1
|
Mayer MD, Lange MJ. G-quadruplex formation in RNA aptamers selected for binding to HIV-1 capsid. Front Chem 2024; 12:1425515. [PMID: 39502140 PMCID: PMC11536715 DOI: 10.3389/fchem.2024.1425515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024] Open
Abstract
HIV-1 capsid protein (CA) is essential for viral replication and interacts with numerous host factors to facilitate successful infection. Thus, CA is an integral target for the study of virus-host dynamics and therapeutic development. The multifaceted functions of CA stem from the ability of CA to assemble into distinct structural components that come together to form the mature capsid core. Each structural component, including monomers, pentamers, and hexamers, presents a variety of solvent-accessible surfaces. However, the structure-function relationships of these components that facilitate replication and virus-host interactions have yet to be fully elucidated. A major challenge is the genetic fragility of CA, which precludes the use of many common methods. To overcome these constraints, we identified CA-targeting aptamers with binding specificity for either the mature CA hexamer lattice alone or both the CA hexamer lattice and soluble CA hexamer. To enable utilization of these aptamers as molecular tools for the study of CA structure-function relationships in cells, understanding the higher-order structures of these aptamers is required. While our initial work on a subset of aptamers included predictive and qualitative biochemical characterizations that provided insight into aptamer secondary structures, these approaches were insufficient for determining more complex non-canonical architectures. Here, we further clarify aptamer structural motifs using focused, quantitative biophysical approaches, primarily through the use of multi-effective spectroscopic methods and thermodynamic analyses. Aptamer L15.20.1 displayed particularly strong, unambiguous indications of stable RNA G-quadruplex (rG4) formation under physiological conditions in a region of the aptamer also previously shown to be necessary for CA-aptamer interactions. Non-canonical structures, such as the rG4, have distinct chemical signatures and interfaces that may support downstream applications without the need for complex modifications or labels that may negatively affect aptamer folding. Thus, aptamer representative L15.20.1, containing a putative rG4 in a region likely required for aptamer binding to CA with probable function under cellular conditions, may be a particularly useful tool for the study of HIV-1 CA.
Collapse
Affiliation(s)
- Miles D. Mayer
- Department of Molecular Microbiology and Immunology, Columbia, MO, United States
- Department of Biochemistry, Columbia, MO, United States
| | - Margaret J. Lange
- Department of Molecular Microbiology and Immunology, Columbia, MO, United States
- Department of Biochemistry, Columbia, MO, United States
| |
Collapse
|
2
|
Alkhamis O, Canoura J, Wang L, Xiao Y. Nuclease-assisted selection of slow-off rate aptamers. SCIENCE ADVANCES 2024; 10:eadl3426. [PMID: 38865469 PMCID: PMC11168469 DOI: 10.1126/sciadv.adl3426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 05/09/2024] [Indexed: 06/14/2024]
Abstract
Conventional directed evolution methods offer the ability to select bioreceptors with high binding affinity for a specific target in terms of thermodynamic properties. However, there is a lack of analogous approaches for kinetic selection, which could yield affinity reagents that exhibit slow off-rates and thus remain tightly bound to targets for extended periods. Here, we describe an in vitro directed evolution methodology that uses the nuclease flap endonuclease 1 to achieve the efficient discovery of aptamers that have slow dissociation rates. Our nuclease-assisted selection strategy can yield specific aptamers for both small molecules and proteins with off-rates that are an order of magnitude slower relative to those obtained with conventional selection methods while still retaining excellent overall target affinity in terms of thermodynamics. This new methodology provides a generalizable approach for generating slow off-rate aptamers for diverse targets, which could, in turn, prove valuable for applications including molecular devices, bioimaging, and therapy.
Collapse
Affiliation(s)
- Obtin Alkhamis
- Department of Chemistry, North Carolina State University, Raleigh, NC 27607, USA
| | - Juan Canoura
- Department of Chemistry, North Carolina State University, Raleigh, NC 27607, USA
| | - Linlin Wang
- Department of Chemistry, North Carolina State University, Raleigh, NC 27607, USA
| | | |
Collapse
|
3
|
Canoura J, Alkhamis O, Venzke M, Ly PT, Xiao Y. Developing Aptamer-Based Colorimetric Opioid Tests. JACS AU 2024; 4:1059-1072. [PMID: 38559723 PMCID: PMC10976566 DOI: 10.1021/jacsau.3c00801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/09/2024] [Accepted: 02/14/2024] [Indexed: 04/04/2024]
Abstract
Opioids collectively cause over 80,000 deaths in the United States annually. The ability to rapidly identify these compounds in seized drug samples on-site will be essential for curtailing trafficking and distribution. Chemical reagent-based tests are fast and simple but also notorious for giving false results due to poor specificity, whereas portable Raman spectrometers have excellent selectivity but often face interference challenges with impure drug samples. In this work, we develop on-site sensors for morphine and structurally related opioid compounds based on in vitro-selected oligonucleotide affinity reagents known as aptamers. We employ a parallel-and-serial selection strategy to isolate aptamers that recognize heroin, morphine, codeine, hydrocodone, and hydromorphone, along with a toggle-selection approach to isolate aptamers that bind oxycodone and oxymorphone. We then utilize a new high-throughput sequencing-based approach to examine aptamer growth patterns over the course of selection and a high-throughput exonuclease-based screening assay to identify optimal aptamer candidates. Finally, we use two high-performance aptamers with KD of ∼1 μM to develop colorimetric dye-displacement assays that can specifically detect opioids like heroin and oxycodone at concentrations as low as 0.5 μM with a linear range of 0-16 μM. Importantly, our assays can detect opioids in complex chemical matrices, including pharmaceutical tablets and drug mixtures; in contrast, the conventional Marquis test completely fails in this context. These aptamer-based colorimetric assays enable the naked-eye identification of specific opioids within seconds and will play an important role in combatting opioid abuse.
Collapse
Affiliation(s)
- Juan Canoura
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Dr., Raleigh, North Carolina 27695, United States
| | - Obtin Alkhamis
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Dr., Raleigh, North Carolina 27695, United States
| | - Matthew Venzke
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Dr., Raleigh, North Carolina 27695, United States
| | - Phuong T. Ly
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Dr., Raleigh, North Carolina 27695, United States
| | - Yi Xiao
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Dr., Raleigh, North Carolina 27695, United States
| |
Collapse
|
4
|
Onaş AM, Dascălu C, Raicopol MD, Pilan L. Critical Design Factors for Electrochemical Aptasensors Based on Target-Induced Conformational Changes: The Case of Small-Molecule Targets. BIOSENSORS 2022; 12:816. [PMID: 36290952 PMCID: PMC9599214 DOI: 10.3390/bios12100816] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Nucleic-acid aptamers consisting in single-stranded DNA oligonucleotides emerged as very promising biorecognition elements for electrochemical biosensors applied in various fields such as medicine, environmental, and food safety. Despite their outstanding features, such as high-binding affinity for a broad range of targets, high stability, low cost and ease of modification, numerous challenges had to be overcome from the aptamer selection process on the design of functioning biosensing devices. Moreover, in the case of small molecules such as metabolites, toxins, drugs, etc., obtaining efficient binding aptamer sequences proved a challenging task given their small molecular surface and limited interactions between their functional groups and aptamer sequences. Thus, establishing consistent evaluation standards for aptamer affinity is crucial for the success of these aptamers in biosensing applications. In this context, this article will give an overview on the thermodynamic and structural aspects of the aptamer-target interaction, its specificity and selectivity, and will also highlight the current methods employed for determining the aptamer-binding affinity and the structural characterization of the aptamer-target complex. The critical aspects regarding the generation of aptamer-modified electrodes suitable for electrochemical sensing, such as appropriate bioreceptor immobilization strategy and experimental conditions which facilitate a convenient anchoring and stability of the aptamer, are also discussed. The review also summarizes some effective small molecule aptasensing platforms from the recent literature.
Collapse
Affiliation(s)
- Andra Mihaela Onaş
- Advanced Polymer Materials Group, University ‘Politehnica’ of Bucharest, 1-7 Gheorghe Polizu, District 1, 011061 Bucharest, Romania
| | - Constanţa Dascălu
- Faculty of Applied Sciences, University ‘Politehnica’ of Bucharest, 313 Splaiul Independenţei, District 6, 060042 Bucharest, Romania
| | - Matei D. Raicopol
- Faculty of Chemical Engineering and Biotechnologies, University ‘Politehnica’ of Bucharest, 1-7 Gheorghe Polizu, District 1, 011061 Bucharest, Romania
| | - Luisa Pilan
- Faculty of Chemical Engineering and Biotechnologies, University ‘Politehnica’ of Bucharest, 1-7 Gheorghe Polizu, District 1, 011061 Bucharest, Romania
| |
Collapse
|
5
|
Quantitative and rapid detection of morphine and hydromorphone at the point of care by an automated giant magnetoresistive nanosensor platform. Anal Bioanal Chem 2022; 414:7211-7221. [DOI: 10.1007/s00216-022-04274-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/13/2022] [Accepted: 08/09/2022] [Indexed: 11/01/2022]
|
6
|
Yu H, Alkhamis O, Canoura J, Liu Y, Xiao Y. Advances and Challenges in Small‐Molecule DNA Aptamer Isolation, Characterization, and Sensor Development. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202008663] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Haixiang Yu
- Department of Chemistry and Biochemistry Florida International University 11200 SW 8th Street Miami FL 33199 USA
| | - Obtin Alkhamis
- Department of Chemistry and Biochemistry Florida International University 11200 SW 8th Street Miami FL 33199 USA
| | - Juan Canoura
- Department of Chemistry and Biochemistry Florida International University 11200 SW 8th Street Miami FL 33199 USA
| | - Yingzhu Liu
- Department of Chemistry and Biochemistry Florida International University 11200 SW 8th Street Miami FL 33199 USA
| | - Yi Xiao
- Department of Chemistry and Biochemistry Florida International University 11200 SW 8th Street Miami FL 33199 USA
| |
Collapse
|
7
|
Yu H, Alkhamis O, Canoura J, Liu Y, Xiao Y. Advances and Challenges in Small-Molecule DNA Aptamer Isolation, Characterization, and Sensor Development. Angew Chem Int Ed Engl 2021; 60:16800-16823. [PMID: 33559947 PMCID: PMC8292151 DOI: 10.1002/anie.202008663] [Citation(s) in RCA: 168] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 11/16/2021] [Indexed: 12/12/2022]
Abstract
Aptamers are short oligonucleotides isolated in vitro from randomized libraries that can bind to specific molecules with high affinity, and offer a number of advantages relative to antibodies as biorecognition elements in biosensors. However, it remains difficult and labor-intensive to develop aptamer-based sensors for small-molecule detection. Here, we review the challenges and advances in the isolation and characterization of small-molecule-binding DNA aptamers and their use in sensors. First, we discuss in vitro methodologies for the isolation of aptamers, and provide guidance on selecting the appropriate strategy for generating aptamers with optimal binding properties for a given application. We next examine techniques for characterizing aptamer-target binding and structure. Afterwards, we discuss various small-molecule sensing platforms based on original or engineered aptamers, and their detection applications. Finally, we conclude with a general workflow to develop aptamer-based small-molecule sensors for real-world applications.
Collapse
Affiliation(s)
- Haixiang Yu
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
| | - Obtin Alkhamis
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
| | - Juan Canoura
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
| | - Yingzhu Liu
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
| | - Yi Xiao
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
| |
Collapse
|
8
|
Jamieson CS, Misa J, Tang Y, Billingsley JM. Biosynthesis and synthetic biology of psychoactive natural products. Chem Soc Rev 2021; 50:6950-7008. [PMID: 33908526 PMCID: PMC8217322 DOI: 10.1039/d1cs00065a] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Psychoactive natural products play an integral role in the modern world. The tremendous structural complexity displayed by such molecules confers diverse biological activities of significant medicinal value and sociocultural impact. Accordingly, in the last two centuries, immense effort has been devoted towards establishing how plants, animals, and fungi synthesize complex natural products from simple metabolic precursors. The recent explosion of genomics data and molecular biology tools has enabled the identification of genes encoding proteins that catalyze individual biosynthetic steps. Once fully elucidated, the "biosynthetic pathways" are often comparable to organic syntheses in elegance and yield. Additionally, the discovery of biosynthetic enzymes provides powerful catalysts which may be repurposed for synthetic biology applications, or implemented with chemoenzymatic synthetic approaches. In this review, we discuss the progress that has been made toward biosynthetic pathway elucidation amongst four classes of psychoactive natural products: hallucinogens, stimulants, cannabinoids, and opioids. Compounds of diverse biosynthetic origin - terpene, amino acid, polyketide - are identified, and notable mechanisms of key scaffold transforming steps are highlighted. We also provide a description of subsequent applications of the biosynthetic machinery, with an emphasis placed on the synthetic biology and metabolic engineering strategies enabling heterologous production.
Collapse
Affiliation(s)
- Cooper S Jamieson
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Joshua Misa
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Yi Tang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA. and Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA.
| | - John M Billingsley
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA. and Invizyne Technologies, Inc., Monrovia, CA, USA
| |
Collapse
|
9
|
Haniff HS, Knerr L, Chen JL, Disney MD, Lightfoot HL. Target-Directed Approaches for Screening Small Molecules against RNA Targets. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2020; 25:869-894. [PMID: 32419578 PMCID: PMC7442623 DOI: 10.1177/2472555220922802] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
RNA molecules have a variety of cellular functions that can drive disease pathologies. They are without a doubt one of the most intriguing yet controversial small-molecule drug targets. The ability to widely target RNA with small molecules could be revolutionary, once the right tools, assays, and targets are selected, thereby defining which biomolecules are targetable and what constitutes drug-like small molecules. Indeed, approaches developed over the past 5-10 years have changed the face of small molecule-RNA targeting by addressing historic concerns regarding affinity, selectivity, and structural dynamics. Presently, selective RNA-protein complex stabilizing drugs such as branaplam and risdiplam are in clinical trials for the modulation of SMN2 splicing, compounds identified from phenotypic screens with serendipitous outcomes. Fully developing RNA as a druggable target will require a target engagement-driven approach, and evolving chemical collections will be important for the industrial development of this class of target. In this review we discuss target-directed approaches that can be used to identify RNA-binding compounds and the chemical knowledge we have today of small-molecule RNA binders.
Collapse
Affiliation(s)
- Hafeez S. Haniff
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, USA
| | - Laurent Knerr
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Jonathan L. Chen
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, USA
| | - Matthew D. Disney
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, USA
| | | |
Collapse
|
10
|
Diagnostic and Therapeutic Value of Aptamers in Envenomation Cases. Int J Mol Sci 2020; 21:ijms21103565. [PMID: 32443562 PMCID: PMC7278915 DOI: 10.3390/ijms21103565] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 02/07/2023] Open
Abstract
It is now more than a century since Albert Calmette from the Institut Pasteur changed the world of envenomation by demonstrating that antibodies raised against animal venoms have the ability to treat human victims of previously fatal bites or stings. Moreover, the research initiated at that time effectively launched the discipline of toxicology, first leading to the search for toxic venom components, followed by the demonstration of venoms that also contained compounds of therapeutic value. Interest from pharmaceutical companies to treat envenomation is, however, declining, mainly for economic reasons, and hence, the World Health Organization has reclassified this public health issue to be a highest priority concern. While the production, storage, and safety of antivenom sera suffer from major inconveniences, alternative chemical and technological approaches to the problem of envenomation need to be considered that bypass the use of antibodies for toxin neutralization. Herein, we review an emerging strategy that relies on the use of aptamers and discuss how close—or otherwise—we are to finding a viable alternative to the use of antibodies for the therapy of human envenomation.
Collapse
|
11
|
Miyagawa A, Okada Y, Okada T. Aptamer-Based Sensing of Small Organic Molecules by Measuring Levitation Coordinate of Single Microsphere in Combined Acoustic-Gravitational Field. ACS OMEGA 2020; 5:3542-3549. [PMID: 32118169 PMCID: PMC7045491 DOI: 10.1021/acsomega.9b03860] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/29/2020] [Indexed: 06/10/2023]
Abstract
We present aptamer-based sensing using a coupled acoustic-gravitational (CAG) field, which transduces a change in the density of a microparticle (MP) to a change in the levitation coordinate. A large density of the MP is initially induced by the binding of gold nanoparticles (AuNPs) on the MP through sandwich hybridization with aptamer DNA molecules. Targets added to the system interact with the aptamer DNA molecules to form complexes, and the duplex between the aptamer and the probe DNA molecules is dissociated. This leads to the release of AuNPs from the MP and a decrease in its density. As the target concentration increases, the levitation coordinate of the MP increases. From the levitation coordinate shift, we can determine the target concentration. The detection limits for adenosine triphosphate, dopamine, and ampicillin as test targets are 9.8 nM, 17 nM, and 160 pM, respectively. The dissociation constants for the aptamer-target complexes are quantitatively determined from the dependence of the levitation coordinate on the target concentration. This scheme is a useful analytical tool not only for the trace analyses of targets but also for the evaluation of aptamer-target interactions.
Collapse
|
12
|
Balaban S, Man E, Durmus C, Bor G, Ceylan AE, Pinar Gumus Z, Evran S, Coskunol H, Timur S. Sensor Platform with a Custom‐tailored Aptamer for Diagnosis of Synthetic Cannabinoids. ELECTROANAL 2020. [DOI: 10.1002/elan.201900670] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Simge Balaban
- Department of Biochemistry, Faculty of ScienceEge University 35100 Izmir Turkey
| | - Ezgi Man
- Department of Biochemistry, Faculty of ScienceEge University 35100 Izmir Turkey
| | - Ceren Durmus
- Department of Biochemistry, Faculty of ScienceEge University 35100 Izmir Turkey
| | - Gulsah Bor
- Department of Biochemistry, Faculty of ScienceEge University 35100 Izmir Turkey
| | - Ayse Elcin Ceylan
- Department of Biochemistry, Faculty of ScienceEge University 35100 Izmir Turkey
| | - Z. Pinar Gumus
- Ege University, Faculty of Medicine, Department of Mental Health and Diseases 35100 Bornova, Izmir Turkey
| | - Serap Evran
- Department of Biochemistry, Faculty of ScienceEge University 35100 Izmir Turkey
| | - Hakan Coskunol
- Central Research Test and Analysis Laboratory Application and Research CenterEge University 35100 Izmir Turkey
| | - Suna Timur
- Department of Biochemistry, Faculty of ScienceEge University 35100 Izmir Turkey
- Ege University, Faculty of Medicine, Department of Mental Health and Diseases 35100 Bornova, Izmir Turkey
| |
Collapse
|
13
|
Celikbas E, Balaban S, Evran S, Coskunol H, Timur S. A Bottom-Up Approach for Developing Aptasensors for Abused Drugs: Biosensors in Forensics. BIOSENSORS 2019; 9:E118. [PMID: 31581533 PMCID: PMC6955935 DOI: 10.3390/bios9040118] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 09/27/2019] [Accepted: 09/30/2019] [Indexed: 02/07/2023]
Abstract
Aptamer-based point-of-care (POC) diagnostics platforms may be of substantial benefit in forensic analysis as they provide rapid, sensitive, user-friendly, and selective analysis tools for detection. Aptasensors have not yet been adapted commercially. However, the significance of the applications of aptasensors in the literature exceeded their potential. Herein, in this review, a bottom-up approach is followed to describe the aptasensor development and application procedure, starting from the synthesis of the corresponding aptamer sequence for the selected analyte to creating a smart surface for the sensitive detection of the molecule of interest. Optical and electrochemical biosensing platforms, which are designed with aptamers as recognition molecules, detecting abused drugs are critically reviewed, and existing and possible applications of different designs are discussed. Several potential disciplines in which aptamer-based biosensing technology can be of greatest value, including forensic drug analysis and biological evidence, are then highlighted to encourage researchers to focus on developing aptasensors in these specific areas.
Collapse
Affiliation(s)
- Eda Celikbas
- Department of Biochemistry, Institute of Natural and Applied Sciences, Ege University, 35100 Bornova, Izmir, Turkey;
| | - Simge Balaban
- Department of Biochemistry, Institute of Natural and Applied Sciences, Ege University, 35100 Bornova, Izmir, Turkey;
| | - Serap Evran
- Department of Biochemistry, Institute of Natural and Applied Sciences, Ege University, 35100 Bornova, Izmir, Turkey;
- Department of Biochemistry, Faculty of Science, Ege University, 35100 Bornova, Izmir, Turkey
| | - Hakan Coskunol
- Department of Mental Health and Diseases, Faculty of Medicine, Ege University, 35100 Bornova, Izmir, Turkey;
| | - Suna Timur
- Department of Biochemistry, Institute of Natural and Applied Sciences, Ege University, 35100 Bornova, Izmir, Turkey;
- Department of Biochemistry, Faculty of Science, Ege University, 35100 Bornova, Izmir, Turkey
- Central Research Testing and Analysis Laboratory Research and Application Center, Ege University, 35100 Bornova, Izmir, Turkey
| |
Collapse
|
14
|
|
15
|
Ali MH, Elsherbiny ME, Emara M. Updates on Aptamer Research. Int J Mol Sci 2019; 20:E2511. [PMID: 31117311 PMCID: PMC6566374 DOI: 10.3390/ijms20102511] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/26/2019] [Accepted: 04/30/2019] [Indexed: 02/07/2023] Open
Abstract
For many years, different probing techniques have mainly relied on antibodies for molecular recognition. However, with the discovery of aptamers, this has changed. The science community is currently considering using aptamers in molecular targeting studies because of the many potential advantages they have over traditional antibodies. Some of these possible advantages are their specificity, higher binding affinity, better target discrimination, minimized batch-to-batch variation, and reduced side effects. Overall, these characteristics of aptamers have attracted scholars to use them as molecular probes in place of antibodies, with some aptamer-based targeting products being now available in the market. The present review is aimed at discussing the potential of aptamers as probes in molecular biology and in super-resolution microscopy.
Collapse
Affiliation(s)
- Mohamed H Ali
- Center for Aging and Associated Diseases, Zewail City of Science and Technology, Giza 12578, Egypt.
- current address: Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA.
| | - Marwa E Elsherbiny
- Department of Pharmacology and Toxicology, Ahram Canadian University, 6th of October City, Giza 12566, Egypt.
| | - Marwan Emara
- Center for Aging and Associated Diseases, Zewail City of Science and Technology, Giza 12578, Egypt.
| |
Collapse
|
16
|
Cai S, Yan J, Xiong H, Liu Y, Peng D, Liu Z. Investigations on the interface of nucleic acid aptamers and binding targets. Analyst 2019; 143:5317-5338. [PMID: 30357118 DOI: 10.1039/c8an01467a] [Citation(s) in RCA: 165] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nucleic acid aptamers are single-stranded DNA or RNA of 20-100 nucleotides in length that have attracted substantial scientific interest due to their ability to specifically bind to target molecules via the formation of three-dimensional structures. Compared to traditional protein antibodies, aptamers have several advantages, such as their small size, high binding affinity, specificity, flexible structure, being chemical synthesizable and modifiable, good biocompatibility, high stability and low immunogenicity, which all contribute to their widely applications in the biomedical field. To date, much progress has been made in the study and applications of aptamers, however, detailed information on how aptamers bind to their targets is still scarce. Over the past few decades, many methods have been introduced to investigate the aptamer-target binding process, such as measuring the main kinetic or thermodynamic parameters, detecting the structural changes of the binding complexes, etc. Apart from traditional physicochemical methods, various types of molecular docking programs have been applied to simulate the aptamer-target interactions, while these simulations also have limitations. To facilitate the further research on the interactions, herein, we provide a brief review to illustrate the recent advances in the study of aptamer-target interactions. We summarize the binding targets of aptamers, such as small molecules, macromolecules, and even cells. Their binding constants (KD) are also summarized. Methods to probe the aptamer-target binding process, such as surface plasmon resonance (SPR), circular dichroism spectroscopy (CD), isothermal titration calorimetry (ITC), footprinting assay, truncation and mutation assay, nuclear magnetic resonance spectroscopy (NMR), X-ray crystallography and molecular docking simulation are indicated. The binding forces mediating the aptamer-target interactions, such as hydrogen bonding, electrostatic interaction, the hydrophobic effect, π-π stacking and van der Waals forces are summarized. The challenges and future perspectives are also discussed.
Collapse
Affiliation(s)
- Shundong Cai
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, PR China.
| | | | | | | | | | | |
Collapse
|
17
|
Ruscito A, McConnell EM, Koudrina A, Velu R, Mattice C, Hunt V, McKeague M, DeRosa MC. In Vitro Selection and Characterization of DNA Aptamers to a Small Molecule Target. ACTA ACUST UNITED AC 2017; 9:233-268. [PMID: 29241295 DOI: 10.1002/cpch.28] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Aptamers, synthetic oligonucleotide-based molecular recognition probes, have found use in a wide array of biosensing technologies based on their tight and highly selective binding to a variety of molecular targets. However, the inherent challenges associated with the selection and characterization of aptamers for small molecule targets have resulted in their underrepresentation, despite the need for small molecule detection in fields such as medicine, the environment, and agriculture. This protocol describes the steps in the selection, sequencing, affinity characterization, and truncation of DNA aptamers that are specific for small molecule targets. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
| | - Erin M McConnell
- Chemistry Department, Carleton University, Ottawa, Ontario, Canada
| | - Anna Koudrina
- Chemistry Department, Carleton University, Ottawa, Ontario, Canada
| | - Ranganathan Velu
- Chemistry Department, Carleton University, Ottawa, Ontario, Canada
| | | | - Vernon Hunt
- Chemistry Department, Carleton University, Ottawa, Ontario, Canada
| | - Maureen McKeague
- Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland
| | - Maria C DeRosa
- Chemistry Department, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
18
|
Merkle T, Holder IT, Hartig JS. The dual aptamer approach: rational design of a high-affinity FAD aptamer. Org Biomol Chem 2016; 14:447-450. [PMID: 26586417 DOI: 10.1039/c5ob02026c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A design strategy for high-affinity aptamers of complex biomolecules is presented. We developed an RNA with FAD-binding properties by combining known ATP- and FMN-aptamers. Cooperative binding of FAD was shown by SPR spectroscopy and fluorescence assays. The strategy should be transferable to several other biomolecules.
Collapse
Affiliation(s)
- T Merkle
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstr. 10, 78457 Konstanz, Germany.
| | | | | |
Collapse
|
19
|
Pfeiffer F, Mayer G. Selection and Biosensor Application of Aptamers for Small Molecules. Front Chem 2016; 4:25. [PMID: 27379229 PMCID: PMC4908669 DOI: 10.3389/fchem.2016.00025] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 05/30/2016] [Indexed: 12/12/2022] Open
Abstract
Small molecules play a major role in the human body and as drugs, toxins, and chemicals. Tools to detect and quantify them are therefore in high demand. This review will give an overview about aptamers interacting with small molecules and their selection. We discuss the current state of the field, including advantages as well as problems associated with their use and possible solutions to tackle these. We then discuss different kinds of small molecule aptamer-based sensors described in literature and their applications, ranging from detecting drinking water contaminations to RNA imaging.
Collapse
Affiliation(s)
- Franziska Pfeiffer
- Department of Chemical Biology, Life and Medical Sciences Institute, University of Bonn Bonn, Germany
| | - Günter Mayer
- Department of Chemical Biology, Life and Medical Sciences Institute, University of Bonn Bonn, Germany
| |
Collapse
|
20
|
Tan SY, Acquah C, Sidhu A, Ongkudon CM, Yon LS, Danquah MK. SELEX Modifications and Bioanalytical Techniques for Aptamer-Target Binding Characterization. Crit Rev Anal Chem 2016; 46:521-37. [PMID: 26980177 DOI: 10.1080/10408347.2016.1157014] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The quest to improve the detection of biomolecules and cells in health and life sciences has led to the discovery and characterization of various affinity bioprobes. Libraries of synthetic oligonucleotides (ssDNA/ssRNA) with randomized sequences are employed during Systematic Evolution of Ligands by Exponential Enrichment (SELEX) to select highly specific affinity probes called aptamers. With much focus on the generation of aptamers for a variety of target molecules, conventional SELEX protocols have been modified to develop new and improved SELEX protocols yielding highly specific and stable aptamers. Various techniques have been used to analyze the binding interactions between aptamers and their cognate molecules with associated merits and limitations. This article comprehensively reviews research advancements in the generation of aptamers, analyses physicochemical conditions affecting their binding characteristics to cellular and biomolecular targets, and discusses various field applications of aptameric binding. Biophysical techniques employed in the characterization of the molecular and binding features of aptamers to their cognate targets are also discussed.
Collapse
Affiliation(s)
- Sze Y Tan
- a Department of Chemical Engineering , Curtin University , Sarawak , Malaysia.,b Curtin Sarawak Research Institute , Curtin University , Sarawak , Malaysia
| | - Caleb Acquah
- a Department of Chemical Engineering , Curtin University , Sarawak , Malaysia.,b Curtin Sarawak Research Institute , Curtin University , Sarawak , Malaysia
| | - Amandeep Sidhu
- b Curtin Sarawak Research Institute , Curtin University , Sarawak , Malaysia.,c Faculty of Health Sciences , Curtin University , Perth , Australia
| | - Clarence M Ongkudon
- d Biotechnology Research Institute , University Malaysia Sabah , Kota Kinabalu , Sabah , Malaysia
| | - L S Yon
- a Department of Chemical Engineering , Curtin University , Sarawak , Malaysia
| | - Michael K Danquah
- a Department of Chemical Engineering , Curtin University , Sarawak , Malaysia.,b Curtin Sarawak Research Institute , Curtin University , Sarawak , Malaysia
| |
Collapse
|
21
|
Jokar M, Safaralizadeh MH, Hadizadeh F, Rahmani F, Kalani MR. Design and evaluation of an apta-nano-sensor to detect Acetamiprid in vitro and in silico. J Biomol Struct Dyn 2016; 34:2505-17. [PMID: 26609886 DOI: 10.1080/07391102.2015.1123188] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Pesticide detection is a main concern of food safety experts. Therefore, it is urgent to design an accurate, rapid, and cheap test. Biosensors that detect pesticide residues could replace current methods, such as HPLC or GC-MC. This research designs a biosensor based on aptamer (Oligonucleotide ss-DNA) in the receptor role, silver nanoparticles (AgNPs) as optical sensors and salt (NaCl) as the aggregative inducer of AgNPs to detect the presence of Acetamiprid. After optimization, .6 μM aptamer and 100 mM salt were employed. The selectivity and sensitivity of the complex were examined by different pesticides and different Acetamiprid concentrations. To simulate in vitro experimental conditions, bioinformatics software was used as in silico analysis. The results showed the detection of Acetamiprid at the .02 ppm (89.8 nM) level in addition to selectivity. Docking outputs introduced two loops as active sites in aptamer and confirmed aptamer-Acetamiprid bonding. Circular dichroism spectroscopy (CD) confirmed upon Acetamiprid binding, aptamer was folded due to stem-loop formation. Stability of the Apt-Acetamiprid complex in a simulated aqueous media was examined by molecular dynamic studies.
Collapse
Affiliation(s)
- Mahmoud Jokar
- a Department of Entomology and Plant Pathology , Urmia University , Urmia , Iran
| | | | - Farzin Hadizadeh
- b Biotechnology Research Center, School of Pharmacy , Mashhad University of Medical Sciences , Mashhad , Iran
| | - Fatemeh Rahmani
- c Faculty of Sciences, Department of Biology , Urmia University , Urmia , Iran
| | | |
Collapse
|
22
|
Breault-Turcot J, Poirier-Richard HP, Couture M, Pelechacz D, Masson JF. Single chip SPR and fluorescent ELISA assay of prostate specific antigen. LAB ON A CHIP 2015; 15:4433-4440. [PMID: 26467689 DOI: 10.1039/c5lc01045d] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A multi-channel system combining fluidics and micropatterned plasmonic materials with wavelength interrogation surface plasmon resonance (SPR) and fluorescence detection was integrated from the combination of a small and motorized fluorescence microscope mounted on a portable 4-channel SPR instrument. The SPR and fluorescent measurements were performed based on the same detection area in a multi-channel fluidic, with a sensing scheme for prostate-specific antigen (PSA) consisting of a sandwich assay with a capture anti-PSA immobilized onto the SPR sensor and a detection anti-PSA modified with horseradish peroxidase (HRP). In this dual-detection instrument, fluorescence was measured from the solution side of the micropatterned gold film, while the interface between the glass prism and the gold film served to interrogate the SPR response. The SPR sensors were comprised of microhole arrays fabricated by photolithography to enhance the instrumental response for PSA detection by approximately a factor of 2 to 3 and they were coated with a self-assembled monolayer of a peptide (3-MPA-HHHDD-OH) to minimize nonspecific adsorption. PSA was successfully detected at clinical concentrations from 10 pM to 50 nM with this integrated system in a single assay lasting 12 minutes, almost centering on the desired range for PSA diagnostic tests (>4 ng mL(-1) or >150 pM). The combination of two robust techniques in a single chip and instrument has led to a simple and effective assay that can be carried out on a small and portable instrument providing rapid biodetection of an important cancer biomarker with a dynamic range of nearly 4 orders of magnitude in the clinical range.
Collapse
Affiliation(s)
- J Breault-Turcot
- Département de chimie, Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montreal, QC H3C 3J7, Canada.
| | - H-P Poirier-Richard
- Département de chimie, Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montreal, QC H3C 3J7, Canada.
| | - M Couture
- Département de chimie, Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montreal, QC H3C 3J7, Canada.
| | - D Pelechacz
- Département de chimie, Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montreal, QC H3C 3J7, Canada.
| | - J-F Masson
- Département de chimie, Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montreal, QC H3C 3J7, Canada. and Centre for Self-Assembled Chemical Structures (CSACS), Canada
| |
Collapse
|
23
|
McKeague M, Wang YH, Smolke CD. In Vitro Screening and in Silico Modeling of RNA-Based Gene Expression Control. ACS Chem Biol 2015; 10:2463-2467. [PMID: 26359915 DOI: 10.1021/acschembio.5b00518] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Molecular tools for controlling gene expression are essential for manipulating biological systems. One class of tools includes RNA switches that incorporate RNA-based sensors, known as aptamers. However, most switches reported to date are responsive to toxic molecules or to endogenous metabolites. For effective conditional control, switches must incorporate RNA aptamers that exhibit selectivity against such endogenous metabolites. We report a systematic approach which combines a rapid in vitro assay and an in silico model to support an efficient, streamlined application of aptamers into RNA switches. Model predictions were validated in vivo and demonstrate that the RNA switches enable selective and programmable gene regulation. We demonstrate the method using aptamers that bind the FDA-approved small molecule (6R)-folinic acid, providing access to new molecular targets for gene expression control and much-needed clinically relevant tools for advancing RNA-based therapeutics.
Collapse
Affiliation(s)
- Maureen McKeague
- Department of Bioengineering, Stanford University, 443 Via Ortega,
MC 4245, Stanford, California 94305, United States
| | - Yen-Hsiang Wang
- Department of Bioengineering, Stanford University, 443 Via Ortega,
MC 4245, Stanford, California 94305, United States
| | - Christina D. Smolke
- Department of Bioengineering, Stanford University, 443 Via Ortega,
MC 4245, Stanford, California 94305, United States
| |
Collapse
|
24
|
Marangoni K, Neves AF, Rocha RM, Faria PR, Alves PT, Souza AG, Fujimura PT, Santos FAA, Araújo TG, Ward LS, Goulart LR. Prostate-specific RNA aptamer: promising nucleic acid antibody-like cancer detection. Sci Rep 2015; 5:12090. [PMID: 26174796 PMCID: PMC4502603 DOI: 10.1038/srep12090] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 06/18/2015] [Indexed: 12/04/2022] Open
Abstract
We described the selection of a novel nucleic acid antibody-like prostate cancer (PCa) that specifically binds to the single-stranded DNA molecule from a 277-nt fragment that may have been partially paired and bound to the PCA3 RNA conformational structure. PCA3-277 aptamer ligands were obtained, and the best binding molecule, named CG3, was synthesized for validation. Aiming to prove its diagnostic utility, we used an apta-qPCR assay with CG3-aptamer conjugated to magnetic beads to capture PCA3 transcripts, which were amplified 97-fold and 7-fold higher than conventional qPCR in blood and tissue, respectively. Histopathologic analysis of 161 prostate biopsies arranged in a TMA and marked with biotin-labeled CG3-aptamer showed moderate staining in both cytoplasm and nucleus of PCa samples; in contrast, benign prostatic hyperplasia (BPH) samples presented strong nuclear staining (78% of the cases). No staining was observed in stromal cells. In addition, using an apta-qPCR, we demonstrated that CG3-aptamer specifically recognizes the conformational PCA3-277 molecule and at least three other transcript variants, indicating that long non-coding RNA (lncRNA) is processed after transcription. We suggest that CG3-aptamer may be a useful PCa diagnostic tool. In addition, this molecule may be used in drug design and drug delivery for PCa therapy.
Collapse
Affiliation(s)
- Karina Marangoni
- 1] Laboratory of Cancer Molecular Genetics, Faculty of Medical Sciences, State University of Campinas, SP, Brazil [2] Laboratory of Nanobiotechnology, Institute of Genetics and Biochemistry, Federal University of Uberlândia, MG, Brazil
| | - Adriana F Neves
- Laboratory of Molecular Biology, Institute of Biotechnology, Federal University of Goiás, Catalão/GO, Brazil
| | | | - Paulo R Faria
- Laboratory of Histology, Institute of Biomedical Sciences, Federal University of Uberlândia, MG, Brazil
| | - Patrícia T Alves
- Laboratory of Nanobiotechnology, Institute of Genetics and Biochemistry, Federal University of Uberlândia, MG, Brazil
| | - Aline G Souza
- Laboratory of Nanobiotechnology, Institute of Genetics and Biochemistry, Federal University of Uberlândia, MG, Brazil
| | - Patrícia T Fujimura
- Laboratory of Nanobiotechnology, Institute of Genetics and Biochemistry, Federal University of Uberlândia, MG, Brazil
| | - Fabiana A A Santos
- Laboratory of Nanobiotechnology, Institute of Genetics and Biochemistry, Federal University of Uberlândia, MG, Brazil
| | - Thaise G Araújo
- Laboratory of Nanobiotechnology, Institute of Genetics and Biochemistry, Federal University of Uberlândia, MG, Brazil
| | - Laura S Ward
- Laboratory of Cancer Molecular Genetics, Faculty of Medical Sciences, State University of Campinas, SP, Brazil
| | - Luiz R Goulart
- 1] Laboratory of Nanobiotechnology, Institute of Genetics and Biochemistry, Federal University of Uberlândia, MG, Brazil [2] University of California-Davis, Dept. of Medical Microbiology and Immunology, Davis/CA, USA
| |
Collapse
|
25
|
Non-enzymatic detection of urea using unmodified gold nanoparticles based aptasensor. Biosens Bioelectron 2015; 72:340-7. [PMID: 26002019 DOI: 10.1016/j.bios.2015.05.029] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/05/2015] [Accepted: 05/11/2015] [Indexed: 12/17/2022]
Abstract
Biosensing nitrogenous compounds like urea is required to control the incidents of Economically Motivated Adulteration (EMA). In this study, we report the FluMag Systematic Evolution of Ligands by Exponential Enrichment (FluMag-SELEX) method to isolate a urea specific DNA aptamer with a dissociation constant (Kd) of 232 nM. The interaction of DNA aptamer with urea has been confirmed by affinity assay, CD analysis, melting curve analysis and truncation studies. Unlike other urea sensing methods reported so far, using this urea aptamer, we demonstrate a simple, 'non-enzymatic' easy-to-use, dual readout aptasensor that exploits unmodified gold nanoparticles (AuNPs) to transduce the signals of aptamer binding to urea in terms of intrinsic fluorescence differences and color changes simultaneously. This method is free from complicated sample processing and labeling steps. The urea aptasensor displays high selectivity for urea and is free from interference from common milk adulterants. The developed aptasensor reliably detects urea adulteration in milk. The response signals linearly correlate with the increasing concentrations of urea in milk ranging from 20mM to 150 mM with detection limit of 20mM. We also show that this aptasensor can also be used as a simple fluorescence based "turn-on" sensor. The results obtained in this study are comparable to the commercial urease based detection methods.
Collapse
|
26
|
Liao J, Liu B, Liu J, Zhang J, Chen K, Liu H. Cell-specific aptamers and their conjugation with nanomaterials for targeted drug delivery. Expert Opin Drug Deliv 2014; 12:493-506. [PMID: 25430795 DOI: 10.1517/17425247.2015.966681] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Aptamers are short, single-stranded DNA or RNA sequences that can fold into complex secondary and tertiary structures and bind to various target molecules with high affinity and specificity. These properties, as well as rapid tissue penetration and ease of chemical modification, make aptamers ideal recognition elements for in vivo targeted drug delivery and attractive molecules for use in disease diagnosis and therapy. AREAS COVERED The general properties of aptamers as well as advantages over their counterpart antibodies are briefly discussed. Next, aptamer selection by cell- systematic evolution of ligands by exponential enrichment is described in detail. Finally, the review summarizes recent progress in the field of targeted drug delivery based on aptamers and their conjugation to liposomes, micelles and other nanomaterials. EXPERT OPINION Advances in nanotechnology have led to new and improved nanomaterials for biomedical applications. Conjugation of nanoparticles (NPs) with aptamers exploits both technologies, making aptamer-NP conjugates ideal agents for drug delivery with proven therapeutic effects and the reduction of toxicity to normal tissue. The use of multivalent aptamer-conjugated nanomaterials represents one of the new directions for drug development in the future; as such, continuing studies of these multivalent aptamers and bioconjugates should result in important clinical applications in targeted drug delivery.
Collapse
Affiliation(s)
- Jie Liao
- Central South University, Xiang Ya Hospital , Changsha , China
| | | | | | | | | | | |
Collapse
|
27
|
Nucleic acid aptamers: research tools in disease diagnostics and therapeutics. BIOMED RESEARCH INTERNATIONAL 2014; 2014:540451. [PMID: 25050359 PMCID: PMC4090538 DOI: 10.1155/2014/540451] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 03/18/2014] [Indexed: 12/20/2022]
Abstract
Aptamers are short sequences of nucleic acid (DNA or RNA) or peptide molecules which adopt a conformation and bind cognate ligands with high affinity and specificity in a manner akin to antibody-antigen interactions. It has been globally acknowledged that aptamers promise a plethora of diagnostic and therapeutic applications. Although use of nucleic acid aptamers as targeted therapeutics or mediators of targeted drug delivery is a relatively new avenue of research, one aptamer-based drug “Macugen” is FDA approved and a series of aptamer-based drugs are in clinical pipelines. The present review discusses the aspects of design, unique properties, applications, and development of different aptamers to aid in cancer diagnosis, prevention, and/or treatment under defined conditions.
Collapse
|
28
|
Yao J, Yang M, Duan Y. Chemistry, Biology, and Medicine of Fluorescent Nanomaterials and Related Systems: New Insights into Biosensing, Bioimaging, Genomics, Diagnostics, and Therapy. Chem Rev 2014; 114:6130-78. [DOI: 10.1021/cr200359p] [Citation(s) in RCA: 592] [Impact Index Per Article: 59.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jun Yao
- Research
Center of Analytical Instrumentation, Analytical and Testing Center,
College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Mei Yang
- Research
Center of Analytical Instrumentation, Analytical and Testing Center,
College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Yixiang Duan
- Research
Center of Analytical Instrumentation, Analytical and Testing Center,
College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
- Research
Center of Analytical Instrumentation, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, China
| |
Collapse
|
29
|
Chang AL, McKeague M, Liang JC, Smolke CD. Kinetic and equilibrium binding characterization of aptamers to small molecules using a label-free, sensitive, and scalable platform. Anal Chem 2014; 86:3273-8. [PMID: 24548121 PMCID: PMC3983011 DOI: 10.1021/ac5001527] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
![]()
Nucleic
acid aptamers function as versatile sensing and targeting
agents for analytical, diagnostic, therapeutic, and gene-regulatory
applications, but their limited characterization and functional validation
have hindered their broader implementation. We report the development
of a surface plasmon resonance-based platform for rapid characterization
of kinetic and equilibrium binding properties of aptamers to small
molecules. Our system is label-free and scalable and enables analysis
of different aptamer–target pairs and binding conditions with
the same platform. This method demonstrates improved sensitivity,
flexibility, and stability compared to other aptamer characterization
methods. We validated our assay against previously reported aptamer
affinity and kinetic measurements and further characterized a diverse
panel of 12 small molecule-binding RNA and DNA aptamers. We report
the first kinetic characterization for six of these aptamers and affinity
characterization of two others. This work is the first example of
direct comparison of in vitro selected and natural aptamers using
consistent characterization conditions, thus providing insight into
the influence of environmental conditions on aptamer binding kinetics
and affinities, indicating different possible regulatory strategies
used by natural aptamers, and identifying potential in vitro selection
strategies to improve resulting binding affinities.
Collapse
Affiliation(s)
- Andrew L Chang
- Department of Chemistry, Stanford University , Stanford, CA 94305, United States
| | | | | | | |
Collapse
|
30
|
Amaya-González S, de-Los-Santos-Álvarez N, Miranda-Ordieres AJ, Lobo-Castañón MJ. Aptamer binding to celiac disease-triggering hydrophobic proteins: a sensitive gluten detection approach. Anal Chem 2014; 86:2733-9. [PMID: 24502317 DOI: 10.1021/ac404151n] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Celiac disease represents a significant public health problem in large parts of the world. A major hurdle in the effective management of the disease by celiac sufferers is the sensitivity of the current available methods for assessing gluten contents in food. In response, we report a highly sensitive approach for gluten analysis using aptamers as specific receptors. Gliadins, a fraction of gluten proteins, are the main constituent responsible for triggering the disease. However, they are highly hydrophobic and large molecules, regarded as difficult targets for in vitro evolution of aptamers without nucleobase modification. We describe the successful selection of aptamers for these water insoluble prolamins that was achieved choosing the immunodominant apolar peptide from α2-gliadin as a target for selection. All aptamers evolved are able to bind the target in its native environment within the natural protein. The best nonprotein receptor is the basis for an electrochemical competitive enzyme-linked assay on magnetic particles, which allows the measurement of as low as 0.5 ppb of gliadin standard (0.5 ppm of gluten). Reference immunoassay for detecting the same target has a limit of detection of 3 ppm, 6 times less sensitive than this method. Importantly, it also displays high specificity, detecting the other three prolamins toxic for celiac patients and not showing cross-reactivity to nontoxic proteins such as maize, soya, and rice. These features make the proposed method a valuable tool for gluten detection in foods.
Collapse
Affiliation(s)
- Sonia Amaya-González
- Dpto. Química Física y Analítica, Universidad de Oviedo , Av. Julián Clavería 8, 33006, Oviedo, Spain
| | | | | | | |
Collapse
|
31
|
Zhang X, Chabot D, Sultan Y, Monreal C, DeRosa MC. Target-molecule-triggered rupture of aptamer-encapsulated polyelectrolyte microcapsules. ACS APPLIED MATERIALS & INTERFACES 2013; 5:5500-5507. [PMID: 23756318 DOI: 10.1021/am400668q] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Polyelectrolyte microcapsules have great potential for serving as carriers for the delivery of their contents when triggered by an external stimulus. Aptamers are synthetic ssDNA or RNA that can bind to specific targets with high affinity and selectivity. Aptamers may retain these superior molecular recognition properties after encapsulation within polymer microcapsules. In this work, stable polyelectrolyte microcapsules with encapsulated aptamers were obtained by the layer-by-layer (LbL) method. Polyelectrolyte films were deposited onto a CaCO3 template that had been predoped with polystyrene sulfonate (PSS) and aptamer sequences (SA) that have an affinity for the dye sulforhodamine B (SRB). The PSS and aptamers are thought to serve as an internal scaffold supporting the microcapsule walls. These microcapsules would present target-molecule-triggered rupture properties. Microcapsule collapse was triggered by the binding of SRB to the encapsulated aptamer. The specificity of microcapsule collapse was investigated using a similar dye, tetramethylrosamine (TMR), which does not have affinity for SA. A high concentration of TMR did not lead to the collapse of the microcapsules. The effect of target binding on the microcapsules was confirmed by scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). These microcapsules may have potential applications in targeted delivery systems for the controlled release of drugs, pesticides, or other payloads.
Collapse
Affiliation(s)
- Xueru Zhang
- Department of Chemistry, Carleton University, Ottawa, Canada
| | | | | | | | | |
Collapse
|
32
|
Huang L, Yang X, Qi C, Niu X, Zhao C, Zhao X, Shangguan D, Yang Y. A label-free electrochemical biosensor based on a DNA aptamer against codeine. Anal Chim Acta 2013; 787:203-10. [PMID: 23830440 DOI: 10.1016/j.aca.2013.05.024] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 05/01/2013] [Accepted: 05/04/2013] [Indexed: 01/27/2023]
Abstract
In order to develop a sensor for opium alkaloid codeine detection, DNA aptamers against codeine were generated by SELEX (systematic evolution of ligands by exponential enrichment) technique. An aptamer HL7-14, which is a 37-mer sequence with Kd values of 0.91 μM, was optimized by the truncation-mutation assay. The specificity investigation shows that HL7-14 exhibits high specificity to codeine over morphine, and almost cannot bind to other small molecule. With this new selected aptamer, a novel electrochemical label-free codeine aptamer biosensor based on Au-mesoporous silica nanoparticles (Au-MSN) as immobilized substrate has been proposed using [Fe(CN)6](3-/4-) as electroactive redox probe. The linear range covered from 10 pM to 100 nM with correlation coefficient of 0.9979 and the detection limit was 3 pM. Our study demonstrates that the biosensor has good specificity, stability and well regeneration. It can be used to detect codeine.
Collapse
Affiliation(s)
- Liangliang Huang
- Chemistry and Chemical Engineering College, Yunnan Normal University, Kunming 650092, China
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Schill M, Koslowski T. Sensing organic molecules by charge transfer through aptamer-target complexes: theory and simulation. J Phys Chem B 2013; 117:475-83. [PMID: 23227783 DOI: 10.1021/jp308042n] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Aptamers, i.e., short sequences of RNA and single-stranded DNA, are capable of specificilly binding objects ranging from small molecules over proteins to entire cells. Here, we focus on the structure, stability, dynamics, and electronic properties of oligonucleotides that interact with aromatic or heterocyclic targets. Large-scale molecular dynamics simulations indicate that aromatic rings such as dyes, metabolites, or alkaloides form stable adducts with their oligonucleotide host molecules at least on the simulation time scale. From molecular dynamics snapshots, the energy parameters relevant to Marcus' theory of charge transfer are computed using a modified Su-Schrieffer-Heeger Hamiltonian, permitting an estimate of the charge transfer rates. In many cases, aptamer binding seriously influences the charge transfer kinetics and the charge carrier mobility within the complex, with conductivities up to the nanoampere range for a single complex. We discuss the conductivity properties with reference to potential applications as biosensors.
Collapse
Affiliation(s)
- Maria Schill
- Institut für Physikalische Chemie, Universität Freiburg, Albertstrasse 23a, D-79104 Freiburg im Breisgau, Germany
| | | |
Collapse
|
34
|
Zeder-Lutz G, Renau-Ferrer S, Aguié-Béghin V, Rakotoarivonina H, Chabbert B, Altschuh D, Rémond C. Novel surface-based methodologies for investigating GH11 xylanase–lignin derivative interactions. Analyst 2013; 138:6889-99. [DOI: 10.1039/c3an00772c] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
35
|
Ozbal S, Ergur BU, Erbil G, Tekmen I, Bagrıyanık A, Cavdar Z. The effects of α-lipoic acid against testicular ischemia-reperfusion injury in Rats. ScientificWorldJournal 2012. [PMID: 23193380 PMCID: PMC3488399 DOI: 10.1100/2012/489248] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Testicular torsion is one of the urologic emergencies occurring frequently in neonatal and adolescent period. Testis is sensitive to ischemia-reperfusion injury, and, therefore, ischemia and consecutive reperfusion cause an enhanced formation of reactive oxygen species that result in testicular cell damage and apoptosis. α-lipoic acid is a free radical scavenger and a biological antioxidant. It is widely used in the prevention of oxidative stress and cellular damage. We aimed to investigate the protective effect of α-lipoic acid on testicular damage in rats subjected to testicular ischemia-reperfusion injury. 35 rats were randomly divided into 5 groups: control, sham operated, ischemia, ischemia-reperfusion, and ischemia-reperfusion +lipoic acid groups, 2 h torsion and 2 h detorsion of the testis were performed. Testicular cell damage was examined by H-E staining. TUNEL and active caspase-3 immunostaining were used to detect germ cell apoptosis. GPx , SOD activity, and MDA levels were evaluated. Histological evaluation showed that α-lipoic acid pretreatment reduced testicular cell damage and decreased TUNEL and caspase-3-positive cells. Additionally, α-lipoic acid administration decreased the GPx and SOD activity and increased the MDA levels. The present results suggest that LA is a potentially beneficial agent in protecting testicular I/R in rats.
Collapse
Affiliation(s)
- Seda Ozbal
- Department of Histology and Embryology, School of Medicine, Dokuz Eylül University Inciralti, 35340 İzmir, Turkey.
| | | | | | | | | | | |
Collapse
|
36
|
Challenges and opportunities for small molecule aptamer development. J Nucleic Acids 2012; 2012:748913. [PMID: 23150810 PMCID: PMC3488411 DOI: 10.1155/2012/748913] [Citation(s) in RCA: 288] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 09/08/2012] [Indexed: 12/14/2022] Open
Abstract
Aptamers are single-stranded oligonucleotides that bind to targets with high affinity and selectivity. Their use as molecular recognition elements has emerged as a viable approach for biosensing, diagnostics, and therapeutics. Despite this potential, relatively few aptamers exist that bind to small molecules. Small molecules are important targets for investigation due to their diverse biological functions as well as their clinical and commercial uses. Novel, effective molecular recognition probes for these compounds are therefore of great interest. This paper will highlight the technical challenges of aptamer development for small molecule targets, as well as the opportunities that exist for their application in biosensing and chemical biology.
Collapse
|
37
|
Abstract
Aptamers are single-stranded oligonucleotides that bind to targets with high affinity and selectivity. Their use as molecular recognition elements has emerged as a viable approach for biosensing, diagnostics, and therapeutics. Despite this potential, relatively few aptamers exist that bind to small molecules. Small molecules are important targets for investigation due to their diverse biological functions as well as their clinical and commercial uses. Novel, effective molecular recognition probes for these compounds are therefore of great interest. This paper will highlight the technical challenges of aptamer development for small molecule targets, as well as the opportunities that exist for their application in biosensing and chemical biology.
Collapse
|
38
|
Kiani Z, Shafiei M, Rahimi-Moghaddam P, Karkhane AA, Ebrahimi SA. In vitro selection and characterization of deoxyribonucleic acid aptamers for digoxin. Anal Chim Acta 2012; 748:67-72. [PMID: 23021809 DOI: 10.1016/j.aca.2012.08.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 07/08/2012] [Accepted: 08/10/2012] [Indexed: 11/19/2022]
Abstract
The low therapeutic index of digoxin necessitates careful monitoring of its serum levels. Most of digoxin immunoassays suffer from interferences with digoxin-like immunoreactive substances. Since aptamers have been shown to be highly specific for their targets, the aim of this study was to develop DNA aptamers for this widely used cardiac glycoside. Digoxin was coated onto the surface of streptavidin magnetic beads. DNA aptamers against digoxin were designed using Systematic Evolution of Ligands by Exponential enrichment method (SELEX) by 11 iterative rounds of incubation of digoxin-coated streptavidin magnetic beads with synthetic DNA library, DNA elution, electrophoresis and PCR amplification. The PCR product was cloned and sequenced. Binding affinity was determined using digoxin-BSA conjugate, coated onto ELISA plate. Inhibitory effect of anti-digoxin aptamer was conducted using isolated guinea-pig atrium. Three aptamers (D1, D2 and D3) were identified. Binding studies of fluorescein-labeled truncated (without primer binding region) D1 and D2 and full length D1 anti-digoxin aptamers were performed and their corresponding dissociation constants values were 8.2×10(-9), 44.0×10(-9) and 17.8×10(-9) M, respectively. This is comparable to what other workers have obtained for interaction of monoclonal antibodies raised against digoxin. There was little difference in binding affinity between full length and truncated anti-digoxin D1 aptamer. D1 anti-digoxin aptamer also inhibited the effects of digoxin on the isolated guinea-pig atrium. D1 anti-digoxin aptamer distinguished between digoxin and ouabain in both tissue study and binding experiments. Our finding indicated that D1 anti-digoxin aptamer can selectively bind to digoxin. Further studies might show its suitability for use in digoxin assays and as a therapeutic agent in life-threatening digoxin toxicity.
Collapse
Affiliation(s)
- Zahra Kiani
- Tehran University of Medical Sciences, School of Medicine, Department of Pharmacology, Tehran, Iran
| | | | | | | | | |
Collapse
|
39
|
Ruigrok VJB, Levisson M, Hekelaar J, Smidt H, Dijkstra BW, van der Oost J. Characterization of aptamer-protein complexes by X-ray crystallography and alternative approaches. Int J Mol Sci 2012; 13:10537-10552. [PMID: 22949878 PMCID: PMC3431876 DOI: 10.3390/ijms130810537] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/09/2012] [Accepted: 08/17/2012] [Indexed: 12/11/2022] Open
Abstract
Aptamers are oligonucleotide ligands, either RNA or ssDNA, selected for high-affinity binding to molecular targets, such as small organic molecules, proteins or whole microorganisms. While reports of new aptamers are numerous, characterization of their specific interaction is often restricted to the affinity of binding (K(D)). Over the years, crystal structures of aptamer-protein complexes have only scarcely become available. Here we describe some relevant technical issues about the process of crystallizing aptamer-protein complexes and highlight some biochemical details on the molecular basis of selected aptamer-protein interactions. In addition, alternative experimental and computational approaches are discussed to study aptamer-protein interactions.
Collapse
Affiliation(s)
- Vincent J. B. Ruigrok
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, Wageningen 6703 HB, The Netherlands; E-Mails: (M.L.); (H.S.)
| | - Mark Levisson
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, Wageningen 6703 HB, The Netherlands; E-Mails: (M.L.); (H.S.)
| | - Johan Hekelaar
- Laboratory of Biophysical Chemistry, University of Groningen, Nijenborgh 7, Groningen 9747 AG, The Netherlands; E-Mails: (J.H.); (B.W.D.)
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, Wageningen 6703 HB, The Netherlands; E-Mails: (M.L.); (H.S.)
| | - Bauke W. Dijkstra
- Laboratory of Biophysical Chemistry, University of Groningen, Nijenborgh 7, Groningen 9747 AG, The Netherlands; E-Mails: (J.H.); (B.W.D.)
| | - John van der Oost
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, Wageningen 6703 HB, The Netherlands; E-Mails: (M.L.); (H.S.)
| |
Collapse
|
40
|
High-throughput enzyme evolution in Saccharomyces cerevisiae using a synthetic RNA switch. Metab Eng 2012; 14:306-16. [DOI: 10.1016/j.ymben.2012.04.004] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 04/09/2012] [Accepted: 04/17/2012] [Indexed: 12/25/2022]
|
41
|
Abstract
Over the past decade, synthetic biology has emerged as an engineering discipline for biological systems. Compared with other substrates, biology poses a unique set of engineering challenges resulting from an incomplete understanding of natural biological systems and tools for manipulating them. To address these challenges, synthetic biology is advancing from developing proof-of-concept designs to focusing on core platforms for rational and high-throughput biological engineering. These platforms span the entire biological design cycle, including DNA construction, parts libraries, computational design tools, and interfaces for manipulating and probing synthetic circuits. The development of these enabling technologies requires an engineering mindset to be applied to biology, with an emphasis on generalizable techniques in addition to application-specific designs. This review aims to discuss the progress and challenges in synthetic biology and to illustrate areas where synthetic biology may impact biomedical engineering and human health.
Collapse
Affiliation(s)
- Allen A Cheng
- Synthetic Biology Group, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|
42
|
Zhu Y, Chandra P, Ban C, Shim YB. Electrochemical Evaluation of Binding Affinity for Aptamer Selection Using the Microarray Chip. ELECTROANAL 2012. [DOI: 10.1002/elan.201100734] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
43
|
Ruigrok VJB, van Duijn E, Barendregt A, Dyer K, Tainer JA, Stoltenburg R, Strehlitz B, Levisson M, Smidt H, van der Oost J. Kinetic and stoichiometric characterisation of streptavidin-binding aptamers. Chembiochem 2012; 13:829-36. [PMID: 22416028 DOI: 10.1002/cbic.201100774] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Indexed: 01/06/2023]
Abstract
Aptamers are oligonucleotide ligands that are selected for high-affinity binding to molecular targets. Only limited knowledge relating to relations between structural and kinetic properties that define aptamer-target interactions is available. To this end, streptavidin-binding aptamers were isolated and characterised by distinct analytical techniques. Binding kinetics of five broadly similar aptamers were determined by surface plasmon resonance (SPR); affinities ranged from 35-375 nM with large differences in association and dissociation rates. Native mass spectrometry showed that streptavidin can accommodate up to two aptamer units. In a 3D model of one aptamer, conserved regions are exposed, strongly suggesting that they directly interact with the biotin-binding pockets of streptavidin. Mutational studies confirmed both conserved regions to be crucial for binding. An important result is the observation that the most abundant aptamer in our selections is not the tightest binder, emphasising the importance of having insight into the kinetics of complex formation. To find the tightest binder it might be better to perform fewer selection rounds and to focus on post-selection characterisation, through the use of complementary approaches as described in this study.
Collapse
Affiliation(s)
- Vincent J B Ruigrok
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Pinto A, Lennarz S, Rodrigues-Correia A, Heckel A, O’Sullivan CK, Mayer G. Functional detection of proteins by caged aptamers. ACS Chem Biol 2012; 7:360-6. [PMID: 22070344 DOI: 10.1021/cb2003835] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
While many diagnostic assay platforms enable the measurement of analytes with high sensitivity, most of them result in a disruption of the analyte's native structure and, thus, in loss of function. Consequently, the analyte can be used neither for further analytical assessment nor functional analysis. Herein we report the use of caged aptamers as templates during apta-PCR analysis of targets. Aptamers are short nucleic acids that fold into a well-defined three-dimensional structure in which they interact with target molecules with high affinity and specificity. Nucleic acid aptamers can also serve as templates for qPCR approaches and, thus, have been used as high affinity ligands to bind to target molecules and subsequently for quantification by qPCR, an assay format coined apta-PCR. Caged aptamers in turn refer to variants that bear one or more photolabile groups at strategic positions. The activity of caged aptamers can thus be turned on or off by light irradiation. The latter allows the mild elution of target-bound aptamers while the target's native structure and function remain intact. We demonstrate that this approach allows the quantitative and subsequently the functional assessment of analytes. Since caged aptamers can be generated emanating from virtually every available aptamer, the described approach can be generalized and adopted to any target-aptamer pair and, thus, have a broad applicability in proteomics and clinical diagnostics.
Collapse
Affiliation(s)
- Alessandro Pinto
- Nanobiotechnology & Bioanalysis Group, Departament d’Enginyeria Quimica, Universitat Rovira i Virgili Avinguda Paı̈sos Catalans 26, Tarragona 43007, Spain
| | - Sabine Lennarz
- Department of Life and Medical
Sciences, Program Unit Chemical Biology and Medicinal Chemistry, University of Bonn, Gerhard-Domagk-Strasse 1, 53121
Bonn, Germany
| | - Alexandre Rodrigues-Correia
- Goethe University
Frankfurt, Frankfurt Institute for Molecular Life Sciences (FMLS), Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| | - Alexander Heckel
- Goethe University
Frankfurt, Frankfurt Institute for Molecular Life Sciences (FMLS), Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| | - Ciara K. O’Sullivan
- Nanobiotechnology & Bioanalysis Group, Departament d’Enginyeria Quimica, Universitat Rovira i Virgili Avinguda Paı̈sos Catalans 26, Tarragona 43007, Spain
- Institució Catalana de Recerca I Estudis Avançats (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain
| | - Günter Mayer
- Department of Life and Medical
Sciences, Program Unit Chemical Biology and Medicinal Chemistry, University of Bonn, Gerhard-Domagk-Strasse 1, 53121
Bonn, Germany
| |
Collapse
|
45
|
Siddiqui MS, Thodey K, Trenchard I, Smolke CD. Advancing secondary metabolite biosynthesis in yeast with synthetic biology tools. FEMS Yeast Res 2012; 12:144-70. [PMID: 22136110 DOI: 10.1111/j.1567-1364.2011.00774.x] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2011] [Revised: 11/18/2011] [Accepted: 11/19/2011] [Indexed: 12/11/2022] Open
Abstract
Secondary metabolites are an important source of high-value chemicals, many of which exhibit important pharmacological properties. These valuable natural products are often difficult to synthesize chemically and are commonly isolated through inefficient extractions from natural biological sources. As such, they are increasingly targeted for production by biosynthesis from engineered microorganisms. The budding yeast species Saccharomyces cerevisiae has proven to be a powerful microorganism for heterologous expression of biosynthetic pathways. S. cerevisiae's usefulness as a host organism is owed in large part to the wealth of knowledge accumulated over more than a century of intense scientific study. Yet many challenges are currently faced in engineering yeast strains for the biosynthesis of complex secondary metabolite production. However, synthetic biology is advancing the development of new tools for constructing, controlling, and optimizing complex metabolic pathways in yeast. Here, we review how the coupling between yeast biology and synthetic biology is advancing the use of S. cerevisiae as a microbial host for the construction of secondary metabolic pathways.
Collapse
Affiliation(s)
- Michael S Siddiqui
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | | | | | | |
Collapse
|
46
|
Challenges and opportunities for small molecule aptamer development. J Nucleic Acids 2012; 2012:748913. [PMID: 23150810 PMCID: PMC3488411 DOI: 10.1155/2012/748913;+10.1155/2012/748913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Aptamers are single-stranded oligonucleotides that bind to targets with high affinity and selectivity. Their use as molecular recognition elements has emerged as a viable approach for biosensing, diagnostics, and therapeutics. Despite this potential, relatively few aptamers exist that bind to small molecules. Small molecules are important targets for investigation due to their diverse biological functions as well as their clinical and commercial uses. Novel, effective molecular recognition probes for these compounds are therefore of great interest. This paper will highlight the technical challenges of aptamer development for small molecule targets, as well as the opportunities that exist for their application in biosensing and chemical biology.
Collapse
|
47
|
Strehlitz B, Reinemann C, Linkorn S, Stoltenburg R. Aptamers for pharmaceuticals and their application in environmental analytics. ACTA ACUST UNITED AC 2011; 4:1-30. [PMID: 22389661 PMCID: PMC3281204 DOI: 10.1007/s12566-011-0026-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 11/10/2011] [Indexed: 01/07/2023]
Abstract
Aptamers are single-stranded DNA or RNA oligonucleotides, which are able to bind with high affinity and specificity to their target. This property is used for a multitude of applications, for instance as molecular recognition elements in biosensors and other assays. Biosensor application of aptamers offers the possibility for fast and easy detection of environmental relevant substances. Pharmaceutical residues, deriving from human or animal medical treatment, are found in surface, ground, and drinking water. At least the whole range of frequently administered drugs can be detected in noticeable concentrations. Biosensors and assays based on aptamers as specific recognition elements are very convenient for this application because aptamer development is possible for toxic targets. Commonly used biological receptors for biosensors like enzymes or antibodies are mostly unavailable for the detection of pharmaceuticals. This review describes the research activities of aptamer and sensor developments for pharmaceutical detection, with focus on environmental applications.
Collapse
Affiliation(s)
- Beate Strehlitz
- UFZ-Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany
| | | | | | | |
Collapse
|
48
|
Kang K, Sachan A, Nilsen-Hamilton M, Shrotriya P. Aptamer functionalized microcantilever sensors for cocaine detection. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:14696-14702. [PMID: 21875108 DOI: 10.1021/la202067y] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A cocaine-specific aptamer was used as a receptor molecule in a microcantilever-based surface stress sensor for detection of cocaine molecules. An interferometric technique that relies on measuring differential displacement between two microcantilevers (a sensing/reference pair) was utilized to measure the cocaine/aptamer binding induced surface stress changes. Sensing experiments were performed for different concentrations of cocaine from 25 to 500 μM in order to determine the sensor response as a function of cocaine concentration. In the lower concentration range from 25 to 100 μM, surface stress values increased proportionally to coverage of aptamer/cocaine complexes from 11 to 26 mN/m. However, as the cocaine concentration was increased beyond 100 μM, the surface stress values demonstrated a weaker dependence on the affinity complex surface coverage. On the basis of a sensitivity of 3 mN/m for the surface stress measurement, the lowest detectable threshold for the cocaine concentration is estimated to be 5 μM. Sensing cantilevers could be regenerated and reused because of reversible thermal denaturation of aptamer.
Collapse
Affiliation(s)
- Kyungho Kang
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, USA
| | | | | | | |
Collapse
|
49
|
Saberian M, Hamzeiy H, Aghanejad A, Asgari D. Aptamer-based Nanosensors: Juglone as an Attached-Redox Molecule for Detection of Small Molecules. BIOIMPACTS : BI 2011; 1:31-6. [PMID: 23678405 PMCID: PMC3648941 DOI: 10.5681/bi.2011.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 02/22/2011] [Accepted: 03/09/2011] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Among several biosensing approaches, electrochemical-based procedures have been described as one of the most common and useful methods for sensing because of their simplicity, sensitivity, accuracy, and low cost. The electroactive species, which called redox, play a main role in the electrochemical-based approaches. Among several redox molecules used for electrochemical experiments, ferrocene is one of the commonly used redox molecules. However, instability of ferrocenium ion in the chloride containing solutions appeared to be weakness of this redox molecule limiting its utilization. METHODS In the current study, Juglone was attached (using EDC/NHS coupling method) to the 3'-amino-modified terminus of the immobilized specific aptamer of codeine, which was successfully used in a cyclic electrochemical voltammetry procedure. RESULTS The cyclic voltammogram peak of aptamer-attached Juglone was observed in the potential range of +0.4 to +0.9 V and the fabricated aptamer-based sensor was used for detection of different concentrations of codeine in the phosphate buffer 0.1 M solution containing 2 M NaCl. CONCLUSION Based on these findings, it can be suggested that the new aptamer-attached Juglone could be considered as an effective alternative redox molecule in particular with oligonucleotide-based sensing systems.
Collapse
Affiliation(s)
- Mehdi Saberian
- Research Center for Pharmaceutical Nanotechnology
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Tabriz
| | - Hossein Hamzeiy
- Research Center for Pharmaceutical Nanotechnology
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Tabriz
| | | | | |
Collapse
|
50
|
Sanvicens N, Mannelli I, Salvador JP, Valera E, Marco MP. Biosensors for pharmaceuticals based on novel technology. Trends Analyt Chem 2011. [DOI: 10.1016/j.trac.2011.01.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|