1
|
Fan T, Shi T, Sui R, Wang J, Kang H, Yu Y, Zhu Y. The chromatin remodeler ERCC6 and the histone chaperone NAP1 are involved in apurinic/apyrimidinic endonuclease-mediated DNA repair. THE PLANT CELL 2024; 36:2238-2252. [PMID: 38367203 PMCID: PMC11132878 DOI: 10.1093/plcell/koae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/26/2024] [Accepted: 01/28/2024] [Indexed: 02/19/2024]
Abstract
During base excision repair (BER), the apurinic or apyrimidinic (AP) site serves as an intermediate product following base excision. In plants, APE-redox protein (ARP) represents the major AP site of cleavage activity. Despite the well-established understanding that the nucleosomal structure acts as a barrier to various DNA-templated processes, the regulatory mechanisms underlying BER at the chromatin level remain elusive, especially in plants. In this study, we identified plant chromatin remodeler Excision Repair Cross-Complementing protein group 6 (ERCC6) and histone chaperone Nucleosome Assembly Protein 1 (NAP1) as interacting proteins with ARP. The catalytic ATPase domain of ERCC6 facilitates its interaction with both ARP and NAP1. Additionally, ERCC6 and NAP1 synergistically contribute to nucleosome sliding and exposure of hindered endonuclease cleavage sites. Loss-of-function mutations in Arabidopsis (Arabidopsis thaliana) ERCC6 or NAP1 resulted in arp-dependent plant hypersensitivity to 5-fluorouracil, a toxic agent inducing BER, and the accumulation of AP sites. Furthermore, similar protein interactions are also found in yeast cells, suggesting a conserved recruitment mechanism employed by the AP endonuclease to overcome chromatin barriers during BER progression.
Collapse
Affiliation(s)
- Tianyi Fan
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Tianfang Shi
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai 200438, China
| | - Ran Sui
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jingqi Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai 200438, China
| | - Huijia Kang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Yao Yu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai 200438, China
| | - Yan Zhu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China
| |
Collapse
|
2
|
Smerdon MJ, Wyrick JJ, Delaney S. A half century of exploring DNA excision repair in chromatin. J Biol Chem 2023; 299:105118. [PMID: 37527775 PMCID: PMC10498010 DOI: 10.1016/j.jbc.2023.105118] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/23/2023] [Accepted: 07/25/2023] [Indexed: 08/03/2023] Open
Abstract
DNA in eukaryotic cells is packaged into the compact and dynamic structure of chromatin. This packaging is a double-edged sword for DNA repair and genomic stability. Chromatin restricts the access of repair proteins to DNA lesions embedded in nucleosomes and higher order chromatin structures. However, chromatin also serves as a signaling platform in which post-translational modifications of histones and other chromatin-bound proteins promote lesion recognition and repair. Similarly, chromatin modulates the formation of DNA damage, promoting or suppressing lesion formation depending on the chromatin context. Therefore, the modulation of DNA damage and its repair in chromatin is crucial to our understanding of the fate of potentially mutagenic and carcinogenic lesions in DNA. Here, we survey many of the landmark findings on DNA damage and repair in chromatin over the last 50 years (i.e., since the beginning of this field), focusing on excision repair, the first repair mechanism studied in the chromatin landscape. For example, we highlight how the impact of chromatin on these processes explains the distinct patterns of somatic mutations observed in cancer genomes.
Collapse
Affiliation(s)
- Michael J Smerdon
- Biochemistry and Biophysics, School of Molecular Biosciences, Washington State University, Pullman, Washington, USA.
| | - John J Wyrick
- Genetics and Cell Biology, School of Molecular Biosciences, Washington State University, Pullman, Washington, USA
| | - Sarah Delaney
- Department of Chemistry, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
3
|
Ryan BJ, Weaver TM, Spencer JJ, Freudenthal BD. Generation of Recombinant Nucleosomes Containing Site-Specific DNA Damage. Methods Mol Biol 2023; 2701:55-76. [PMID: 37574475 PMCID: PMC10794041 DOI: 10.1007/978-1-0716-3373-1_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Eukaryotic DNA exists in chromatin, where the genomic DNA is packaged into a fundamental repeating unit known as the nucleosome. In this chromatin environment, our genomic DNA is constantly under attack by exogenous and endogenous stressors that can lead to DNA damage. Importantly, this DNA damage must be repaired to prevent the accumulation of mutations and ensure normal cellular function. To date, most in-depth biochemical studies of DNA repair proteins have been performed in the context of free duplex DNA. However, chromatin can serve as a barrier that DNA repair enzymes must navigate in order find, access, and process DNA damage in the cell. To facilitate future studies of DNA repair in chromatin, we describe a protocol for generating nucleosome containing site-specific DNA damage that can be utilized for a variety of in vitro applications. This protocol describes several key steps including how to generate damaged DNA oligonucleotides, the expression and purification of recombinant histones, the refolding of histone complexes, and the reconstitution of nucleosomes containing site-specific DNA damage. These methods will enable researchers to generate nucleosomes containing site-specific DNA damage for extensive biochemical and structural studies of DNA repair in the nucleosome.
Collapse
Affiliation(s)
- Benjamin J Ryan
- Department of Biochemistry and Molecular Biology, Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Tyler M Weaver
- Department of Biochemistry and Molecular Biology, Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Jonah J Spencer
- Department of Biochemistry and Molecular Biology, Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Bret D Freudenthal
- Department of Biochemistry and Molecular Biology, Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
4
|
Biechele-Speziale DJ, Sutton TB, Delaney S. Obstacles and opportunities for base excision repair in chromatin. DNA Repair (Amst) 2022; 116:103345. [PMID: 35689883 PMCID: PMC9253077 DOI: 10.1016/j.dnarep.2022.103345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 01/01/2023]
Abstract
Most eukaryotic DNA is packaged into chromatin, which is made up of tandemly repeating nucleosomes. This packaging of DNA poses a significant barrier to the various enzymes that must act on DNA, including DNA damage response enzymes that interact intimately with DNA to prevent mutations and cell death. To regulate access to certain DNA regions, chromatin remodeling, variant histone exchange, and histone post-translational modifications have been shown to assist several DNA repair pathways including nucleotide excision repair, single strand break repair, and double strand break repair. While these chromatin-level responses have been directly linked to various DNA repair pathways, how they modulate the base excision repair (BER) pathway remains elusive. This review highlights recent findings that demonstrate how BER is regulated by the packaging of DNA into nucleosome core particles (NCPs) and higher orders of chromatin structures. We also summarize the available data that indicate BER may be enabled by chromatin modifications and remodeling.
Collapse
Affiliation(s)
| | | | - Sarah Delaney
- Department of Chemistry, Brown University, Providence, RI, USA.
| |
Collapse
|
5
|
Chakraborty U, Shen ZJ, Tyler J. Chaperoning histones at the DNA repair dance. DNA Repair (Amst) 2021; 108:103240. [PMID: 34687987 DOI: 10.1016/j.dnarep.2021.103240] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/28/2021] [Accepted: 10/03/2021] [Indexed: 12/15/2022]
Abstract
Unlike all other biological molecules that are degraded and replaced if damaged, DNA must be repaired as chromosomes cannot be replaced. Indeed, DNA endures a wide variety of structural damage that need to be repaired accurately to maintain genomic stability and proper functioning of cells and to prevent mutation leading to disease. Given that the genome is packaged into chromatin within eukaryotic cells, it has become increasingly evident that the chromatin context of DNA both facilitates and regulates DNA repair processes. In this review, we discuss mechanisms involved in removal of histones (chromatin disassembly) from around DNA lesions, by histone chaperones and chromatin remodelers, that promotes accessibility of the DNA repair machinery. We also elaborate on how the deposition of core histones and specific histone variants onto DNA (chromatin assembly) during DNA repair promotes repair processes, the role of histone post translational modifications in these processes and how chromatin structure is reestablished after DNA repair is complete.
Collapse
Affiliation(s)
- Ujani Chakraborty
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Zih-Jie Shen
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Jessica Tyler
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
6
|
Caffrey PJ, Delaney S. Chromatin and other obstacles to base excision repair: potential roles in carcinogenesis. Mutagenesis 2021; 35:39-50. [PMID: 31612219 DOI: 10.1093/mutage/gez029] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 09/13/2019] [Indexed: 12/29/2022] Open
Abstract
DNA is comprised of chemically reactive nucleobases that exist under a constant barrage from damaging agents. Failure to repair chemical modifications to these nucleobases can result in mutations that can cause various diseases, including cancer. Fortunately, the base excision repair (BER) pathway can repair modified nucleobases and prevent these deleterious mutations. However, this pathway can be hindered through several mechanisms. For instance, mutations to the enzymes in the BER pathway have been identified in cancers. Biochemical characterisation of these mutants has elucidated various mechanisms that inhibit their activity. Furthermore, the packaging of DNA into chromatin poses another obstacle to the ability of BER enzymes to function properly. Investigations of BER in the base unit of chromatin, the nucleosome core particle (NCP), have revealed that the NCP acts as a complex substrate for BER enzymes. The constituent proteins of the NCP, the histones, also have variants that can further impact the structure of the NCP and may modulate access of enzymes to the packaged DNA. These histone variants have also displayed significant clinical effects both in carcinogenesis and patient prognosis. This review focuses on the underlying molecular mechanisms that present obstacles to BER and the relationship of these obstacles to cancer. In addition, several chemotherapeutics induce DNA damage that can be repaired by the BER pathway and understanding obstacles to BER can inform how resistance and/or sensitivity to these therapies may occur. With the understanding of these molecular mechanisms, current chemotherapeutic treatment regiments may be improved, and future therapies developed.
Collapse
Affiliation(s)
- Paul J Caffrey
- Department of Chemistry, Brown University, Providence, RI
| | - Sarah Delaney
- Department of Chemistry, Brown University, Providence, RI
| |
Collapse
|
7
|
Madders ECET, Parsons JL. Base Excision Repair in Chromatin and the Requirement for Chromatin Remodelling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1241:59-75. [PMID: 32383116 DOI: 10.1007/978-3-030-41283-8_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Base excision repair (BER) is a co-ordinated DNA repair pathway that recognises and repairs chemically modified bases and DNA single strand breaks. It is essential for the maintenance of genome integrity and thus in the prevention of the development of human diseases, including premature ageing, neurodegenerative diseases and cancer. Within the cell, DNA is usually packaged with histone proteins to form chromatin which imposes major constraints on the capacity of cells to perform BER. Therefore chromatin remodelling, stimulated through histone post-translational modifications (PTMs) or ATP-dependent chromatin remodelling complexes (ACRs), are required to stimulate access to the DNA damage and therefore enhance the BER process. Despite this, the molecular mechanisms through which this is co-ordinated and the specific enzymes that promote chromatin remodelling required for BER remain elusive. In this review, we summarise the multitude of in vitro studies utilising mononucleosome substrates containing site-specific DNA base damage that demonstrate the requirement for chromatin remodelling to facilitate BER, particularly in occluded regions. We also highlight preliminary evidence to date for the identity of ACRs, their mechanisms and the role of histone PTMs in modulating the cellular capacity for BER.
Collapse
Affiliation(s)
- Eleanor C E T Madders
- Cancer Research Centre, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Jason L Parsons
- Cancer Research Centre, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK.
| |
Collapse
|
8
|
Karakaidos P, Karagiannis D, Rampias T. Resolving DNA Damage: Epigenetic Regulation of DNA Repair. Molecules 2020; 25:molecules25112496. [PMID: 32471288 PMCID: PMC7321228 DOI: 10.3390/molecules25112496] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 12/18/2022] Open
Abstract
Epigenetic research has rapidly evolved into a dynamic field of genome biology. Chromatin regulation has been proved to be an essential aspect for all genomic processes, including DNA repair. Chromatin structure is modified by enzymes and factors that deposit, erase, and interact with epigenetic marks such as DNA and histone modifications, as well as by complexes that remodel nucleosomes. In this review we discuss recent advances on how the chromatin state is modulated during this multi-step process of damage recognition, signaling, and repair. Moreover, we examine how chromatin is regulated when different pathways of DNA repair are utilized. Furthermore, we review additional modes of regulation of DNA repair, such as through the role of global and localized chromatin states in maintaining expression of DNA repair genes, as well as through the activity of epigenetic enzymes on non-nucleosome substrates. Finally, we discuss current and future applications of the mechanistic interplays between chromatin regulation and DNA repair in the context cancer treatment.
Collapse
Affiliation(s)
| | - Dimitris Karagiannis
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA;
| | - Theodoros Rampias
- Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece;
- Correspondence: ; Tel.: +30-210-659-7469
| |
Collapse
|
9
|
Wang S, Wu XM, Liu CH, Shang JY, Gao F, Guo HS. Verticillium dahliae chromatin remodeling facilitates the DNA damage repair in response to plant ROS stress. PLoS Pathog 2020; 16:e1008481. [PMID: 32298394 PMCID: PMC7188298 DOI: 10.1371/journal.ppat.1008481] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 04/28/2020] [Accepted: 03/16/2020] [Indexed: 12/12/2022] Open
Abstract
Reactive oxygen species (ROS) production is one of the earliest responses when plants percept pathogens and acts as antimicrobials to block pathogen entry. However, whether and how pathogens tolerate ROS stress remains elusive. Here, we report the chromatin remodeling in Verticillium dahliae, a soil-borne pathogenic fungus that causes vascular wilts of a wide range of plants, facilitates the DNA damage repair in response to plant ROS stress. We identified VdDpb4, encoding a histone-fold protein of the ISW2 chromatin remodeling complex in V. dahliae, is a virulence gene. The reduced virulence in wild type Arabidopsis plants arising from VdDpb4 deletion was impaired in the rbohd mutant plants that did not produce ROS. Further characterization of VdDpb4 and its interacting protein, VdIsw2, an ATP-dependent chromatin-remodeling factor, we show that while the depletion of VdIsw2 led to the decondensing of chromatin, the depletion of VdDpb4 resulted in a more compact chromatin structure and affected the VdIsw2-dependent transcriptional effect on gene expression, including genes involved in DNA damage repair. A knockout mutant of either VdDpb4 or VdIsw2 reduced the efficiency of DNA repair in the presence of DNA-damaging agents and virulence during plant infection. Together, our data demonstrate that VdDpb4 and VdIsw2 play roles in maintaining chromatin structure for positioning nucleosomes and transcription regulation, including genes involved in DNA repair in response to ROS stress during development and plant infection. ROS production is one of the earliest responses after the perception of pathogen-associated molecular patterns by plant transmembrane immune receptors, and dependent on the respiratory burst oxidase homolog (RBOH). ROS cause DNA oxidative damage and acts as antimicrobials to block pathogen entry. In this study, we found that chromatin remodeling components, including VdDpb4 and its interacting protein, VdIsw2, are essential for the V. dahliae tolerant in response to ROS stress during development and plant infection. Assays of the accessibility of bulk chromatin suggest that VdDpb4 plays an important role in maintaining a more “open” and accessible chromatin landscape, while VdIsw2 plays an antagonistic role in balancing chromatin structure. Abnormality of nucleosome repositioning by depletion of either protein is harmful to the fungus during DNA repair in response to ROS stress during development and plant infection. We further found that VdDpb4 is required for VdIsw2 to bind to gene promoters for appropriate RNA polymerase II transcription. Taken together, our data demonstrate that VdDpb4 is required for the location of ISW2 on DNA and VdIsw2-dependent transcriptional regulation of gene expression; and provide the first example and essential information for further investigation of chromatin-associated complexes in pathogenic fungi.
Collapse
Affiliation(s)
- Sheng Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing, China
- Shenzhen Baoan Women’s and Children’s Hospital, Jinan University, Shenzhen, China
| | - Xue-Ming Wu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing, China
| | - Chuan-Hui Liu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing, China
| | - Jing-Yun Shang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing, China
| | - Feng Gao
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Hui-Shan Guo
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
10
|
Klinakis A, Karagiannis D, Rampias T. Targeting DNA repair in cancer: current state and novel approaches. Cell Mol Life Sci 2020; 77:677-703. [PMID: 31612241 PMCID: PMC11105035 DOI: 10.1007/s00018-019-03299-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 08/06/2019] [Accepted: 09/09/2019] [Indexed: 12/12/2022]
Abstract
DNA damage response, DNA repair and genomic instability have been under study for their role in tumor initiation and progression for many years now. More recently, next-generation sequencing on cancer tissue from various patient cohorts have revealed mutations and epigenetic silencing of various genes encoding proteins with roles in these processes. These findings, together with the unequivocal role of DNA repair in therapeutic response, have fueled efforts toward the clinical exploitation of research findings. The successful example of PARP1/2 inhibitors has also supported these efforts and led to numerous preclinical and clinical trials with a large number of small molecules targeting various components involved in DNA repair singularly or in combination with other therapies. In this review, we focus on recent considerations related to DNA damage response and new DNA repair inhibition agents. We then discuss how immunotherapy can collaborate with these new drugs and how epigenetic drugs can rewire the activity of repair pathways and sensitize cancer cells to DNA repair inhibition therapies.
Collapse
Affiliation(s)
- Apostolos Klinakis
- Biomedical Research Foundation of the Academy of Athens, 11527, Athens, Greece.
| | - Dimitris Karagiannis
- Department of Genetics and Development, Columbia University Medical Center, New York, NY, 10032, USA
| | - Theodoros Rampias
- Biomedical Research Foundation of the Academy of Athens, 11527, Athens, Greece.
| |
Collapse
|
11
|
Banerjee DR, Deckard CE, Zeng Y, Sczepanski JT. Acetylation of the histone H3 tail domain regulates base excision repair on higher-order chromatin structures. Sci Rep 2019; 9:15972. [PMID: 31685935 PMCID: PMC6828659 DOI: 10.1038/s41598-019-52340-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 10/15/2019] [Indexed: 02/07/2023] Open
Abstract
Despite recent evidence suggesting that histone lysine acetylation contributes to base excision repair (BER) in cells, their exact mechanistic role remains unclear. In order to examine the influence of histone acetylation on the initial steps of BER, we assembled nucleosome arrays consisting of homogeneously acetylated histone H3 (H3K18 and H3K27) and measured the repair of a site-specifically positioned 2′-deoxyuridine (dU) residue by uracil DNA glycosylase (UDG) and apurinic/apyrimidinic endonuclease 1 (APE1). We find that H3K18ac and H3K27ac differentially influence the combined activities of UDG/APE1 on compact chromatin, suggesting that acetylated lysine residues on the H3 tail domain play distinct roles in regulating the initial steps of BER. In addition, we show that the effects of H3 tail domain acetylation on UDG/APE1 activity are at the nucleosome level and do not influence higher-order chromatin folding. Overall, these results establish a novel regulatory role for histone H3 acetylation during the initiation of BER on chromatin.
Collapse
Affiliation(s)
- Deb Ranjan Banerjee
- Department of Chemistry, National Institute of Technology, Durgapur, West Bengal, India
| | - Charles E Deckard
- Department of Chemistry, Texas A&M University, College Station, Texas, 77843, United States
| | - Yu Zeng
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, Texas, 77843, United States
| | - Jonathan T Sczepanski
- Department of Chemistry, Texas A&M University, College Station, Texas, 77843, United States.
| |
Collapse
|
12
|
Abstract
Repair of damaged DNA plays a crucial role in maintaining genomic integrity and normal cell function. The base excision repair (BER) pathway is primarily responsible for removing modified nucleobases that would otherwise cause deleterious and mutagenic consequences and lead to disease. The BER process is initiated by a DNA glycosylase, which recognizes and excises the target nucleobase lesion, and is completed via downstream enzymes acting in a well-coordinated manner. A majority of our current understanding about how BER enzymes function comes from in vitro studies using free duplex DNA as a simplified model. In eukaryotes, however, BER is challenged by the packaging of genomic DNA into chromatin. The fundamental structural repeating unit of chromatin is the nucleosome, which presents a more complex substrate context than free duplex DNA for repair. In this chapter, we discuss how BER enzymes, particularly glycosylases, engage in the context of packaged DNA with insights obtained from both in vivo and in vitro studies. Furthermore, we review factors and mechanisms that can modify chromatin architecture and/or influence DNA accessibility to BER machinery, such as the geometric location of the damage site, nucleosomal DNA unwrapping, histone post-translational modifications, histone variant incorporation, and chromatin remodeling.
Collapse
Affiliation(s)
- Chuxuan Li
- Department of Chemistry, Brown University, Providence, RI, United States
| | - Sarah Delaney
- Department of Chemistry, Brown University, Providence, RI, United States.
| |
Collapse
|
13
|
Ding N, Maiuri AR, O'Hagan HM. The emerging role of epigenetic modifiers in repair of DNA damage associated with chronic inflammatory diseases. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2019; 780:69-81. [PMID: 31395351 PMCID: PMC6690501 DOI: 10.1016/j.mrrev.2017.09.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 09/25/2017] [Accepted: 09/27/2017] [Indexed: 12/15/2022]
Abstract
At sites of chronic inflammation epithelial cells are exposed to high levels of reactive oxygen species (ROS), which can contribute to the initiation and development of many different human cancers. Aberrant epigenetic alterations that cause transcriptional silencing of tumor suppressor genes are also implicated in many diseases associated with inflammation, including cancer. However, it is not clear how altered epigenetic gene silencing is initiated during chronic inflammation. The high level of ROS at sites of inflammation is known to induce oxidative DNA damage in surrounding epithelial cells. Furthermore, DNA damage is known to trigger several responses, including recruitment of DNA repair proteins, transcriptional repression, chromatin modifications and other cell signaling events. Recruitment of epigenetic modifiers to chromatin in response to DNA damage results in transient covalent modifications to chromatin such as histone ubiquitination, acetylation and methylation and DNA methylation. DNA damage also alters non-coding RNA expression. All of these alterations have the potential to alter gene expression at sites of damage. Typically, these modifications and gene transcription are restored back to normal once the repair of the DNA damage is completed. However, chronic inflammation may induce sustained DNA damage and DNA damage responses that result in these transient covalent chromatin modifications becoming mitotically stable epigenetic alterations. Understanding how epigenetic alterations are initiated during chronic inflammation will allow us to develop pharmaceutical strategies to prevent or treat chronic inflammation-induced cancer. This review will focus on types of DNA damage and epigenetic alterations associated with chronic inflammatory diseases, the types of DNA damage and transient covalent chromatin modifications induced by inflammation and oxidative DNA damage and how these modifications may result in epigenetic alterations.
Collapse
Affiliation(s)
- Ning Ding
- Medical Sciences Program, School of Medicine, Indiana University, Bloomington, IN 47405, USA
| | - Ashley R Maiuri
- Medical Sciences Program, School of Medicine, Indiana University, Bloomington, IN 47405, USA
| | - Heather M O'Hagan
- Medical Sciences Program, School of Medicine, Indiana University, Bloomington, IN 47405, USA; Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN 46202, USA.
| |
Collapse
|
14
|
Abstract
The base excision repair (BER) pathway removes modified nucleobases that can be deleterious to an organism. BER is initiated by a glycosylase, which finds and removes these modified nucleobases. Most of the characterization of glycosylase activity has been conducted in the context of DNA oligomer substrates. However, DNA within eukaryotic organisms exists in a packaged environment with the basic unit of organization being the nucleosome core particle (NCP). The NCP is a complex substrate for repair in which a variety of factors can influence glycosylase activity. In this Review, we focus on the geometric positioning of modified nucleobases in an NCP and the consequences on glycosylase activity and initiating BER.
Collapse
Affiliation(s)
- Erin E Kennedy
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912, United States
| | - Paul J Caffrey
- Department of Chemistry, Brown University, Providence, RI 02912, United States
| | - Sarah Delaney
- Department of Chemistry, Brown University, Providence, RI 02912, United States.
| |
Collapse
|
15
|
Banerjee DR, Deckard CE, Elinski MB, Buzbee ML, Wang WW, Batteas JD, Sczepanski JT. Plug-and-Play Approach for Preparing Chromatin Containing Site-Specific DNA Modifications: The Influence of Chromatin Structure on Base Excision Repair. J Am Chem Soc 2018; 140:8260-8267. [PMID: 29883113 DOI: 10.1021/jacs.8b04063] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The genomic DNA of eukaryotic cells exists in the form of chromatin, the structure of which controls the biochemical accessibility of the underlying DNA to effector proteins. In order to gain an in depth molecular understanding of how chromatin structure regulates DNA repair, detailed in vitro biochemical and biophysical studies are required. However, because of challenges associated with reconstituting nucleosome arrays containing site-specifically positioned DNA modifications, such studies have been limited to the use of mono- and dinucleosomes as model in vitro substrates, which are incapable of folding into native chromatin structures. To address this issue, we developed a straightforward and general approach for assembling chemically defined oligonucleosome arrays (i.e., designer chromatin) containing site-specifically modified DNA. Our method takes advantage of nicking endonucleases to excise short fragments of unmodified DNA, which are subsequently replaced with synthetic oligonucleotides containing the desired modification. Using this approach, we prepared several oligonucleosome substrates containing precisely positioned 2'-deoxyuridine (dU) residues and examined the efficiency of base excision repair (BER) within several distinct chromatin architectures. We show that, depending on the translational position of the lesion, the combined catalytic activities of uracil DNA glycosylase (UDG) and apurinic/apyrimidinic endonuclease 1 (APE1) can be either inhibited by as much as 20-fold or accelerated by more than 5-fold within compact chromatin (i.e., the 30 nm fiber) relative to naked DNA. Moreover, we demonstrate that digestion of dU by UDG/APE1 proceeds much more rapidly in mononucleosomes than in compacted nucleosome arrays, thereby providing the first direct evidence that internucleosome interactions play an important role in regulating BER within higher-order chromatin structures. Overall, this work highlights the value of performing detailed biochemical studies on precisely modified chromatin substrates in vitro and provides a robust platform for investigating DNA modifications in chromatin biology.
Collapse
Affiliation(s)
- Deb Ranjan Banerjee
- Department of Chemistry , Texas A&M University , College Station , Texas 77843 , United States
| | - Charles E Deckard
- Department of Chemistry , Texas A&M University , College Station , Texas 77843 , United States
| | - Meagan B Elinski
- Department of Chemistry , Texas A&M University , College Station , Texas 77843 , United States
| | - Meridith L Buzbee
- Department of Chemistry , Texas A&M University , College Station , Texas 77843 , United States
| | - Wesley Wei Wang
- Department of Chemistry , Texas A&M University , College Station , Texas 77843 , United States
| | - James D Batteas
- Department of Chemistry , Texas A&M University , College Station , Texas 77843 , United States
| | - Jonathan T Sczepanski
- Department of Chemistry , Texas A&M University , College Station , Texas 77843 , United States
| |
Collapse
|
16
|
The Chromatin Remodeler Isw1 Prevents CAG Repeat Expansions During Transcription in Saccharomyces cerevisiae. Genetics 2018; 208:963-976. [PMID: 29305386 PMCID: PMC5844344 DOI: 10.1534/genetics.117.300529] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 01/02/2018] [Indexed: 12/23/2022] Open
Abstract
CAG/CTG trinucleotide repeat expansions cause several degenerative neurological and muscular diseases. Koch et al. show that the chromatin remodeling... CAG/CTG trinucleotide repeats are unstable sequences that are difficult to replicate, repair, and transcribe due to their structure-forming nature. CAG repeats strongly position nucleosomes; however, little is known about the chromatin remodeling needed to prevent repeat instability. In a Saccharomyces cerevisiae model system with CAG repeats carried on a YAC, we discovered that the chromatin remodeler Isw1 is required to prevent CAG repeat expansions during transcription. CAG repeat expansions in the absence of Isw1 were dependent on both transcription-coupled repair (TCR) and base-excision repair (BER). Furthermore, isw1∆ mutants are sensitive to methyl methanesulfonate (MMS) and exhibit synergistic MMS sensitivity when combined with BER or TCR pathway mutants. We conclude that CAG expansions in the isw1∆ mutant occur during a transcription-coupled excision repair process that involves both TCR and BER pathways. We observed increased RNA polymerase II (RNAPII) occupancy at the CAG repeat when transcription of the repeat was induced, but RNAPII binding did not change in isw1∆ mutants, ruling out a role for Isw1 remodeling in RNAPII progression. However, nucleosome occupancy over a transcribed CAG tract was altered in isw1∆ mutants. Based on the known role of Isw1 in the reestablishment of nucleosomal spacing after transcription, we suggest that a defect in this function allows DNA structures to form within repetitive DNA tracts, resulting in inappropriate excision repair and repeat-length changes. These results establish a new function for Isw1 in directly maintaining the chromatin structure at the CAG repeat, thereby limiting expansions that can occur during transcription-coupled excision repair.
Collapse
|
17
|
Rodriguez Y, Howard MJ, Cuneo MJ, Prasad R, Wilson SH. Unencumbered Pol β lyase activity in nucleosome core particles. Nucleic Acids Res 2017; 45:8901-8915. [PMID: 28911106 PMCID: PMC5587807 DOI: 10.1093/nar/gkx593] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/23/2017] [Accepted: 06/30/2017] [Indexed: 12/11/2022] Open
Abstract
Packaging of DNA into the nucleosome core particle (NCP) is considered to exert constraints to all DNA-templated processes, including base excision repair where Pol β catalyzes two key enzymatic steps: 5'-dRP lyase gap trimming and template-directed DNA synthesis. Despite its biological significance, knowledge of Pol β activities on NCPs is still limited. Here, we show that removal of the 5'-dRP block by Pol β is unaffected by NCP constraints at all sites tested and is even enhanced near the DNA ends. In contrast, strong inhibition of DNA synthesis is observed. These results indicate 5'-dRP gap trimming proceeds unperturbed within the NCP; whereas, gap filling is strongly limited. In the absence of additional factors, base excision repair in NCPs will stall at the gap-filling step.
Collapse
Affiliation(s)
- Yesenia Rodriguez
- From the Laboratory of Genome Integrity and Structural Biology, NIEHS-NIH, Research Triangle Park, NC 27709, USA
| | - Michael J. Howard
- From the Laboratory of Genome Integrity and Structural Biology, NIEHS-NIH, Research Triangle Park, NC 27709, USA
| | | | - Rajendra Prasad
- From the Laboratory of Genome Integrity and Structural Biology, NIEHS-NIH, Research Triangle Park, NC 27709, USA
| | - Samuel H. Wilson
- From the Laboratory of Genome Integrity and Structural Biology, NIEHS-NIH, Research Triangle Park, NC 27709, USA
| |
Collapse
|
18
|
Maher RL, Marsden CG, Averill AM, Wallace SS, Sweasy JB, Pederson DS. Human cells contain a factor that facilitates the DNA glycosylase-mediated excision of oxidized bases from occluded sites in nucleosomes. DNA Repair (Amst) 2017; 57:91-97. [PMID: 28709015 PMCID: PMC5569575 DOI: 10.1016/j.dnarep.2017.06.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 06/23/2017] [Accepted: 06/27/2017] [Indexed: 11/29/2022]
Abstract
Reactive oxygen species generate some 20,000 base lesions per human cell per day. The vast majority of these potentially mutagenic or cytotoxic lesions are subject to base excision repair (BER). Although chromatin remodelers have been shown to enhance the excision of oxidized bases from nucleosomes in vitro, it is not clear that they are recruited to and act at sites of BER in vivo. To test the hypothesis that cells possess factors that enhance BER in chromatin, we assessed the capacity of nuclear extracts from human cells to excise thymine glycol (Tg) lesions from exogenously added, model nucleosomes. The DNA glycosylase NTHL1 in these extracts was able to excise Tg from both naked DNA and sites in nucleosomes that earlier studies had shown to be sterically accessible. However, the same extracts were able to excise lesions from sterically-occluded sites in nucleosomes only after the addition of Mg2+/ATP. Gel mobility shift assays indicated that nucleosomes remain largely intact following the Mg2+/ATP -dependent excision reaction. Size exclusion chromatography indicated that the NTHL1-stimulating activity has a relatively low molecular weight, close to that of NTHL1 and other BER glycosylases; column fractions that contained the very large chromatin remodeling complexes did not exhibit this same stimulatory activity. These results indicate that cells possess a factor(s) that promotes the initiation of BER in chromatin, but differs from most known chromatin remodeling complexes.
Collapse
Affiliation(s)
- R L Maher
- Department of Microbiology and Molecular Genetics, and The Markey Center for Molecular Genetics, University of Vermont, Burlington, VT, 05405, USA
| | - C G Marsden
- Department of Microbiology and Molecular Genetics, and The Markey Center for Molecular Genetics, University of Vermont, Burlington, VT, 05405, USA
| | - A M Averill
- Department of Microbiology and Molecular Genetics, and The Markey Center for Molecular Genetics, University of Vermont, Burlington, VT, 05405, USA
| | - S S Wallace
- Department of Microbiology and Molecular Genetics, and The Markey Center for Molecular Genetics, University of Vermont, Burlington, VT, 05405, USA
| | - J B Sweasy
- Department of Microbiology and Molecular Genetics, and The Markey Center for Molecular Genetics, University of Vermont, Burlington, VT, 05405, USA; Departments of Therapeutic Radiology and Human Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - D S Pederson
- Department of Microbiology and Molecular Genetics, and The Markey Center for Molecular Genetics, University of Vermont, Burlington, VT, 05405, USA.
| |
Collapse
|
19
|
Menoni H, Di Mascio P, Cadet J, Dimitrov S, Angelov D. Chromatin associated mechanisms in base excision repair - nucleosome remodeling and DNA transcription, two key players. Free Radic Biol Med 2017; 107:159-169. [PMID: 28011149 DOI: 10.1016/j.freeradbiomed.2016.12.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/13/2016] [Accepted: 12/19/2016] [Indexed: 12/30/2022]
Abstract
Genomic DNA is prone to a large number of insults by a myriad of endogenous and exogenous agents. The base excision repair (BER) is the major mechanism used by cells for the removal of various DNA lesions spontaneously or environmentally induced and the maintenance of genome integrity. The presence of persistent DNA damage is not compatible with life, since abrogation of BER leads to early embryonic lethality in mice. There are several lines of evidences showing existence of a link between deficient BER, cancer proneness and ageing, thus illustrating the importance of this DNA repair pathway in human health. Although the enzymology of BER mechanisms has been largely elucidated using chemically defined DNA damage substrates and purified proteins, the complex interplay of BER with another vital process like transcription or when DNA is in its natural state (i.e. wrapped in nucleosome and assembled in chromatin fiber is largely unexplored. Cells use chromatin remodeling factors to overcome the general repression associated with the nucleosomal organization. It is broadly accepted that energy-dependent nucleosome remodeling factors disrupt histones-DNA interactions at the expense of ATP hydrolysis to favor transcription as well as DNA repair. Importantly, unlike transcription, BER is not part of a regulated developmental process but represents a maintenance system that should be efficient anytime and anywhere in the genome. In this review we will discuss how BER can deal with chromatin organization to maintain genetic information. Emphasis will be placed on the following challenging question: how BER is initiated within chromatin?
Collapse
Affiliation(s)
- Hervé Menoni
- Laboratoire de Biologie et Modélisation de la Cellule (LBMC) CNRS/ENSL/UCBL UMR 5239 and Institut NeuroMyoGène - INMG CNRS/UCBL UMR 5310, Université de Lyon, Ecole Normale Supérieure de Lyon, 69007 Lyon, France; Université de Grenoble Alpes/INSERM U1209/CNRS UMR 5309, 38042 Grenoble Cedex 9, France.
| | - Paolo Di Mascio
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CP 26077, CEP 05508-000 São Paulo, SP, Brazil
| | - Jean Cadet
- Département de Médecine Nucléaire et de Radiobiologie, Université de Sherbrooke, Sherbrooke, Québec, Canada J1H 5N4
| | - Stefan Dimitrov
- Université de Grenoble Alpes/INSERM U1209/CNRS UMR 5309, 38042 Grenoble Cedex 9, France
| | - Dimitar Angelov
- Laboratoire de Biologie et Modélisation de la Cellule (LBMC) CNRS/ENSL/UCBL UMR 5239 and Institut NeuroMyoGène - INMG CNRS/UCBL UMR 5310, Université de Lyon, Ecole Normale Supérieure de Lyon, 69007 Lyon, France.
| |
Collapse
|
20
|
Cannan WJ, Rashid I, Tomkinson AE, Wallace SS, Pederson DS. The Human Ligase IIIα-XRCC1 Protein Complex Performs DNA Nick Repair after Transient Unwrapping of Nucleosomal DNA. J Biol Chem 2017; 292:5227-5238. [PMID: 28184006 DOI: 10.1074/jbc.m116.736728] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 02/07/2017] [Indexed: 01/25/2023] Open
Abstract
Reactive oxygen species generate potentially cytotoxic and mutagenic lesions in DNA, both between and within the nucleosomes that package DNA in chromatin. The vast majority of these lesions are subject to base excision repair (BER). Enzymes that catalyze the first three steps in BER can act at many sites in nucleosomes without the aid of chromatin-remodeling agents and without irreversibly disrupting the host nucleosome. Here we show that the same is true for a protein complex comprising DNA ligase IIIα and the scaffolding protein X-ray repair cross-complementing protein 1 (XRCC1), which completes the fourth and final step in (short-patch) BER. Using in vitro assembled nucleosomes containing discretely positioned DNA nicks, our evidence indicates that the ligase IIIα-XRCC1 complex binds to DNA nicks in nucleosomes only when they are exposed by periodic, spontaneous partial unwrapping of DNA from the histone octamer; that the scaffolding protein XRCC1 enhances the ligation; that the ligation occurs within a complex that ligase IIIα-XRCC1 forms with the host nucleosome; and that the ligase IIIα-XRCC1-nucleosome complex decays when ligation is complete, allowing the host nucleosome to return to its native configuration. Taken together, our results illustrate ways in which dynamic properties intrinsic to nucleosomes may contribute to the discovery and efficient repair of base damage in chromatin.
Collapse
Affiliation(s)
- Wendy J Cannan
- From the Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont 05405 and
| | - Ishtiaque Rashid
- the University of New Mexico Cancer Center and Departments of Internal Medicine and Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, New Mexico 87131
| | - Alan E Tomkinson
- the University of New Mexico Cancer Center and Departments of Internal Medicine and Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, New Mexico 87131
| | - Susan S Wallace
- From the Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont 05405 and
| | - David S Pederson
- From the Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont 05405 and
| |
Collapse
|
21
|
Mao P, Kyriss MNM, Hodges AJ, Duan M, Morris RT, Lavine MD, Topping TB, Gloss LM, Wyrick JJ. A basic domain in the histone H2B N-terminal tail is important for nucleosome assembly by FACT. Nucleic Acids Res 2016; 44:9142-9152. [PMID: 27369377 PMCID: PMC5100577 DOI: 10.1093/nar/gkw588] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 06/20/2016] [Indexed: 12/28/2022] Open
Abstract
Nucleosome assembly in vivo requires assembly factors, such as histone chaperones, to bind to histones and mediate their deposition onto DNA. In yeast, the essential histone chaperone FACT (FAcilitates Chromatin Transcription) functions in nucleosome assembly and H2A–H2B deposition during transcription elongation and DNA replication. Recent studies have identified candidate histone residues that mediate FACT binding to histones, but it is not known which histone residues are important for FACT to deposit histones onto DNA during nucleosome assembly. In this study, we report that the histone H2B repression (HBR) domain within the H2B N-terminal tail is important for histone deposition by FACT. Deletion of the HBR domain causes significant defects in histone occupancy in the yeast genome, particularly at HBR-repressed genes, and a pronounced increase in H2A–H2B dimers that remain bound to FACT in vivo. Moreover, the HBR domain is required for purified FACT to efficiently assemble recombinant nucleosomes in vitro. We propose that the interaction between the highly basic HBR domain and DNA plays an important role in stabilizing the nascent nucleosome during the process of histone H2A–H2B deposition by FACT.
Collapse
Affiliation(s)
- Peng Mao
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA 99164, USA
| | - McKenna N M Kyriss
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA 99164, USA
| | - Amelia J Hodges
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA 99164, USA
| | - Mingrui Duan
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA 99164, USA
| | - Robert T Morris
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA 99164, USA
| | - Mark D Lavine
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA 99164, USA
| | - Traci B Topping
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA 99164, USA
| | - Lisa M Gloss
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA 99164, USA
| | - John J Wyrick
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
22
|
Abstract
Base Excision Repair (BER) is a conserved, intracellular DNA repair system that recognizes and removes chemically modified bases to insure genomic integrity and prevent mutagenesis. Aberrant BER has been tightly linked with a broad spectrum of human pathologies, such as several types of cancer, neurological degeneration, developmental abnormalities, immune dysfunction and aging. In the cell, BER must recognize and remove DNA lesions from the tightly condensed, protein-coated chromatin. Because chromatin is necessarily refractory to DNA metabolic processes, like transcription and replication, the compaction of the genomic material is also inhibitory to the repair systems necessary for its upkeep. Multiple ATP-dependent chromatin remodelling (ACR) complexes play essential roles in modulating the protein-DNA interactions within chromatin, regulating transcription and promoting activities of some DNA repair systems, including double-strand break repair and nucleotide excision repair. However, it remains unclear how BER operates in the context of chromatin, and if the chromatin remodelling processes that govern transcription and replication also actively regulate the efficiency of BER. In this review we highlight the emerging role of ACR in regulation of BER.
Collapse
Affiliation(s)
- John M Hinz
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520, USA.
| | - Wioletta Czaja
- Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602-7229, USA
| |
Collapse
|
23
|
Abstract
Regulation of chromatin structure is an essential component of the DNA damage response (DDR), which effectively preserves the integrity of DNA by a network of multiple DNA repair and associated signaling pathways. Within the DDR, chromatin is modified and remodeled to facilitate efficient DNA access, to control the activity of repair proteins and to mediate signaling. The mammalian ISWI family has recently emerged as one of the major ATP-dependent chromatin remodeling complex families that function in the DDR, as it is implicated in at least 3 major DNA repair pathways: homologous recombination, non-homologous end-joining and nucleotide excision repair. In this review, we discuss the various manners through which different ISWI complexes regulate DNA repair and how they are targeted to chromatin containing damaged DNA.
Collapse
Key Words
- ACF1
- ACF1, ATP-utilizing Chromatin assembly and remodeling Factor 1
- ATP-dependent chromatin remodeling
- BER, Base Excision Repair
- DDR, DNA Damage Response
- DNA damage response
- DSB, Double Strand Break
- GG-NER, Global Genome Nucleotide Excision Repair
- HR, Homologous Recombination
- Homologous Recombination
- ISWI
- ISWI, Imitation SWItch
- MRN, MRE11/Rad50/NBS1
- NER, Nucleotide Excision Repair
- NHEJ, Non-Homologous End Joining
- Non-Homologous End-Joining
- Nucleotide Excision Repair
- PAR, Poly(ADP-Ribose)
- RNApolII, RNA Polymerase II
- RSF1, Remodeling and Spacing Factor 1
- SMARCA, SWI-SNF-related Matrix-associated Actin-dependent Regulator of Chromatin A
- SMARCA5/SNF2H
- TC-NER, Transcription-Coupled Nucleotide Excision Repair
- WSTF
- WSTF, Williams Syndrome Transcription Factor
Collapse
Affiliation(s)
- Özge Z Aydin
- a Department of Genetics ; Cancer Genomics Netherlands; Erasmus MC ; Rotterdam , The Netherlands
| | | | | |
Collapse
|
24
|
Rodriguez Y, Hinz JM, Smerdon MJ. Accessing DNA damage in chromatin: Preparing the chromatin landscape for base excision repair. DNA Repair (Amst) 2015; 32:113-119. [PMID: 25957487 PMCID: PMC4522338 DOI: 10.1016/j.dnarep.2015.04.021] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
DNA damage in chromatin comes in many forms, including single base lesions that induce base excision repair (BER). We and others have shown that the structural location of DNA lesions within nucleosomes greatly influences their accessibility to repair enzymes. Indeed, a difference in the location of uracil as small as one-half turn of the DNA backbone on the histone surface can result in a 10-fold difference in the time course of its removal in vitro. In addition, the cell has evolved several interdependent processes capable of enhancing the accessibility of excision repair enzymes to DNA lesions in nucleosomes, including post-translational modification of histones, ATP-dependent chromatin remodeling and interchange of histone variants in nucleosomes. In this review, we focus on different factors that affect accessibility of BER enzymes to nucleosomal DNA.
Collapse
Affiliation(s)
- Yesenia Rodriguez
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520, United States
| | - John M Hinz
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520, United States
| | - Michael J Smerdon
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520, United States.
| |
Collapse
|
25
|
Cell cycle regulation of human DNA repair and chromatin remodeling genes. DNA Repair (Amst) 2015; 30:53-67. [PMID: 25881042 DOI: 10.1016/j.dnarep.2015.03.007] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 03/03/2015] [Accepted: 03/20/2015] [Indexed: 01/10/2023]
Abstract
Maintenance of a genome requires DNA repair integrated with chromatin remodeling. We have analyzed six transcriptome data sets and one data set on translational regulation of known DNA repair and remodeling genes in synchronized human cells. These data are available through our new database: www.dnarepairgenes.com. Genes that have similar transcription profiles in at least two of our data sets generally agree well with known protein profiles. In brief, long patch base excision repair (BER) is enriched for S phase genes, whereas short patch BER uses genes essentially equally expressed in all cell cycle phases. Furthermore, most genes related to DNA mismatch repair, Fanconi anemia and homologous recombination have their highest expression in the S phase. In contrast, genes specific for direct repair, nucleotide excision repair, as well as non-homologous end joining do not show cell cycle-related expression. Cell cycle regulated chromatin remodeling genes were most frequently confined to G1/S and S. These include e.g. genes for chromatin assembly factor 1 (CAF-1) major subunits CHAF1A and CHAF1B; the putative helicases HELLS and ATAD2 that both co-activate E2F transcription factors central in G1/S-transition and recruit DNA repair and chromatin-modifying proteins and DNA double strand break repair proteins; and RAD54L and RAD54B involved in double strand break repair. TOP2A was consistently most highly expressed in G2, but also expressed in late S phase, supporting a role in regulating entry into mitosis. Translational regulation complements transcriptional regulation and appears to be a relatively common cell cycle regulatory mechanism for DNA repair genes. Our results identify cell cycle phases in which different pathways have highest activity, and demonstrate that periodically expressed genes in a pathway are frequently co-expressed. Furthermore, the data suggest that S phase expression and over-expression of some multifunctional chromatin remodeling proteins may set up feedback loops driving cancer cell proliferation.
Collapse
|
26
|
House NCM, Koch MR, Freudenreich CH. Chromatin modifications and DNA repair: beyond double-strand breaks. Front Genet 2014; 5:296. [PMID: 25250043 PMCID: PMC4155812 DOI: 10.3389/fgene.2014.00296] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 08/08/2014] [Indexed: 12/28/2022] Open
Abstract
DNA repair must take place in the context of chromatin, and chromatin modifications and DNA repair are intimately linked. The study of double-strand break repair has revealed numerous histone modifications that occur after induction of a DSB, and modification of the repair factors themselves can also occur. In some cases the function of the modification is at least partially understood, but in many cases it is not yet clear. Although DSB repair is a crucial activity for cell survival, DSBs account for only a small percentage of the DNA lesions that occur over the lifetime of a cell. Repair of single-strand gaps, nicks, stalled forks, alternative DNA structures, and base lesions must also occur in a chromatin context. There is increasing evidence that these repair pathways are also regulated by histone modifications and chromatin remodeling. In this review, we will summarize the current state of knowledge of chromatin modifications that occur during non-DSB repair, highlighting similarities and differences to DSB repair as well as remaining questions.
Collapse
Affiliation(s)
| | - Melissa R Koch
- Department of Biology, Tufts University Medford, MA, USA
| | - Catherine H Freudenreich
- Department of Biology, Tufts University Medford, MA, USA ; Program in Genetics, Sackler School of Graduate Biomedical Sciences, Tufts University Boston, MA, USA
| |
Collapse
|
27
|
Abstract
This perspective reviews the many dimensions of base excision repair from a 10,000 foot vantage point and provides one person's view on where the field is headed. Enzyme function is considered under the lens of X-ray diffraction and single molecule studies. Base excision repair in chromatin and telomeres, regulation of expression and the role of posttranslational modifications are also discussed in the context of enzyme activities, cellular localization and interacting partners. The specialized roles that base excision repair play in transcriptional activation by active demethylation and targeted oxidation as well as how base excision repair functions in the immune processes of somatic hypermutation and class switch recombination and its possible involvement in retroviral infection are also discussed. Finally the complexities of oxidative damage and its repair and its link to neurodegenerative disorders, as well as the role of base excision repair as a tumor suppressor are examined in the context of damage, repair and aging. By outlining the many base excision repair-related mysteries that have yet to be unraveled, hopefully this perspective will stimulate further interest in the field.
Collapse
Affiliation(s)
- Susan S Wallace
- Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, The University of Vermont, 95 Carrigan Drive, Stafford Hall, Burlington, VT 05405-0084, USA.
| |
Collapse
|
28
|
Czaja W, Mao P, Smerdon MJ. Chromatin remodelling complex RSC promotes base excision repair in chromatin of Saccharomyces cerevisiae. DNA Repair (Amst) 2014; 16:35-43. [PMID: 24674626 DOI: 10.1016/j.dnarep.2014.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 12/04/2013] [Accepted: 01/07/2014] [Indexed: 12/15/2022]
Abstract
The base excision repair (BER) pathway is a conserved DNA repair system required to maintain genomic integrity and prevent mutagenesis in all eukaryotic cells. Nevertheless, how BER operates in vivo (i.e. in the context of chromatin) is poorly understood. We have investigated the role of an essential ATP-dependent chromatin remodelling (ACR) complex RSC (Remodels the Structure of Chromatin) in BER of intact yeast cells. We show that depletion of STH1, the ATPase subunit of RSC, causes enhanced sensitivity to the DNA alkylating agent methyl methanesulfonate (MMS) and results in a substantial inhibition of BER, at the GAL1 locus and in the genome overall. Consistent with this observation, the DNA in chromatin is less accessible to micrococcal nuclease digestion in the absence of RSC. Quantitative PCR results indicate that repair deficiency in STH1 depleted cells is not due to changes in the expression of BER genes. Collectively, our data indicates the RSC complex promotes efficient BER in chromatin. These results provide, for the first time, a link between ATP-dependent chromatin remodelling and BER in living cells.
Collapse
Affiliation(s)
- Wioletta Czaja
- Biochemistry and Biophysics, School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520, USA
| | - Peng Mao
- Biochemistry and Biophysics, School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520, USA
| | - Michael J Smerdon
- Biochemistry and Biophysics, School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520, USA.
| |
Collapse
|
29
|
Oliveira DV, Kato A, Nakamura K, Ikura T, Okada M, Kobayashi J, Yanagihara H, Saito Y, Tauchi H, Komatsu K. Histone chaperone FACT regulates homologous recombination by chromatin remodeling through interaction with RNF20. J Cell Sci 2013; 127:763-72. [PMID: 24357716 DOI: 10.1242/jcs.135855] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The E3 ubiquitin ligase RNF20 regulates chromatin structure through ubiquitylation of histone H2B, so that early homologous recombination repair (HRR) proteins can access the DNA in eukaryotes during repair. However, it remains unresolved how RNF20 itself approaches the DNA in the presence of chromatin structure. Here, we identified the histone chaperone FACT as a key protein in the early steps of HRR. Depletion of SUPT16H, a component of FACT, caused pronounced defects in accumulations of repair proteins and, consequently, decreased HRR activity. This led to enhanced sensitivity to ionizing radiation (IR) and mitomycin-C in a fashion similar to RNF20-deficient cells, indicating that SUPT16H is essential for RNF20-mediated pathway. Indeed, SUPT16H directly bound to RNF20 in vivo, and mutation at the RING-finger domain in RNF20 abolished its interaction and accumulation, as well as that of RAD51 and BRCA1, at sites of DNA double-strand breaks (DSBs), whereas the localization of SUPT16H remained intact. Interestingly, PAF1, which has been implicated in transcription as a mediator of FACT and RNF20 association, was dispensable for DNA-damage-induced interaction of RNF20 with SUPT16H. Furthermore, depletion of SUPT16H caused pronounced defects in RNF20-mediated H2B ubiquitylation and thereby, impaired accumulation of the chromatin remodeling factor SNF2h. Consistent with this observation, the defective phenotypes of SUPT16H were effectively counteracted by enforced nucleosome relaxation. Taken together, our results indicate a primary role of FACT in RNF20 recruitment and the resulting chromatin remodeling for initiation of HRR.
Collapse
Affiliation(s)
- Douglas V Oliveira
- Division of Genome Repair Dynamics, Radiation Biology Center, Kyoto University, Yoshida-konoecho, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Goldstein M, Derheimer FA, Tait-Mulder J, Kastan MB. Nucleolin mediates nucleosome disruption critical for DNA double-strand break repair. Proc Natl Acad Sci U S A 2013; 110:16874-9. [PMID: 24082117 PMCID: PMC3801049 DOI: 10.1073/pnas.1306160110] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recruitment of DNA repair factors and modulation of chromatin structure at sites of DNA double-strand breaks (DSBs) is a complex and highly orchestrated process. We developed a system that can induce DSBs rapidly at defined endogenous sites in mammalian genomes and enables direct assessment of repair and monitoring of protein recruitment, egress, and modification at DSBs. The tight regulation of the system also permits assessments of relative kinetics and dependencies of events associated with cellular responses to DNA breakage. Distinct advantages of this system over focus formation/disappearance assays for assessing DSB repair are demonstrated. Using ChIP, we found that nucleosomes are partially disassembled around DSBs during nonhomologous end-joining repair in G1-arrested mammalian cells, characterized by a transient loss of the H2A/H2B histone dimer. Nucleolin, a protein with histone chaperone activity, interacts with RAD50 via its arginine-glycine rich domain and is recruited to DSBs rapidly in an MRE11-NBS1-RAD50 complex-dependent manner. Down-regulation of nucleolin abrogates the nucleosome disruption, the recruitment of repair factors, and the repair of the DSB, demonstrating the functional importance of nucleosome disruption in DSB repair and identifying a chromatin-remodeling protein required for the process. Interestingly, the nucleosome disruption that occurs during DSB repair in cycling cells differs in that both H2A/H2B and H3/H4 histone dimers are removed. This complete nucleosome disruption is also dependent on nucleolin and is required for recruitment of replication protein A to DSBs, a marker of DSB processing that is a requisite for homologous recombination repair.
Collapse
Affiliation(s)
- Michael Goldstein
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN 38105; and
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710
| | | | | | - Michael B. Kastan
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN 38105; and
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710
| |
Collapse
|
31
|
Maher RL, Prasad A, Rizvanova O, Wallace SS, Pederson DS. Contribution of DNA unwrapping from histone octamers to the repair of oxidatively damaged DNA in nucleosomes. DNA Repair (Amst) 2013; 12:964-71. [PMID: 24051050 DOI: 10.1016/j.dnarep.2013.08.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 08/22/2013] [Accepted: 08/24/2013] [Indexed: 11/27/2022]
Abstract
Reactive oxygen species generate ~20,000 oxidative lesions in the DNA of every cell, every day. Most of these lesions are located within nucleosomes, which package DNA in chromatin and impede base excision repair (BER). We demonstrated previously that periodic, spontaneous partial unwrapping of DNA from the underlying histone octamer enables BER enzymes to bind to oxidative lesions that would otherwise be sterically inaccessible. In the present study, we asked if these periodic DNA unwrapping events are frequent enough to account for the estimated rates of BER in vivo. We measured rates of excision of oxidative lesions from sites in nucleosomes that are accessible only during unwrapping episodes. Using reaction conditions appropriate for presteady-state kinetic analyses, we derived lesion exposure rates for both 601 and 5S rDNA-based nucleosomes. Although DNA unwrapping-mediated exposure of a lesion ~16NT from the nucleosome edge occurred ~7-8 times per minute, exposure rates fell dramatically for lesions located 10 or more NT further in from the nucleosome edge. The rates likely are too low to account for observed rates of BER in cells. Thus, chromatin remodeling, either BER-specific or that associated with transcription, replication, or other DNA repair processes, probably contributes to efficient BER in vivo.
Collapse
Affiliation(s)
- Robyn L Maher
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA
| | | | | | | | | |
Collapse
|
32
|
Abstract
Base excision repair (BER) corrects DNA damage from oxidation, deamination and alkylation. Such base lesions cause little distortion to the DNA helix structure. BER is initiated by a DNA glycosylase that recognizes and removes the damaged base, leaving an abasic site that is further processed by short-patch repair or long-patch repair that largely uses different proteins to complete BER. At least 11 distinct mammalian DNA glycosylases are known, each recognizing a few related lesions, frequently with some overlap in specificities. Impressively, the damaged bases are rapidly identified in a vast excess of normal bases, without a supply of energy. BER protects against cancer, aging, and neurodegeneration and takes place both in nuclei and mitochondria. More recently, an important role of uracil-DNA glycosylase UNG2 in adaptive immunity was revealed. Furthermore, other DNA glycosylases may have important roles in epigenetics, thus expanding the repertoire of BER proteins.
Collapse
Affiliation(s)
- Hans E Krokan
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, N-7489 Trondheim, Norway.
| | | |
Collapse
|
33
|
Odell ID, Wallace SS, Pederson DS. Rules of engagement for base excision repair in chromatin. J Cell Physiol 2013; 228:258-66. [PMID: 22718094 DOI: 10.1002/jcp.24134] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Most of the DNA in eukaryotes is packaged in tandemly arrayed nucleosomes that, together with numerous DNA- and nucleosome-associated enzymes and regulatory factors, make up chromatin. Chromatin modifying and remodeling agents help regulate access to selected DNA segments in chromatin, thereby facilitating transcription and DNA replication and repair. Studies of nucleotide excision repair (NER), single strand break repair (SSBR), and the homology-directed repair (HDR), and non-homologous end-joining (NHEJ) double strand break repair pathways have led to an "access-repair-restore" paradigm, in which chromatin in the vicinity of damaged DNA is disrupted, thereby enabling efficient repair and the subsequent repackaging of DNA into nucleosomes. When damage is extensive, these repair processes are accompanied by cell cycle checkpoint activation, which provides cells with sufficient time to either complete the repair or initiate apoptosis. It is not clear, however, if base excision repair (BER) of the ~20,000 or more oxidative DNA damages that occur daily in each nucleated human cell can be viewed through this same lens. Until recently, we did not know if BER requires or is accompanied by nucleosome disruption, and it is not yet clear that anything short of overwhelming oxidative damage (resulting in the shunting of DNA substrates into other repair pathways) results in checkpoint activation. This review highlights studies of how oxidatively damaged DNA in nucleosomes is discovered and repaired, and offers a working model of events associated with BER in chromatin that we hope will have heuristic value.
Collapse
Affiliation(s)
- Ian D Odell
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont 05405, USA
| | | | | |
Collapse
|
34
|
Gospodinov A, Herceg Z. Shaping chromatin for repair. Mutat Res 2012; 752:45-60. [PMID: 23085398 DOI: 10.1016/j.mrrev.2012.10.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2012] [Revised: 10/08/2012] [Accepted: 10/09/2012] [Indexed: 12/19/2022]
Abstract
To counteract the adverse effects of various DNA lesions, cells have evolved an array of diverse repair pathways to restore DNA structure and to coordinate repair with cell cycle regulation. Chromatin changes are an integral part of the DNA damage response, particularly with regard to the types of repair that involve assembly of large multiprotein complexes such as those involved in double strand break (DSB) repair and nucleotide excision repair (NER). A number of phosphorylation, acetylation, methylation, ubiquitylation and chromatin remodeling events modulate chromatin structure at the lesion site. These changes demarcate chromatin neighboring the lesion, afford accessibility and binding surfaces to repair factors and provide on-the-spot means to coordinate repair and damage signaling. Thus, the hierarchical assembly of repair factors at a double strand break is mostly due to their regulated interactions with posttranslational modifications of histones. A large number of chromatin remodelers are required at different stages of DSB repair and NER. Remodelers physically interact with proteins involved in repair processes, suggesting that chromatin remodeling is a requisite for repair factors to access the damaged site. Together, recent findings define the roles of histone post-translational modifications and chromatin remodeling in the DNA damage response and underscore possible differences in the requirements for these events in relation to the chromatin context.
Collapse
Affiliation(s)
- Anastas Gospodinov
- Institute of Molecular Biology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. 21, 1113 Sofia, Bulgaria
| | - Zdenko Herceg
- Epigenetics Group, International Agency for Research on Cancer (IARC), 150 Cours Albert Thomas, 69008, Lyon, France.
| |
Collapse
|
35
|
Franchini DM, Schmitz KM, Petersen-Mahrt SK. 5-Methylcytosine DNA demethylation: more than losing a methyl group. Annu Rev Genet 2012; 46:419-41. [PMID: 22974304 DOI: 10.1146/annurev-genet-110711-155451] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Demethylation of 5-methylcytosine in DNA is integral to the maintenance of an intact epigenome. The balance between the presence or absence of 5-methylcytosine determines many physiological aspects of cell metabolism, with a turnover that can be measured in minutes to years. Biochemically, addition of the methyl group is shared among all living kingdoms and has been well characterized, whereas the removal or reversion of this mark seems diverse and much less understood. Here, we present a summary of how DNA demethylation can be initiated directly, utilizing the ten-eleven translocation (TET) family of proteins, activation-induced deaminase (AID), or other DNA modifying enzymes, or indirectly, via transcription, RNA metabolism, or DNA repair; how intermediates in those pathways are substrates of the DNA repair machinery; and how demethylation pathways are linked and possibly balanced, avoiding mutations.
Collapse
Affiliation(s)
- Don-Marc Franchini
- DNA Editing in Immunity and Epigenetics, IFOM-Fondazione Istituto FIRC di Oncologia Molecolare, 20139 Milano, Italy.
| | | | | |
Collapse
|
36
|
Cramers P, Filon AR, Pines A, Kleinjans JC, Mullenders LHF, van Zeeland AA. Enhanced nucleotide excision repair in human fibroblasts pre-exposed to ionizing radiation. Photochem Photobiol 2011; 88:147-53. [PMID: 22017241 DOI: 10.1111/j.1751-1097.2011.01019.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cellular protection against deleterious effects of DNA damaging agents requires an intricate network of defense mechanisms known as the DNA damage response (DDR). Ionizing radiation (IR) mediated activation of the DDR induces a transcriptional upregulation of genes that are also involved in nucleotide excision repair (NER). This suggests that pre-exposure to X-rays might stimulate NER in human cells. Here, we demonstrate in normal human fibroblasts that UV-induced NER is augmented by pre-exposure to IR and that this increased repair is accompanied by elevated mRNA and protein levels of the NER factors XPC and DDB2. Furthermore, when IR exposure precedes local UV irradiation, the presence of XPC and DDB2 at the sites of local UV damages is increased. This increase might be p53 dependent, but the mechanism of X-ray specific stabilization of p53 is unclear as both X-rays and UV stabilize p53.
Collapse
Affiliation(s)
- Patricia Cramers
- Department of Toxicogenetics, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
37
|
Menoni H, Shukla MS, Gerson V, Dimitrov S, Angelov D. Base excision repair of 8-oxoG in dinucleosomes. Nucleic Acids Res 2011; 40:692-700. [PMID: 21930508 PMCID: PMC3258150 DOI: 10.1093/nar/gkr761] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In this work we have studied the effect of chromatin structure on the base excision repair (BER) efficiency of 8-oxoG. As a model system we have used precisely positioned dinucleosomes assembled with linker histone H1. A single 8-oxoG was inserted either in the linker or the core particle DNA within the dinucleosomal template. We found that in the absence of histone H1 the glycosylase OGG1 removed 8-oxoG from the linker DNA and cleaved DNA with identical efficiency as in the naked DNA. In contrast, the presence of histone H1 resulted in close to 10-fold decrease in the efficiency of 8-oxoG initiation of repair in linker DNA independently of linker DNA length. The repair of 8-oxoG in nucleosomal DNA was very highly impeded in both absence and presence of histone H1. Chaperone-induced uptake of H1 restored the efficiency of the glycosylase induced removal of 8-oxoG from linker DNA, but not from the nucleosomal DNA. We show, however, that removal of histone H1 and nucleosome remodelling are both necessary and sufficient for an efficient removal of 8-oxoG in nucleosomal DNA. Finally, a model for BER of 8-oxoG in chromatin templates is suggested.
Collapse
Affiliation(s)
- Hervé Menoni
- Université de Lyon, Laboratoire de Biologie Moléculaire de la Cellule, CNRS-UMR 5239, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364 Lyon cedex 07, France
| | | | | | | | | |
Collapse
|
38
|
Nucleosome disruption by DNA ligase III-XRCC1 promotes efficient base excision repair. Mol Cell Biol 2011; 31:4623-32. [PMID: 21930793 DOI: 10.1128/mcb.05715-11] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Each day, approximately 20,000 oxidative lesions form in the DNA of every nucleated human cell. The base excision repair (BER) enzymes that repair these lesions must function in a chromatin milieu. We have determined that the DNA glycosylase hNTH1, apurinic endonuclease (APE), and DNA polymerase β (Pol β), which catalyze the first three steps in BER, are able to process their substrates in both 601- and 5S ribosomal DNA (rDNA)-based nucleosomes. hNTH1 formed a discrete ternary complex that was displaced by the addition of APE, suggesting an orderly handoff of substrates from one enzyme to the next. In contrast, DNA ligase IIIα-XRCC1, which completes BER, was appreciably active only at concentrations that led to nucleosome disruption. Ligase IIIα-XRCC1 was also able to bind and disrupt nucleosomes containing a single base gap and, because of this property, enhanced both its own activity and that of Pol β on nucleosome substrates. Collectively, these findings provide insights into rate-limiting steps that govern BER in chromatin and reveal a unique role for ligase IIIα-XRCC1 in enhancing the efficiency of the final two steps in the BER of lesions in nucleosomes.
Collapse
|
39
|
Nakamura K, Kato A, Kobayashi J, Yanagihara H, Sakamoto S, Oliveira DVNP, Shimada M, Tauchi H, Suzuki H, Tashiro S, Zou L, Komatsu K. Regulation of homologous recombination by RNF20-dependent H2B ubiquitination. Mol Cell 2011; 41:515-28. [PMID: 21362548 DOI: 10.1016/j.molcel.2011.02.002] [Citation(s) in RCA: 281] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 10/11/2010] [Accepted: 12/13/2010] [Indexed: 10/18/2022]
Abstract
The E3 ubiquitin ligase RNF20 regulates chromatin structure by monoubiquitinating histone H2B in transcription. Here, we show that RNF20 is localized to double-stranded DNA breaks (DSBs) independently of H2AX and is required for the DSB-induced H2B ubiquitination. In addition, RNF20 is required for the methylation of H3K4 at DSBs and the recruitment of the chromatin-remodeling factor SNF2h. Depletion of RNF20, depletion of SNF2h, or expression of the H2B mutant lacking the ubiquitination site (K120R) compromises resection of DNA ends and recruitment of RAD51 and BRCA1. Consequently, cells lacking RNF20 or SNF2h and cells expressing H2B K120R exhibit pronounced defects in homologous recombination repair (HRR) and enhanced sensitivity to radiation. Finally, the function of RNF20 in HRR can be partially bypassed by forced chromatin relaxation. Thus, the RNF20-mediated H2B ubiquitination at DSBs plays a critical role in HRR through chromatin remodeling.
Collapse
Affiliation(s)
- Kyosuke Nakamura
- Radiation Biology Center, Kyoto University, Yoshida-konoecho, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
|
41
|
Cole HA, Tabor-Godwin JM, Hayes JJ. Uracil DNA glycosylase activity on nucleosomal DNA depends on rotational orientation of targets. J Biol Chem 2009; 285:2876-85. [PMID: 19933279 DOI: 10.1074/jbc.m109.073544] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The activity of uracil DNA glycosylases (UDGs), which recognize and excise uracil bases from DNA, has been well characterized on naked DNA substrates but less is known about activity in chromatin. We therefore prepared a set of model nucleosome substrates in which single thymidine residues were replaced with uracil at specific locations and a second set of nucleosomes in which uracils were randomly substituted for all thymidines. We found that UDG efficiently removes uracil from internal locations in the nucleosome where the DNA backbone is oriented away from the surface of the histone octamer, without significant disruption of histone-DNA interactions. However, uracils at sites oriented toward the histone octamer surface were excised at much slower rates, consistent with a mechanism requiring spontaneous DNA unwrapping from the nucleosome. In contrast to the nucleosome core, UDG activity on DNA outside the core DNA region was similar to that of naked DNA. Association of linker histone reduced activity of UDG at selected sites near where the globular domain of H1 is proposed to bind to the nucleosome as well as within the extra-core DNA. Our results indicate that some sites within the nucleosome core and the extra-core (linker) DNA regions represent hot spots for repair that could influence critical biological processes.
Collapse
Affiliation(s)
- Hope A Cole
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, New York 14642, USA
| | | | | |
Collapse
|
42
|
Zhao Q, Wang QE, Ray A, Wani G, Han C, Milum K, Wani AA. Modulation of nucleotide excision repair by mammalian SWI/SNF chromatin-remodeling complex. J Biol Chem 2009; 284:30424-32. [PMID: 19740755 DOI: 10.1074/jbc.m109.044982] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Accessibility within chromatin is an important factor in the prompt removal of UV-induced DNA damage by nucleotide excision repair (NER). Chromatin remodeling by the SWI/SNF complex has been shown to play an important modulating role in NER in vitro and yeast in vivo. Nevertheless, the molecular basis of cross-talk between SWI/SNF and NER in mammalian cells is not fully understood. Here, we show that knockdown of Brg1, the ATPase subunit of SWI/SNF, negatively affects the elimination of cyclobutane pyrimidine dimers (CPD), but not of pyrimidine (6, 4)pyrimidone photoproducts (6-4PP) following UV irradiation of mammalian cells. Brg1-deficient cells exhibit a lower chromatin relaxation as well as impaired recruitment of downstream NER factors, XPG and PCNA, to UV lesions. However, the assembly of upstream NER factors, DDB2 and XPC, at the damage site was unaffected by Brg1 knockdown. Interestingly, Brg1 interacts with XPC within chromatin and is recruited to UV-damaged sites in a DDB2- and XPC-dependent manner. Also, postirradiation decrease of XPC levels occurred more rapidly in Brg1-deficient than normal cells. Conversely, XPC transcription remained unaltered upon Brg1 knockdown indicating that Brg1 affects the stability of XPC protein following irradiation. Thus, Brg1 facilitates different stages of NER by initially modulating UV-induced chromatin relaxation and stabilizing XPC at the damage sites, and subsequently stimulating the recruitment of XPG and PCNA to successfully culminate the repair.
Collapse
Affiliation(s)
- Qun Zhao
- Department of Radiology, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Zhang L, Jones K, Gong F. The molecular basis of chromatin dynamics during nucleotide excision repair. Biochem Cell Biol 2009; 87:265-72. [PMID: 19234540 DOI: 10.1139/o08-101] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The assembly of DNA into chromatin in eukaryotic cells affects all DNA-related cellular activities, such as replication, transcription, recombination, and repair. Rearrangement of chromatin structure during nucleotide excision repair (NER) was discovered more than 2 decades ago. However, the molecular basis of chromatin dynamics during NER remains undefined. Pioneering studies in the field of gene transcription have shown that ATP-dependent chromatin-remodeling complexes and histone-modifying enzymes play a critical role in chromatin dynamics during transcription. Similarly, recent studies have demonstrated that the SWI/SNF chromatin-remodeling complex facilitates NER both in vitro and in vivo. Additionally, histone acetylation has also been linked to the NER of ultraviolet light damage. In this article, we will discuss the role of these identified chromatin-modifying activities in NER.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33156, USA
| | | | | |
Collapse
|
44
|
Zhang L, Jones K, Smerdon MJ, Gong F. Assays for chromatin remodeling during nucleotide excision repair in Saccharomyces cerevisiae. Methods 2009; 48:19-22. [PMID: 19336254 DOI: 10.1016/j.ymeth.2009.03.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Revised: 03/24/2009] [Accepted: 03/24/2009] [Indexed: 01/03/2023] Open
Abstract
How DNA repair proteins interact with the dynamic structure of chromatin is an emerging question. Chromatin structure impedes the access of repair proteins to sites of DNA damage. Several recent studies have implicated chromatin remodeling complexes in DNA repair. In this report we summarize the methods we used to investigate chromatin remodeling during nucleotide excision repair (NER) in vivo. We describe a procedure to analyze UV-induced chromatin remodeling at the silent mating-type locus HML using isolated nuclei from UV-treated yeast cells. In addition, a method to capture transient protein-protein associations in chromatin is outlined. We have used the methods described here to demonstrate that the SWI/SNF chromatin remodeling complex is involved in chromatin rearrangement during NER.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | | | | | |
Collapse
|
45
|
Gehring M, Reik W, Henikoff S. DNA demethylation by DNA repair. Trends Genet 2009; 25:82-90. [PMID: 19144439 DOI: 10.1016/j.tig.2008.12.001] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Revised: 12/01/2008] [Accepted: 12/02/2008] [Indexed: 01/16/2023]
Abstract
Active DNA demethylation underlies key facets of reproduction in flowering plants and mammals and serves a general genome housekeeping function in plants. A family of 5-methylcytosine DNA glycosylases catalyzes plant demethylation via the well-known DNA base-excision-repair process. Although the existence of active demethylation has been known for a longer time in mammals, the means of achieving it remain murky and mammals lack counterparts to the plant demethylases. Several intriguing experiments have indicated, but not conclusively proven, that DNA repair is also a plausible mechanism for animal demethylation. Here, we examine what is known from flowering plants about the pathways and function of enzymatic demethylation and discuss possible mechanisms whereby DNA repair might also underlie global demethylation in mammals.
Collapse
Affiliation(s)
- Mary Gehring
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, Seattle, WA 98109, USA
| | | | | |
Collapse
|
46
|
Nag R, Smerdon MJ. Altering the chromatin landscape for nucleotide excision repair. Mutat Res 2009; 682:13-20. [PMID: 19167517 DOI: 10.1016/j.mrrev.2009.01.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Revised: 12/19/2008] [Accepted: 01/05/2009] [Indexed: 12/15/2022]
Abstract
DNA acts as a 'workbench' for various nuclear processes that occur inside living cells. In eukaryotic cells, DNA is highly compacted in a structural hierarchy with histones and other proteins into chromatin. This compaction affects DNA structure and coordinates the accessibility to site-specific nuclear factors during DNA processing events. DNA repair is no exception to this general rule and several reviews have appeared recently that discuss this topic in detail [1-3]. Here, we focus on recent findings correlating changes in DNA repair with subtle variations in the chromatin landscape.
Collapse
Affiliation(s)
- Ronita Nag
- Biochemistry and Biophysics, School of Molecular Biosciences, Washington State University, Pullman, WA 99164-4660, United States
| | | |
Collapse
|
47
|
MBD4-mediated glycosylase activity on a chromatin template is enhanced by acetylation. Mol Cell Biol 2008; 28:4734-44. [PMID: 18519584 DOI: 10.1128/mcb.00588-08] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ability of the MBD4 glycosylase to excise a mismatched base from DNA has been assessed in vitro using DNA substrates with different extents of cytosine methylation, in the presence or absence of reconstituted nucleosomes. Despite the enhanced ability of MBD4 to bind to methylated cytosines, the efficiency of its glycosylase activity on T/G mismatches was slightly dependent on the extent of methylation of the DNA substrate. The reduction in activity caused by competitor DNA was likewise unaffected by the methylation status of the substrate or the competitor. Our results also show that MBD4 efficiently processed T/G mismatches within the nucleosome. Furthermore, the glycolytic activity of the enzyme was not affected by the positioning of the mismatch within the nucleosome. However, histone hyperacetylation facilitated the efficiency with which the bases were excised from the nucleosome templates, irrespective of the position of the mismatch relative to the pseudodyad axis of symmetry of the nucleosome.
Collapse
|