1
|
Rodrigues LM, Maistro S, Katayama MLH, Rocha VM, Lopez RVM, Lopes EFDT, Gonçalves FT, Fridman C, Serio PADMP, Barros LRC, Leite LAS, Segatelli V, Estevez-Diz MDP, Guindalini RSC, Ribeiro Junior U, Folgueira MAAK. Prevalence of germline variants in Brazilian pancreatic carcinoma patients. Sci Rep 2024; 14:21083. [PMID: 39256447 PMCID: PMC11387492 DOI: 10.1038/s41598-024-71884-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/02/2024] [Indexed: 09/12/2024] Open
Abstract
We evaluated the prevalence of pathogenic/likely pathogenic germline variants (PGV) in Brazilian pancreatic adenocarcinoma (PC) patients, that represent a multiethnic population, in a cross-sectional study. We included 192 PC patients unselected for family history of cancer. We evaluated a panel of 113 cancer genes, through genomic DNA sequencing and 46 ancestry-informative markers, through multiplex PCR. The median age was 61 years; 63.5% of the patients presented disease clinical stages III or IV; 8.3% reported personal history of cancer; 4.7% and 16.1% reported first-degree relatives with PC or breast and/or prostate cancer, respectively. Although the main ancestry was European, there was considerable genetic composition admixture. Twelve patients (6.25%) were PGV carriers in PC predisposition genes (ATM, BRCA1, BRCA2, CDKN2A, MSH2, PALB2) and another 25 (13.0%) were PGV carriers in genes with a limited association or not previously associated with PC (ACD, BLM, BRIP1, CHEK2, ERCC4, FANCA, FANCE, FANCM, GALNT12, MITF, MRE11, MUTYH, POLE, RAD51B, RAD51C, RECQL4, SDHA, TERF2IP). The most frequently affected genes were CHEK2, ATM and FANC. In tumor samples from PGV carriers in ACD, BRIP1, MRE11, POLE, SDHA, TERF2IP, which were examined through exome sequencing, the main single base substitutions (SBS) mutational signature was SBS1+5+18, probably associated with age, tobacco smoking and reactive oxygen species. SBS3 associated with homologous repair deficiency was also represented, but on a lower scale. There was no difference in the frequency of PGV carriers between: (a) patients with or without first-degree relatives with cancer; and (b) patients with admixed ancestry versus those with predominantly European ancestry. Furthermore, there was no difference in overall survival between PGV carriers and non-carriers. Therefore, genetic testing should be offered to all Brazilian pancreatic cancer patients, regardless of their ancestry. Genes with limited or previously unrecognized associations with pancreatic cancer should be further investigated to clarify their role in cancer risk.
Collapse
Affiliation(s)
- Lívia Munhoz Rodrigues
- Departamento de Radiologia e Oncologia, Comprehensive Center for Precision Oncology - C2PO, Centro de Investigação Translacional em Oncologia (CTO), Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, FMUSP, Av. Dr. Arnaldo 251, 8º. Andar, sala 69, Sao Paulo, SP, 01246-000, Brazil
| | - Simone Maistro
- Departamento de Radiologia e Oncologia, Comprehensive Center for Precision Oncology - C2PO, Centro de Investigação Translacional em Oncologia (CTO), Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, FMUSP, Av. Dr. Arnaldo 251, 8º. Andar, sala 69, Sao Paulo, SP, 01246-000, Brazil
| | - Maria Lucia Hirata Katayama
- Departamento de Radiologia e Oncologia, Comprehensive Center for Precision Oncology - C2PO, Centro de Investigação Translacional em Oncologia (CTO), Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, FMUSP, Av. Dr. Arnaldo 251, 8º. Andar, sala 69, Sao Paulo, SP, 01246-000, Brazil
| | - Vinícius Marques Rocha
- Departamento de Radiologia e Oncologia, Comprehensive Center for Precision Oncology - C2PO, Centro de Investigação Translacional em Oncologia (CTO), Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, FMUSP, Av. Dr. Arnaldo 251, 8º. Andar, sala 69, Sao Paulo, SP, 01246-000, Brazil
| | - Rossana Veronica Mendoza Lopez
- Departamento de Radiologia e Oncologia, Comprehensive Center for Precision Oncology - C2PO, Centro de Investigação Translacional em Oncologia (CTO), Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, FMUSP, Av. Dr. Arnaldo 251, 8º. Andar, sala 69, Sao Paulo, SP, 01246-000, Brazil
| | - Edia Filomena di Tullio Lopes
- Registro Hospitalar de Cancer, Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, FMUSP, São Paulo, SP, Brazil
| | - Fernanda Toledo Gonçalves
- Departamento de Medicina Legal, Bioetica, Medicina do Trabalho e Medicina Física e Reabilitação, Faculdade de Medicina, Universidade de Sao Paulo, FMUSP, Sao Paulo, SP, Brazil
| | - Cintia Fridman
- Departamento de Medicina Legal, Bioetica, Medicina do Trabalho e Medicina Física e Reabilitação, Faculdade de Medicina, Universidade de Sao Paulo, FMUSP, Sao Paulo, SP, Brazil
| | | | - Luciana Rodrigues Carvalho Barros
- Departamento de Radiologia e Oncologia, Comprehensive Center for Precision Oncology - C2PO, Centro de Investigação Translacional em Oncologia (CTO), Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, FMUSP, Av. Dr. Arnaldo 251, 8º. Andar, sala 69, Sao Paulo, SP, 01246-000, Brazil
| | - Luiz Antonio Senna Leite
- Departamento de Radiologia e Oncologia, Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, FMUSP, Sao Paulo, SP, Brazil
| | - Vanderlei Segatelli
- Departamento de Patologia Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, FMUSP, Sao Paulo, SP, Brazil
| | - Maria Del Pilar Estevez-Diz
- Departamento de Radiologia e Oncologia, Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, FMUSP, Sao Paulo, SP, Brazil
| | | | - Ulysses Ribeiro Junior
- Division of Digestive Surgery, Department of Gastroenterology, Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo FMUSP, Sao Paulo, SP, Brazil
| | - Maria Aparecida Azevedo Koike Folgueira
- Departamento de Radiologia e Oncologia, Comprehensive Center for Precision Oncology - C2PO, Centro de Investigação Translacional em Oncologia (CTO), Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, FMUSP, Av. Dr. Arnaldo 251, 8º. Andar, sala 69, Sao Paulo, SP, 01246-000, Brazil.
| |
Collapse
|
2
|
Bolhuis DL, Dixit R, Slep KC. Crystal structure of the Arabidopsis SPIRAL2 C-terminal domain reveals a p80-Katanin-like domain. PLoS One 2023; 18:e0290024. [PMID: 38157339 PMCID: PMC10756542 DOI: 10.1371/journal.pone.0290024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 08/01/2023] [Indexed: 01/03/2024] Open
Abstract
Epidermal cells of dark-grown plant seedlings reorient their cortical microtubule arrays in response to blue light from a net lateral orientation to a net longitudinal orientation with respect to the long axis of cells. The molecular mechanism underlying this microtubule array reorientation involves katanin, a microtubule severing enzyme, and a plant-specific microtubule associated protein called SPIRAL2. Katanin preferentially severs longitudinal microtubules, generating seeds that amplify the longitudinal array. Upon severing, SPIRAL2 binds nascent microtubule minus ends and limits their dynamics, thereby stabilizing the longitudinal array while the lateral array undergoes net depolymerization. To date, no experimental structural information is available for SPIRAL2 to help inform its mechanism. To gain insight into SPIRAL2 structure and function, we determined a 1.8 Å resolution crystal structure of the Arabidopsis thaliana SPIRAL2 C-terminal domain. The domain is composed of seven core α-helices, arranged in an α-solenoid. Amino-acid sequence conservation maps primarily to one face of the domain involving helices α1, α3, α5, and an extended loop, the α6-α7 loop. The domain fold is similar to, yet structurally distinct from the C-terminal domain of Ge-1 (an mRNA decapping complex factor involved in P-body localization) and, surprisingly, the C-terminal domain of the katanin p80 regulatory subunit. The katanin p80 C-terminal domain heterodimerizes with the MIT domain of the katanin p60 catalytic subunit, and in metazoans, binds the microtubule minus-end factors CAMSAP3 and ASPM. Structural analysis predicts that SPIRAL2 does not engage katanin p60 in a mode homologous to katanin p80. The SPIRAL2 structure highlights an interesting evolutionary convergence of domain architecture and microtubule minus-end localization between SPIRAL2 and katanin complexes, and establishes a foundation upon which structure-function analysis can be conducted to elucidate the role of this domain in the regulation of plant microtubule arrays.
Collapse
Affiliation(s)
- Derek L. Bolhuis
- Program in Molecular and Cellular Biophysics, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Ram Dixit
- Department of Biology and Center for Engineering Mechanobiology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Kevin C. Slep
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
3
|
Zhao J, Zhang Y, Li W, Yao M, Liu C, Zhang Z, Wang C, Wang X, Meng K. Research progress of the Fanconi anemia pathway and premature ovarian insufficiency†. Biol Reprod 2023; 109:570-585. [PMID: 37669135 DOI: 10.1093/biolre/ioad110] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/25/2023] [Accepted: 09/02/2023] [Indexed: 09/07/2023] Open
Abstract
The Fanconi anemia pathway is a key pathway involved in the repair of deoxyribonucleic acidinterstrand crosslinking damage, which chiefly includes the following four modules: lesion recognition, Fanconi anemia core complex recruitment, FANCD2-FANCI complex monoubiquitination, and downstream events (nucleolytic incision, translesion synthesis, and homologous recombination). Mutations or deletions of multiple Fanconi anemia genes in this pathway can damage the interstrand crosslinking repair pathway and disrupt primordial germ cell development and oocyte meiosis, thereby leading to abnormal follicular development. Premature ovarian insufficiency is a gynecological clinical syndrome characterized by amenorrhea and decreased fertility due to decreased oocyte pool, accelerated follicle atresia, and loss of ovarian function in women <40 years old. Furthermore, in recent years, several studies have detected mutations in the Fanconi anemia gene in patients with premature ovarian insufficiency. In addition, some patients with Fanconi anemia exhibit symptoms of premature ovarian insufficiency and infertility. The Fanconi anemia pathway and premature ovarian insufficiency are closely associated.
Collapse
Affiliation(s)
- Jingyu Zhao
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Yixin Zhang
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Wenbo Li
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Mengmeng Yao
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Chuqi Liu
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Zihan Zhang
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Caiqin Wang
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Xiaomei Wang
- College of Basic Medicine, Jining Medical University, Jining, China
| | - Kai Meng
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China
- Lin He's Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
| |
Collapse
|
4
|
Zheng C, Ren Z, Chen H, Yuan X, Suye S, Yin H, Fu C. Reduced FANCE Confers Genomic Instability and Malignant Behavior by Regulating Cell Cycle Progression in Endometrial Cancer. J Cancer 2023; 14:2670-2685. [PMID: 37779877 PMCID: PMC10539389 DOI: 10.7150/jca.86348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/20/2023] [Indexed: 10/03/2023] Open
Abstract
Introduction: Fanconi anemia complementation group E (FANCE) is a subunit of fanconi anemia (FA) pathway and plays a key role in repairing DNA interstrand cross-links (ICLs) damage. We investigate detailed functions and mechanisms of FANCE in endometrial cancer (EC). Methods: FANCE protein and RNA expression in EC and non-cancerous tissues were detected by Western blotting (WB), immunohistochemistry (IHC), and real-time polymerase chain reaction (RT-PCR) assays. Using lentiviral transfection and siRNA interference techniques, we constructed overexpressing FANCE (OE-FANCE) and FANCE-knockdown (FANCE-KD) EC cells. We then investigated DNA damage repair capacity of FANCE in EC cells including comet assay and γH2AX immunofluorescence assay. In vitro assays including CCK8, EDU and colony formation for chemoresistance and proliferation, transwell assay for metastasis were performed. Flow cytometer assay, cell cycle synchronization for cell cycle progression and EC cells RNA sequencing were determined. Finally, in vivo mouse models were used to detect tumor growth. Results: We found FANCE RNA and protein expression was significantly decreased in endometrioid adenocarcinoma (EAC) compared with normal and atypical hyperplasia endometrium. FANCE promoted the repair of ICL damage and double-strand break (DSB) in OE-FANCE EC cells. Furthermore, FANCE increased drug resistance in OE-FANCE EC cells by upregulating FA pathway and homologous recombination (HR) associated proteins. FANCE inhibited cell proliferation and metastasis through G2/M cell cycle arrest in vitro and vivo. FANCE participated in regulating several pathways. Conclusion: The study demonstrates the reduction of FANCE expression leads to genomic instability, thereby promoting the development of EC by regulating cell cycle.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Chun Fu
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| |
Collapse
|
5
|
Zhong D, Chen D, Zhang G, Lin S, Mei R, Yu X. Screening of Potential Key Biomarkers for Ewing Sarcoma: Evidence from Gene Array Analysis. Int J Gen Med 2022; 15:2575-2588. [PMID: 35342299 PMCID: PMC8943648 DOI: 10.2147/ijgm.s346251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/02/2022] [Indexed: 11/29/2022] Open
Abstract
Background Ewing’s sarcoma (ES) is a common bone cancer in children and adolescents. There are ethnic differences in the incidence and treatment effects. People have made great efforts to clarify the cause; however, the molecular mechanism of ES is still poorly understood. Methods We download the microarray datasets GSE68776, GSE45544 and GSE17674 from the Gene Expression Omnibus (GEO) database. The differentially expressed genes (DEGs) of the three datasets were screened and enrichment analysis was performed. STRING and Cytoscape were used to carry out module analysis, building a protein–protein interaction (PPI) network. Finally, a series of analyses such as survival analysis and immune infiltration analysis were performed on the selected genes. Results A total of 629 differentially expressed genes were screened, including 206 up-regulated genes and 423 down-regulated genes. The pathways and rich-functions of DEGs include protein activation cascade, carbohydrate binding, cell-cell adhesion junctions, mitotic cell cycle, p53 pathway, and cancer pathways. Then, a total of 10 hub genes were screened out. Biological process analysis showed that these genes were mainly enriched in mitotic nuclear division, protein kinase activity, cell division, cell cycle, and protein phosphorylation. Conclusion Survival analysis and multiple gene comparison analysis showed that CDCA8, MAD2L1 and FANCI may be involved in the occurrence and prognosis of ES. The purpose of our study is to clarify the DEG and key genes, which will help us know more about the molecular mechanisms of ES, provide potential pathway or targets for the diagnosis and treatment.
Collapse
Affiliation(s)
- Duming Zhong
- Department of Orthopedics, The Fourth Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Dan Chen
- Department of Orthopedics, The Fourth Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Guangquan Zhang
- Department of Orthopedics, The Fourth Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Shaobai Lin
- Department of Orthopedics, The Fourth Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Runhong Mei
- Department of Orthopedics, The Fourth Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Xuefeng Yu
- Department of Orthopedics, The Fourth Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
- Correspondence: Xuefeng Yu; Runhong Mei, Email ;
| |
Collapse
|
6
|
Gianni P, Matenoglou E, Geropoulos G, Agrawal N, Adnani H, Zafeiropoulos S, Miyara SJ, Guevara S, Mumford JM, Molmenti EP, Giannis D. The Fanconi anemia pathway and Breast Cancer: A comprehensive review of clinical data. Clin Breast Cancer 2021; 22:10-25. [PMID: 34489172 DOI: 10.1016/j.clbc.2021.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/17/2021] [Accepted: 08/05/2021] [Indexed: 02/08/2023]
Abstract
The development of breast cancer depends on several risk factors, including environmental, lifestyle and genetic factors. Despite the evolution of DNA sequencing techniques and biomarker detection, the epidemiology and mechanisms of various breast cancer susceptibility genes have not been elucidated yet. Dysregulation of the DNA damage response causes genomic instability and increases the rate of mutagenesis and the risk of carcinogenesis. The Fanconi Anemia (FA) pathway is an important component of the DNA damage response and plays a critical role in the repair of DNA interstrand crosslinks and genomic stability. The FA pathway involves 22 recognized genes and specific mutations have been identified as the underlying defect in the majority of FA patients. A thorough understanding of the function and epidemiology of these genes in breast cancer is critical for the development and implementation of individualized therapies that target unique tumor profiles. Targeted therapies (PARP inhibitors) exploiting the FA pathway gene defects have been developed and have shown promising results. This narrative review summarizes the current literature on the involvement of FA genes in sporadic and familial breast cancer with a focus on clinical data derived from large cohorts.
Collapse
Affiliation(s)
- Panagiota Gianni
- Department of Internal Medicine III, Hematology, Oncology, Palliative Medicine, Rheumatology and Infectious Diseases, University Hospital Ulm, Germany
| | - Evangelia Matenoglou
- Medical School, Aristotle University of Thessaloniki, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgios Geropoulos
- Thoracic Surgery Department, University College London Hospitals NHS Foundation Trust, London
| | - Nirav Agrawal
- Feinstein Institutes for Medical Research at Northwell Health, Manhasset, New York, NY
| | - Harsha Adnani
- Feinstein Institutes for Medical Research at Northwell Health, Manhasset, New York, NY
| | - Stefanos Zafeiropoulos
- Feinstein Institutes for Medical Research at Northwell Health, Manhasset, New York, NY; Elmezzi Graduate School of Molecular Medicine, Northwell Health, Manhasset, New York, NY
| | - Santiago J Miyara
- Feinstein Institutes for Medical Research at Northwell Health, Manhasset, New York, NY; Elmezzi Graduate School of Molecular Medicine, Northwell Health, Manhasset, New York, NY
| | - Sara Guevara
- Department of Surgery, North Shore University Hospital, Manhasset, New York, NY
| | - James M Mumford
- Department of Family Medicine, Glen Cove Hospital, Glen Cove, New York, NY; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, NY
| | - Ernesto P Molmenti
- Feinstein Institutes for Medical Research at Northwell Health, Manhasset, New York, NY; Department of Surgery, North Shore University Hospital, Manhasset, New York, NY; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, NY
| | - Dimitrios Giannis
- Feinstein Institutes for Medical Research at Northwell Health, Manhasset, New York, NY.
| |
Collapse
|
7
|
Lemonidis K, Arkinson C, Rennie ML, Walden H. Mechanism, specificity, and function of FANCD2-FANCI ubiquitination and deubiquitination. FEBS J 2021; 289:4811-4829. [PMID: 34137174 DOI: 10.1111/febs.16077] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/01/2021] [Accepted: 06/11/2021] [Indexed: 12/20/2022]
Abstract
Fanconi anemia (FA) is a rare genetic disorder caused by mutations in any of the currently 22 known FA genes. The products of these genes, along with other FA-associated proteins, participate in a biochemical pathway, known as the FA pathway. This pathway is responsible for the repair of DNA interstrand cross-links (ICL) and the maintenance of genomic stability in response to replication stress. At the center of the pathway is the monoubiquitination of two FA proteins, FANCD2 and FANCI, on two specific lysine residues. This is achieved by the combined action of the UBE2T ubiquitin-conjugating enzyme and a large multicomponent E3 ligase, known as the FA-core complex. This E2-E3 pair specifically targets the FANCI-FANCD2 heterodimer (ID2 complex) for ubiquitination on DNA. Deubiquitination of both FANCD2 and FANCI, which is also critical for ICL repair, is achieved by the USP1-UAF1 complex. Recent work suggests that FANCD2 ubiquitination transforms the ID2 complex into a sliding DNA clamp. Further, ID2 ubiquitination on FANCI does not alter the closed ID2 conformation observed upon FANCD2 ubiquitination and the associated ID2Ub complex with high DNA affinity. However, the resulting dimonoubiquitinated complex is highly resistant to USP1-UAF1 deubiquitination. This review will provide an update on recent work focusing on how specificity in FANCD2 ubiquitination and deubiquitination is achieved. Recent findings shedding light to the mechanisms, molecular functions, and biological roles of FANCI/FANCD2 ubiquitination and deubiquitination will be also discussed. ENZYMES: UBA1 (6.2.1.45), UBE2T (2.3.2.23), FANCL (2.3.2.27), USP1 (3.4.19.12).
Collapse
Affiliation(s)
- Kimon Lemonidis
- Institute of Molecular Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, UK
| | - Connor Arkinson
- Institute of Molecular Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, UK
| | - Martin L Rennie
- Institute of Molecular Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, UK
| | - Helen Walden
- Institute of Molecular Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, UK
| |
Collapse
|
8
|
Structural insight into FANCI-FANCD2 monoubiquitination. Essays Biochem 2021; 64:807-817. [PMID: 32725171 PMCID: PMC7588663 DOI: 10.1042/ebc20200001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/10/2020] [Accepted: 07/07/2020] [Indexed: 12/13/2022]
Abstract
The Fanconi anemia (FA) pathway coordinates a faithful repair mechanism for DNA damage that blocks DNA replication, such as interstrand cross-links. A key step in the FA pathway is the conjugation of ubiquitin on to FANCD2 and FANCI, which is facilitated by a large E3 ubiquitin ligase complex called the FA core complex. Mutations in FANCD2, FANCI or FA core complex components cause the FA bone marrow failure syndrome. Despite the importance of these proteins to DNA repair and human disease, our molecular understanding of the FA pathway has been limited due to a deficit in structural studies. With the recent development in cryo-electron microscopy (EM), significant advances have been made in structural characterization of these proteins in the last 6 months. These structures, combined with new biochemical studies, now provide a more detailed understanding of how FANCD2 and FANCI are monoubiquitinated and how DNA repair may occur. In this review, we summarize these recent advances in the structural and molecular understanding of these key components in the FA pathway, compare the activation steps of FANCD2 and FANCI monoubiquitination and suggest molecular steps that are likely to be involved in regulating its activity.
Collapse
|
9
|
Abstract
DNA interstrand cross-links (ICLs) covalently connect the two strands of the double helix and are extremely cytotoxic. Defective ICL repair causes the bone marrow failure and cancer predisposition syndrome, Fanconi anemia, and upregulation of repair causes chemotherapy resistance in cancer. The central event in ICL repair involves resolving the cross-link (unhooking). In this review, we discuss the chemical diversity of ICLs generated by exogenous and endogenous agents. We then describe how proliferating and nonproliferating vertebrate cells unhook ICLs. We emphasize fundamentally new unhooking strategies, dramatic progress in the structural analysis of the Fanconi anemia pathway, and insights into how cells govern the choice between different ICL repair pathways. Throughout, we highlight the many gaps that remain in our knowledge of these fascinating DNA repair pathways.
Collapse
Affiliation(s)
- Daniel R Semlow
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA; .,Current affiliation: Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Johannes C Walter
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA; .,Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
10
|
Yadav A, Fernández-Baca D, Cannon SB. Family-Specific Gains and Losses of Protein Domains in the Legume and Grass Plant Families. Evol Bioinform Online 2020; 16:1176934320939943. [PMID: 32694909 PMCID: PMC7350399 DOI: 10.1177/1176934320939943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 06/15/2020] [Indexed: 11/27/2022] Open
Abstract
Protein domains can be regarded as sections of protein sequences capable of folding independently and performing specific functions. In addition to amino-acid level changes, protein sequences can also evolve through domain shuffling events such as domain insertion, deletion, or duplication. The evolution of protein domains can be studied by tracking domain changes in a selected set of species with known phylogenetic relationships. Here, we conduct such an analysis by defining domains as “features” or “descriptors,” and considering the species (target + outgroup) as instances or data-points in a data matrix. We then look for features (domains) that are significantly different between the target species and the outgroup species. We study the domain changes in 2 large, distinct groups of plant species: legumes (Fabaceae) and grasses (Poaceae), with respect to selected outgroup species. We evaluate 4 types of domain feature matrices: domain content, domain duplication, domain abundance, and domain versatility. The 4 types of domain feature matrices attempt to capture different aspects of domain changes through which the protein sequences may evolve—that is, via gain or loss of domains, increase or decrease in the copy number of domains along the sequences, expansion or contraction of domains, or through changes in the number of adjacent domain partners. All the feature matrices were analyzed using feature selection techniques and statistical tests to select protein domains that have significant different feature values in legumes and grasses. We report the biological functions of the top selected domains from the analysis of all the feature matrices. In addition, we also perform domain-centric gene ontology (dcGO) enrichment analysis on all selected domains from all 4 feature matrices to study the gene ontology terms associated with the significantly evolving domains in legumes and grasses. Domain content analysis revealed a striking loss of protein domains from the Fanconi anemia (FA) pathway, the pathway responsible for the repair of interstrand DNA crosslinks. The abundance analysis of domains found in legumes revealed an increase in glutathione synthase enzyme, an antioxidant required from nitrogen fixation, and a decrease in xanthine oxidizing enzymes, a phenomenon confirmed by previous studies. In grasses, the abundance analysis showed increases in domains related to gene silencing which could be due to polyploidy or due to enhanced response to viral infection. We provide a docker container that can be used to perform this analysis workflow on any user-defined sets of species, available at https://cloud.docker.com/u/akshayayadav/repository/docker/akshayayadav/protein-domain-evolution-project.
Collapse
Affiliation(s)
- Akshay Yadav
- Bioinformatics and Computational Biology Graduate Program, Iowa State University, Ames, IA, USA
| | | | - Steven B Cannon
- Corn Insects and Crop Genetics Research Unit, USDA-Agricultural Research Service, Ames, IA, USA
| |
Collapse
|
11
|
Nie D, Zhang J, Wang F, Zhang W, Liu L, Chen X, Zhang Y, Cao P, Xiong M, Wang T, Wu P, Ma X, Tian W, Wang M, Chen KN, Liu H. Comprehensive analysis on phenotype and genetic basis of Chinese Fanconi anemia patients: dismal outcomes call for nationwide studies. BMC MEDICAL GENETICS 2020; 21:118. [PMID: 32487094 PMCID: PMC7268325 DOI: 10.1186/s12881-020-01057-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 05/24/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND Fanconi anemia (FA) is the most common inherited bone marrow failure (BMF) syndrome with 22 related genes identified. The ALDH2 rs671variant has been proved related to accelerate the progression of BMF in FA patients. The phenotype and genetic basis of Chinese FA patients have not been investigated yet. METHODS We analyzed the 22 FA-related genes of 63 BMF patients suspected to be FA. Clinical manifestations, morphological and cytogenetic feathers, ALDH2 genotypes, treatment, and outcomes of the definite cases were retrospectively studied. RESULTS A total of 21 patients were confirmed the diagnosis of FA with the median age of BMF onset was 4-year-old. The number of patients manifested as congenital malformations and growth retardation were 20/21 and 14/21, respectively. BM dysplasia and cytogenetic abnormalities were found in 13/20 and 8/19 patients. All the patients with abnormal karyotypes also manifested as BM dysplasia or had evident blasts. Thirty-five different mutations were identified involving six genes and including twenty novel mutations. FANCA mutations contributed to 66.67% of cases. Eight patients harboring ALDH2-G/A genotype have a significantly younger age of BMF onset (p = 0.025). Within the 19 patients adhering to continuous follow-up, 15 patients underwent hematopoietic stem cell transplantations (HSCTs). During the 29 months of follow-up, 8/19 patients died, seven of which were HSCT-related, and one patient who did not receive HSCT died from severe infection. CONCLUSIONS The phenotypic and genetic spectrum of Chinese FA patients is broad. Bone marrow dysplasia and cytogenetic abnormalities are prevalent and highly consistent. The overall outcome of HSCTs is disappointing. Nationwide multicenter studies are needed for the rarity and adverse outcome of this disease.
Collapse
Affiliation(s)
- Daijing Nie
- Division of Pathology & Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, 6 Sipulan Road, Langfang, 065201, China
- Beijing Lu Daopei Institute of Hematology, Beijing, 100176, China
| | - Jing Zhang
- Division of Pathology & Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, 6 Sipulan Road, Langfang, 065201, China
| | - Fang Wang
- Division of Pathology & Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, 6 Sipulan Road, Langfang, 065201, China
| | - Wei Zhang
- Division of Pathology & Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, 6 Sipulan Road, Langfang, 065201, China
| | - Lili Liu
- Division of Pathology & Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, 6 Sipulan Road, Langfang, 065201, China
| | - Xue Chen
- Division of Pathology & Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, 6 Sipulan Road, Langfang, 065201, China
| | - Yang Zhang
- Division of Pathology & Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, 6 Sipulan Road, Langfang, 065201, China
| | - Panxiang Cao
- Division of Pathology & Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, 6 Sipulan Road, Langfang, 065201, China
| | - Min Xiong
- Department of Hematology, Hebei Yanda Lu Daopei Hospital, Langfang, 065201, China
| | - Tong Wang
- Division of Pathology & Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, 6 Sipulan Road, Langfang, 065201, China
| | - Ping Wu
- Division of Pathology & Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, 6 Sipulan Road, Langfang, 065201, China
| | - Xiaoli Ma
- Division of Pathology & Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, 6 Sipulan Road, Langfang, 065201, China
| | - Wenjun Tian
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250000, China
| | - Mangju Wang
- Department of Hematology, Peking University First Hospital, Beijing, 100034, China
| | - Kylan N Chen
- Beijing Lu Daopei Institute of Hematology, Beijing, 100176, China
| | - Hongxing Liu
- Division of Pathology & Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, 6 Sipulan Road, Langfang, 065201, China.
- Beijing Lu Daopei Institute of Hematology, Beijing, 100176, China.
- Division of Pathology & Laboratory Medicine, Beijing Lu Daopei Hospital, Beijing, 100176, China.
| |
Collapse
|
12
|
Aguirre JD, Thomä NH. FANally…A Structure Emerges of the Fanconi Anemia Core Complex. Trends Biochem Sci 2020; 45:275-276. [PMID: 31987666 DOI: 10.1016/j.tibs.2020.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/06/2020] [Accepted: 01/10/2020] [Indexed: 10/25/2022]
Abstract
The Fanconi anemia (FA) core complex is the ~0.9-mDa ubiquitin ligase most frequently mutated in patients with FA. New cryo-electron microscopy (cryo-EM) data from Shakeel et al. reveals a surprisingly complex ubiquitin ligase architecture, providing unprecedented insight into this critical hub at the interface of DNA crosslink detection and repair.
Collapse
Affiliation(s)
- Jacob D Aguirre
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Nicolas H Thomä
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.
| |
Collapse
|
13
|
Shakeel S, Rajendra E, Alcón P, O'Reilly F, Chorev DS, Maslen S, Degliesposti G, Russo CJ, He S, Hill CH, Skehel JM, Scheres SHW, Patel KJ, Rappsilber J, Robinson CV, Passmore LA. Structure of the Fanconi anaemia monoubiquitin ligase complex. Nature 2019; 575:234-237. [PMID: 31666700 PMCID: PMC6858856 DOI: 10.1038/s41586-019-1703-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 09/18/2019] [Indexed: 11/17/2022]
Abstract
The Fanconi anaemia (FA) pathway repairs DNA damage caused by endogenous and chemotherapy-induced DNA crosslinks, and responds to replication stress1,2. Genetic inactivation of this pathway by mutation of genes encoding FA complementation group (FANC) proteins impairs development, prevents blood production and promotes cancer1,3. The key molecular step in the FA pathway is the monoubiquitination of a pseudosymmetric heterodimer of FANCD2-FANCI4,5 by the FA core complex-a megadalton multiprotein E3 ubiquitin ligase6,7. Monoubiquitinated FANCD2 then recruits additional protein factors to remove the DNA crosslink or to stabilize the stalled replication fork. A molecular structure of the FA core complex would explain how it acts to maintain genome stability. Here we reconstituted an active, recombinant FA core complex, and used cryo-electron microscopy and mass spectrometry to determine its structure. The FA core complex comprises two central dimers of the FANCB and FA-associated protein of 100 kDa (FAAP100) subunits, flanked by two copies of the RING finger subunit, FANCL. These two heterotrimers act as a scaffold to assemble the remaining five subunits, resulting in an extended asymmetric structure. Destabilization of the scaffold would disrupt the entire complex, resulting in a non-functional FA pathway. Thus, the structure provides a mechanistic basis for the low numbers of patients with mutations in FANCB, FANCL and FAAP100. Despite a lack of sequence homology, FANCB and FAAP100 adopt similar structures. The two FANCL subunits are in different conformations at opposite ends of the complex, suggesting that each FANCL has a distinct role. This structural and functional asymmetry of dimeric RING finger domains may be a general feature of E3 ligases. The cryo-electron microscopy structure of the FA core complex provides a foundation for a detailed understanding of its E3 ubiquitin ligase activity and DNA interstrand crosslink repair.
Collapse
Affiliation(s)
| | | | - Pablo Alcón
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Francis O'Reilly
- Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Dror S Chorev
- Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, UK
| | - Sarah Maslen
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | | | - Shaoda He
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Chris H Hill
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | | | | | - Juri Rappsilber
- Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Carol V Robinson
- Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, UK
| | | |
Collapse
|
14
|
Germline Mutations in Cancer Predisposition Genes are Frequent in Sporadic Sarcomas. Sci Rep 2017; 7:10660. [PMID: 28878254 PMCID: PMC5587568 DOI: 10.1038/s41598-017-10333-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 08/07/2017] [Indexed: 01/08/2023] Open
Abstract
Associations of sarcoma with inherited cancer syndromes implicate genetic predisposition in sarcoma development. However, due to the apparently sporadic nature of sarcomas, little attention has been paid to the role genetic susceptibility in sporadic sarcoma. To address this, we performed targeted-genomic sequencing to investigate the prevalence of germline mutations in known cancer-associated genes within an Asian cohort of sporadic sarcoma patients younger than 50 years old. We observed 13.6% (n = 9) amongst 66 patients harbour at least one predicted pathogenic germline mutation in 10 cancer-associated genes including ATM, BRCA2, ERCC4, FANCC, FANCE, FANCI, MSH6, POLE, SDHA and TP53. The most frequently affected genes are involved in the DNA damage repair pathway, with a germline mutation prevalence of 10.6%. Our findings suggests that genetic predisposition plays a larger role than expected in our Asian cohort of sporadic sarcoma, therefore clinicians should be aware of the possibility that young sarcoma patients may be carriers of inherited mutations in cancer genes and should be considered for genetic testing, regardless of family history. The prevalence of germline mutations in DNA damage repair genes imply that therapeutic strategies exploiting the vulnerabilities resulting from impaired DNA repair may be promising areas for translational research.
Collapse
|
15
|
Swuec P, Renault L, Borg A, Shah F, Murphy VJ, van Twest S, Snijders AP, Deans AJ, Costa A. The FA Core Complex Contains a Homo-dimeric Catalytic Module for the Symmetric Mono-ubiquitination of FANCI-FANCD2. Cell Rep 2016; 18:611-623. [PMID: 27986592 PMCID: PMC5266791 DOI: 10.1016/j.celrep.2016.11.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/22/2016] [Accepted: 10/31/2016] [Indexed: 12/20/2022] Open
Abstract
Activation of the main DNA interstrand crosslink repair pathway in higher eukaryotes requires mono-ubiquitination of FANCI and FANCD2 by FANCL, the E3 ligase subunit of the Fanconi anemia core complex. FANCI and FANCD2 form a stable complex; however, the molecular basis of their ubiquitination is ill defined. FANCD2 mono-ubiquitination by FANCL is stimulated by the presence of the FANCB and FAAP100 core complex components, through an unknown mechanism. How FANCI mono-ubiquitination is achieved remains unclear. Here, we use structural electron microscopy, combined with crosslink-coupled mass spectrometry, to find that FANCB, FANCL, and FAAP100 form a dimer of trimers, containing two FANCL molecules that are ideally poised to target both FANCI and FANCD2 for mono-ubiquitination. The FANCC-FANCE-FANCF subunits bridge between FANCB-FANCL-FAAP100 and the FANCI-FANCD2 substrate. A transient interaction with FANCC-FANCE-FANCF alters the FANCI-FANCD2 configuration, stabilizing the dimerization interface. Our data provide a model to explain how equivalent mono-ubiquitination of FANCI and FANCD2 occurs. FANCB, FANCL, and FAAP100 form a symmetric dimer of trimers FANCL is ideally poised for the symmetric mono-ubiquitination of FANCI-FANCD2 Two separate FANCC-FANCE-FANCF complexes bind to the opposing poles of FANCB-FANCL-FAAP100 FANCC-FANCE-FANCF stabilizes FANCI-FANCD2 for efficient mono-ubiquitination
Collapse
Affiliation(s)
- Paolo Swuec
- Macromolecular Machines Laboratory, Clare Hall Laboratory, The Francis Crick Institute, Blanche Lane, South Mimms, EN6 3LD, UK
| | - Ludovic Renault
- Macromolecular Machines Laboratory, Clare Hall Laboratory, The Francis Crick Institute, Blanche Lane, South Mimms, EN6 3LD, UK
| | - Aaron Borg
- Mass Spectrometry Proteomics and Metabolomics, Clare Hall Laboratory, The Francis Crick Institute, Blanche Lane, South Mimms, EN6 3LD, UK
| | - Fenil Shah
- Genome Stability Unit, St. Vincent's Institute of Medical Research, 9 Princes St Fitzroy, Victoria, VIC 3065, Australia
| | - Vincent J Murphy
- Genome Stability Unit, St. Vincent's Institute of Medical Research, 9 Princes St Fitzroy, Victoria, VIC 3065, Australia
| | - Sylvie van Twest
- Genome Stability Unit, St. Vincent's Institute of Medical Research, 9 Princes St Fitzroy, Victoria, VIC 3065, Australia
| | - Ambrosius P Snijders
- Mass Spectrometry Proteomics and Metabolomics, Clare Hall Laboratory, The Francis Crick Institute, Blanche Lane, South Mimms, EN6 3LD, UK
| | - Andrew J Deans
- Genome Stability Unit, St. Vincent's Institute of Medical Research, 9 Princes St Fitzroy, Victoria, VIC 3065, Australia
| | - Alessandro Costa
- Macromolecular Machines Laboratory, Clare Hall Laboratory, The Francis Crick Institute, Blanche Lane, South Mimms, EN6 3LD, UK.
| |
Collapse
|
16
|
Swuec P, Costa A. DNA replication and inter-strand crosslink repair: Symmetric activation of dimeric nanomachines? Biophys Chem 2016; 225:15-19. [PMID: 27989548 DOI: 10.1016/j.bpc.2016.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 10/28/2016] [Accepted: 11/01/2016] [Indexed: 10/20/2022]
Abstract
Eukaryotic DNA replication initiation and the Fanconi anemia pathway of interstrand crosslink repair both revolve around the recruitment of a set of DNA-processing factors onto a dimeric protein complex, which functions as a loading platform (MCM and FANCI-FANCD2 respectively). Here we compare and contrast the two systems, identifying a set of unresolved mechanistic questions. How is the dimeric loading platform assembled on the DNA? How can equivalent covalent modification of both factors in a dimer be achieved? Are multicomponent DNA-interacting machines built symmetrically around their dimeric loading platform? Recent biochemical reconstitution studies are starting to shed light on these issues.
Collapse
Affiliation(s)
- Paolo Swuec
- Macromolecular Machines Laboratory, Clare Hall Laboratory, The Francis Crick Institute, Blanche Lane, South Mimms, EN6 3LD, UK
| | - Alessandro Costa
- Macromolecular Machines Laboratory, Clare Hall Laboratory, The Francis Crick Institute, Blanche Lane, South Mimms, EN6 3LD, UK.
| |
Collapse
|
17
|
Stanley EC, Azzinaro PA, Vierra DA, Howlett NG, Irvine SQ. The Simple Chordate Ciona intestinalis Has a Reduced Complement of Genes Associated with Fanconi Anemia. Evol Bioinform Online 2016; 12:133-48. [PMID: 27279728 PMCID: PMC4898443 DOI: 10.4137/ebo.s37920] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 02/10/2016] [Accepted: 02/16/2016] [Indexed: 12/26/2022] Open
Abstract
Fanconi anemia (FA) is a human genetic disease characterized by congenital defects, bone marrow failure, and increased cancer risk. FA is associated with mutation in one of 24 genes. The protein products of these genes function cooperatively in the FA pathway to orchestrate the repair of DNA interstrand cross-links. Few model organisms exist for the study of FA. Seeking a model organism with a simpler version of the FA pathway, we searched the genome of the simple chordate Ciona intestinalis for homologs of the human FA-associated proteins. BLAST searches, sequence alignments, hydropathy comparisons, maximum likelihood phylogenetic analysis, and structural modeling were used to infer the likelihood of homology between C. intestinalis and human FA proteins. Our analysis indicates that C. intestinalis indeed has a simpler and potentially functional FA pathway. The C. intestinalis genome was searched for candidates for homology to 24 human FA and FA-associated proteins. Support was found for the existence of homologs for 13 of these 24 human genes in C. intestinalis. Members of each of the three commonly recognized FA gene functional groups were found. In group I, we identified homologs of FANCE, FANCL, FANCM, and UBE2T/FANCT. Both members of group II, FANCD2 and FANCI, have homologs in C. intestinalis. In group III, we found evidence for homologs of FANCJ, FANCO, FANCQ/ERCC4, FANCR/RAD51, and FANCS/BRCA1, as well as the FA-associated proteins ERCC1 and FAN1. Evidence was very weak for the existence of homologs in C. intestinalis for any other recognized FA genes. This work supports the notion that C. intestinalis, as a close relative of vertebrates, but having a much reduced complement of FA genes, offers a means of studying the function of certain FA proteins in a simpler pathway than that of vertebrate cells.
Collapse
Affiliation(s)
- Edward C Stanley
- Integrative and Evolutionary Biology Graduate Specialization, University of Rhode Island, Kingston, RI, USA
| | - Paul A Azzinaro
- Cell and Molecular Biology Graduate Specialization, University of Rhode Island, Kingston, RI, USA
| | - David A Vierra
- Cell and Molecular Biology Graduate Specialization, University of Rhode Island, Kingston, RI, USA
| | - Niall G Howlett
- Cell and Molecular Biology Graduate Specialization, University of Rhode Island, Kingston, RI, USA.; Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI, USA
| | - Steven Q Irvine
- Integrative and Evolutionary Biology Graduate Specialization, University of Rhode Island, Kingston, RI, USA.; Department of Biological Sciences, University of Rhode Island, Kingston, RI, USA
| |
Collapse
|
18
|
Fu C, Begum K, Overbeek PA. Primary Ovarian Insufficiency Induced by Fanconi Anemia E Mutation in a Mouse Model. PLoS One 2016; 11:e0144285. [PMID: 26939056 PMCID: PMC4777492 DOI: 10.1371/journal.pone.0144285] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 01/18/2016] [Indexed: 01/18/2023] Open
Abstract
In most cases of primary ovarian insufficiency (POI), the cause of the depletion of ovarian follicles is unknown. Fanconi anemia (FA) proteins are known to play important roles in follicular development. Using random insertional mutagenesis with a lentiviral transgene, we identified a family with reduced fertility in the homozygous transgenic mice. We identified the integration site and found that the lentivirus had integrated into intron 8 of the Fanconi E gene (Fance). By RT-PCR and in situ hybridization, we found that Fance transcript levels were significantly reduced. The Fance homozygous mutant mice were assayed for changes in ovarian development, follicle numbers and estrous cycle. Ovarian dysplasias and a severe lack of follicles were seen in the mutant mice. In addition, the estrous cycle was disrupted in adult females. Our results suggest that POI has been induced by the Fance mutation in this new mouse model.
Collapse
Affiliation(s)
- Chun Fu
- Department of Obstetrics and Gynecology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| | - Khurshida Begum
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Paul A. Overbeek
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
19
|
Analysis of a FANCE Splice Isoform in Regard to DNA Repair. J Mol Biol 2015; 427:3056-73. [PMID: 26277624 DOI: 10.1016/j.jmb.2015.08.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 07/15/2015] [Accepted: 08/04/2015] [Indexed: 11/27/2022]
Abstract
The FANC-BRCA DNA repair pathway is activated in response to interstrand crosslinks formed in DNA. A homozygous mutation in 1 of the 17 Fanconi anemia (FA) genes results in malfunctions of this pathway and development of FA syndrome. The integrity of this protein network is essential for good maintenance of DNA repair process and genome stability. Following the identification of an alternatively splice isoform of FANCE (Fanconi anemia complementation group E) significantly expressed in breast cancer individuals from high-risk non-BRCA1/2 families, we studied the impact of this FANCE splice isoform (FANCEΔ4) on DNA repair processes. We have demonstrated that FANCEΔ4 mRNA was efficiently translated into a functional protein and expressed in normal and breast cancer cell lines. Following treatment with the crosslinking agent mitomycin C, EUFA130 (FANCE-deficient) cells infected with FANCEΔ4 were blocked into G2/M phase, while cell survival was significantly reduced compared with FANCE-infected EUFA130 cells. In addition, FANCEΔ4 did not allow FANCD2 and FANCI monoubiquitination, which represents a crucial step of the FANC-BRCA functional pathway. As observed for FANCE wild-type protein, localization of FANCEΔ4 protein was confined to the nucleus following mitomycin C treatment. Although FANCEΔ4 protein showed interaction with FANCE, FANCEΔ4 did not support normal function of FANCE protein in this pathway and could have deleterious effects on FANCE protein activity. We have demonstrated that FANCEΔ4 seems to act as a regulator of FANCD2 protein expression level by promoting its degradation. This study highlights the importance of an efficient regulation of alternative splicing expression of FA genes for proper DNA repair.
Collapse
|
20
|
Abstract
Fanconi anemia (FA) represents a paradigm of rare genetic diseases, where the quest for cause and cure has led to seminal discoveries in cancer biology. Although a total of 16 FA genes have been identified thus far, the biochemical function of many of the FA proteins remains to be elucidated. FA is rare, yet the fact that 5 FA genes are in fact familial breast cancer genes and FA gene mutations are found frequently in sporadic cancers suggest wider applicability in hematopoiesis and oncology. Establishing the interaction network involving the FA proteins and their associated partners has revealed an intersection of FA with several DNA repair pathways, including homologous recombination, DNA mismatch repair, nucleotide excision repair, and translesion DNA synthesis. Importantly, recent studies have shown a major involvement of the FA pathway in the tolerance of reactive aldehydes. Moreover, despite improved outcomes in stem cell transplantation in the treatment of FA, many challenges remain in patient care.
Collapse
|
21
|
Rajendra E, Oestergaard VH, Langevin F, Wang M, Dornan GL, Patel KJ, Passmore LA. The genetic and biochemical basis of FANCD2 monoubiquitination. Mol Cell 2014; 54:858-69. [PMID: 24905007 PMCID: PMC4051986 DOI: 10.1016/j.molcel.2014.05.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 02/07/2014] [Accepted: 03/28/2014] [Indexed: 12/30/2022]
Abstract
Fanconi anaemia (FA) is a cancer predisposition syndrome characterized by cellular sensitivity to DNA interstrand crosslinkers. The molecular defect in FA is an impaired DNA repair pathway. The critical event in activating this pathway is monoubiquitination of FANCD2. In vivo, a multisubunit FA core complex catalyzes this step, but its mechanism is unclear. Here, we report purification of a native avian FA core complex and biochemical reconstitution of FANCD2 monoubiquitination. This demonstrates that the catalytic FANCL E3 ligase subunit must be embedded within the complex for maximal activity and site specificity. We genetically and biochemically define a minimal subcomplex comprising just three proteins (FANCB, FANCL, and FAAP100) that functions as the monoubiquitination module. Residual FANCD2 monoubiquitination activity is retained in cells defective for other FA core complex subunits. This work describes the in vitro reconstitution and characterization of this multisubunit monoubiquitin E3 ligase, providing key insight into the conserved FA DNA repair pathway.
Collapse
Affiliation(s)
- Eeson Rajendra
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Vibe H Oestergaard
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Frédéric Langevin
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Meng Wang
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Gillian L Dornan
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Ketan J Patel
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK; Department of Medicine, Level 5, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, UK.
| | - Lori A Passmore
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
22
|
Polito D, Cukras S, Wang X, Spence P, Moreau L, D'Andrea AD, Kee Y. The carboxyl terminus of FANCE recruits FANCD2 to the Fanconi Anemia (FA) E3 ligase complex to promote the FA DNA repair pathway. J Biol Chem 2014; 289:7003-7010. [PMID: 24451376 DOI: 10.1074/jbc.m113.533976] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fanconi anemia (FA) is a genome instability syndrome characterized by bone marrow failure and cellular hypersensitivity to DNA cross-linking agents. In response to DNA damage, the FA pathway is activated through the cooperation of 16 FA proteins. A central player in the pathway is a multisubunit E3 ubiquitin ligase complex or the FA core complex, which monoubiquitinates its substrates FANCD2 and FANCI. FANCE, a subunit of the FA core complex, plays an essential role by promoting the integrity of the complex and by directly recognizing FANCD2. To delineate its role in substrate ubiquitination from the core complex assembly, we analyzed a series of mutations within FANCE. We report that a phenylalanine located at the highly conserved extreme C terminus, referred to as Phe-522, is a critical residue for mediating the monoubiquitination of the FANCD2-FANCI complex. Using the FANCE mutant that specifically disrupts the FANCE-FANCD2 interaction as a tool, we found that the interaction-deficient mutant conferred cellular sensitivity in reconstituted FANCE-deficient cells to a similar degree as FANCE null cells, suggesting the significance of the FANCE-FANCD2 interaction in promoting cisplatin resistance. Intriguingly, ectopic expression of the FANCE C terminus fragment alone in FA normal cells disrupts DNA repair, consolidating the importance of the FANCE-FANCD2 interaction in the DNA cross-link repair.
Collapse
Affiliation(s)
- David Polito
- Department of Cell Biology, Microbiology, and Molecular Biology, College of Arts and Sciences, University of South Florida, Tampa, Florida 33620
| | - Scott Cukras
- Department of Cell Biology, Microbiology, and Molecular Biology, College of Arts and Sciences, University of South Florida, Tampa, Florida 33620
| | - Xiaozhe Wang
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115
| | - Paige Spence
- Department of Cell Biology, Microbiology, and Molecular Biology, College of Arts and Sciences, University of South Florida, Tampa, Florida 33620
| | - Lisa Moreau
- Cytogenetics Core Laboratory, Dana-Farber Cancer Institute, Boston, Massachusetts 02115
| | - Alan D D'Andrea
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115
| | - Younghoon Kee
- Department of Cell Biology, Microbiology, and Molecular Biology, College of Arts and Sciences, University of South Florida, Tampa, Florida 33620.
| |
Collapse
|
23
|
Walden H, Deans AJ. The Fanconi anemia DNA repair pathway: structural and functional insights into a complex disorder. Annu Rev Biophys 2014; 43:257-78. [PMID: 24773018 DOI: 10.1146/annurev-biophys-051013-022737] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mutations in any of at least sixteen FANC genes (FANCA-Q) cause Fanconi anemia, a disorder characterized by sensitivity to DNA interstrand crosslinking agents. The clinical features of cytopenia, developmental defects, and tumor predisposition are similar in each group, suggesting that the gene products participate in a common pathway. The Fanconi anemia DNA repair pathway consists of an anchor complex that recognizes damage caused by interstrand crosslinks, a multisubunit ubiquitin ligase that monoubiquitinates two substrates, and several downstream repair proteins including nucleases and homologous recombination enzymes. We review progress in the use of structural and biochemical approaches to understanding how each FANC protein functions in this pathway.
Collapse
Affiliation(s)
- Helen Walden
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom;
| | | |
Collapse
|
24
|
Towards a molecular understanding of the fanconi anemia core complex. Anemia 2012; 2012:926787. [PMID: 22675617 PMCID: PMC3364535 DOI: 10.1155/2012/926787] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 03/21/2012] [Indexed: 11/17/2022] Open
Abstract
Fanconi Anemia (FA) is a genetic disorder characterized by the inability of patient cells to repair DNA damage caused by interstrand crosslinking agents. There are currently 14 verified FA genes, where mutation of any single gene prevents repair of DNA interstrand crosslinks (ICLs). The accumulation of ICL damage results in genome instability and patients having a high predisposition to cancers. The key event of the FA pathway is dependent on an eight-protein core complex (CC), required for the monoubiquitination of each member of the FANCD2-FANCI complex. Interestingly, the majority of patient mutations reside in the CC. The molecular mechanisms underlying the requirement for such a large complex to carry out a monoubiquitination event remain a mystery. This paper documents the extensive efforts of researchers so far to understand the molecular roles of the CC proteins with regard to its main function in the FA pathway, the monoubiquitination of FANCD2 and FANCI.
Collapse
|
25
|
Akbari MR, Malekzadeh R, Lepage P, Roquis D, Sadjadi AR, Aghcheli K, Yazdanbod A, Shakeri R, Bashiri J, Sotoudeh M, Pourshams A, Ghadirian P, Narod SA. Mutations in Fanconi anemia genes and the risk of esophageal cancer. Hum Genet 2011; 129:573-82. [DOI: 10.1007/s00439-011-0951-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2010] [Accepted: 01/17/2011] [Indexed: 01/06/2023]
|
26
|
Wilson JB, Blom E, Cunningham R, Xiao Y, Kupfer GM, Jones NJ. Several tetratricopeptide repeat (TPR) motifs of FANCG are required for assembly of the BRCA2/D1-D2-G-X3 complex, FANCD2 monoubiquitylation and phleomycin resistance. Mutat Res 2010; 689:12-20. [PMID: 20450923 DOI: 10.1016/j.mrfmmm.2010.04.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2009] [Revised: 04/02/2010] [Accepted: 04/28/2010] [Indexed: 11/26/2022]
Abstract
The Fanconi anaemia (FA) FANCG protein is an integral component of the FA nuclear core complex that is required for monoubiquitylation of FANCD2. FANCG is also part of another protein complex termed D1-D2-G-X3 that contains FANCD2 and the homologous recombination repair proteins BRCA2 (FANCD1) and XRCC3. Formation of the D1-D2-G-X3 complex is mediated by serine-7 phosphorylation of FANCG and occurs independently of the FA core complex and FANCD2 monoubiquitylation. FANCG contains seven tetratricopeptide repeat (TPR) motifs that mediate protein-protein interactions and here we show that mutation of several of the TPR motifs at a conserved consensus residue ablates the in vivo binding activity of FANCG. Expression of mutated TPR1, TPR2, TPR5 and TPR6 in Chinese hamster fancg mutant NM3 fails to functionally complement its hypersensitivities to mitomycin C (MMC) and phleomycin and fails to restore FANCD2 monoubiquitylation. Using co-immunoprecipitation analysis, we demonstrate that these TPR-mutated FANCG proteins fail to interact with BRCA2, XRCC3, FANCA or FANCF. The interactions of other proteins in the D1-D2-G-X3 complex are also absent, including the interaction of BRCA2 with both the monoubiquitylated (FANCD2-L) and non-ubiquitylated (FANCD2-S) isoforms of FANCD2. Interestingly, a mutation of TPR7 (R563E), that complements the MMC and phleomycin hypersensitivity of human FA-G EUFA316 cells, fails to complement NM3, despite the mutated FANCG protein co-precipitating with FANCA, BRCA2 and XRCC3. Whilst interaction of TPR7-mutated FANCG with FANCF does appear to be reduced in NM3, FANCD2 is monoubiquitylated suggesting that sub-optimal interactions of FANCG in the core complex and the D1-D2-G-X3 complex are responsible for the observed MMC- and phleomycin-hypersensitivity, rather than a defect in FANCD2 monoubiquitylation. Our data demonstrate that FANCG functions as a mediator of protein-protein interactions and is vital for the assembly of multi-protein complexes including the FA core complex and the D1-D2-G-X3 complex.
Collapse
Affiliation(s)
- James B Wilson
- Molecular Oncology and Stem Cell Research Group, School of Biological Sciences, University of Liverpool, Biosciences Building, Crown Street, Liverpool L69 7ZB, UK
| | | | | | | | | | | |
Collapse
|
27
|
Abstract
Fanconi Anemia (FA) is an inherited genomic instability disorder, caused by mutations in genes regulating replication-dependent removal of interstrand DNA crosslinks. The Fanconi Anemia pathway is thought to coordinate a complex mechanism that enlists elements of three classic DNA repair pathways, namely homologous recombination, nucleotide excision repair, and mutagenic translesion synthesis, in response to genotoxic insults. To this end, the Fanconi Anemia pathway employs a unique nuclear protein complex that ubiquitinates FANCD2 and FANCI, leading to formation of DNA repair structures. Lack of obvious enzymatic activities among most FA members has made it challenging to unravel its precise modus operandi. Here we review the current understanding of how the Fanconi Anemia pathway components participate in DNA repair and discuss the mechanisms that regulate this pathway to ensure timely, efficient, and correct restoration of chromosomal integrity.
Collapse
Affiliation(s)
- George-Lucian Moldovan
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | | |
Collapse
|
28
|
Gari K, Constantinou A. The role of the Fanconi anemia network in the response to DNA replication stress. Crit Rev Biochem Mol Biol 2009; 44:292-325. [PMID: 19728769 DOI: 10.1080/10409230903154150] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Fanconi anemia is a genetically heterogeneous disorder associated with chromosome instability and a highly elevated risk for developing cancer. The mutated genes encode proteins involved in the cellular response to DNA replication stress. Fanconi anemia proteins are extensively connected with DNA caretaker proteins, and appear to function as a hub for the coordination of DNA repair with DNA replication and cell cycle progression. At a molecular level, however, the raison d'être of Fanconi anemia proteins still remains largely elusive. The thirteen Fanconi anemia proteins identified to date have not been embraced into a single and defined biological process. To help put the Fanconi anemia puzzle into perspective, we begin this review with a summary of the strategies employed by prokaryotes and eukaryotes to tolerate obstacles to the progression of replication forks. We then summarize what we know about Fanconi anemia with an emphasis on biochemical aspects, and discuss how the Fanconi anemia network, a late acquisition in evolution, may function to permit the faithful and complete duplication of our very large vertebrate chromosomes.
Collapse
Affiliation(s)
- Kerstin Gari
- DNA Damage Response Laboratory, Cancer Research UK, London Research Institute, Clare Hall Laboratories, South Mimms, UK
| | | |
Collapse
|
29
|
Neveling K, Endt D, Hoehn H, Schindler D. Genotype-phenotype correlations in Fanconi anemia. Mutat Res 2009; 668:73-91. [PMID: 19464302 DOI: 10.1016/j.mrfmmm.2009.05.006] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Revised: 03/30/2009] [Accepted: 05/12/2009] [Indexed: 11/30/2022]
Abstract
Although still incomplete, we now have a remarkably detailed and nuanced picture of both phenotypic and genotypic components of the FA spectrum. Initially described as a combination of pancytopenia with a limited number of physical anomalies, it was later recognized that additional features were compatible with the FA phenotype, including a form without detectable malformations (Estren-Dameshek variant). The discovery of somatic mosaicism extended the boundaries of the FA phenotype to cases even without any overt hematological manifestations. This clinical heterogeneity was augmented by new conceptualizations. There was the realization of a constant risk for the development of myelodysplasia and certain malignancies, including acute myelogenous leukemia and squamous cell carcinoma, and there was the emergence of a distinctive cellular phenotype. A striking degree of genetic heterogeneity became apparent with the delineation of at least 12 complementation groups and the identification of their underlying genes. Although functional genetic insights have fostered the interpretation of many phenotypic features, surprisingly few stringent genotype-phenotype connections have emerged. In addition to myriad genetic alterations, less predictable influences are likely to modulate the FA phenotype, including modifier genes, environmental factors and chance effects. In reviewing the current status of genotype-phenotype correlations, we arrive at a unifying hypothesis to explain the remarkably wide range of FA phenotypes. Given the large body of evidence that genomic instability is a major underlying mechanism of accelerated ageing phenotypes, we propose that the numerous FA variants can be viewed as differential modulations and compression in time of intrinsic biological ageing.
Collapse
Affiliation(s)
- Kornelia Neveling
- Department of Human and Medical Genetics, University of Wurzburg, Biozentrum, Am Hubland, Wurzburg D-97074, Germany
| | | | | | | |
Collapse
|
30
|
Sathyanarayana BK, Hahn Y, Patankar MS, Pastan I, Lee B. Mesothelin, Stereocilin, and Otoancorin are predicted to have superhelical structures with ARM-type repeats. BMC STRUCTURAL BIOLOGY 2009; 9:1. [PMID: 19128473 PMCID: PMC2628672 DOI: 10.1186/1472-6807-9-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Accepted: 01/07/2009] [Indexed: 11/25/2022]
Abstract
Background Mesothelin is a 40 kDa protein present on the surface of normal mesothelial cells and overexpressed in many human tumours, including mesothelioma and ovarian and pancreatic adenocarcinoma. It forms a strong and specific complex with MUC16, which is also highly expressed on the surface of mesothelioma and ovarian cancer cells. This binding has been suggested to be the basis of ovarian cancer metastasis. Knowledge of the structure of this protein will be useful, for example, in building a structural model of the MUC16-mesothelin complex. Mesothelin is produced as a precursor, which is cleaved by furin to produce the N-terminal half, which is called the megakaryocyte potentiating factor (MPF), and the C-terminal half, which is mesothelin. Little is known about the function of mesothelin and there is no information on its possible three-dimensional structure. Mesothelin has been reported to be homologous to the deafness-related inner ear proteins otoancorin and stereocilin, for neither of which the three-dimensional structure is known. Results The BLAST and PSI-BLAST searches confirmed that mesothelin and mesothelin precursor proteins are remotely homologous to stereocilin and otoancorin and more closely homologous to the hypothetical protein MPFL (MPF-like). Secondary structure prediction servers predicted a predominantly helical structure for both mesothelin and mesothelin precursor proteins and also for stereocilin and otoancorin. Three-dimensional structure prediction servers INHUB and I-TASSER produced structural models for mesothelin, which consisted of superhelical structures with ARM-type repeats in conformity with the secondary structure predictions. Similar ARM-type superhelical repeat structures were predicted by 3D-PSSM server for mesothelin precursor and for stereocilin and otoancorin proteins. Conclusion The mesothelin superfamily of proteins, which includes mesothelin, mesothelin precursor, megakaryocyte potentiating factor, MPFL, stereocilin and otoancorin, are predicted to have superhelical structures with ARM-type repeats. We suggest that all of these function as superhelical lectins to bind the carbohydrate moieties of extracellular glycoproteins.
Collapse
Affiliation(s)
- Bangalore K Sathyanarayana
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892-4264, USA.
| | | | | | | | | |
Collapse
|
31
|
Youds JL, Barber LJ, Boulton SJ. C. elegans: a model of Fanconi anemia and ICL repair. Mutat Res 2008; 668:103-16. [PMID: 19059419 DOI: 10.1016/j.mrfmmm.2008.11.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Revised: 10/09/2008] [Accepted: 11/07/2008] [Indexed: 11/29/2022]
Abstract
Fanconi anemia (FA) is a severe recessive disorder with a wide range of clinical manifestations [M. Levitus, H. Joenje, J.P. de Winter, The Fanconi anemia pathway of genomic maintenance, Cell Oncol. 28 (2006) 3-29]. In humans, 13 complementation groups have been identified to underlie FA: A, B, C, D1, D2, E, F, G, I, J, L, M, and N [W. Wang, Emergence of a DNA-damage response network consisting of Fanconi anaemia and BRCA proteins, Nat. Rev. Genet. 8 (2007) 735-748]. Cells defective for any of these genes display chromosomal aberrations and sensitivity to DNA interstrand cross-links (ICLs). It has therefore been suggested that the 13 FA proteins constitute a pathway for the repair of ICLs, and that a deficiency in this repair process causes genomic instability leading to the different clinical phenotypes. However, the exact nature of this repair pathway, or even whether all 13 FA proteins are involved at some stage of a linear repair process, remains to be defined. Undoubtedly, the recent identification and characterisation of FA homologues in model organisms, such as Caenorhabditis elegans, will help facilitate an understanding of the function of the FA proteins by providing new analytical tools. To date, sequence homologues of five FA genes have been identified in C. elegans. Three of these homologues have been confirmed: brc-2 (FANCD1/BRCA2), fcd-2 (FANCD2), and dog-1 (FANCJ/BRIP1); and two remain to be characterised: W02D3.10 (FANCI) and drh-3 (FANCM). Here we review how the nematode can be used to study FA-associated DNA repair, focusing on what is known about the ICL repair genes in C. elegans and which important questions remain for the field.
Collapse
Affiliation(s)
- Jillian L Youds
- DNA Damage Response laboratory, London Research Institute, Cancer Research UK, Clare Hall Laboratories, Blanche Lane, South Mimms EN6 3LD, UK
| | | | | |
Collapse
|
32
|
Altieri F, Grillo C, Maceroni M, Chichiarelli S. DNA damage and repair: from molecular mechanisms to health implications. Antioxid Redox Signal 2008; 10:891-937. [PMID: 18205545 DOI: 10.1089/ars.2007.1830] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
DNA is subjected to several modifications, resulting from endogenous and exogenous sources. The cell has developed a network of complementary DNA-repair mechanisms, and in the human genome, >130 genes have been found to be involved. Knowledge about the basic mechanisms for DNA repair has revealed an unexpected complexity, with overlapping specificity within the same pathway, as well as extensive functional interactions between proteins involved in repair pathways. Unrepaired or improperly repaired DNA lesions have serious potential consequences for the cell, leading to genomic instability and deregulation of cellular functions. A number of disorders or syndromes, including several cancer predispositions and accelerated aging, are linked to an inherited defect in one of the DNA-repair pathways. Genomic instability, a characteristic of most human malignancies, can also arise from acquired defects in DNA repair, and the specific pathway affected is predictive of types of mutations, tumor drug sensitivity, and treatment outcome. Although DNA repair has received little attention as a determinant of drug sensitivity, emerging knowledge of mutations and polymorphisms in key human DNA-repair genes may provide a rational basis for improved strategies for therapeutic interventions on a number of tumors and degenerative disorders.
Collapse
Affiliation(s)
- Fabio Altieri
- Department of Biochemical Sciences, A. Rossi Fanelli, University La Sapienza, Rome, Italy.
| | | | | | | |
Collapse
|