1
|
Ota E, Masuta C, Takeshita M. Generation and Retention of Defective RNA3 from Cucumber Mosaic Virus and Relevance of the 2b Protein to Generation of the Subviral RNA. THE PLANT PATHOLOGY JOURNAL 2023; 39:592-599. [PMID: 38081319 PMCID: PMC10721387 DOI: 10.5423/ppj.ft.07.2023.0106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/12/2023] [Accepted: 10/23/2023] [Indexed: 12/17/2023]
Abstract
A defective RNA3 (D3Yα) of strain Y of cucumber mosaic virus (CMV-Y) was examined on host-specific maintenance, experimental conditions, and a viral factor required for its generation in plants. D3Yα was stably maintained in cucumber but not in tomato plants for 28 days post inoculation (dpi). D3Yα was generated in Nicotiana tabacum or N. benthamiana after prolonged infection in the second and the third passages, but not in plants of N. benthamiana grown at low temperature at 28 dpi or infected with CMV-Y mutant that had the 2b gene deleted. Collectively, we suggest that generation and retention of D3Yα depends on potential host plants and experimental conditions, and that the 2b protein has a role for facilitation of generation of D3Yα.
Collapse
Affiliation(s)
- Emi Ota
- Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Chikara Masuta
- Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Minoru Takeshita
- Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
| |
Collapse
|
2
|
Ashwathappa KV, Krishna Reddy M, Venkataravanappa V, Madhavi Reddy K, Hemachandra Reddy P, Lakshminarayana Reddy CN. Genome characterization and host range studies of Cucumber mosaic virus belonging to the Subgroup IB infecting chilli in India and screening of chilli genotypes for identification of resistance. Virusdisease 2021; 32:535-547. [PMID: 34631978 DOI: 10.1007/s13337-021-00713-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 06/08/2021] [Indexed: 10/20/2022] Open
Abstract
Chilli pepper is an important vegetable and spice crop grown worldwide. Chilli is susceptible to various pathogens, among them mosaic disease caused by Cucumber mosaic virus (CMV) is a major constraint for its production. Roving survey was carried out for mosaic disease assessment in chilli at 35 locations comprising five districts of south eastern Karnataka, which was later confirmed for the presence of different viruses in random samples by DAC-ELISA. Results revealed the prevalence of the disease caused by CMV up to 43.00% based on visual assessment. However, only in 64 samples out of 140 infected chilli samples showed CMV infection in DAC-ELISA and revealed the mixed infection of viruses. Mechanical sap inoculation of CMV-Ko isolate induced symptoms on chilli plants, which were similar to the symptoms observed in field. Complete genome sequence of CMV-Ko (RNA1, RNA2 and RNA3) isolate was amplified, cloned and sequenced. Sequence analysis revealed that it shared 83.7-99.1% nucleotide (nt) identity with CMV subgroup IB isolates infecting different crops in India. Recombination analysis of CMV-Ko genome showed that, RNA1 and RNA2 had recombinant origin and not RNA3. Host range studies for CMV-Ko isolate showed its potential of infecting nine host plants out of 21 used for transmission. Fifty advanced chilli lines were screened against CMV-Ko isolate and 27 immune lines to CMV were identified, which can be utilized for management of disease caused by CMV in chilli. Supplementary Information The online version contains supplementary material available at 10.1007/s13337-021-00713-3.
Collapse
Affiliation(s)
- K V Ashwathappa
- Division of Crop Protection, Plant Virology Laboratory, ICAR-Indian Institute of Horticultural Research, Hessaraghatta Lake PO, Bangalore, Karnataka 560089 India.,Department of Plant Pathology, College of Agriculture, University of Agricultural Sciences, GKVK, Bangalore, Karnataka 560065 India
| | - M Krishna Reddy
- Division of Crop Protection, Plant Virology Laboratory, ICAR-Indian Institute of Horticultural Research, Hessaraghatta Lake PO, Bangalore, Karnataka 560089 India
| | - V Venkataravanappa
- Division of Crop Protection, Plant Virology Laboratory, ICAR-Indian Institute of Horticultural Research, Hessaraghatta Lake PO, Bangalore, Karnataka 560089 India.,Division of Crop Protection, Central Horticultural Experiment Station, ICAR-Indian Institute of Horticultural Research, Chettalli, Madikeri, Hessaraghatta Lake PO, Bangalore, Karnataka 571248 India
| | - K Madhavi Reddy
- Division of Crop Protection, Plant Virology Laboratory, ICAR-Indian Institute of Horticultural Research, Hessaraghatta Lake PO, Bangalore, Karnataka 560089 India
| | - P Hemachandra Reddy
- Division of Crop Protection, Plant Virology Laboratory, ICAR-Indian Institute of Horticultural Research, Hessaraghatta Lake PO, Bangalore, Karnataka 560089 India
| | - C N Lakshminarayana Reddy
- Department of Plant Pathology, College of Agriculture, University of Agricultural Sciences, GKVK, Bangalore, Karnataka 560065 India
| |
Collapse
|
3
|
Ahsan M, Ashfaq M, Riaz H, Khan Z, Hamza MZ, Asad Z. Genetic diversity and molecular characterization of Cucumber mosaic cucumovirus (CMV) subgroup II infecting Spinach (Spinacia oleracea) and Pea (Pisum sativum) in Pothwar region of Pakistan. BRAZ J BIOL 2021; 83:e245865. [PMID: 34495149 DOI: 10.1590/1519-6984.245865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 04/13/2021] [Indexed: 11/22/2022] Open
Abstract
Cucumber mosaic virus (CMV) is a tremendous threat to vegetables across the globe, including in Pakistan. The present work was conducted to investigate the genetic variability of CMV isolates infecting pea and spinach vegetables in the Pothwar region of Pakistan. Serological-based surveys during 2016-2017 revealed 31.70% overall CMV disease incidence from pea and spinach crops. Triple-antibody sandwich enzyme-linked immunosorbent assay (TAS-ELISA) revealed that all the positive isolates belong to CMV subgroup II. Two selected cDNA from ELISA-positive samples representing each pea and spinach crops were PCR-amplified (ca.1100 bp) and sequenced corresponding to the CMV CP gene which shared 93.7% nucleotide identity with each other. Both the sequences of CMV pea (AAHAP) and spinach (AARS) isolates from Pakistan were submitted to GenBank as accession nos. MH119071 and MH119073, respectively. BLAST analysis revealed 93.4% sequence identity of AAHAP isolate with SpK (KC763473) from Iran while AARS isolate shared maximum identity (94.5%) with the strain 241 (AJ585519) from Australia and clustered with some reference isolates of CMV subgroup II from UK (Z12818) and USA (AF127976) in a Neighbour-joining phylogenetic reconstruction. A total of 59 polymorphic (segregating) sites (S) with nucleotide diversity (π) of 0.06218 was evident while no INDEL event was observed in Pakistani isolates. The evolutionary distance of Pakistani CMV isolates was recorded as 0.0657 with each other and 0.0574-0.2964 with other CMV isolates reported elsewhere in the world. A frequent gene flow (Fst = 0.30478 <0.33) was observed between Pakistani and earlier reported CMV isolates. In genetic differentiation analysis, the value of three permutation-based statistical tests viz; Z (84.3011), Snn (0.82456), and Ks* (4.04042) were non-significant. The statistical analysis revealed the values 2.02535, 0.01468, and 0.71862 of Tajima's D, Fu, & Li's F* and D* respectively, demonstrating that the CMV population is under balancing selection.
Collapse
Affiliation(s)
- M Ahsan
- PMAS-Arid Agriculture University, Department of Plant Pathology, Rawalpindi, Pakistan
| | - M Ashfaq
- MNS-University of Agriculture, Institute of Plant Protection, Plant Pathology, Multan, Pakistan
| | - H Riaz
- MNS-University of Agriculture, Institute of Plant Protection, Plant Pathology, Multan, Pakistan
| | - Z Khan
- MNS-University of Agriculture, Institute of Plant Breeding and Biotechnology, Multan, Pakistan
| | - M Z Hamza
- MNS-University of Agriculture, Institute of Plant Protection, Plant Pathology, Multan, Pakistan
| | - Z Asad
- PMAS-Arid Agriculture University, Department of Plant Pathology, Rawalpindi, Pakistan
- MNS-University of Agriculture, Institute of Plant Protection, Plant Pathology, Multan, Pakistan
| |
Collapse
|
4
|
Nouri S, Arevalo R, Falk BW, Groves RL. Genetic structure and molecular variability of Cucumber mosaic virus isolates in the United States. PLoS One 2014; 9:e96582. [PMID: 24801880 PMCID: PMC4012352 DOI: 10.1371/journal.pone.0096582] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 04/08/2014] [Indexed: 12/17/2022] Open
Abstract
Cucumber mosaic virus (CMV) has a worldwide distribution and the widest host range of any known plant virus. From 2000 to 2012, epidemics of CMV severely affected the production of snap bean (Phaseulos vulgaris L.) in the Midwest and Northeastern United States. Virus diversity leading to emergence of new strains is often considered a significant factor in virus epidemics. In addition to epidemics, new disease phenotypes arising from genetic exchanges or mutation can compromise effectiveness of plant disease management strategies. Here, we captured a snapshot of genetic variation of 32 CMV isolates collected from different regions of the U.S including new field as well as historic isolates. Nucleotide diversity (π) was low for U.S. CMV isolates. Sequence and phylogenetic analyses revealed that CMV subgroup I is predominant in the US and further showed that the CMV population is a mixture of subgroups IA and IB. Furthermore, phylogenetic analysis suggests likely reassortment between subgroups IA and IB within five CMV isolates. Based on phylogenetic and computational analysis, recombination between subgroups I and II as well as IA and IB in RNA 3 was detected. This is the first report of recombination between CMV subgroups I and II. Neutrality tests illustrated that negative selection was the major force operating upon the CMV genome, although some positively selected sites were detected for all encoded proteins. Together, these data suggest that different regions of the CMV genome are under different evolutionary constraints. These results also delineate composition of the CMV population in the US, and further suggest that recombination and reassortment among strain subgroups does occur but at a low frequency, and point towards CMV genomic regions that differ in types of selection pressure.
Collapse
Affiliation(s)
- Shahideh Nouri
- Department of Plant Pathology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Rafael Arevalo
- Department of Botany, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Bryce W. Falk
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| | - Russell L. Groves
- Department of Entomology, University of Wisconsin, Madison, Wisconsin, United States of America
| |
Collapse
|
5
|
Ramanna H, Ding XS, Nelson RS. Rationale for developing new virus vectors to analyze gene function in grasses through virus-induced gene silencing. Methods Mol Biol 2013; 975:15-32. [PMID: 23386292 DOI: 10.1007/978-1-62703-278-0_2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
The exploding availability of genome and EST-based sequences from grasses requires a technology that allows rapid functional analysis of the multitude of genes that these resources provide. There are several techniques available to determine a gene's function. For gene knockdown studies, silencing through RNAi is a powerful tool. Gene silencing can be accomplished through stable transformation or transient expression of a fragment of a target gene sequence. Stable transformation in rice, maize, and a few other species, although routine, remains a relatively low-throughput process. Transformation in other grass species is difficult and labor-intensive. Therefore, transient gene silencing methods including Agrobacterium-mediated and virus-induced gene silencing (VIGS) have great potential for researchers studying gene function in grasses. VIGS in grasses already has been used to determine the function of genes during pathogen challenge and plant development. It also can be used in moderate-throughput reverse genetics screens to determine gene function. However, the number of viruses modified to serve as silencing vectors in grasses is limited, and the silencing phenotype induced by these vectors is not optimal: the phenotype being transient and with moderate penetration throughout the tissue. Here, we review the most recent information available for VIGS in grasses and summarize the strengths and weaknesses in current virus-grass host systems. We describe ways to improve current virus vectors and the potential of other grass-infecting viruses for VIGS studies. This work is necessary because VIGS for the foreseeable future remains a higher throughput and more rapid system to evaluate gene function than stable transformation.
Collapse
Affiliation(s)
- Hema Ramanna
- Plant Biology Division, The Samuel Roberts Noble Foundation Inc., Ardmore, OK, USA
| | | | | |
Collapse
|
6
|
Pita JS, Roossinck MJ. Fixation of emerging interviral recombinants in cucumber mosaic virus populations. J Virol 2013; 87:1264-9. [PMID: 23115282 PMCID: PMC3554057 DOI: 10.1128/jvi.01892-12] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 10/23/2012] [Indexed: 11/20/2022] Open
Abstract
Interstrain recombinants were observed in the progenies of the Cucumber mosaic virus (CMV) reassortant L(1)L(2)F(3) containing RNAs 1 and 2 from LS-CMV and RNA 3 from Fny-CMV. We characterized these recombinants, and we found that their fixation was controlled by the nature of the replicating RNAs 1 and 2. We demonstrate that the 2b gene partially affects this fixation process, but only in the context of homologous RNAs 1 and 2.
Collapse
Affiliation(s)
- Justin S Pita
- Department of Plant Pathology and Environmental Biology, and The Huck Institutes of The Life Sciences, Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, USA
| | | |
Collapse
|
7
|
Abstract
Cucumber mosaic virus (CMV) comprises numerous isolates with various levels of in-host diversity. Subgroup-distinctive features of the Fny and LS strains provided us with a platform to genetically map the viral control elements for genetic variation in planta. We found that both RNAs 1 and 2 controlled levels of genetic diversity, and further fine mapping revealed that the control elements of mutation frequency reside within the first 596 amino acids (aa) of RNA 1. The 2a/2b overlapping region of the 2a protein also contributed to control of viral genetic variation. Furthermore, the 3' nontranslated region (NTR) of RNA 3 constituted a hot spot of polymorphism, where the majority of fixed mutations found in the population were clustered. The 2b gene of CMV, a viral suppressor of gene silencing, controls the abundance of the fixed mutants in the viral population via a host-dependent mechanism.
Collapse
|
8
|
Wang MB, Masuta C, Smith NA, Shimura H. RNA silencing and plant viral diseases. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:1275-85. [PMID: 22670757 DOI: 10.1094/mpmi-04-12-0093-cr] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
RNA silencing plays a critical role in plant resistance against viruses, with multiple silencing factors participating in antiviral defense. Both RNA and DNA viruses are targeted by the small RNA-directed RNA degradation pathway, with DNA viruses being also targeted by RNA-directed DNA methylation. To evade RNA silencing, plant viruses have evolved a variety of counter-defense mechanisms such as expressing RNA-silencing suppressors or adopting silencing-resistant RNA structures. This constant defense-counter defense arms race is likely to have played a major role in defining viral host specificity and in shaping viral and possibly host genomes. Recent studies have provided evidence that RNA silencing also plays a direct role in viral disease induction in plants, with viral RNA-silencing suppressors and viral siRNAs as potentially the dominant players in viral pathogenicity. However, questions remain as to whether RNA silencing is the principal mediator of viral pathogenicity or if other RNA-silencing-independent mechanisms also account for viral disease induction. RNA silencing has been exploited as a powerful tool for engineering virus resistance in plants as well as in animals. Further understanding of the role of RNA silencing in plant-virus interactions and viral symptom induction is likely to result in novel anti-viral strategies in both plants and animals.
Collapse
Affiliation(s)
- Ming-Bo Wang
- CSIRO Division of Plant Industry, Canberra, Australia.
| | | | | | | |
Collapse
|
9
|
Diemer GS, Stedman KM. A novel virus genome discovered in an extreme environment suggests recombination between unrelated groups of RNA and DNA viruses. Biol Direct 2012; 7:13. [PMID: 22515485 PMCID: PMC3372434 DOI: 10.1186/1745-6150-7-13] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 04/19/2012] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Viruses are known to be the most abundant organisms on earth, yet little is known about their collective origin and evolutionary history. With exceptionally high rates of genetic mutation and mosaicism, it is not currently possible to resolve deep evolutionary histories of the known major virus groups. Metagenomics offers a potential means of establishing a more comprehensive view of viral evolution as vast amounts of new sequence data becomes available for comparative analysis. RESULTS Bioinformatic analysis of viral metagenomic sequences derived from a hot, acidic lake revealed a circular, putatively single-stranded DNA virus encoding a major capsid protein similar to those found only in single-stranded RNA viruses. The presence and circular configuration of the complete virus genome was confirmed by inverse PCR amplification from native DNA extracted from lake sediment. The virus genome appears to be the result of a RNA-DNA recombination event between two ostensibly unrelated virus groups. Environmental sequence databases were examined for homologous genes arranged in similar configurations and three similar putative virus genomes from marine environments were identified. This result indicates the existence of a widespread but previously undetected group of viruses. CONCLUSIONS This unique viral genome carries implications for theories of virus emergence and evolution, as no mechanism for interviral RNA-DNA recombination has yet been identified, and only scant evidence exists that genetic exchange occurs between such distinct virus lineages. REVIEWERS This article was reviewed by EK, MK (nominated by PF) and AM. For the full reviews, please go to the Reviewers' comments section.
Collapse
Affiliation(s)
- Geoffrey S Diemer
- Department of Biology, and the Center for Life in Extreme Environments, Portland State University, 1719 SW 10th Avenue, SRTC room 246, Portland, OR 97201, USA
| | | |
Collapse
|
10
|
Peltier C, Klein E, Hleibieh K, D'Alonzo M, Hammann P, Bouzoubaa S, Ratti C, Gilmer D. Beet necrotic yellow vein virus subgenomic RNA3 is a cleavage product leading to stable non-coding RNA required for long-distance movement. J Gen Virol 2012; 93:1093-1102. [PMID: 22258860 DOI: 10.1099/vir.0.039685-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Beet necrotic yellow vein virus (BNYVV) is a multipartite RNA virus. BNYVV RNA3 does not accumulate in non-host transgenic Arabidopsis thaliana plants when expressed using a 35S promoter. However, a 3'-derivative species has been detected in transgenic plants and in transient expression assays conducted in Nicotiana benthamiana and Beta macrocarpa. The 3'-derivative species is similar to the previously reported subgenomic RNA3 produced during virus infection. 5' RACE revealed that the truncated forms had identical 5' ends. The 5' termini carried the coremin motif also present on BNYVV RNA5, beet soil-borne mosaic virus RNA3 and 4, and cucumber mosaic virus group 2 RNAs. This RNA3 species lacks a m(7)Gppp at the 5' end of the cleavage products, whether expressed transiently or virally. Mutagenesis revealed the importance of the coremin sequence for both long-distance movement and stabilization of the cleavage product in vivo and in vitro. The isolation of various RNA3 5'-end products suggests the existence of a cleavage between nt 212 and 1234 and subsequent exonucleolytic degradation, leading to the accumulation of a non-coding RNA. When RNA3 was incubated in wheatgerm extracts, truncated forms appeared rapidly and their appearance was protein- and divalent ion-dependent.
Collapse
Affiliation(s)
- Claire Peltier
- Institut de Biologie Moléculaire des Plantes, Laboratoire Propre du CNRS (UPR 2357) conventionné avec l'Université de Strasbourg, 12 Rue du Général Zimmer, 67084 Strasbourg, France
| | - Elodie Klein
- Institut de Biologie Moléculaire des Plantes, Laboratoire Propre du CNRS (UPR 2357) conventionné avec l'Université de Strasbourg, 12 Rue du Général Zimmer, 67084 Strasbourg, France
| | - Kamal Hleibieh
- Institut de Biologie Moléculaire des Plantes, Laboratoire Propre du CNRS (UPR 2357) conventionné avec l'Université de Strasbourg, 12 Rue du Général Zimmer, 67084 Strasbourg, France
| | - Massimiliano D'Alonzo
- Università di Bologna, Dipartimento di Scienze e Tecnologie Agroambientali, Area Patologia Vegetale, Viale G. Fanin 40, II piano, 40127 Bologna, Italy
| | - Philippe Hammann
- Institut de Biologie Moléculaire et Cellulaire, Laboratoire Propre du CNRS conventionné avec l'Université de Strasbourg, 15 Rue René Descartes, 67084 Strasbourg, France
| | - Salah Bouzoubaa
- Institut de Biologie Moléculaire des Plantes, Laboratoire Propre du CNRS (UPR 2357) conventionné avec l'Université de Strasbourg, 12 Rue du Général Zimmer, 67084 Strasbourg, France
| | - Claudio Ratti
- Università di Bologna, Dipartimento di Scienze e Tecnologie Agroambientali, Area Patologia Vegetale, Viale G. Fanin 40, II piano, 40127 Bologna, Italy
| | - David Gilmer
- Institut de Biologie Moléculaire des Plantes, Laboratoire Propre du CNRS (UPR 2357) conventionné avec l'Université de Strasbourg, 12 Rue du Général Zimmer, 67084 Strasbourg, France
| |
Collapse
|
11
|
González I, Rakitina D, Semashko M, Taliansky M, Praveen S, Palukaitis P, Carr JP, Kalinina N, Canto T. RNA binding is more critical to the suppression of silencing function of Cucumber mosaic virus 2b protein than nuclear localization. RNA (NEW YORK, N.Y.) 2012; 18:771-82. [PMID: 22357910 PMCID: PMC3312564 DOI: 10.1261/rna.031260.111] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Previously, we found that silencing suppression by the 2b protein and six mutants correlated both with their ability to bind to double-stranded (ds) small RNAs (sRNAs) in vitro and with their nuclear/nucleolar localization. To further discern the contribution to suppression activity of sRNA binding and of nuclear localization, we have characterized the kinetics of in vitro binding to a ds sRNA, a single-stranded (ss) sRNA, and a micro RNA (miRNA) of the native 2b protein and eight mutant variants. We have also added a nuclear export signal (NES) to the 2b protein and assessed how it affected subcellular distribution and suppressor activity. We found that in solution native protein bound ds siRNA, miRNA, and ss sRNA with high affinity, at protein:RNA molar ratios ~2:1. Of the four mutants that retained suppressor activity, three showed sRNA binding profiles similar to those of the native protein, whereas the remaining one bound ss sRNA at a 2:1 molar ratio, but both ds sRNAs with 1.5-2 times slightly lower affinity. Three of the four mutants lacking suppressor activity failed to bind to any sRNA, whereas the remaining one bound them at far higher ratios. NES-tagged 2b protein became cytoplasmic, but suppression activity in patch assays remained unaffected. These results support binding to sRNAs at molar ratios at or near 2:1 as critical to the suppressor activity of the 2b protein. They also show that cytoplasmically localized 2b protein retained suppressor activity, and that a sustained nuclear localization was not required for this function.
Collapse
Affiliation(s)
| | - Daria Rakitina
- A. N. Belozersky Institute of Physico-Chemical Biology, Biological Faculty, Moscow State University, Leninskye Gory 119991, Russia
| | - Maria Semashko
- A. N. Belozersky Institute of Physico-Chemical Biology, Biological Faculty, Moscow State University, Leninskye Gory 119991, Russia
| | - Michael Taliansky
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, Scotland, United Kingdom
| | - Shelly Praveen
- Indian Agricultural Research institute, New Delhi 110-012, India
| | | | - John P. Carr
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Natalia Kalinina
- A. N. Belozersky Institute of Physico-Chemical Biology, Biological Faculty, Moscow State University, Leninskye Gory 119991, Russia
| | - Tomás Canto
- Centro de Investigaciones Biológicas, CIB, CSIC, Madrid 28040, Spain
- Corresponding author.E-mail .
| |
Collapse
|
12
|
Abstract
Cucumber mosaic virus (CMV) is an important virus because of its agricultural impact in the Mediterranean Basin and worldwide, and also as a model for understanding plant-virus interactions. This review focuses on those areas where most progress has been made over the past decade in our understanding of CMV. Clearly, a deep understanding of the role of the recently described CMV 2b gene in suppression of host RNA silencing and viral virulence is the most important discovery. These findings have had an impact well beyond the virus itself, as the 2b gene is an important tool in the studies of eukaryotic gene regulation. Protein 2b was shown to be involved in most of the steps of the virus cycle and to interfere with several basal host defenses. Progress has also been made concerning the mechanisms of virus replication and movement. However, only a few host proteins that interact with viral proteins have been identified, making this an area of research where major efforts are still needed. Another area where major advances have been made is CMV population genetics, where contrasting results were obtained. On the one hand, CMV was shown to be prone to recombination and to show high genetic diversity based on sequence data of different isolates. On the other hand, populations did not exhibit high genetic variability either within plants, or even in a field and the nearby wild plants. The situation was partially clarified with the finding that severe bottlenecks occur during both virus movement within a plant and transmission between plants. Finally, novel studies were undertaken to elucidate mechanisms leading to selection in virus population, according to the host or its environment, opening a new research area in plant-virus coevolution.
Collapse
|
13
|
Shi BJ, Palukaitis P. The N-terminal 12 amino acids of tomato aspermy virus 2b protein function in infection and recombination. J Gen Virol 2011; 92:2706-2710. [PMID: 21880843 DOI: 10.1099/vir.0.035071-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
The roles for various regions of the 2b protein in infection, hypervirulence and recombination were examined by introducing stop codons in a chimeric virus containing RNA 1 from the cucumber mosaic virus (CMV strain Q), RNA 3 from the tomato aspermy virus (TAV) and RNA 2 of CMV with a 2b gene from TAV. Chimeric virus expressing the intact 2b protein induced severe symptoms in inoculated Nicotiana clevelandii and Nicotiana glutinosa and facilitated CMV-TAV recombination, while chimeric viruses not expressing 2b protein did not infect plants systemically. Chimeric viruses expressing either the N-terminal 43 or 12 aa of the 2b protein infected both plant species systemically and facilitated CMV-TAV recombination, but induced mild symptoms and no symptoms in the infected plants, respectively. These data suggest that oligopeptides can have important functions in the biology of viruses and prompt a re-examination of existing small ORFs in sequenced virus genomes.
Collapse
Affiliation(s)
- Bu-Jun Shi
- Australian Centre for Plant Functional Genomics, and School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA 5064, Australia
| | | |
Collapse
|
14
|
Asaoka R, Shimura H, Arai M, Masuta C. A progeny virus from a cucumovirus pseudorecombinant evolved to gain the ability to accumulate Its RNA-silencing suppressor leading to systemic infection in tobacco. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:332-9. [PMID: 20121454 DOI: 10.1094/mpmi-23-3-0332] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Two isolates of Tomato aspermy virus (TAV), V-TAV and C-TAV, can systemically infect Nicotiana benthamiana but only C-TAV can move systemically in N. tabacum. Any pseudorecombinants between the two strains could not move systemically in tobacco as efficiently as C-TAV. However, a pseudorecombinant consisting of RNAs 1 and 3 of V-TAV and RNA 2 of C-TAV (V1C2V3), which cannot infect tobacco systemically, generated progeny with a mutation in V1 and a recombination in C2 (V1(m)C2(r)V3), enabling the virus to move systemically. To avoid further mutation and recombination in the virus, we used Cucumber mosaic virus RNA3 (Y3) for subsequent experiments. Northern blot analyses showed that RNA4A, which encodes the 2b protein (2b), and RNA5 abundantly accumulated in V1(m)C2(r)Y3-infected tobacco. V1(m)C2(r)Y3 actually caused higher accumulation of 2b than did V1C2Y3 in Western blots, and overexpression of 2b by the PVX vector enabled V1C2Y3 to move systemically in tobacco, suggesting that 2b accumulation promotes viral systemic movement. Because RNA-silencing suppressor (RSS) activity of 2b was thought to be involved in systemic movement, we compared the RSS activity of 2b for the two TAV isolates; C-TAV 2b had stronger activity than did V-TAV 2b in tobacco in a transient protoplast assay. Our data also demonstrated that 2b and RNA5 play an important role in the evolution of members of genus Cucumovirus by generating mutant/recombinant viruses and viral systemic movement over RNA silencing.
Collapse
Affiliation(s)
- Ryota Asaoka
- Laboratory Of Cell Biology And Manipulation, Graduate School Of Agriculture, Hokkaido University, Sapporo, Japan
| | | | | | | |
Collapse
|
15
|
The C-terminal residues of the 2b protein of Cucumber mosaic virus
are important for efficient expression in Escherichia coli
and DNA-binding. FEBS Lett 2010; 584:945-50. [DOI: 10.1016/j.febslet.2010.01.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 12/29/2009] [Accepted: 01/15/2010] [Indexed: 11/19/2022]
|
16
|
Morroni M, Thompson JR, Tepfer M. Analysis of recombination between viral RNAs and transgene mRNA under conditions of high selection pressure in favour of recombinants. J Gen Virol 2009; 90:2798-2807. [PMID: 19625460 DOI: 10.1099/vir.0.013771-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
One possible environmental risk related to the utilization of virus-resistant transgenic plants expressing viral sequences is the emergence of new viruses generated by recombination between the viral transgene mRNA and the RNA of an infecting virus. This hypothesis has been tested recently for cucumber mosaic virus (CMV) by comparing the recombinant populations in transgenic and non-transgenic plants under conditions of minimal selection pressure in favour of the recombinants. Equivalent populations were observed in transgenic and non-transgenic plants but, in both, there was a strongly dominant hotspot recombinant which was shown recently to be nonviable alone in planta, suggesting that its predominance could be reduced by applying an increased selection pressure in favour of viable recombinants. Partially disabled I17F-CMV mutants were created by engineering 6 nt deletions in five sites in the RNA3 3'-non-coding region (3'-NCR). One mutant was used to inoculate transgenic tobacco plants expressing the coat protein and 3'-NCR of R-CMV. A total of 22 different recombinant types were identified, of which 12 were, as expected, between the transgene mRNA and the mutated I17F-CMV RNA3, while 10 resulted from recombination between the mutated RNA3 and I17F-CMV RNA1. Twenty recombinants were of the aberrant type, while two, including the dominant one detected previously under conditions of minimal selection pressure, were homologous recombinants. All recombinants detected were very similar to ones observed in nature, suggesting that the deployment of transgenic lines similar to the one studied here would not lead to the emergence of new viruses.
Collapse
Affiliation(s)
- Marco Morroni
- Dipartimento di Produzione Vegetale, Università degli Studi di Milano, via Celoria 2, 20133 Milano, Italy
- Plant Virology Group, ICGEB Biosafety Outstation, Via Piovega 23, 31056 Ca' Tron di Roncade, Italy
| | - Jeremy R Thompson
- Plant Virology Group, ICGEB Biosafety Outstation, Via Piovega 23, 31056 Ca' Tron di Roncade, Italy
| | - Mark Tepfer
- Plant Virology Group, ICGEB Biosafety Outstation, Via Piovega 23, 31056 Ca' Tron di Roncade, Italy
| |
Collapse
|
17
|
Shi BJ, Symons RH, Palukaitis P. Stability and competitiveness of interviral recombinant RNAs derived from a chimeric cucumovirus. Virus Res 2009; 140:216-21. [PMID: 19063925 DOI: 10.1016/j.virusres.2008.11.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Revised: 10/01/2008] [Accepted: 11/10/2008] [Indexed: 11/17/2022]
Abstract
We previously described interviral recombinant RNAs derived from a chimeric virus having RNAs 1 and 2 of cucumber mosaic virus (CMV) with RNA 3 from the related tomato aspermy virus (TAV) and the 2b gene from either TAV or another strain of CMV. Here, we show that these interviral recombinant RNAs 3 were stable in the infected plants and could co-exist with their wild-type parental viral RNAs in the same plants, but their de novo generations were inhibited in the presence of the wild-type parental viral RNAs. The recombinant viral genomes did not prevent the replication of other viral RNAs or vice versa, but one of the interviral recombinant viruses induced different symptoms in Physalis floridana from those induced by the parental chimeric virus without the interviral RNA 3 recombinant. Factors such as the nature of the 2b gene and/or the presence or absence of competing wild-type parental RNAs influenced the generation of the recombinant RNAs described. Our data provide additional mechanistic insight into generation, stabilization and competition of recombinant viral RNA in infected host plants.
Collapse
Affiliation(s)
- Bu-Jun Shi
- Australian Centre for Plant Functional Genomics, University of Adelaide, Glen Osmond, SA 5064, Australia
| | | | | |
Collapse
|
18
|
de Wispelaere M, Rao ALN. Production of cucumber mosaic virus RNA5 and its role in recombination. Virology 2008; 384:179-91. [PMID: 19059620 DOI: 10.1016/j.virol.2008.10.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Revised: 10/04/2008] [Accepted: 10/12/2008] [Indexed: 10/21/2022]
Abstract
Cucumber Mosaic Virus (CMV) is a plant infecting tripartite positive-strand RNA virus. In addition to three genomic and two known subgenomic RNAs, CMV strains of subgroup II (e.g. Q-CMV), but not subgroup I (e.g. Fny-CMV), produce and package a redundant RNA5 encompassing the 3' 304-307 nucleotides of RNAs 2 and 3. The mechanism regulating RNA5 production and its role in CMV life cycle is unknown. In this study, transient expression of Q2 or Q3 by agroinfiltration into Nicotiana benthamiana plants resulted in efficient accumulation of RNA5 suggesting that its production is independent of CMV replication. Deletion and point mutations engineered into a highly conserved region (Box1) adjacent to the 5' end of RNA5 identified sequences required for its efficient production. An experimental system, involving a chimera of Q3 (Q3B3) characterized by having a 3' tRNA-like structure (3'TLS) from Brome mosaic virus (BMV) and RNA5 defective variants of Q1 (Q1Delta), Q2 (Q2Delta) and Q3B3 (Q3DeltaB3), was used to evaluate in vivo the contribution of RNA5 in promoting RNA recombination. Generation of precise homologous recombinants was strictly dependent on sequence identity. When both parental RNAs carried the Box1, recombination occurred preferentially within the Box1. In contrast, generation of non-homologous recombinants occurred only when Q1 and Q2 were competent to produce RNA5. A mechanistic model explaining the functional role played by the RNA5 in generating CMV recombinants was presented.
Collapse
Affiliation(s)
- Melissanne de Wispelaere
- Department of Plant Pathology and Microbiology, University of California, Riverside, CA 92521-0122, USA
| | | |
Collapse
|
19
|
Thompson JR, Buratti E, de Wispelaere M, Tepfer M. Structural and functional characterization of the 5' region of subgenomic RNA5 of cucumber mosaic virus. J Gen Virol 2008; 89:1729-1738. [PMID: 18559944 DOI: 10.1099/vir.0.2008/001057-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The uncapped and ORF-less subgenomic RNA5 is produced in subgroup II strains of cucumber mosaic virus (CMV), but not in subgroup I strains. Its initiation nucleotide (nt 1903) is in a 21 nt conserved sequence (Box1) that is absent in CMV subgroup I. Putative non-coding RNA structural elements surrounding Box1 in the plus and minus strand were identified in silico and by in vitro RNase probing. Four main stem-loop structures (SLM, SLL, SLK and SLJ) were identified between nt 1887 and 1999 of isolate R-CMV (subgroup II), with notable differences within SLM and SLL between the two strands. Mutation of a stem-loop within SLM, even when the predicted wild-type structure was maintained, showed significant reduction in RNA5 levels in planta. Three mutants containing 3-4 nt substitutions between positions -39 and +49 showed significantly reduced levels of RNA5, while another similar mutant at positions 80-83 had RNA5 levels comparable to wild-type. Deletion of Box1 resulted in similar levels of RNA3 and 4 as wild-type, while eliminating RNA5. Insertion of Box1 into a subgroup I isolate was not sufficient to produce RNA5. However, in a mutant with an additional 21 nt of R-CMV 3' of Box1 (positions -1 to +41), low levels of RNA5 were detected. Taken together, these results have identified regions of the viral genome responsible for RNA5 production and in addition provide strong evidence for the existence of newly identified conserved structural elements in the 5' part of the 3' untranslated region.
Collapse
Affiliation(s)
- Jeremy R Thompson
- Plant Virology Group, ICGEB Biosafety Outstation, Via Piovega 23, 31056 Ca' Tron di Roncade, Italy
| | - Emanuele Buratti
- Molecular Pathology Group, ICGEB, AREA Science Park, Padriciano 99, 34012 Trieste, Italy
| | - Mélissanne de Wispelaere
- INRA, Laboratoire de Biologie Cellulaire, UR501, INRA-Versailles, 78026 Versailles cedex, France
| | - Mark Tepfer
- Plant Virology Group, ICGEB Biosafety Outstation, Via Piovega 23, 31056 Ca' Tron di Roncade, Italy
| |
Collapse
|
20
|
Chen HY, Yang J, Lin C, Yuan YA. Structural basis for RNA-silencing suppression by Tomato aspermy virus protein 2b. EMBO Rep 2008; 9:754-60. [PMID: 18600235 DOI: 10.1038/embor.2008.118] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Revised: 05/16/2008] [Accepted: 05/20/2008] [Indexed: 11/09/2022] Open
Abstract
The 2b proteins encoded by cucumovirus act as post-transcriptional gene silencing suppressors to counter host defence during infection. Here we report the crystal structure of Tomato aspermy virus 2b (TAV2b) protein bound to a 19 bp small interfering RNA (siRNA) duplex. TAV2b adopts an all alpha-helix structure and forms a homodimer to measure siRNA duplex in a length-preference mode. TAV2b has a pair of hook-like structures to recognize simultaneously two alpha-helical turns of A-form RNA duplex by fitting its alpha-helix backbone into two adjacent major grooves of siRNA duplex. The conserved pi-stackings between tryptophan and the 5'-terminal base of siRNA duplex from both ends enhance the recognition. TAV2b further oligomerizes to form a dimer of dimers through the conserved leucine-zipper-like motif at its amino-terminal alpha-helix. Biochemical experiments suggest that TAV2b might interfere with the post-transcriptional gene silencing pathway by directly binding to siRNA duplex.
Collapse
Affiliation(s)
- Hong-Ying Chen
- Host-Pathogen Interaction Group, National University of Singapore, Singapore
| | | | | | | |
Collapse
|