in lower steady-state levels of nuclear Rad51 as well as a diminished DNA damage-induced increase. Our results provide important insight into the cellular regulation of Rad51 nuclear entry and a role for Rad51C in this process.
Collapse
Affiliation(s)
- Otto S Gildemeister
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | |
Collapse
|
18
|
Modesti M, Budzowska M, Baldeyron C, Demmers JAA, Ghirlando R, Kanaar R. RAD51AP1 is a structure-specific DNA binding protein that stimulates joint molecule formation during RAD51-mediated homologous recombination. Mol Cell 2008; 28:468-81. [PMID: 17996710 DOI: 10.1016/j.molcel.2007.08.025] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Revised: 07/19/2007] [Accepted: 08/23/2007] [Indexed: 12/24/2022]
Abstract
Homologous recombination is essential for preserving genome integrity. Joining of homologous DNA molecules through strand exchange, a pivotal step in recombination, is mediated by RAD51. Here, we identify RAD51AP1 as a RAD51 accessory protein that specifically stimulates joint molecule formation through the combination of structure-specific DNA binding and physical contact with RAD51. At the cellular level, we show that RAD51AP1 is required to protect cells from the adverse effects of DNA double-strand break-inducing agents. At the biochemical level, we show that RAD51AP1 has a selective affinity for branched-DNA structures that are obligatory intermediates during joint molecule formation. Our results highlight the importance of structural transitions in DNA as control points in recombination. The affinity of RAD51AP1 for the central protein and DNA intermediates of recombination confers on it the ability to control the preservation of genome integrity at a number of critical mechanistic steps.
Collapse
Affiliation(s)
- Mauro Modesti
- Department of Cell Biology and Genetics, Erasmus MC, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
19
|
Promotion of homologous recombination and genomic stability by RAD51AP1 via RAD51 recombinase enhancement. Mol Cell 2008; 28:482-90. [PMID: 17996711 DOI: 10.1016/j.molcel.2007.08.027] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Revised: 07/18/2007] [Accepted: 08/23/2007] [Indexed: 11/21/2022]
Abstract
Homologous recombination (HR) repairs chromosome damage and is indispensable for tumor suppression in humans. RAD51 mediates the DNA strand-pairing step in HR. RAD51 associated protein 1 (RAD51AP1) is a RAD51-interacting protein whose function has remained elusive. Knockdown of RAD51AP1 in human cells by RNA interference engenders sensitivity to different types of genotoxic stress, and RAD51AP1 is epistatic to the HR protein XRCC3. Moreover, RAD51AP1-depleted cells are impaired for the recombinational repair of a DNA double-strand break and exhibit chromatid breaks both spontaneously and upon DNA-damaging treatment. Purified RAD51AP1 binds both dsDNA and a D loop structure and, only when able to interact with RAD51, greatly stimulates the RAD51-mediated D loop reaction. Biochemical and cytological results show that RAD51AP1 functions at a step subsequent to the assembly of the RAD51-ssDNA nucleoprotein filament. Our findings provide evidence that RAD51AP1 helps maintain genomic integrity via RAD51 recombinase enhancement.
Collapse
|