1
|
Trasviña-Arenas CH, Demir M, Lin WJ, David SS. Structure, function and evolution of the Helix-hairpin-Helix DNA glycosylase superfamily: Piecing together the evolutionary puzzle of DNA base damage repair mechanisms. DNA Repair (Amst) 2021; 108:103231. [PMID: 34649144 DOI: 10.1016/j.dnarep.2021.103231] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 10/20/2022]
Abstract
The Base Excision Repair (BER) pathway is a highly conserved DNA repair system targeting chemical base modifications that arise from oxidation, deamination and alkylation reactions. BER features lesion-specific DNA glycosylases (DGs) which recognize and excise modified or inappropriate DNA bases to produce apurinic/apyrimidinic (AP) sites and coordinate AP-site hand-off to subsequent BER pathway enzymes. The DG superfamilies identified have evolved independently to cope with a wide variety of nucleobase chemical modifications. Most DG superfamilies recognize a distinct set of structurally related lesions. In contrast, the Helix-hairpin-Helix (HhH) DG superfamily has the remarkable ability to act upon structurally diverse sets of base modifications. The versatility in substrate recognition of the HhH-DG superfamily has been shaped by motif and domain acquisitions during evolution. In this paper, we review the structural features and catalytic mechanisms of the HhH-DG superfamily and draw a hypothetical reconstruction of the evolutionary path where these DGs developed diverse and unique enzymatic features.
Collapse
Affiliation(s)
| | - Merve Demir
- Department of Chemistry, University of California, Davis, CA 95616, U.S.A
| | - Wen-Jen Lin
- Department of Chemistry, University of California, Davis, CA 95616, U.S.A
| | - Sheila S David
- Department of Chemistry, University of California, Davis, CA 95616, U.S.A..
| |
Collapse
|
2
|
Target search and recognition mechanisms of glycosylase AlkD revealed by scanning FRET-FCS and Markov state models. Proc Natl Acad Sci U S A 2020; 117:21889-21895. [PMID: 32820079 PMCID: PMC7486748 DOI: 10.1073/pnas.2002971117] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
DNA glycosylase repairs DNA damage to maintain the genome integrity, and thus it is essential for the survival of all organisms. However, it remains a long-standing puzzle how glycosylase diffuses along the genomic DNA to locate the sparse and aberrant lesion sites efficiently and accurately in the genome containing numerous base pairs. Previously, only the high-speed–low-accuracy search mode has been characterized experimentally, while the low-speed–high-accuracy mode is undetectable. Here, we observed the low-speed mode of glycosylase AlkD translocating, and further dissected its molecular mechanisms. To achieve this, we developed an integrated platform by combining scanning FRET-FCS with Markov state model. We expect that this platform can be widely applied to investigate other glycosylases and DNA-binding proteins. DNA glycosylase is responsible for repairing DNA damage to maintain the genome stability and integrity. However, how glycosylase can efficiently and accurately recognize DNA lesions across the enormous DNA genome remains elusive. It has been hypothesized that glycosylase translocates along the DNA by alternating between a fast but low-accuracy diffusion mode and a slow but high-accuracy mode when searching for DNA lesions. However, the slow mode has not been successfully characterized due to the limitation in the spatial and temporal resolutions of current experimental techniques. Using a newly developed scanning fluorescence resonance energy transfer (FRET)–fluorescence correlation spectroscopy (FCS) platform, we were able to observe both slow and fast modes of glycosylase AlkD translocating on double-stranded DNA (dsDNA), reaching the temporal resolution of microsecond and spatial resolution of subnanometer. The underlying molecular mechanism of the slow mode was further elucidated by Markov state model built from extensive all-atom molecular dynamics simulations. We found that in the slow mode, AlkD follows an asymmetric diffusion pathway, i.e., rotation followed by translation. Furthermore, the essential role of Y27 in AlkD diffusion dynamics was identified both experimentally and computationally. Our results provided mechanistic insights on how conformational dynamics of AlkD–dsDNA complex coordinate different diffusion modes to accomplish the search for DNA lesions with high efficiency and accuracy. We anticipate that the mechanism adopted by AlkD to search for DNA lesions could be a general one utilized by other glycosylases and DNA binding proteins.
Collapse
|
3
|
Mullins EA, Rodriguez AA, Bradley NP, Eichman BF. Emerging Roles of DNA Glycosylases and the Base Excision Repair Pathway. Trends Biochem Sci 2019; 44:765-781. [PMID: 31078398 DOI: 10.1016/j.tibs.2019.04.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 12/20/2022]
Abstract
The base excision repair (BER) pathway historically has been associated with maintaining genome integrity by eliminating nucleobases with small chemical modifications. In the past several years, however, BER was found to play additional roles in genome maintenance and metabolism, including sequence-specific restriction modification and repair of bulky adducts and interstrand crosslinks. Central to this expanded biological utility are specialized DNA glycosylases - enzymes that selectively excise damaged, modified, or mismatched nucleobases. In this review we discuss the newly identified roles of the BER pathway and examine the structural and mechanistic features of the DNA glycosylases that enable these functions.
Collapse
Affiliation(s)
- Elwood A Mullins
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - Alyssa A Rodriguez
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - Noah P Bradley
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - Brandt F Eichman
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA; Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
4
|
Shi R, Shen XX, Rokas A, Eichman BF. Structural Biology of the HEAT-Like Repeat Family of DNA Glycosylases. Bioessays 2018; 40:e1800133. [PMID: 30264543 DOI: 10.1002/bies.201800133] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/27/2018] [Indexed: 11/08/2022]
Abstract
DNA glycosylases remove aberrant DNA nucleobases as the first enzymatic step of the base excision repair (BER) pathway. The alkyl-DNA glycosylases AlkC and AlkD adopt a unique structure based on α-helical HEAT repeats. Both enzymes identify and excise their substrates without a base-flipping mechanism used by other glycosylases and nucleic acid processing proteins to access nucleobases that are otherwise stacked inside the double-helix. Consequently, these glycosylases act on a variety of cationic nucleobase modifications, including bulky adducts, not previously associated with BER. The related non-enzymatic HEAT-like repeat (HLR) proteins, AlkD2, and AlkF, have unique nucleic acid binding properties that expand the functions of this relatively new protein superfamily beyond DNA repair. Here, we review the phylogeny, biochemistry, and structures of the HLR proteins, which have helped broaden our understanding of the mechanisms by which DNA glycosylases locate and excise chemically modified DNA nucleobases.
Collapse
Affiliation(s)
- Rongxin Shi
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37232, USA
| | - Xing-Xing Shen
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37232, USA
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37232, USA
| | - Brandt F Eichman
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37232, USA
| |
Collapse
|
5
|
Silvestrov P, Cisneros GA. Insights into conformational changes in AlkD bound to DNA with a yatakemycin adduct from computational simulations. Theor Chem Acc 2018; 137:78. [PMID: 30078993 PMCID: PMC6071674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Structural integrity of DNA molecules is necessary for their information storage function. Cells rely on a number of pathways to ensure that the damage to DNA induced by endogenous and exogenous reagents is repaired. AlkD, a base excision enzyme, removes a damaged nucleobase by cleaving a glycosidic bond. Unlike many other base excision enzymes, AlkD does not flip a damaged nucleobase into a designated reaction pocket, and as such can repair nucleobases with larger adducts, such as yatakemycin. In this study, the structure and dynamics of AlkD have been investigated by classical molecular dynamics simulations. Several systems including apo-AlkD, and AlkD in complex with DNA, both with and without the yatakemycin adduct have been simulated. Comparison of the results for the apo-AlkD with AlkD with substrate (damaged or undamaged) indicates a high degree of motion of helix αB in apo-AlkD, whereas this helix is observed to form various contacts when the substrate is bound. The calculated results are consistent with previous experimental studies that have suggested various residues involved in damage recognition, DNA binding, and base excision catalysis.
Collapse
Affiliation(s)
- Pavel Silvestrov
- Department of Chemistry, University of North Texas, Denton, TX 76201, USA
| | - G Andrés Cisneros
- Department of Chemistry, University of North Texas, Denton, TX 76201, USA
| |
Collapse
|
6
|
Silvestrov P, Cisneros GA. Insights into conformational changes in AlkD bound to DNA with a yatakemycin adduct from computational simulations. Theor Chem Acc 2018. [DOI: 10.1007/s00214-018-2255-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
7
|
Shi R, Mullins EA, Shen XX, Lay KT, Yuen PK, David SS, Rokas A, Eichman BF. Selective base excision repair of DNA damage by the non-base-flipping DNA glycosylase AlkC. EMBO J 2018; 37:63-74. [PMID: 29054852 PMCID: PMC5753038 DOI: 10.15252/embj.201797833] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 09/11/2017] [Accepted: 09/22/2017] [Indexed: 01/07/2023] Open
Abstract
DNA glycosylases preserve genome integrity and define the specificity of the base excision repair pathway for discreet, detrimental modifications, and thus, the mechanisms by which glycosylases locate DNA damage are of particular interest. Bacterial AlkC and AlkD are specific for cationic alkylated nucleobases and have a distinctive HEAT-like repeat (HLR) fold. AlkD uses a unique non-base-flipping mechanism that enables excision of bulky lesions more commonly associated with nucleotide excision repair. In contrast, AlkC has a much narrower specificity for small lesions, principally N3-methyladenine (3mA). Here, we describe how AlkC selects for and excises 3mA using a non-base-flipping strategy distinct from that of AlkD. A crystal structure resembling a catalytic intermediate complex shows how AlkC uses unique HLR and immunoglobulin-like domains to induce a sharp kink in the DNA, exposing the damaged nucleobase to active site residues that project into the DNA This active site can accommodate and excise N3-methylcytosine (3mC) and N1-methyladenine (1mA), which are also repaired by AlkB-catalyzed oxidative demethylation, providing a potential alternative mechanism for repair of these lesions in bacteria.
Collapse
Affiliation(s)
- Rongxin Shi
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Elwood A Mullins
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Xing-Xing Shen
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Kori T Lay
- Department of Chemistry, University of California, Davis, CA, USA
| | - Philip K Yuen
- Department of Chemistry, University of California, Davis, CA, USA
| | - Sheila S David
- Department of Chemistry, University of California, Davis, CA, USA
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Brandt F Eichman
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
8
|
Mullins EA, Shi R, Parsons ZD, Yuen PK, David SS, Igarashi Y, Eichman BF. The DNA glycosylase AlkD uses a non-base-flipping mechanism to excise bulky lesions. Nature 2015; 527:254-8. [PMID: 26524531 DOI: 10.1038/nature15728] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 09/18/2015] [Indexed: 01/10/2023]
Abstract
Threats to genomic integrity arising from DNA damage are mitigated by DNA glycosylases, which initiate the base excision repair pathway by locating and excising aberrant nucleobases. How these enzymes find small modifications within the genome is a current area of intensive research. A hallmark of these and other DNA repair enzymes is their use of base flipping to sequester modified nucleotides from the DNA helix and into an active site pocket. Consequently, base flipping is generally regarded as an essential aspect of lesion recognition and a necessary precursor to base excision. Here we present the first, to our knowledge, DNA glycosylase mechanism that does not require base flipping for either binding or catalysis. Using the DNA glycosylase AlkD from Bacillus cereus, we crystallographically monitored excision of an alkylpurine substrate as a function of time, and reconstructed the steps along the reaction coordinate through structures representing substrate, intermediate and product complexes. Instead of directly interacting with the damaged nucleobase, AlkD recognizes aberrant base pairs through interactions with the phosphoribose backbone, while the lesion remains stacked in the DNA duplex. Quantum mechanical calculations revealed that these contacts include catalytic charge-dipole and CH-π interactions that preferentially stabilize the transition state. We show in vitro and in vivo how this unique means of recognition and catalysis enables AlkD to repair large adducts formed by yatakemycin, a member of the duocarmycin family of antimicrobial natural products exploited in bacterial warfare and chemotherapeutic trials. Bulky adducts of this or any type are not excised by DNA glycosylases that use a traditional base-flipping mechanism. Hence, these findings represent a new model for DNA repair and provide insights into catalysis of base excision.
Collapse
Affiliation(s)
- Elwood A Mullins
- Department of Biological Sciences and Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37232, USA
| | - Rongxin Shi
- Department of Biological Sciences and Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37232, USA
| | - Zachary D Parsons
- Department of Biological Sciences and Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37232, USA
| | - Philip K Yuen
- Department of Chemistry, University of California, Davis, California 95616, USA
| | - Sheila S David
- Department of Chemistry, University of California, Davis, California 95616, USA
| | - Yasuhiro Igarashi
- Biotechnology Research Center, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Brandt F Eichman
- Department of Biological Sciences and Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37232, USA
| |
Collapse
|
9
|
Mullins EA, Shi R, Kotsch LA, Eichman BF. A New Family of HEAT-Like Repeat Proteins Lacking a Critical Substrate Recognition Motif Present in Related DNA Glycosylases. PLoS One 2015; 10:e0127733. [PMID: 25978435 PMCID: PMC4433238 DOI: 10.1371/journal.pone.0127733] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 04/20/2015] [Indexed: 12/21/2022] Open
Abstract
DNA glycosylases are important repair enzymes that eliminate a diverse array of aberrant nucleobases from the genomes of all organisms. Individual bacterial species often contain multiple paralogs of a particular glycosylase, yet the molecular and functional distinctions between these paralogs are not well understood. The recently discovered HEAT-like repeat (HLR) DNA glycosylases are distributed across all domains of life and are distinct in their specificity for cationic alkylpurines and mechanism of damage recognition. Here, we describe a number of phylogenetically diverse bacterial species with two orthologs of the HLR DNA glycosylase AlkD. One ortholog, which we designate AlkD2, is substantially less conserved. The crystal structure of Streptococcus mutans AlkD2 is remarkably similar to AlkD but lacks the only helix present in AlkD that penetrates the DNA minor groove. We show that AlkD2 possesses only weak DNA binding affinity and lacks alkylpurine excision activity. Mutational analysis of residues along this DNA binding helix in AlkD substantially reduced binding affinity for damaged DNA, for the first time revealing the importance of this structural motif for damage recognition by HLR glycosylases.
Collapse
Affiliation(s)
- Elwood A. Mullins
- Department of Biological Sciences and Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Rongxin Shi
- Department of Biological Sciences and Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Lyle A. Kotsch
- Department of Biological Sciences and Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Brandt F. Eichman
- Department of Biological Sciences and Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
10
|
Vik ES, Nawaz MS, Strøm Andersen P, Fladeby C, Bjørås M, Dalhus B, Alseth I. Endonuclease V cleaves at inosines in RNA. Nat Commun 2014; 4:2271. [PMID: 23912683 PMCID: PMC3741635 DOI: 10.1038/ncomms3271] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 07/09/2013] [Indexed: 01/05/2023] Open
Abstract
Endonuclease V orthologues are highly conserved proteins found in all kingdoms of life. While the prokaryotic enzymes are DNA repair proteins for removal of deaminated adenosine (inosine) from the genome, no clear role for the eukaryotic counterparts has hitherto been described. Here we report that human endonuclease V (ENDOV) and also Escherichia coli endonuclease V are highly active ribonucleases specific for inosine in RNA. Inosines are normal residues in certain RNAs introduced by specific deaminases. Adenosine-to-inosine editing is essential for proper function of these transcripts and defects are linked to various human disease. Here we show that human ENDOV cleaves an RNA substrate containing inosine in a position corresponding to a biologically important site for deamination in the Gabra-3 transcript of the GABA(A) neurotransmitter. Further, human ENDOV specifically incises transfer RNAs with inosine in the wobble position. This previously unknown RNA incision activity may suggest a role for endonuclease V in normal RNA metabolism.
Collapse
Affiliation(s)
- Erik Sebastian Vik
- Department of Microbiology, Oslo University Hospital HF and University of Oslo, Rikshospitalet, PO Box 4950 Nydalen, 0424 Oslo, Norway
| | | | | | | | | | | | | |
Collapse
|
11
|
Mullins EA, Rubinson EH, Eichman BF. The substrate binding interface of alkylpurine DNA glycosylase AlkD. DNA Repair (Amst) 2013; 13:50-4. [PMID: 24286669 DOI: 10.1016/j.dnarep.2013.10.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 10/28/2013] [Accepted: 10/28/2013] [Indexed: 12/27/2022]
Abstract
Tandem helical repeats have emerged as an important DNA binding architecture. DNA glycosylase AlkD, which excises N3- and N7-alkylated nucleobases, uses repeating helical motifs to bind duplex DNA and to selectively pause at non-Watson-Crick base pairs. Remodeling of the DNA backbone promotes nucleotide flipping of the lesion and the complementary base into the solvent and toward the protein surface, respectively. The important features of this new DNA binding architecture that allow AlkD to distinguish between damaged and normal DNA without contacting the lesion are poorly understood. Here, we show through extensive mutational analysis that DNA binding and N3-methyladenine (3mA) and N7-methylguanine (7mG) excision are dependent upon each residue lining the DNA binding interface. Disrupting electrostatic or hydrophobic interactions with the DNA backbone substantially reduced binding affinity and catalytic activity. These results demonstrate that residues seemingly only involved in general DNA binding are important for catalytic activity and imply that base excision is driven by binding energy provided by the entire substrate interface of this novel DNA binding architecture.
Collapse
Affiliation(s)
- Elwood A Mullins
- Department of Biological Sciences and Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Emily H Rubinson
- Department of Biological Sciences and Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Brandt F Eichman
- Department of Biological Sciences and Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
12
|
Rubinson EH, Christov PP, Eichman BF. Depurination of N7-methylguanine by DNA glycosylase AlkD is dependent on the DNA backbone. Biochemistry 2013; 52:7363-5. [PMID: 24090276 DOI: 10.1021/bi401195r] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
DNA glycosylase AlkD excises N7-methylguanine (7mG) by a unique but unknown mechanism, in which the damaged nucleotide is positioned away from the protein and the phosphate backbone is distorted. Here, we show by methylphosphonate substitution that a phosphate proximal to the lesion has a significant effect on the rate enhancement of 7mG depurination by the enzyme. Thus, instead of a conventional mechanism whereby protein side chains participate in N-glycosidic bond cleavage, AlkD remodels the DNA into an active site composed exclusively of DNA functional groups that provide the necessary chemistry to catalyze depurination.
Collapse
Affiliation(s)
- Emily H Rubinson
- Department of Biological Sciences, Vanderbilt University , Nashville, Tennessee 37232, United States
| | | | | |
Collapse
|
13
|
Mullins EA, Rubinson EH, Pereira KN, Calcutt MW, Christov PP, Eichman BF. An HPLC-tandem mass spectrometry method for simultaneous detection of alkylated base excision repair products. Methods 2013; 64:59-66. [PMID: 23876937 DOI: 10.1016/j.ymeth.2013.07.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 07/08/2013] [Accepted: 07/11/2013] [Indexed: 11/25/2022] Open
Abstract
DNA glycosylases excise a broad spectrum of alkylated, oxidized, and deaminated nucleobases from DNA as the initial step in base excision repair. Substrate specificity and base excision activity are typically characterized by monitoring the release of modified nucleobases either from a genomic DNA substrate that has been treated with a modifying agent or from a synthetic oligonucleotide containing a defined lesion of interest. Detection of nucleobases from genomic DNA has traditionally involved HPLC separation and scintillation detection of radiolabeled nucleobases, which in the case of alkylation adducts can be laborious and costly. Here, we describe a mass spectrometry method to simultaneously detect and quantify multiple alkylpurine adducts released from genomic DNA that has been treated with N-methyl-N-nitrosourea (MNU). We illustrate the utility of this method by monitoring the excision of N3-methyladenine (3 mA) and N7-methylguanine (7 mG) by a panel of previously characterized prokaryotic and eukaryotic alkylpurine DNA glycosylases, enabling a comparison of substrate specificity and enzyme activity by various methods. Detailed protocols for these methods, along with preparation of genomic and oligonucleotide alkyl-DNA substrates, are also described.
Collapse
Affiliation(s)
- Elwood A Mullins
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | | | | | | | | | | |
Collapse
|
14
|
Backe PH, Simm R, Laerdahl JK, Dalhus B, Fagerlund A, Okstad OA, Rognes T, Alseth I, Kolstø AB, Bjørås M. A new family of proteins related to the HEAT-like repeat DNA glycosylases with affinity for branched DNA structures. J Struct Biol 2013; 183:66-75. [PMID: 23623903 DOI: 10.1016/j.jsb.2013.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 04/09/2013] [Accepted: 04/16/2013] [Indexed: 12/27/2022]
Abstract
The recently discovered HEAT-like repeat (HLR) DNA glycosylase superfamily is widely distributed in all domains of life. The present bioinformatics and phylogenetic analysis shows that HLR DNA glycosylase superfamily members in the genus Bacillus form three subfamilies: AlkC, AlkD and AlkF/AlkG. The crystal structure of AlkF shows structural similarity with the DNA glycosylases AlkC and AlkD, however neither AlkF nor AlkG display any DNA glycosylase activity. Instead, both proteins have affinity to branched DNA structures such as three-way and Holliday junctions. A unique β-hairpin in the AlkF/AlkG subfamily is most likely inserted into the DNA major groove, and could be a structural determinant regulating DNA substrate affinity. We conclude that AlkF and AlkG represent a new family of HLR proteins with affinity for branched DNA structures.
Collapse
Affiliation(s)
- Paul H Backe
- Department of Microbiology, Oslo University Hospital and University of Oslo, P.O. Box 4950 Nydalen, 0424 Oslo, Norway
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Base excision repair (BER) corrects DNA damage from oxidation, deamination and alkylation. Such base lesions cause little distortion to the DNA helix structure. BER is initiated by a DNA glycosylase that recognizes and removes the damaged base, leaving an abasic site that is further processed by short-patch repair or long-patch repair that largely uses different proteins to complete BER. At least 11 distinct mammalian DNA glycosylases are known, each recognizing a few related lesions, frequently with some overlap in specificities. Impressively, the damaged bases are rapidly identified in a vast excess of normal bases, without a supply of energy. BER protects against cancer, aging, and neurodegeneration and takes place both in nuclei and mitochondria. More recently, an important role of uracil-DNA glycosylase UNG2 in adaptive immunity was revealed. Furthermore, other DNA glycosylases may have important roles in epigenetics, thus expanding the repertoire of BER proteins.
Collapse
Affiliation(s)
- Hans E Krokan
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, N-7489 Trondheim, Norway.
| | | |
Collapse
|
16
|
Brooks SC, Adhikary S, Rubinson EH, Eichman BF. Recent advances in the structural mechanisms of DNA glycosylases. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1834:247-71. [PMID: 23076011 DOI: 10.1016/j.bbapap.2012.10.005] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 09/24/2012] [Accepted: 10/05/2012] [Indexed: 02/06/2023]
Abstract
DNA glycosylases safeguard the genome by locating and excising a diverse array of aberrant nucleobases created from oxidation, alkylation, and deamination of DNA. Since the discovery 28years ago that these enzymes employ a base flipping mechanism to trap their substrates, six different protein architectures have been identified to perform the same basic task. Work over the past several years has unraveled details for how the various DNA glycosylases survey DNA, detect damage within the duplex, select for the correct modification, and catalyze base excision. Here, we provide a broad overview of these latest advances in glycosylase mechanisms gleaned from structural enzymology, highlighting features common to all glycosylases as well as key differences that define their particular substrate specificities.
Collapse
Affiliation(s)
- Sonja C Brooks
- Department of Biological Sciences and Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | | | | | | |
Collapse
|
17
|
Rubinson EH, Eichman BF. Nucleic acid recognition by tandem helical repeats. Curr Opin Struct Biol 2011; 22:101-9. [PMID: 22154606 DOI: 10.1016/j.sbi.2011.11.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 11/11/2011] [Accepted: 11/16/2011] [Indexed: 12/21/2022]
Abstract
Protein domains constructed from tandem α-helical repeats have until recently been primarily associated with protein scaffolds or RNA recognition. Recent crystal structures of human mitochondrial termination factor MTERF1 and Bacillus cereus alkylpurine DNA glycosylase AlkD bound to DNA revealed two new superhelical tandem repeat architectures capable of wrapping around the double helix in unique ways. Unlike DNA sequence recognition motifs that rely mainly on major groove read-out, MTERF and ALK motifs locate target sequences and aberrant nucleotides within DNA by resculpting the double-helix through extensive backbone contacts. Comparisons between MTERF and ALK repeats, together with recent advances in ssRNA recognition by Pumilio/FBF (PUF) domains, provide new insights into the fundamental principles of protein-nucleic acid recognition.
Collapse
Affiliation(s)
- Emily H Rubinson
- Department of Biological Sciences and Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | | |
Collapse
|
18
|
Dalhus B, Forsbring M, Helle IH, Vik ES, Forstrøm RJ, Backe PH, Alseth I, Bjørås M. Separation-of-function mutants unravel the dual-reaction mode of human 8-oxoguanine DNA glycosylase. Structure 2011; 19:117-27. [PMID: 21220122 DOI: 10.1016/j.str.2010.09.023] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Revised: 08/31/2010] [Accepted: 09/30/2010] [Indexed: 11/16/2022]
Abstract
7,8-Dihydro-8-oxoguanine (8oxoG) is a major mutagenic base lesion formed when reactive oxygen species react with guanine in DNA. The human 8oxoG DNA glycosylase (hOgg1) recognizes and initiates repair of 8oxoG. hOgg1 is acknowledged as a bifunctional DNA glycosylase catalyzing removal of the damaged base followed by cleavage of the backbone of the intermediate abasic DNA (AP lyase/β-elimination). When acting on 8oxoG-containing DNA, these two steps in the hOgg1 catalysis are considered coupled, with Lys249 implicated as a key residue. However, several lines of evidence point to a concurrent and independent monofunctional hydrolysis of the N-glycosylic bond being the in vivo relevant reaction mode of hOgg1. Here, we present biochemical and structural evidence for the monofunctional mode of hOgg1 by design of separation-of-function mutants. Asp268 is identified as the catalytic residue, while Lys249 appears critical for the specific recognition and final alignment of 8oxoG during the hydrolysis reaction.
Collapse
Affiliation(s)
- Bjørn Dalhus
- Centre for Molecular Biology and Neuroscience and Institute of Medical Microbiology, Rikshospitalet, Oslo University Hospital, N-0027 Oslo, Norway.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
An unprecedented nucleic acid capture mechanism for excision of DNA damage. Nature 2010; 468:406-11. [PMID: 20927102 DOI: 10.1038/nature09428] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Accepted: 08/17/2010] [Indexed: 01/22/2023]
Abstract
DNA glycosylases that remove alkylated and deaminated purine nucleobases are essential DNA repair enzymes that protect the genome, and at the same time confound cancer alkylation therapy, by excising cytotoxic N3-methyladenine bases formed by DNA-targeting anticancer compounds. The basis for glycosylase specificity towards N3- and N7-alkylpurines is believed to result from intrinsic instability of the modified bases and not from direct enzyme functional group chemistry. Here we present crystal structures of the recently discovered Bacillus cereus AlkD glycosylase in complex with DNAs containing alkylated, mismatched and abasic nucleotides. Unlike other glycosylases, AlkD captures the extrahelical lesion in a solvent-exposed orientation, providing an illustration for how hydrolysis of N3- and N7-alkylated bases may be facilitated by increased lifetime out of the DNA helix. The structures and supporting biochemical analysis of base flipping and catalysis reveal how the HEAT repeats of AlkD distort the DNA backbone to detect non-Watson-Crick base pairs without duplex intercalation.
Collapse
|
20
|
Cisneros GA. DFT study of a model system for the dealkylation step catalyzed by AlkB. Interdiscip Sci 2010; 2:70-7. [PMID: 20640798 DOI: 10.1007/s12539-010-0092-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Revised: 11/18/2009] [Accepted: 11/25/2009] [Indexed: 11/25/2022]
Abstract
E. coli AlkB is a DNA repair enzyme that catalyzes the de-methylation of DNA by means of a non-heme iron and alpha-keto glutarate as a co-factor. The proposed reaction mechanism can be separated in four stages. The first stage involves the binding of the co-factor and molecular oxygen to the Fe in the active site. This is followed by the formation of a ferryl intermediate in a high-spin state, along with CO(2) and succinate. Subsequently, the O atom on the Fe center is reoriented. The last stage comprises the oxidative de-methylation of the base to produce the native DNA base and formaldehyde. This stage also includes the rate limiting step in the reaction. Here, the last stage of the proposed reaction mechanism of AlkB has been studied for a model of the active site with DFT methods. Minimum structures have been calculated for all intermediates along the path in triplet and quintet spin states. Our results point to the quintet states as more stable, in agreement with previously reported calculations. Potential energy barriers have been obtained for all the steps along this last stage in the quintet state. In the first step the oxygen bound to the Fe center of the ferryl intermediate abstracts a hydrogen atom from the methyl moiety. This first step corresponds to the rate limiting step in the reaction. The calculated barrier for this step is 26.7 kcal/mol. The subsequent steps are highly exoergic. This energetic picture is in qualitative agreement with previously reported results. The calculated energy difference between the ferryl intermediate and the final product is -75.7 kcal/mol for a model with succinate in the active site and -49.3 kcal/mol for a model where the succinate is replaced by water. Our calculated mechanism is slightly different than the previously reported one. These results suggest the possibility of more than one mechanism. This is currently under investigation by ab initio QM/MM methods.
Collapse
Affiliation(s)
- G Andrés Cisneros
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA.
| |
Collapse
|
21
|
Dalhus B, Laerdahl JK, Backe PH, Bjørås M. DNA base repair--recognition and initiation of catalysis. FEMS Microbiol Rev 2009; 33:1044-78. [PMID: 19659577 DOI: 10.1111/j.1574-6976.2009.00188.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Endogenous DNA damage induced by hydrolysis, reactive oxygen species and alkylation modifies DNA bases and the structure of the DNA duplex. Numerous mechanisms have evolved to protect cells from these deleterious effects. Base excision repair is the major pathway for removing base lesions. However, several mechanisms of direct base damage reversal, involving enzymes such as transferases, photolyases and oxidative demethylases, are specialized to remove certain types of photoproducts and alkylated bases. Mismatch excision repair corrects for misincorporation of bases by replicative DNA polymerases. The determination of the 3D structure and visualization of DNA repair proteins and their interactions with damaged DNA have considerably aided our understanding of the molecular basis for DNA base lesion repair and genome stability. Here, we review the structural biochemistry of base lesion recognition and initiation of one-step direct reversal (DR) of damage as well as the multistep pathways of base excision repair (BER), nucleotide incision repair (NIR) and mismatch repair (MMR).
Collapse
Affiliation(s)
- Bjørn Dalhus
- Centre for Molecular Biology and Neuroscience (CMBN), Rikshospitalet University Hospital, Oslo, Norway
| | | | | | | |
Collapse
|
22
|
Bordoli L, Kiefer F, Arnold K, Benkert P, Battey J, Schwede T. Protein structure homology modeling using SWISS-MODEL workspace. Nat Protoc 2009; 4:1-13. [PMID: 19131951 DOI: 10.1038/nprot.2008.197] [Citation(s) in RCA: 934] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Homology modeling aims to build three-dimensional protein structure models using experimentally determined structures of related family members as templates. SWISS-MODEL workspace is an integrated Web-based modeling expert system. For a given target protein, a library of experimental protein structures is searched to identify suitable templates. On the basis of a sequence alignment between the target protein and the template structure, a three-dimensional model for the target protein is generated. Model quality assessment tools are used to estimate the reliability of the resulting models. Homology modeling is currently the most accurate computational method to generate reliable structural models and is routinely used in many biological applications. Typically, the computational effort for a modeling project is less than 2 h. However, this does not include the time required for visualization and interpretation of the model, which may vary depending on personal experience working with protein structures.
Collapse
Affiliation(s)
- Lorenza Bordoli
- Biozentrum, University of Basel, Klingelbergstrasse 50-70, CH 4056 Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
23
|
Identification of DNA-binding proteins using structural, electrostatic and evolutionary features. J Mol Biol 2009; 387:1040-53. [PMID: 19233205 DOI: 10.1016/j.jmb.2009.02.023] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Revised: 02/12/2009] [Accepted: 02/12/2009] [Indexed: 11/22/2022]
Abstract
DNA-binding proteins (DBPs) participate in various crucial processes in the life-cycle of the cells, and the identification and characterization of these proteins is of great importance. We present here a random forests classifier for identifying DBPs among proteins with known 3D structures. First, clusters of evolutionarily conserved regions (patches) on the surface of proteins were detected using the PatchFinder algorithm; earlier studies showed that these regions are typically the functionally important regions of proteins. Next, we trained a classifier using features like the electrostatic potential, cluster-based amino acid conservation patterns and the secondary structure content of the patches, as well as features of the whole protein, including its dipole moment. Using 10-fold cross-validation on a dataset of 138 DBPs and 110 proteins that do not bind DNA, the classifier achieved a sensitivity and a specificity of 0.90, which is overall better than the performance of published methods. Furthermore, when we tested five different methods on 11 new DBPs that did not appear in the original dataset, only our method annotated all correctly. The resulting classifier was applied to a collection of 757 proteins of known structure and unknown function. Of these proteins, 218 were predicted to bind DNA, and we anticipate that some of them interact with DNA using new structural motifs. The use of complementary computational tools supports the notion that at least some of them do bind DNA.
Collapse
|
24
|
Rubinson EH, Metz AH, O'Quin J, Eichman BF. A new protein architecture for processing alkylation damaged DNA: the crystal structure of DNA glycosylase AlkD. J Mol Biol 2008; 381:13-23. [PMID: 18585735 PMCID: PMC3763988 DOI: 10.1016/j.jmb.2008.05.078] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Revised: 05/28/2008] [Accepted: 05/29/2008] [Indexed: 01/02/2023]
Abstract
DNA glycosylases safeguard the genome by locating and excising chemically modified bases from DNA. AlkD is a recently discovered bacterial DNA glycosylase that removes positively charged methylpurines from DNA, and was predicted to adopt a protein fold distinct from from those of other DNA repair proteins. The crystal structure of Bacillus cereus AlkD presented here shows that the protein is composed exclusively of helical HEAT-like repeats, which form a solenoid perfectly shaped to accommodate a DNA duplex on the concave surface. Structural analysis of the variant HEAT repeats in AlkD provides a rationale for how this protein scaffolding motif has been modified to bind DNA. We report 7mG excision and DNA binding activities of AlkD mutants, along with a comparison of alkylpurine DNA glycosylase structures. Together, these data provide important insight into the requirements for alkylation repair within DNA and suggest that AlkD utilizes a novel strategy to manipulate DNA in its search for alkylpurine bases.
Collapse
Affiliation(s)
- Emily H. Rubinson
- Department of Biological Sciences and Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Audrey H. Metz
- Department of Biological Sciences and Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Jami O'Quin
- Department of Biological Sciences and Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Brandt F. Eichman
- Department of Biological Sciences and Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
25
|
Contributions to the NIH-NIGMS Protein Structure Initiative from the PSI Production Centers. Structure 2008; 16:5-11. [PMID: 18184575 DOI: 10.1016/j.str.2007.12.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|