1
|
Graves D, Akkerman N, Fulham L, Helwer R, Pelka P. Molecular insights into type I interferon suppression and enhanced pathogenicity by species B human adenoviruses B7 and B14. mBio 2024; 15:e0103824. [PMID: 38940561 PMCID: PMC11323573 DOI: 10.1128/mbio.01038-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 05/22/2024] [Indexed: 06/29/2024] Open
Abstract
Human adenoviruses (HAdVs) are small DNA viruses that generally cause mild disease. Certain strains, particularly those belonging to species B HAdVs, can cause severe pneumonia and have a relatively high mortality rate. Little is known about the molecular aspects of how these highly pathogenic species affect the infected cell and how they suppress innate immunity. The present study provides molecular insights into how species B adenoviruses suppress the interferon signaling pathway. Our study shows that these viruses, unlike HAdV-C2, are resistant to type I interferon. This resistance likely arises due to the highly efficient suppression of interferon-stimulated gene expression. Unlike in HAdV-C2, HAdV-B7 and B14 sequester STAT2 and RNA polymerase II from interferon-stimulated gene promoters in infected cells. This results in suppressed interferon- stimulated gene activation. In addition, we show that RuvBL1 and RuvBL2, cofactors important for RNA polymerase II recruitment to promoters and interferon-stimulated gene activation, are redirected to the cytoplasm forming high molecular weight complexes that, likely, are unable to associate with chromatin. Proteomic analysis also identified key differences in the way these viruses affect the host cell, providing insights into species B-associated high pathogenicity. Curiously, we observed that at the level of protein expression changes to the infected cell, HAdV-C2 and B7 were more similar than those of the same species, B7 and B14. Collectively, our study represents the first such study of innate immune suppression by the highly pathogenic HAdV-B7 and B14, laying an important foundation for future investigations.IMPORTANCEHuman adenoviruses form a large family of double-stranded DNA viruses known for a variety of usually mild diseases. Certain strains of human adenovirus cause severe pneumonia leading to much higher mortality and morbidity than most other strains. The reasons for this enhanced pathogenicity are unknown. Our study provides a molecular investigation of how these highly pathogenic strains might inactivate the interferon signaling pathway, highlighting the lack of sensitivity of these viruses to type I interferon in general while providing a global picture of how viral changes in cellular proteins drive worse disease outcomes.
Collapse
Affiliation(s)
- Drayson Graves
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Nikolas Akkerman
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Lauren Fulham
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Rafe Helwer
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Peter Pelka
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
2
|
Catalán-Tatjer D, Tzimou K, Nielsen LK, Lavado-García J. Unravelling the essential elements for recombinant adeno-associated virus (rAAV) production in animal cell-based platforms. Biotechnol Adv 2024; 73:108370. [PMID: 38692443 DOI: 10.1016/j.biotechadv.2024.108370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/05/2024] [Accepted: 04/27/2024] [Indexed: 05/03/2024]
Abstract
Recombinant adeno-associated viruses (rAAVs) stand at the forefront of gene therapy applications, holding immense significance for their safe and efficient gene delivery capabilities. The constantly increasing and unmet demand for rAAVs underscores the need for a more comprehensive understanding of AAV biology and its impact on rAAV production. In this literature review, we delved into AAV biology and rAAV manufacturing bioprocesses, unravelling the functions and essentiality of proteins involved in rAAV production. We discuss the interconnections between these proteins and how they affect the choice of rAAV production platform. By addressing existing inconsistencies, literature gaps and limitations, this review aims to define a minimal set of genes that are essential for rAAV production, providing the potential to advance rAAV biomanufacturing, with a focus on minimizing the genetic load within rAAV-producing cells.
Collapse
Affiliation(s)
- David Catalán-Tatjer
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Denmark
| | - Konstantina Tzimou
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Denmark
| | - Lars K Nielsen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Denmark; Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Australia
| | - Jesús Lavado-García
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Denmark.
| |
Collapse
|
3
|
Bachus S, Akkerman N, Fulham L, Graves D, Helwer R, Rempel J, Pelka P. ARGLU1 enhances promoter-proximal pausing of RNA polymerase II and stimulates DNA damage repair. Nucleic Acids Res 2024; 52:5658-5675. [PMID: 38520408 PMCID: PMC11162773 DOI: 10.1093/nar/gkae208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/05/2024] [Accepted: 03/11/2024] [Indexed: 03/25/2024] Open
Abstract
Arginine and glutamate rich 1 (ARGLU1) is a poorly understood cellular protein with functions in RNA splicing and transcription. Computational prediction suggests that ARGLU1 contains intrinsically disordered regions and lacks any known structural or functional domains. We used adenovirus Early protein 1A (E1A) to probe for critical regulators of important cellular pathways and identified ARGLU1 as a significant player in transcription and the DNA damage response pathway. Transcriptional effects induced by ARGLU1 occur via enhancement of promoter-proximal RNA polymerase II pausing, likely by inhibiting the interaction between JMJD6 and BRD4. When overexpressed, ARGLU1 increases the growth rate of cancer cells, while its knockdown leads to growth arrest. Significantly, overexpression of ARGLU1 increased cancer cell resistance to genotoxic drugs and promoted DNA damage repair. These results identify new roles for ARGLU1 in cancer cell survival and the DNA damage repair pathway, with potential clinical implications for chemotherapy resistance.
Collapse
Affiliation(s)
- Scott Bachus
- Department of Microbiology, University of Manitoba, 45 Chancellor's Circle, Buller Building Room 427, Winnipeg, MB R3T 2N2, Canada
| | - Nikolas Akkerman
- Department of Microbiology, University of Manitoba, 45 Chancellor's Circle, Buller Building Room 427, Winnipeg, MB R3T 2N2, Canada
| | - Lauren Fulham
- Department of Microbiology, University of Manitoba, 45 Chancellor's Circle, Buller Building Room 427, Winnipeg, MB R3T 2N2, Canada
| | - Drayson Graves
- Department of Microbiology, University of Manitoba, 45 Chancellor's Circle, Buller Building Room 427, Winnipeg, MB R3T 2N2, Canada
| | - Rafe Helwer
- Department of Microbiology, University of Manitoba, 45 Chancellor's Circle, Buller Building Room 427, Winnipeg, MB R3T 2N2, Canada
| | - Jordan Rempel
- Department of Microbiology, University of Manitoba, 45 Chancellor's Circle, Buller Building Room 427, Winnipeg, MB R3T 2N2, Canada
| | - Peter Pelka
- Department of Microbiology, University of Manitoba, 45 Chancellor's Circle, Buller Building Room 427, Winnipeg, MB R3T 2N2, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, 45 Chancellor's Circle, Buller Building Room 427, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
4
|
Park A, Lee C, Lee JY. Genomic Evolution and Recombination Dynamics of Human Adenovirus D Species: Insights from Comprehensive Bioinformatic Analysis. J Microbiol 2024; 62:393-407. [PMID: 38451451 DOI: 10.1007/s12275-024-00112-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/10/2024] [Accepted: 01/14/2024] [Indexed: 03/08/2024]
Abstract
Human adenoviruses (HAdVs) can infect various epithelial mucosal cells, ultimately causing different symptoms in infected organ systems. With more than 110 types classified into seven species (A-G), HAdV-D species possess the highest number of viruses and are the fastest proliferating. The emergence of new adenovirus types and increased diversity are driven by homologous recombination (HR) between viral genes, primarily in structural elements such as the penton base, hexon and fiber proteins, and the E1 and E3 regions. A comprehensive analysis of the HAdV genome provides valuable insights into the evolution of human adenoviruses and identifies genes that display high variation across the entire genome to determine recombination patterns. Hypervariable regions within genetic sequences correlate with functional characteristics, thus allowing for adaptation to new environments and hosts. Proteotyping of newly emerging and already established adenoviruses allows for prediction of the characteristics of novel viruses. HAdV-D species evolved in a direction that increased diversity through gene recombination. Bioinformatics analysis across the genome, particularly in highly variable regions, allows for the verification or re-evaluation of recombination patterns in both newly introduced and pre-existing viruses, ultimately aiding in tracing various biological traits such as virus tropism and pathogenesis. Our research does not only assist in predicting the emergence of new adenoviruses but also offers critical guidance in regard to identifying potential regulatory factors of homologous recombination hotspots.
Collapse
Affiliation(s)
- Anyeseu Park
- The Laboratory of Viromics and Evolution, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, 54531, Republic of Korea
| | - Chanhee Lee
- The Laboratory of Viromics and Evolution, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, 54531, Republic of Korea
| | - Jeong Yoon Lee
- The Laboratory of Viromics and Evolution, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, 54531, Republic of Korea.
| |
Collapse
|
5
|
Kamel H, Shete V, Gadamsetty S, Graves D, Bachus S, Akkerman N, Pelka P, Thimmapaya B. HBO1/KAT7/MYST2 HAT complex regulates human adenovirus replicative cycle. Heliyon 2024; 10:e28827. [PMID: 38601626 PMCID: PMC11004756 DOI: 10.1016/j.heliyon.2024.e28827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/12/2024] Open
Abstract
Human adenoviruses (HAdV) belong to a small DNA tumor virus family that continues as valuable models in understanding the viral strategies of usurping cell growth regulation. A number of HAdV type 2/5 early viral gene products interact with a variety of cellular proteins to build a conducive environment that promotes viral replication. Here we show that HBO1 (Histone Acetyltransferase Binding to ORC1), a member of the MYST histone acetyltransferase (HAT) complex (also known as KAT7 and MYST2) that acetylates most of the histone H3 lysine 14, is essential for HAdV5 growth. HBO1/MYST2/KAT7 HAT complexes are critical for a variety of cellular processes including control of cell proliferation. In HBO1 downregulated human cells, HAdV5 infection results in reduced expression of E1A and other viral early genes, virus growth is also reduced significantly. Importantly, HBO1 downregulation reduced H3 lysine 14 acetylation at viral promoters during productive infection, likely driving reduced viral gene expression. HBO1 was also associated with viral promoters during infection and co-localized with viral replication centers in the nuclei of infected cells. In transiently transfected cells, overexpression of E1A along with HBO1 stimulated histone acetyltransferase activity of HBO1. E1A also co-immunoprecipitated with HBO1 in transiently transfected cells. In summary, our results demonstrate that HAdV recruits the HBO1 HAT complex to aid in viral replication.
Collapse
Affiliation(s)
- Heba Kamel
- Microbiology and Immunology Department, Fienberg School of Medicine, Northwestern University, Chicago, USA
| | - Varsha Shete
- Microbiology and Immunology Department, Fienberg School of Medicine, Northwestern University, Chicago, USA
| | - Sayikrushna Gadamsetty
- Microbiology and Immunology Department, Fienberg School of Medicine, Northwestern University, Chicago, USA
| | - Drayson Graves
- Department of Microbiology, and Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| | - Scott Bachus
- Department of Microbiology, and Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| | - Nikolas Akkerman
- Department of Microbiology, and Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| | - Peter Pelka
- Department of Microbiology, and Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| | - Bayar Thimmapaya
- Microbiology and Immunology Department, Fienberg School of Medicine, Northwestern University, Chicago, USA
| |
Collapse
|
6
|
Mendoza G, González-Pastor R, Sánchez JM, Arce-Cerezo A, Quintanilla M, Moreno-Bueno G, Pujol A, Belmar-López C, de Martino A, Riu E, Rodriguez TA, Martin-Duque P. The E1a Adenoviral Gene Upregulates the Yamanaka Factors to Induce Partial Cellular Reprogramming. Cells 2023; 12:1338. [PMID: 37174738 PMCID: PMC10177049 DOI: 10.3390/cells12091338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/29/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
The induction of pluripotency by enforced expression of different sets of genes in somatic cells has been achieved with reprogramming technologies first described by Yamanaka's group. Methodologies for generating induced pluripotent stem cells are as varied as the combinations of genes used. It has previously been reported that the adenoviral E1a gene can induce the expression of two of the Yamanaka factors (c-Myc and Oct-4) and epigenetic changes. Here, we demonstrate that the E1a-12S over-expression is sufficient to induce pluripotent-like characteristics closely to epiblast stem cells in mouse embryonic fibroblasts through the activation of the pluripotency gene regulatory network. These findings provide not only empirical evidence that the expression of one single factor is sufficient for partial reprogramming but also a potential mechanistic explanation for how viral infection could lead to neoplasia if they are surrounded by the appropriate environment or the right medium, as happens with the tumorogenic niche.
Collapse
Affiliation(s)
- Gracia Mendoza
- Instituto Aragonés de Ciencias de la Salud (IACS), 50009 Zaragoza, Spain
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain
| | - Rebeca González-Pastor
- Instituto Aragonés de Ciencias de la Salud (IACS), 50009 Zaragoza, Spain
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador
| | - Juan Miguel Sánchez
- National Heart and Lung Institute, Imperial College London, London W12 ONN, UK
| | - Altamira Arce-Cerezo
- Centro de Biotecnología Animal y de Terapia Génica (CBATEG), Universidad Autónoma de Barcelona, 08193 Bellaterra, Spain
| | - Miguel Quintanilla
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas ‘Alberto Sols’, Universidad Autónoma de Madrid (UAM), (UAM-CSIC), 28029 Madrid, Spain
| | - Gema Moreno-Bueno
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas ‘Alberto Sols’, Universidad Autónoma de Madrid (UAM), (UAM-CSIC), 28029 Madrid, Spain
- Fundación MD Anderson Internacional, 28033 Madrid, Spain
- Centro de Investigación Biomédica en Red, Instituto de Salud Carlos III, Red de Cáncer (CIBERONC) and Red de Nanomedicina y Nanomateriales (CIBER-BBN), 28029 Madrid, Spain
| | - Anna Pujol
- Centro de Biotecnología Animal y de Terapia Génica (CBATEG), Universidad Autónoma de Barcelona, 08193 Bellaterra, Spain
| | - Carolina Belmar-López
- Instituto Aragonés de Ciencias de la Salud (IACS), 50009 Zaragoza, Spain
- OncoGenomics Lab, Universidad Privada San Juan Bautista, Lima 15038, Peru
| | - Alba de Martino
- Instituto Aragonés de Ciencias de la Salud (IACS), 50009 Zaragoza, Spain
| | - Efrén Riu
- Centro de Biotecnología Animal y de Terapia Génica (CBATEG), Universidad Autónoma de Barcelona, 08193 Bellaterra, Spain
| | | | - Pilar Martin-Duque
- Instituto Aragonés de Ciencias de la Salud (IACS), 50009 Zaragoza, Spain
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain
- Centro de Investigación Biomédica en Red, Instituto de Salud Carlos III, Red de Cáncer (CIBERONC) and Red de Nanomedicina y Nanomateriales (CIBER-BBN), 28029 Madrid, Spain
- Fundación Araid, 50018 Zaragoza, Spain
- Departamento de Cirugía, Facultad de Medicina, Universidad de Zaragoza, 50009 Zaragoza, Spain
| |
Collapse
|
7
|
Ibrahim Z, Wang T, Destaing O, Salvi N, Hoghoughi N, Chabert C, Rusu A, Gao J, Feletto L, Reynoird N, Schalch T, Zhao Y, Blackledge M, Khochbin S, Panne D. Structural insights into p300 regulation and acetylation-dependent genome organisation. Nat Commun 2022; 13:7759. [PMID: 36522330 PMCID: PMC9755262 DOI: 10.1038/s41467-022-35375-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Histone modifications are deposited by chromatin modifying enzymes and read out by proteins that recognize the modified state. BRD4-NUT is an oncogenic fusion protein of the acetyl lysine reader BRD4 that binds to the acetylase p300 and enables formation of long-range intra- and interchromosomal interactions. We here examine how acetylation reading and writing enable formation of such interactions. We show that NUT contains an acidic transcriptional activation domain that binds to the TAZ2 domain of p300. We use NMR to investigate the structure of the complex and found that the TAZ2 domain has an autoinhibitory role for p300. NUT-TAZ2 interaction or mutations found in cancer that interfere with autoinhibition by TAZ2 allosterically activate p300. p300 activation results in a self-organizing, acetylation-dependent feed-forward reaction that enables long-range interactions by bromodomain multivalent acetyl-lysine binding. We discuss the implications for chromatin organisation, gene regulation and dysregulation in disease.
Collapse
Affiliation(s)
- Ziad Ibrahim
- Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, United States
| | - Tao Wang
- CNRS UMR 5309, INSERM U1209, Université Grenoble Alpes, Institute for Advanced Biosciences, Grenoble, France
| | - Olivier Destaing
- CNRS UMR 5309, INSERM U1209, Université Grenoble Alpes, Institute for Advanced Biosciences, Grenoble, France
| | - Nicola Salvi
- Institut de Biologie Structurale, CNRS, CEA, UGA, Grenoble, France
| | - Naghmeh Hoghoughi
- CNRS UMR 5309, INSERM U1209, Université Grenoble Alpes, Institute for Advanced Biosciences, Grenoble, France
| | - Clovis Chabert
- CNRS UMR 5309, INSERM U1209, Université Grenoble Alpes, Institute for Advanced Biosciences, Grenoble, France
| | - Alexandra Rusu
- Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Jinjun Gao
- Ben May Department of Cancer Research, The University of Chicago, Chicago, IL, 60637, USA
| | - Leonardo Feletto
- Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Nicolas Reynoird
- CNRS UMR 5309, INSERM U1209, Université Grenoble Alpes, Institute for Advanced Biosciences, Grenoble, France
| | - Thomas Schalch
- Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Yingming Zhao
- Ben May Department of Cancer Research, The University of Chicago, Chicago, IL, 60637, USA
| | | | - Saadi Khochbin
- CNRS UMR 5309, INSERM U1209, Université Grenoble Alpes, Institute for Advanced Biosciences, Grenoble, France
| | - Daniel Panne
- Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, UK.
| |
Collapse
|
8
|
Post-Translational Modifications by Lipid Metabolites during the DNA Damage Response and Their Role in Cancer. Biomolecules 2022; 12:biom12111655. [DOI: 10.3390/biom12111655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/25/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
Genomic DNA damage occurs as an inevitable consequence of exposure to harmful exogenous and endogenous agents. Therefore, the effective sensing and repair of DNA damage are essential for maintaining genomic stability and cellular homeostasis. Inappropriate responses to DNA damage can lead to genomic instability and, ultimately, cancer. Protein post-translational modifications (PTMs) are a key regulator of the DNA damage response (DDR), and recent progress in mass spectrometry analysis methods has revealed that a wide range of metabolites can serve as donors for PTMs. In this review, we will summarize how the DDR is regulated by lipid metabolite-associated PTMs, including acetylation, S-succinylation, N-myristoylation, palmitoylation, and crotonylation, and the implications for tumorigenesis. We will also discuss potential novel targets for anti-cancer drug development.
Collapse
|
9
|
Morshneva AV, Gnedina OO, Kindt DN, Igotti MV. Ras Participates in the Regulation of the Stability of Adenoviral Protein E1A via MAP-kinase ERK. Acta Naturae 2022; 14:78-84. [PMID: 35923563 PMCID: PMC9307986 DOI: 10.32607/actanaturae.11675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/18/2022] [Indexed: 11/20/2022] Open
Abstract
The E1A adenoviral protein required for the initiation of the viral life cycle is being actively studied as a sensitizing agent in the combination therapy of cancer, and tumors with activated Ras in particular. We investigated the role played by the Ras signaling pathway in the regulation of E1A protein stability and showed that overexpression of activated Ras increases the basal level of E1A, but enhances the degradation of the E1A protein under treatment with histone deacetylase inhibitors (HDIs). It has been found that the MAP kinase ERK is the key factor in E1A stabilization, and ERK inactivation upon HDI treatment reduces the E1A protein level. Our results indicate that the combination treatment of tumors with activated Ras using adenoviral E1A and HDI has limitations attributed to intense HDI-dependent degradation of E1A. Nevertheless, the established contribution of ERK kinase to the regulation of E1A stability can be used to search for new effective drug combinations based on the adenoviral E1A protein.
Collapse
Affiliation(s)
- A. V. Morshneva
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064 Russia
| | - O. O. Gnedina
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064 Russia
| | - D. N. Kindt
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064 Russia
| | - M. V. Igotti
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064 Russia
| |
Collapse
|
10
|
The transrepression and transactivation roles of CtBPs in the pathogenesis of different diseases. J Mol Med (Berl) 2021; 99:1335-1347. [PMID: 34196767 DOI: 10.1007/s00109-021-02107-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/31/2021] [Accepted: 06/25/2021] [Indexed: 02/06/2023]
Abstract
Gene transcription is strictly controlled by transcriptional complexes, which are assemblies of transcription factors, transcriptional regulators, and co-regulators. Mammalian genomes encode two C-terminal-binding proteins (CtBPs), CtBP1 and CtBP2, which are both well-known transcriptional corepressors of oncogenic processes. Their overexpression in tumors is associated with malignant behavior, such as uncontrolled cell proliferation, migration, and invasion, as well as with an increase in the epithelial-mesenchymal transition. CtBPs coordinate with other transcriptional regulators, such as histone deacetylases (HDACs) and histone acetyltransferases (p300 and CBP [CREBP-binding protein]) that contain the PXDLS motif, and with transcription factors to assemble transcriptional complexes that dock onto the promoters of genes to initiate gene transcription. Emerging evidence suggests that CtBPs function as both corepressors and coactivators in different biological processes ranging from apoptosis to inflammation and osteogenesis. Therapeutic targeting of CtBPs or the interactions required to form transcriptional complexes has also shown promising effects in preventing disease progression. This review summarizes the most recent progress in the study of CtBP functions and therapeutic inhibitors in different biological processes. This knowledge may enable a better understanding of the complexity of the roles of CtBPs, while providing new insights into therapeutic strategies that target CtBPs.
Collapse
|
11
|
Differential Regulation of Cellular FAM111B by Human Adenovirus C Type 5 E1 Oncogenes. Viruses 2021; 13:v13061015. [PMID: 34071532 PMCID: PMC8227810 DOI: 10.3390/v13061015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 12/15/2022] Open
Abstract
The adenovirus type 5 (HAdV-C5) E1 transcription unit encodes regulatory proteins that are essential for viral replication and transformation. Among these, E1A and E1B-55K act as key multifunctional HAdV-C5 proteins involved in various steps of the viral replication cycle and in virus-induced cell transformation. In this context, HAdV-C5-mediated dysregulations of cellular factors such as the tumor suppressors p53 and pRB have been intensively investigated. However, cellular components of downstream events that could affect infection and viral transformation are widely unknown. We recently observed that cellular FAM111B is highly regulated in an E1A-dependent fashion. Intriguingly, previous reports suggest that FAM111B might play roles in tumorigenesis, but its exact functions are not known to date. Here, we set out to investigate the role of FAM111B in HAdV-C5 infections. We found that (i) FAM111B levels are upregulated early and downregulated late during infection, that (ii) FAM111B expression is differentially regulated, that (iii) FAM111B expression levels depend on the presence of E1B-55K and E4orf6 and that (iv) a FAM111B knockdown increases HAdV-C5 replication. Our data indicate that FAM111B acts as an anti-adenoviral host factor that is involved in host cell defense mechanisms in productive HAdV-C5 infection. Moreover, these findings suggest that FAM111B might play an important role in the host antiviral immune response that is counteracted by HAdV-C5 E1B-55K and E4orf6 oncoproteins.
Collapse
|
12
|
Differential Splicing of Human Adenovirus 5 E1A RNA Expressed in cis versus in trans. J Virol 2021; 95:JVI.02081-20. [PMID: 33361423 DOI: 10.1128/jvi.02081-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/10/2020] [Indexed: 01/05/2023] Open
Abstract
Human adenovirus (HAdV) is used extensively as a vector for gene delivery for a variety of purposes, including gene therapy and vaccine development. Most adenoviral vectors used for these approaches have a deletion of early region 1 (E1), which is complemented by the cell line. Most commonly, these are 293 cells for HAdV serotype 2 or 5. The 293 cells have the left end of HAdV5 integrated into chromosome 19 and express the E1 genes and protein IX. We observed that viruses with the E1 region deleted often grow less well on 293 cells than E1 wild-type viruses. Therefore, we investigated whether this poor growth is caused by splicing differences between the E1A RNA provided by the cell line (in trans) and the E1A RNA provided by the infecting viral genome (in cis). We observed that E1A RNA that was expressed from the genomes of 293 cells was spliced differently during infection with an E1A-deleted dl312 virus than E1A RNA from the same cells infected with dl309 or wt300. Importantly, 293 cells were not able to fully complement the late E1A transcripts, specifically 11S, 10S, and 9S RNA, which express the E1A217R, E1A171R, and E1A55R isoforms, respectively. We observed that these splicing differences likely arise due to different subnuclear localizations of E1A RNA. E1A RNA expressed from the viral genome was localized to viral replication centers, while E1A RNA expressed from the cell's genome was not. This loss of the late E1A mRNAs and their associated proteins impacts viral growth, gene expression, and protein levels. Complementation of the late E1A mRNAs in 293 cells restored some of the growth defect observed with dl312 and resulted in higher virus growth.IMPORTANCE Human adenovirus has become an important tool for medicine and research, and 293 cells and various similar cell lines are used extensively for virus production in situations where high viral yields are important. Such complementing cell lines are used for the production of viral vectors and vaccines, which often have deletions and replacements in various viral genes. Deletions in essential genes, such as E1, are often complemented by the cell line that is used for virus propagation in trans Here, we show that even complete genetic complementation of a viral gene does not result in full protein complementation, a defect that compromises virus growth. This is particularly important when high viral yields are crucial, as in virus production for vaccine development or gene therapy.
Collapse
|
13
|
Dodge MJ, MacNeil KM, Tessier TM, Weinberg JB, Mymryk JS. Emerging antiviral therapeutics for human adenovirus infection: Recent developments and novel strategies. Antiviral Res 2021; 188:105034. [PMID: 33577808 DOI: 10.1016/j.antiviral.2021.105034] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 12/11/2022]
Abstract
Human adenoviruses (HAdV) are ubiquitous human pathogens that cause a significant burden of respiratory, ocular, and gastrointestinal illnesses. Although HAdV infections are generally self-limiting, pediatric and immunocompromised individuals are at particular risk for developing severe disease. Currently, no approved antiviral therapies specific to HAdV exist. Recent outbreaks underscore the need for effective antiviral agents to treat life-threatening infections. In this review we will focus on recent developments in search of potential therapeutic agents for controlling HAdV infections, with a focus on those targeting post-entry stages of the virus replicative cycle.
Collapse
Affiliation(s)
- Mackenzie J Dodge
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
| | - Katelyn M MacNeil
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
| | - Tanner M Tessier
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
| | - Jason B Weinberg
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA; Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Joe S Mymryk
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada; Department of Otolaryngology, Head & Neck Surgery, The University of Western Ontario, London, ON, Canada; Department of Oncology, The University of Western Ontario, London, ON, Canada; London Regional Cancer Program, Lawson Health Research Institute, London, ON, Canada.
| |
Collapse
|
14
|
Polansky H, Schwab H. Dynamics of sequestering the limiting p300/CBP, viral cis-regulatory elements, and disease. J Biosci 2020. [DOI: 10.1007/s12038-020-00051-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Saha B, Parks RJ. Recent Advances in Novel Antiviral Therapies against Human Adenovirus. Microorganisms 2020; 8:E1284. [PMID: 32842697 PMCID: PMC7563841 DOI: 10.3390/microorganisms8091284] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/15/2020] [Accepted: 08/19/2020] [Indexed: 12/27/2022] Open
Abstract
Human adenovirus (HAdV) is a very common pathogen that typically causes minor disease in most patients. However, the virus can cause significant morbidity and mortality in certain populations, including young children, the elderly, and those with compromised immune systems. Currently, there are no approved therapeutics to treat HAdV infections, and the standard treatment relies on drugs approved to combat other viral infections. Such treatments often show inconsistent efficacy, and therefore, more effective antiviral therapies are necessary. In this review, we discuss recent developments in the search for new chemical and biological anti-HAdV therapeutics, including drugs that are currently undergoing preclinical/clinical testing, and small molecule screens for the identification of novel compounds that abrogate HAdV replication and disease.
Collapse
Affiliation(s)
- Bratati Saha
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada;
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Robin J. Parks
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada;
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Department of Medicine, The Ottawa Hospital, Ottawa, ON K1H 8L6, Canada
| |
Collapse
|
16
|
Rooney RJ. Multiple domains in the 50 kDa form of E4F1 regulate promoter-specific repression and E1A trans-activation. Gene 2020; 754:144882. [PMID: 32535047 DOI: 10.1016/j.gene.2020.144882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/25/2020] [Accepted: 06/06/2020] [Indexed: 11/28/2022]
Abstract
The 50 kDa N-terminal product of the cellular transcription factor E4F1 (p50E4F1) mediates E1A289R trans-activation of the adenovirus E4 gene, and suppresses E1A-mediated transformation by sensitizing cells to cell death. This report shows that while both E1A289R and E1A243R stimulate p50E4F1 DNA binding activity, E1A289R trans-activation, as measured using GAL-p50E4F1 fusion proteins, involves a p50E4F1 transcription regulatory (TR) region that must be promoter-bound and is dependent upon E1A CR3, CR1 and N-terminal domains. Trans-activation is promoter-specific, as GAL-p50E4F1 did not stimulate commonly used artificial promoters and was strongly repressive when competing against GAL-VP16. p50E4F1 and E1A289R stably associate in vivo using the p50E4F1 TR region and E1A CR3, although their association in vitro is indirect and paradoxically disrupted by MAP kinase phosphorylation of E1A289R, which stimulates E4 trans-activation in vivo. Multiple cellular proteins, including TBP, bind the p50E4F1 TR region in vitro. The mechanistic implications for p50E4F1 function are discussed.
Collapse
Affiliation(s)
- Robert J Rooney
- Department of Genetics, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
17
|
Differential Effects of Human Adenovirus E1A Protein Isoforms on Aerobic Glycolysis in A549 Human Lung Epithelial Cells. Viruses 2020; 12:v12060610. [PMID: 32503156 PMCID: PMC7354625 DOI: 10.3390/v12060610] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/30/2020] [Accepted: 06/02/2020] [Indexed: 12/14/2022] Open
Abstract
Viruses alter a multitude of host-cell processes to create a more optimal environment for viral replication. This includes altering metabolism to provide adequate substrates and energy required for replication. Typically, viral infections induce a metabolic phenotype resembling the Warburg effect, with an upregulation of glycolysis and a concurrent decrease in cellular respiration. Human adenovirus (HAdV) has been observed to induce the Warburg effect, which can be partially attributed to the adenovirus protein early region 4, open reading frame 1 (E4orf1). E4orf1 regulates a multitude of host-cell processes to benefit viral replication and can influence cellular metabolism through the transcription factor avian myelocytomatosis viral oncogene homolog (MYC). However, E4orf1 does not explain the full extent of Warburg-like HAdV metabolic reprogramming, especially the accompanying decrease in cellular respiration. The HAdV protein early region 1A (E1A) also modulates the function of the infected cell to promote viral replication. E1A can interact with a wide variety of host-cell proteins, some of which have been shown to interact with metabolic enzymes independently of an interaction with E1A. To determine if the HAdV E1A proteins are responsible for reprogramming cell metabolism, we measured the extracellular acidification rate and oxygen consumption rate of A549 human lung epithelial cells with constitutive endogenous expression of either of the two major E1A isoforms. This was followed by the characterization of transcript levels for genes involved in glycolysis and cellular respiration, and related metabolic pathways. Cells expressing the 13S encoded E1A isoform had drastically increased baseline glycolysis and lower maximal cellular respiration than cells expressing the 12S encoded E1A isoform. Cells expressing the 13S encoded E1A isoform exhibited upregulated expression of glycolysis genes and downregulated expression of cellular respiration genes. However, tricarboxylic acid cycle genes were upregulated, resembling anaplerotic metabolism employed by certain cancers. Upregulation of glycolysis and tricarboxylic acid cycle genes was also apparent in IMR-90 human primary lung fibroblast cells infected with a HAdV-5 mutant virus that expressed the 13S, but not the 12S encoded E1A isoform. In conclusion, it appears that the two major isoforms of E1A differentially influence cellular glycolysis and oxidative phosphorylation and this is at least partially due to the altered regulation of mRNA expression for the genes in these pathways.
Collapse
|
18
|
Zhao H, Punga T, Pettersson U. Adenovirus in the omics era - a multipronged strategy. FEBS Lett 2020; 594:1879-1890. [PMID: 31811727 DOI: 10.1002/1873-3468.13710] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/21/2019] [Accepted: 11/28/2019] [Indexed: 01/15/2023]
Abstract
Human adenoviruses (HAdVs) are common pathogens associated with a wide variety of respiratory, ocular, and gastrointestinal diseases. To achieve its effective lytic mode of replication, HAdVs have to reprogram host-cell gene expression and fine-tune viral gene expression in a temporal manner. In two decades, omics revolution has advanced our knowledge about the HAdV and host-cell interplay at the RNA and protein levels. This review summarizes the current knowledge from large-scale datasets on how HAdV infections adjust coding and noncoding RNA expression, as well as how they reprogram host-cell proteome during the lytic course of infection.
Collapse
Affiliation(s)
- Hongxing Zhao
- Beijer Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Sweden
| | - Tanel Punga
- Department of Medical Biochemistry and Microbiology, Uppsala University, Sweden
| | - Ulf Pettersson
- Beijer Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Sweden
| |
Collapse
|
19
|
Histone Deacetylase Inhibitor Suberoylanilide Hydroxamic Acid Suppresses Human Adenovirus Gene Expression and Replication. J Virol 2019; 93:JVI.00088-19. [PMID: 30944181 DOI: 10.1128/jvi.00088-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 03/29/2019] [Indexed: 12/20/2022] Open
Abstract
Human adenovirus (HAdV) causes minor illnesses in most patients but can lead to severe disease and death in pediatric, geriatric, and immunocompromised individuals. No approved antiviral therapy currently exists for the treatment of these severe HAdV-induced diseases. In this study, we show that the pan-histone deacetylase (HDAC) inhibitor SAHA reduces HAdV-5 gene expression and DNA replication in tissue culture, ultimately decreasing virus yield from infected cells. Importantly, SAHA also reduced gene expression from more virulent and clinically relevant serotypes, including HAdV-4 and HAdV-7. In addition to SAHA, several other HDAC inhibitors (e.g., trichostatin A, apicidin, and panobinostat) also affected HAdV gene expression. We determined that loss of class I HDAC activity, mainly HDAC2, impairs efficient expression of viral genes, and that E1A physically interacts with HDAC2. Our results suggest that HDAC activity is necessary for HAdV replication, which may represent a novel pharmacological target in HAdV-induced disease.IMPORTANCE Although human adenovirus (HAdV) can cause severe diseases that can be fatal in some populations, there are no effective treatments to combat HAdV infection. In this study, we determined that the pan-histone deacetylase (HDAC) inhibitor SAHA has inhibitory activity against several clinically relevant serotypes of HAdV. This U.S. Food and Drug Administration-approved compound affects various stages of the virus lifecycle and reduces virus yield even at low concentrations. We further report that class I HDAC activity, particularly HDAC2, is required for efficient expression of viral genes during lytic infection. Investigation of the mechanism underlying SAHA-mediated suppression of HAdV gene expression and replication will enhance current knowledge of virus-cell interaction and may aid in the development of more effective antivirals with lower toxicity for the treatment of HAdV infections.
Collapse
|
20
|
Adenovirus 5 E1A Interacts with E4orf3 To Regulate Viral Chromatin Organization. J Virol 2019; 93:JVI.00157-19. [PMID: 30842325 DOI: 10.1128/jvi.00157-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 02/27/2019] [Indexed: 01/05/2023] Open
Abstract
Human adenovirus expresses several early proteins that control various aspects of the viral replication program, including an orchestrated expression of viral genes. Two of the earliest viral transcriptional units activated after viral genome entry into the host cell nucleus are the E1 and E4 units, which each express a variety of proteins. Chief among these are the E1A proteins that function to reprogram the host cell and activate transcription of all other viral genes. The E4 gene encodes multiple proteins, including E4orf3, which functions to disrupt cellular antiviral defenses, including the DNA damage response pathway and activation of antiviral genes. Here we report that E1A directly interacts with E4orf3 via the conserved N terminus of E1A to regulate the expression of viral genes. We show that E4orf3 indiscriminately drives high nucleosomal density of viral genomes, which is restrictive to viral gene expression and which E1A overcomes via a direct interaction with E4orf3. We also show that during infection E1A colocalizes with E4orf3 to nuclear tracks that are associated with heterochromatin formation. The inability of E1A to interact with E4orf3 has a significant negative impact on overall viral replication, the ability of the virus to reprogram the host cell, and the levels of viral gene expression. Together these results show that E1A and E4orf3 work together to fine-tune the viral replication program during the course of infection and highlight a novel mechanism that regulates viral gene expression.IMPORTANCE To successfully replicate, human adenovirus needs to carry out a rapid yet ordered transcriptional program that executes and drives viral replication. Early in infection, the viral E1A proteins are the key activators and regulators of viral transcription. Here we report, for the first time, that E1A works together with E4orf3 to perfect the viral transcriptional program and identify a novel mechanism by which the virus can adjust viral gene expression by modifying its genome's nucleosomal organization via cooperation between E1A and E4orf3.
Collapse
|
21
|
Divergent Evolution of E1A CR3 in Human Adenovirus Species D. Viruses 2019; 11:v11020143. [PMID: 30744049 PMCID: PMC6409611 DOI: 10.3390/v11020143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/02/2019] [Accepted: 02/03/2019] [Indexed: 12/31/2022] Open
Abstract
Adenovirus E1A is the first viral protein expressed during infection. E1A controls critical aspects of downstream viral gene expression and cell cycle deregulation, and its function is thought to be highly conserved among adenoviruses. Various bioinformatics analyses of E1A from 38 human adenoviruses of species D (HAdV-D), including likelihood clade model partitioning, provided highly significant evidence of divergence of HAdV-Ds into two distinct groups for the conserved region 3 (CR3), present only in the E1A 13S isoform. This variance within E1A 13S of HAdV-Ds was not found in any other human adenovirus (HAdV) species. By protein sequence and structural analysis, the zinc finger motif of E1A CR3, previously shown as critical for transcriptional activation, showed the greatest differences. Subsequent codon usage bias analysis revealed substantial divergence in E1A 13S between the two groups of HAdV-Ds, suggesting that these two sub-groups of HAdV-D evolved under different cellular conditions. Hence, HAdV-D E1A embodies a previously unappreciated evolutionary divergence among HAdVs.
Collapse
|
22
|
Adenovirus E1A Activation Domain Regulates H3 Acetylation Affecting Varied Steps in Transcription at Different Viral Promoters. J Virol 2018; 92:JVI.00805-18. [PMID: 29976669 PMCID: PMC6146688 DOI: 10.1128/jvi.00805-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 06/26/2018] [Indexed: 01/06/2023] Open
Abstract
Despite a wealth of data associating promoter and enhancer region histone N-terminal tail lysine acetylation with transcriptional activity, there are relatively few examples of studies that establish causation between these histone posttranslational modifications and transcription. While hypoacetylation of histone H3 lysines 18 and 27 is associated with repression, the step(s) in the overall process of transcription that is blocked at a hypoacetylated promoter is not clearly established in most instances. Studies presented here confirm that the adenovirus 2 large E1A protein activation domain interacts with p300, as reported previously (P. Pelka, J. N. G. Ablack, J. Torchia, A. S. Turnell, R. J. A. Grand, J. S. Mymryk, Nucleic Acids Res 37:1095–1106, 2009, https://doi.org/10.1093/nar/gkn1057), and that the resulting acetylation of H3K18/27 affects varied steps in transcription at different viral promoters. How histone acetylation promotes transcription is not clearly understood. Here, we confirm an interaction between p300 and the adenovirus 2 large E1A activation domain (AD) and map the interacting regions in E1A by observing colocalization at an integrated lacO array of fusions of LacI-mCherry to E1A fragments with YFP-p300. Viruses with mutations in E1A subdomains were constructed and analyzed for kinetics of early viral RNA expression and association of acetylated H3K9, K18, K27, TBP, and RNA polymerase II (Pol II) across the viral genome. The results indicate that this E1A interaction with p300 is required for H3K18 and H3K27 acetylation at the E2early, E3, and E4 promoters and is required for TBP and Pol II association with the E2early promoter. In contrast, H3K18/27 acetylation was not required for TBP and Pol II association with the E3 and E4 promoters but was required for E4 transcription at a step subsequent to Pol II preinitiation complex assembly. IMPORTANCE Despite a wealth of data associating promoter and enhancer region histone N-terminal tail lysine acetylation with transcriptional activity, there are relatively few examples of studies that establish causation between these histone posttranslational modifications and transcription. While hypoacetylation of histone H3 lysines 18 and 27 is associated with repression, the step(s) in the overall process of transcription that is blocked at a hypoacetylated promoter is not clearly established in most instances. Studies presented here confirm that the adenovirus 2 large E1A protein activation domain interacts with p300, as reported previously (P. Pelka, J. N. G. Ablack, J. Torchia, A. S. Turnell, R. J. A. Grand, J. S. Mymryk, Nucleic Acids Res 37:1095–1106, 2009, https://doi.org/10.1093/nar/gkn1057), and that the resulting acetylation of H3K18/27 affects varied steps in transcription at different viral promoters.
Collapse
|
23
|
Adenovirus 5 E1A-Mediated Suppression of p53 via FUBP1. J Virol 2018; 92:JVI.00439-18. [PMID: 29743362 DOI: 10.1128/jvi.00439-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/02/2018] [Indexed: 12/31/2022] Open
Abstract
Far-upstream element (FUSE) binding protein 1 (FUBP1) was originally identified as a regulator of the oncogene c-Myc via binding to the FUSE within the c-Myc promoter and activating the expression of the gene. Recent studies have identified FUBP1 as a regulator of transcription, translation, and splicing via its DNA and RNA binding activities. Here we report the identification of FUBP1 as a novel binding partner of E1A. FUBP1 binds directly to E1A via the N terminus (residues 1 to 82) and conserved region 3 (residues 139 to 204) of adenovirus 5 E1A. The depletion of FUBP1 via short interfering RNAs (siRNA) reduces virus growth and drives the upregulation of the cellular stress response by activating the expression of p53-regulated genes. During infection, FUBP1 is relocalized within the nucleus, and it is recruited to viral promoters together with E1A while at the same time being lost from the FUSE upstream of the c-Myc promoter. The depletion of FUBP1 affects viral and cellular gene expression. Importantly, in FUBP1-depleted cells, p53-responsive genes are upregulated, p53 occupancy on target promoters is enhanced, and histone H3 lysine 9 is hyperacetylated. This is likely due to the loss of the FUBP1-mediated suppression of p53 DNA binding. We also observed that E1A stabilizes the FUBP1-p53 complex, preventing p53 promoter binding. Together, our results identify, for the first time, FUBP1 as a novel E1A binding protein that participates in aspects of viral replication and is involved in the E1A-mediated suppression of p53 function.IMPORTANCE Viral infection triggers innate cellular defense mechanisms that have evolved to block virus replication. To overcome this, viruses have counterevolved mechanisms that ensure that cellular defenses are either disarmed or not activated to guarantee successful replication. One of the key regulators of cellular stress is the tumor suppressor p53 that responds to a variety of cellular stress stimuli and safeguards the integrity of the genome. During infection, many viruses target the p53 pathway in order to deactivate it. Here we report that human adenovirus 5 coopts the cellular protein FUBP1 to prevent the activation of the p53 stress response pathway that would block viral replication. This finding adds to our understanding of p53 deactivation by adenovirus and highlights its importance in infection and innate immunity.
Collapse
|
24
|
Mimicry of Cellular A Kinase-Anchoring Proteins Is a Conserved and Critical Function of E1A across Various Human Adenovirus Species. J Virol 2018; 92:JVI.01902-17. [PMID: 29367252 DOI: 10.1128/jvi.01902-17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 01/18/2018] [Indexed: 12/14/2022] Open
Abstract
The E1A proteins of the various human adenovirus (HAdV) species perform the critical task of converting an infected cell into a setting primed for virus replication. While E1A proteins differ in both sequence and mechanism, the evolutionary pressure on viruses with limited coding capacity ensures that these proteins often have significant overlap in critical functions. HAdV-5 E1A is known to use mimicry to rewire cyclic AMP (cAMP) signaling by decoupling protein kinase A (PKA) from cellular A kinase-anchoring proteins (AKAPs) and utilizing PKA to its own advantage. We show here that E1As from other species of HAdV also possess this viral AKAP (vAKAP) function and examine how they manipulate PKA. E1A from most species of HAdV examined contain a small AKAP-like motif in their N terminus which targets the docking-dimerization domain of PKA as the binding interface for a conserved protein-protein interaction. This motif is also responsible for an E1A-mediated relocalization of PKA regulatory subunits from the cytoplasm into the nucleus, with species-specific E1A proteins having preference for one particular isoform of PKA subunit over another. Importantly, we showed that these newly characterized vAKAPs can integrate into cAMP-responsive transcription as well as contribute to viral genome replication and infectious progeny production for several distinct HAdV species.IMPORTANCE These data enhance the mechanistic knowledge on how HAdV E1A manipulates cellular PKA to benefit infection. The work establishes that mimicry of AKAPs and subversion of PKA-mediated cAMP signaling are conserved features for numerous human adenoviruses. This study also highlights the molecular determinants conferring selective protein-protein interactions between distinct PKA regulatory subunits and the different E1A proteins of these viruses. Additionally, it further emphasizes the utility of using viral proteins like E1A as tools for studying the molecular biology of cellular regulatory pathways.
Collapse
|
25
|
Suppression of Type I Interferon Signaling by E1A via RuvBL1/Pontin. J Virol 2017; 91:JVI.02484-16. [PMID: 28122980 DOI: 10.1128/jvi.02484-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 01/18/2017] [Indexed: 11/20/2022] Open
Abstract
Suppression of interferon signaling is of paramount importance to a virus. Interferon signaling significantly reduces or halts the ability of a virus to replicate; therefore, viruses have evolved sophisticated mechanisms that suppress activation of the interferon pathway or responsiveness of the infected cell to interferon. Adenovirus has multiple modes of inhibiting the cellular response to interferon. Here, we report that E1A, previously shown to regulate interferon signaling in multiple ways, inhibits interferon-stimulated gene expression by modulating RuvBL1 function. RuvBL1 was previously shown to affect type I interferon signaling. E1A binds to RuvBL1 and is recruited to RuvBL1-regulated promoters in an interferon-dependent manner, preventing their activation. Depletion of RuvBL1 impairs adenovirus growth but does not appear to significantly affect viral protein expression. Although RuvBL1 has been shown to play a role in cell growth, its depletion had no effect on the ability of the virus to replicate its genome or to drive cells into S phase. E1A was found to bind to RuvBL1 via the C terminus of E1A, and this interaction was important for suppression of interferon-stimulated gene transcriptional activation and recruitment of E1A to interferon-regulated promoters. Here, we report the identification of RuvBL1 as a new target for adenovirus in its quest to suppress the interferon response.IMPORTANCE For most viruses, suppression of the interferon signaling pathway is crucial to ensure a successful replicative cycle. Human adenovirus has evolved several different mechanisms that prevent activation of interferon or the ability of the cell to respond to interferon. The viral immediate-early gene E1A was previously shown to affect interferon signaling in several different ways. Here, we report a novel mechanism reliant on RuvBL1 that E1A uses to prevent activation of interferon-stimulated gene expression following infection or interferon treatment. This adds to the growing knowledge of how viruses are able to inhibit interferon and identifies a novel target used by adenovirus for modulation of the cellular interferon pathway.
Collapse
|
26
|
Frost JR, Olanubi O, Cheng SKH, Soriano A, Crisostomo L, Lopez A, Pelka P. The interaction of adenovirus E1A with the mammalian protein Ku70/XRCC6. Virology 2016; 500:11-21. [PMID: 27769014 DOI: 10.1016/j.virol.2016.10.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/30/2016] [Accepted: 10/06/2016] [Indexed: 11/30/2022]
Abstract
Human adenovirus infects terminally differentiated cells and to replicate it must induce S-phase. The chief architects that drive adenovirus-infected cells into S-phase are the E1A proteins, with 5 different isoforms expressed during infection. E1A remodels the infected cell by associating with cellular factors and modulating their activity. The C-terminus of E1A is known to bind to only a handful of proteins. We have identified a novel E1A C-terminus binding protein, Ku70 (XRCC6), which was found to bind directly within the CR4 of E1A from human adenovirus type 5. Depletion of Ku70 reduced virus growth, possibly by activating the DNA damage response pathway. Ku70 was found to localize to viral replication centers and associate with the viral genome. Ku70 was also recruited to cellular cell cycle regulated promoters following viral infection. Our study has identified, for the first time, Ku70 as a novel E1A-binding protein which affects virus life cycle.
Collapse
Affiliation(s)
- Jasmine Rae Frost
- Department of Microbiology, University of Manitoba, 45 Chancellor's Circle, Buller Building Room 427, Winnipeg, MB, Canada, R3T 2N2
| | - Oladunni Olanubi
- Department of Microbiology, University of Manitoba, 45 Chancellor's Circle, Buller Building Room 427, Winnipeg, MB, Canada, R3T 2N2
| | | | - Andrea Soriano
- Department of Microbiology, University of Manitoba, 45 Chancellor's Circle, Buller Building Room 427, Winnipeg, MB, Canada, R3T 2N2
| | - Leandro Crisostomo
- Department of Microbiology, University of Manitoba, 45 Chancellor's Circle, Buller Building Room 427, Winnipeg, MB, Canada, R3T 2N2
| | - Alennie Lopez
- Department of Microbiology, University of Manitoba, 45 Chancellor's Circle, Buller Building Room 427, Winnipeg, MB, Canada, R3T 2N2
| | - Peter Pelka
- Department of Microbiology, University of Manitoba, 45 Chancellor's Circle, Buller Building Room 427, Winnipeg, MB, Canada, R3T 2N2.
| |
Collapse
|
27
|
Hošek T, Calçada EO, Nogueira MO, Salvi M, Pagani TD, Felli IC, Pierattelli R. Structural and Dynamic Characterization of the Molecular Hub Early Region 1A (E1A) from Human Adenovirus. Chemistry 2016; 22:13010-3. [PMID: 27490777 DOI: 10.1002/chem.201602510] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Indexed: 12/19/2022]
Abstract
The small-DNA human adenovirus encodes one of the most versatile molecular hubs, the E1A protein. This protein is essential for productive viral infection in human cells and a vast amount of biologically relevant data are available on its interactions with host proteins. Up to now, however, no high-resolution structural and dynamic information on E1A is available despite its important biological role. Among the different spliced variants of E1A, two are expressed at high level in the early stage of infection. These are 243 and 289 residues isoforms. Herein, we present their NMR characterization, showing that they are both highly disordered, but also demonstrate a certain heterogeneous behavior in terms of structural and dynamic properties. Furthermore, we present the characterization of the isolated domain of the longer variant, known as CR3. This study opens the way to understanding at the molecular level how E1A functions.
Collapse
Affiliation(s)
- Tomáš Hošek
- CERM and Department of Chemistry "Ugo Schiff", University of Florence, via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy
| | - Eduardo O Calçada
- CERM and Department of Chemistry "Ugo Schiff", University of Florence, via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy
| | - Marcela Oliveira Nogueira
- CERM and Department of Chemistry "Ugo Schiff", University of Florence, via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy
| | - Michele Salvi
- CERM and Department of Chemistry "Ugo Schiff", University of Florence, via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy
| | - Talita Duarte Pagani
- CERM and Department of Chemistry "Ugo Schiff", University of Florence, via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy
| | - Isabella C Felli
- CERM and Department of Chemistry "Ugo Schiff", University of Florence, via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy.
| | - Roberta Pierattelli
- CERM and Department of Chemistry "Ugo Schiff", University of Florence, via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy.
| |
Collapse
|
28
|
The Dual Nature of Nek9 in Adenovirus Replication. J Virol 2015; 90:1931-43. [PMID: 26676776 DOI: 10.1128/jvi.02392-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 11/25/2015] [Indexed: 01/10/2023] Open
Abstract
UNLABELLED To successfully replicate in an infected host cell, a virus must overcome sophisticated host defense mechanisms. Viruses, therefore, have evolved a multitude of devices designed to circumvent cellular defenses that would lead to abortive infection. Previous studies have identified Nek9, a cellular kinase, as a binding partner of adenovirus E1A, but the biology behind this association remains a mystery. Here we show that Nek9 is a transcriptional repressor that functions together with E1A to silence the expression of p53-inducible GADD45A gene in the infected cell. Depletion of Nek9 in infected cells reduces virus growth but unexpectedly enhances viral gene expression from the E2 transcription unit, whereas the opposite occurs when Nek9 is overexpressed. Nek9 localizes with viral replication centers, and its depletion reduces viral genome replication, while overexpression enhances viral genome numbers in infected cells. Additionally, Nek9 was found to colocalize with the viral E4 orf3 protein, a repressor of cellular stress response. Significantly, Nek9 was also shown to associate with viral and cellular promoters and appears to function as a transcriptional repressor, representing the first instance of Nek9 playing a role in gene regulation. Overall, these results highlight the complexity of virus-host interactions and identify a new role for the cellular protein Nek9 during infection, suggesting a role for Nek9 in regulating p53 target gene expression. IMPORTANCE In the arms race that exists between a pathogen and its host, each has continually evolved mechanisms to either promote or prevent infection. In order to successfully replicate and spread, a virus must overcome every mechanism that a cell can assemble to block infection. On the other hand, to counter viral spread, cells must have multiple mechanisms to stifle viral replication. In the present study, we add to our understanding of how the human adenovirus is able to circumvent cellular roadblocks to replication. We show that the virus uses a cellular protein, Nek9, in order to block activation of p53-regulated gene GADD45A, which is an important player in stress response and p53-mediated cell cycle arrest. Importantly, our study also identifies Nek9 as a transcriptional repressor.
Collapse
|
29
|
Radko S, Jung R, Olanubi O, Pelka P. Effects of Adenovirus Type 5 E1A Isoforms on Viral Replication in Arrested Human Cells. PLoS One 2015; 10:e0140124. [PMID: 26448631 PMCID: PMC4598095 DOI: 10.1371/journal.pone.0140124] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 09/21/2015] [Indexed: 11/22/2022] Open
Abstract
Human adenovirus has evolved to infect and replicate in terminally differentiated human epithelial cells, predominantly those within the airway, the gut, or the eye. To overcome the block to viral DNA replication present in these cells, the virus expresses the Early 1A proteins (E1A). These immediate early proteins drive cells into S-phase and induce expression of all other viral early genes. During infection, several E1A isoforms are expressed with proteins of 289, 243, 217, 171, and 55 residues being present for human adenovirus type 5. Here we examine the contribution that the two largest E1A isoforms make to the viral life cycle in growth-arrested normal human fibroblasts. Viruses that express E1A289R were found to replicate better than those that do not express this isoform. Importantly, induction of several viral genes was delayed in a virus expressing E1A243R, with several viral structural proteins undetectable by western blot. We also highlight the changes in E1A isoforms detected during the course of viral infection. Furthermore, we show that viral DNA replication occurs more efficiently, leading to higher number of viral genomes in cells infected with viruses that express E1A289R. Finally, induction of S-phase specific genes differs between viruses expressing different E1A isoforms, with those having E1A289R leading to, generally, earlier activation of these genes. Overall, we provide an overview of adenovirus replication using modern molecular biology approaches and further insights into the contribution that E1A isoforms make to the life cycle of human adenovirus in arrested human fibroblasts.
Collapse
Affiliation(s)
- Sandi Radko
- Department of Microbiology, University of Manitoba, 45 Chancellor’s Circle, Buller Building Room 427, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Richard Jung
- Department of Microbiology, University of Manitoba, 45 Chancellor’s Circle, Buller Building Room 427, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Oladunni Olanubi
- Department of Microbiology, University of Manitoba, 45 Chancellor’s Circle, Buller Building Room 427, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Peter Pelka
- Department of Microbiology, University of Manitoba, 45 Chancellor’s Circle, Buller Building Room 427, Winnipeg, Manitoba, R3T 2N2, Canada
- * E-mail:
| |
Collapse
|
30
|
Ferrari R, Gou D, Jawdekar G, Johnson SA, Nava M, Su T, Yousef AF, Zemke NR, Pellegrini M, Kurdistani SK, Berk AJ. Adenovirus small E1A employs the lysine acetylases p300/CBP and tumor suppressor Rb to repress select host genes and promote productive virus infection. Cell Host Microbe 2014; 16:663-76. [PMID: 25525796 DOI: 10.1016/j.chom.2014.10.004] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 07/25/2014] [Accepted: 09/07/2014] [Indexed: 12/27/2022]
Abstract
Oncogenic transformation by adenovirus small e1a depends on simultaneous interactions with the host lysine acetylases p300/CBP and the tumor suppressor RB. How these interactions influence cellular gene expression remains unclear. We find that e1a displaces RBs from E2F transcription factors and promotes p300 acetylation of RB1 K873/K874 to lock it into a repressing conformation that interacts with repressive chromatin-modifying enzymes. These repressing p300-e1a-RB1 complexes specifically interact with host genes that have unusually high p300 association within the gene body. The TGF-β, TNF-, and interleukin-signaling pathway components are enriched among such p300-targeted genes. The p300-e1a-RB1 complex condenses chromatin in a manner dependent on HDAC activity, p300 lysine acetylase activity, the p300 bromodomain, and RB K873/K874 and e1a K239 acetylation to repress host genes that would otherwise inhibit productive virus infection. Thus, adenovirus employs e1a to repress host genes that interfere with viral replication.
Collapse
Affiliation(s)
- Roberto Ferrari
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA David Geffen School of Medicine, Los Angeles, CA 90095-1570, USA
| | - Dawei Gou
- Molecular Biology Institute, UCLA David Geffen School of Medicine, Los Angeles, CA 90095-1570, USA; Department of Microbiology, Immunology and Molecular Genetics, UCLA David Geffen School of Medicine, Los Angeles, CA 90095-1570, USA
| | - Gauri Jawdekar
- Molecular Biology Institute, UCLA David Geffen School of Medicine, Los Angeles, CA 90095-1570, USA
| | - Sarah A Johnson
- Molecular Biology Institute, UCLA David Geffen School of Medicine, Los Angeles, CA 90095-1570, USA
| | - Miguel Nava
- Department of Microbiology, Immunology and Molecular Genetics, UCLA David Geffen School of Medicine, Los Angeles, CA 90095-1570, USA
| | - Trent Su
- Department of Biological Chemistry, UCLA David Geffen School of Medicine, Los Angeles, CA 90095-1570, USA
| | - Ahmed F Yousef
- Molecular Biology Institute, UCLA David Geffen School of Medicine, Los Angeles, CA 90095-1570, USA
| | - Nathan R Zemke
- Molecular Biology Institute, UCLA David Geffen School of Medicine, Los Angeles, CA 90095-1570, USA
| | - Matteo Pellegrini
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA David Geffen School of Medicine, Los Angeles, CA 90095-1570, USA; Molecular Biology Institute, UCLA David Geffen School of Medicine, Los Angeles, CA 90095-1570, USA; Department of Molecular, Cellular, and Developmental Biology, UCLA David Geffen School of Medicine, Los Angeles, CA 90095-1570, USA
| | - Siavash K Kurdistani
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA David Geffen School of Medicine, Los Angeles, CA 90095-1570, USA; Molecular Biology Institute, UCLA David Geffen School of Medicine, Los Angeles, CA 90095-1570, USA; Department of Biological Chemistry, UCLA David Geffen School of Medicine, Los Angeles, CA 90095-1570, USA; Department of Pathology and Laboratory of Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA 90095-1570, USA
| | - Arnold J Berk
- Molecular Biology Institute, UCLA David Geffen School of Medicine, Los Angeles, CA 90095-1570, USA; Department of Microbiology, Immunology and Molecular Genetics, UCLA David Geffen School of Medicine, Los Angeles, CA 90095-1570, USA.
| |
Collapse
|
31
|
Adenovirus E1A targets the DREF nuclear factor to regulate virus gene expression, DNA replication, and growth. J Virol 2014; 88:13469-81. [PMID: 25210186 DOI: 10.1128/jvi.02538-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The adenovirus E1A gene is the first gene expressed upon viral infection. E1A remodels the cellular environment to maximize permissivity for viral replication. E1A is also the major transactivator of viral early gene expression and a coregulator of a large number of cellular genes. E1A carries out its functions predominantly by binding to cellular regulatory proteins and altering their activities. The unstructured nature of E1A enables it to bind to a large variety of cellular proteins and form new molecular complexes with novel functions. The C terminus of E1A is the least-characterized region of the protein, with few known binding partners. Here we report the identification of cellular factor DREF (ZBED1) as a novel and direct binding partner of E1A. Our studies identify a dual role for DREF in the viral life cycle. DREF contributes to activation of gene expression from all viral promoters early in infection. Unexpectedly, it also functions as a growth restriction factor for adenovirus as knockdown of DREF enhances virus growth and increases viral genome copy number late in the infection. We also identify DREF as a component of viral replication centers. E1A affects the subcellular distribution of DREF within PML bodies and enhances DREF SUMOylation. Our findings identify DREF as a novel E1A C terminus binding partner and provide evidence supporting a role for DREF in viral replication. IMPORTANCE This work identifies the putative transcription factor DREF as a new target of the E1A oncoproteins of human adenovirus. DREF was found to primarily localize with PML nuclear bodies in uninfected cells and to relocalize into virus replication centers during infection. DREF was also found to be SUMOylated, and this was enhanced in the presence of E1A. Knockdown of DREF reduced the levels of viral transcripts detected at 20 h, but not at 40 h, postinfection, increased overall virus yield, and enhanced viral DNA replication. DREF was also found to localize to viral promoters during infection together with E1A. These results suggest that DREF contributes to activation of viral gene expression. However, like several other PML-associated proteins, DREF also appears to function as a growth restriction factor for adenovirus infection.
Collapse
|
32
|
Adenovirus E1A recruits the human Paf1 complex to enhance transcriptional elongation. J Virol 2014; 88:5630-7. [PMID: 24600005 DOI: 10.1128/jvi.03518-13] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED During infection by human adenovirus (HAdV), the proteins encoded by the early region 1A (E1A) gene bind and appropriate components of the cellular transcriptional machinery to activate the transcription of viral early genes. Previously, we identified roles for the human Bre1 (hBre1) and hPaf1 complexes in E1A-mediated transcriptional activation of HAdV early genes. Here we show that E1A binds hBre1 directly and that this complex targets the hPaf1 complex via the Rtf1 subunit. Depletion of hPaf1 reduces E1A-dependent activation of transcription from the E2e, E3, and E4 viral transcription units, and this does not result from a reduced ability of RNA polymerase II to be recruited to the promoter-proximal regions of these genes. In contrast, depletion of hPaf1 reduces the occupancy of RNA polymerase II across these transcription units. This is accompanied by reductions in the level of H3K36 trimethylation, a posttranslational histone modification associated with efficient transcriptional elongation, and the number of full-length transcripts from these genes. Together, these results indicate that E1A uses hBre1 to recruit the hPaf1 complex in order to optimally activate viral early transcription by enhancing transcriptional elongation. IMPORTANCE This work provides the mechanism by which the hPaf1 complex contributes to E1A-dependent activation of early gene transcription. The work also demonstrates that E1A induces gene expression by stimulating transcriptional elongation, in addition to its better-characterized effects on transcriptional initiation.
Collapse
|
33
|
Two independent regions of simian virus 40 T antigen increase CBP/p300 levels, alter patterns of cellular histone acetylation, and immortalize primary cells. J Virol 2013; 87:13499-509. [PMID: 24089570 DOI: 10.1128/jvi.02658-13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Simian virus 40 (SV40) large T antigen (SVT) interferes with normal cell regulation and thus has been used to identify cellular components controlling proliferation and homeostasis. We have previously shown that SVT-mediated transformation requires interaction with the histone acetyltransferases (HATs) CBP/p300 and now report that the ectopic expression of SVT in several cell types in vivo and in vitro results in a significant increase in the steady-state levels of CBP/p300. Furthermore, SVT-expressing cells contain higher levels of acetylated CBP/p300, a modification that has been linked to increased HAT activity. Concomitantly, the acetylation levels of histone residues H3K56 and H4K12 are markedly increased in SVT-expressing cells. Other polyomavirus-encoded large T antigens also increase the levels of CBP/p300 and sustain a rise in the acetylation levels of H3K56 and H4K12. SVT does not affect the transcription of CBP/p300, but rather, alters their overall levels through increasing the loading of CBP/p300 mRNAs onto polysomes. Two distinct regions within SVT, one located in the amino terminus and one in the carboxy terminus, can independently alter both the levels of CBP/p300 and the loading of CBP/p300 transcripts onto polysomes. Within the amino-terminal fragment, a functional J domain is necessary for increasing CBP/p300 and specific histone acetylation levels, as well as for immortalizing primary cells. These studies uncover the action of polyomavirus T antigens on cellular CBP/p300 and suggest that additional mechanisms are used by T antigens to induce cell immortalization and transformation.
Collapse
|
34
|
Fonseca GJ, Cohen MJ, Nichols AC, Barrett JW, Mymryk JS. Viral retasking of hBre1/RNF20 to recruit hPaf1 for transcriptional activation. PLoS Pathog 2013; 9:e1003411. [PMID: 23785282 PMCID: PMC3681745 DOI: 10.1371/journal.ppat.1003411] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 04/25/2013] [Indexed: 12/25/2022] Open
Abstract
Upon infection, human adenovirus (HAdV) must activate the expression of its early genes to reprogram the cellular environment to support virus replication. This activation is orchestrated in large part by the first HAdV gene expressed during infection, early region 1A (E1A). E1A binds and appropriates components of the cellular transcriptional machinery to modulate cellular gene transcription and activate viral early genes transcription. Previously, we identified hBre1/RNF20 as a target for E1A. The interaction between E1A and hBre1 antagonizes the innate antiviral response by blocking H2B monoubiquitination, a chromatin modification necessary for the interferon (IFN) response. Here, we describe a second distinct role for the interaction of E1A with hBre1 in transcriptional activation of HAdV early genes. Furthermore, we show that E1A changes the function of hBre1 from a ubiquitin ligase involved in substrate selection to a scaffold which recruits hPaf1 as a means to stimulate transcription and transcription-coupled histone modifications. By using hBre1 to recruit hPaf1, E1A is able to optimally activate viral early transcription and begin the cycle of viral replication. The ability of E1A to target hBre1 to simultaneously repress cellular IFN dependent transcription while activating viral transcription, represents an elegant example of the incredible economy of action accomplished by a viral regulatory protein through a single protein interaction.
Collapse
Affiliation(s)
- Gregory J. Fonseca
- Department of Microbiology & Immunology, University of Western Ontario, London, Ontario, Canada
| | - Michael J. Cohen
- Department of Microbiology & Immunology, University of Western Ontario, London, Ontario, Canada
| | - Anthony C. Nichols
- Department of Otolaryngology-Head and Neck Surgery, University of Western Ontario, London, Ontario, Canada
- Department of Oncology, University of Western Ontario, London, Ontario, Canada
| | - John W. Barrett
- Department of Otolaryngology-Head and Neck Surgery, University of Western Ontario, London, Ontario, Canada
| | - Joe S. Mymryk
- Department of Microbiology & Immunology, University of Western Ontario, London, Ontario, Canada
- Department of Oncology, University of Western Ontario, London, Ontario, Canada
- London Regional Cancer Program and Lawson Health Research Institute, London, Ontario, Canada
- * E-mail:
| |
Collapse
|
35
|
Adenovirus L-E1A activates transcription through mediator complex-dependent recruitment of the super elongation complex. J Virol 2013; 87:3425-34. [PMID: 23302885 DOI: 10.1128/jvi.03046-12] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The adenovirus large E1A (L-E1A) protein is a prototypical transcriptional activator, and it functions through the action of a conserved transcriptional activation domain, CR3. CR3 interacts with a mediator subunit, MED23, that has been linked to the transcriptional activity of CR3. Our unbiased proteomic analysis revealed that human adenovirus 5 (HAdv5) L-E1A was associated with many mediator subunits. In MED23-depleted cells and in Med23 knockout (KO) cells, L-E1A was deficient in association with other mediator subunits, suggesting that MED23 links CR3 with the mediator complex. Short interfering RNA (siRNA)-mediated depletion of several mediator subunits suggested differential effects of various subunits on transcriptional activation of HAdv5 early genes. In addition to MED23, mediator subunits such as MED14 and MED26 were also essential for the transcription of HAdv5 early genes. The L-E1A proteome contained MED26-associated super elongation complex. The catalytic component of the elongation complex, CDK9, was important for the transcriptional activity of L-E1A and HAdv5 replication. Our results suggest that L-E1A-mediated transcriptional activation involves a transcriptional elongation step, like HIV Tat, and constitutes a therapeutic target for inhibition of HAdv replication.
Collapse
|
36
|
Berscheminski J, Groitl P, Dobner T, Wimmer P, Schreiner S. The adenoviral oncogene E1A-13S interacts with a specific isoform of the tumor suppressor PML to enhance viral transcription. J Virol 2013; 87:965-77. [PMID: 23135708 PMCID: PMC3554061 DOI: 10.1128/jvi.02023-12] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 10/20/2012] [Indexed: 12/21/2022] Open
Abstract
PML nuclear bodies (PML NBs), also called ND10, are matrix-bound nuclear structures that have been implicated in a variety of functions, including DNA repair, transcriptional regulation, protein degradation, and tumor suppression. These domains are also known for their potential to mediate an intracellular defense mechanism against many virus types. This is likely why they are targeted and subsequently manipulated by numerous viral proteins. Paradoxically, the genomes of various DNA viruses become associated with PML NBs, and initial sites of viral transcription/replication centers are often juxtaposed to these domains. The question is why viruses start their transcription and replication next to their supposed antagonists. Here, we report that PML NBs are targeted by the adenoviral (Ad) transactivator protein E1A-13S. Alternatively spliced E1A isoforms (E1A-12S and E1A-13S) are the first proteins expressed upon Ad infection. E1A-13S is essential for activating viral transcription in the early phase of infection. Coimmunoprecipitation assays showed that E1A-13S preferentially interacts with only one (PML-II) of at least six nuclear human PML isoforms. Deletion mapping located the interaction site within E1A conserved region 3 (CR3), which was previously described as the transcription factor binding region of E1A-13S. Indeed, cooperation with PML-II enhanced E1A-mediated transcriptional activation, while deleting the SUMO-interacting motif (SIM) of PML proved even more effective. Our results suggest that in contrast to PML NB-associated antiviral defense, PML-II may help transactivate viral gene expression and therefore play a novel role in activating Ad transcription during the early viral life cycle.
Collapse
Affiliation(s)
- Julia Berscheminski
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | | | | | | | | |
Collapse
|
37
|
Adenovirus-mediated sensitization to the cytotoxic drugs docetaxel and mitoxantrone is dependent on regulatory domains in the E1ACR1 gene-region. PLoS One 2012; 7:e46617. [PMID: 23056370 PMCID: PMC3463540 DOI: 10.1371/journal.pone.0046617] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Accepted: 09/05/2012] [Indexed: 12/23/2022] Open
Abstract
Oncolytic adenoviruses have shown promising efficacy in clinical trials targeting prostate cancers that frequently develop resistance to all current therapies. The replication-selective mutants AdΔΔ and dl922–947, defective in pRb-binding, have been demonstrated to synergise with the current standard of care, mitoxantrone and docetaxel, in prostate cancer models. While expression of the early viral E1A gene is essential for the enhanced cell killing, the specific E1A-regions required for the effects are unknown. Here, we demonstrate that replicating mutants deleted in small E1A-domains, binding pRb (dl1108), p300/CBP (dl1104) and p400/TRRAP or p21 (dl1102) sensitize human prostate cancer cells (PC-3, DU145, 22Rv1) to mitoxantrone and docetaxel. Through generation of non-replicating mutants, we demonstrate that the small E1A12S protein is sufficient to potently sensitize all prostate cancer cells to the drugs even in the absence of viral replication and the E1A transactivating domain, conserved region (CR) 3. Furthermore, the p300/CBP-binding domain in E1ACR1 is essential for drug-sensitisation in the absence (AdE1A1104) but not in the presence of the E1ACR3 (dl1104) domain. AdE1A1104 also failed to increase apoptosis and accumulation of cells in G2/M. All E1AΔCR2 mutants (AdE1A1108, dl922–947) and AdE1A1102 or dl1102 enhance cell killing to the same degree as wild type virus. In PC-3 xenografts in vivo the dl1102 mutant significantly prolongs time to tumor progression that is further enhanced in combination with docetaxel. Neither dl1102 nor dl1104 replicates in normal human epithelial cells (NHBE). These findings suggest that additional E1A-deletions might be included when developing more potent replication-selective oncolytic viruses, such as the AdΔCR2-mutants, to further enhance potency through synergistic cell killing in combination with current chemotherapeutics.
Collapse
|
38
|
Cellular GCN5 is a novel regulator of human adenovirus E1A-conserved region 3 transactivation. J Virol 2012; 86:8198-209. [PMID: 22623781 DOI: 10.1128/jvi.00289-12] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The largest isoform of adenovirus early region 1A (E1A) contains a unique region termed conserved region 3 (CR3). This region activates viral gene expression by recruiting cellular transcription machinery to the early viral promoters. Recent studies have suggested that there is an optimal level of E1A-dependent transactivation required by human adenovirus (hAd) during infection and that this may be achieved via functional cross talk between the N termini of E1A and CR3. The N terminus of E1A binds GCN5, a cellular lysine acetyltransferase (KAT). We have identified a second independent interaction of E1A with GCN5 that is mediated by CR3, which requires residues 178 to 188 in hAd5 E1A. GCN5 was recruited to the viral genome during infection in an E1A-dependent manner, and this required both GCN5 interaction sites on E1A. Ectopic expression of GCN5 repressed transactivation by both E1A CR3 and full-length E1A. In contrast, RNA interference (RNAi) depletion of GCN5 or treatment with the KAT inhibitor cyclopentylidene-[4-(4'-chlorophenyl)thiazol-2-yl]hydrazone (CPTH2) resulted in increased E1A CR3 transactivation. Moreover, activation of the adenovirus E4 promoter by E1A was increased during infection of homozygous GCN5 KAT-defective (hat/hat) mouse embryonic fibroblasts (MEFs) compared to wild-type control MEFs. Enhanced histone H3 K9/K14 acetylation at the viral E4 promoter required the newly identified binding site for GCN5 within CR3 and correlated with repression and reduced occupancy by phosphorylated RNA polymerase II. Treatment with CPTH2 during infection also reduced virus yield. These data identify GCN5 as a new negative regulator of transactivation by E1A and suggest that its KAT activity is required for optimal virus replication.
Collapse
|
39
|
Abstract
Deregulation of the cell cycle is of paramount importance during adenovirus infection. Adenovirus normally infects quiescent cells and must initiate the cell cycle in order to propagate itself. The pRb family of proteins controls entry into the cell cycle by interacting with and repressing transcriptional activation by the E2F transcription factors. The viral E1A proteins indirectly activate E2F-dependent transcription and cell cycle entry, in part, by interacting with pRb and family members to free the E2Fs. We report here that an E1A 13S isoform can unexpectedly activate E2F-responsive gene expression independently of binding to the pRb family of proteins. We demonstrate that E1A binds to E2F/DP-1 complexes through a direct interaction with DP-1. E1A appears to utilize this binding to recruit itself to E2F-regulated promoters, and this allows the E1A 13S protein, but not the E1A 12S protein, to activate transcription independently of interaction with pRb. Importantly, expression of E1A 13S, but not E1A 12S, led to significant enhancement of E2F4 occupancy of E2F sites of two E2F-regulated promoters. These observations identify a novel mechanism by which adenovirus deregulates the cell cycle and suggest that E1A 13S may selectively activate a subset of E2F-regulated cellular genes during infection.
Collapse
|
40
|
Abstract
The tumour suppressor ARF (alternative reading frame) is one of the most important oncogenic stress sensors. ARF provides an 'oncogenic checkpoint' function through both p53-dependent and p53-independent mechanisms. In the present study, we demonstrate a novel p53-independent interaction between p14(ARF) and the adenovirus oncoprotein E1A. p14(ARF) inhibits E1A transcriptional function and promotes ubiquitination-dependent degradation of E1A. p14(ARF) overexpression relocalizes E1A into the nucleolus and inhibits E1A-induced cellular DNA replication independent of p53. Knockdown of endogenous p14(ARF) increases E1A transactivation. In addition, E1A can competitively inhibit ARF-Mdm2 (murine double minute 2) complex formation. These results identify a novel binding partner of p14(ARF) and reveal a mutually inhibitory interaction between p14(ARF) and E1A. We speculate that the ARF-E1A interaction may represent an additional host defence mechanism to limit viral replication. Alternatively, the interaction may allow adenovirus to sense the functional state of p53 in host cells, and fine-tune its own replication activity to prevent the triggering of a detrimental host response.
Collapse
|
41
|
Comparison of E1A CR3-dependent transcriptional activation across six different human adenovirus subgroups. J Virol 2010; 84:12771-81. [PMID: 20881041 DOI: 10.1128/jvi.01243-10] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The largest E1A isoform of human adenovirus (Ad) includes a C-4 zinc finger domain within conserved region 3 (CR3) that is largely responsible for activating transcription of the early viral genes. CR3 interacts with multiple cellular factors, but its mechanism of action is modeled primarily on the basis of the mechanism for the prototype E1A protein of human Ad type 5. We expanded this model to include a representative member from each of the six human Ad subgroups. All CR3 domains tested were capable of transactivation. However, there were dramatic differences in their levels of transcriptional activation. Despite these functional variations, the interactions of these representative CR3s with known cellular transcriptional regulators revealed only modest differences. Four common cellular targets of all representative CR3s were identified: the proteasome component human Sug1 (hSug1)/S8, the acetyltransferases p300/CREB binding protein (CBP), the mediator component mediator complex subunit 23 (MED23) protein, and TATA binding protein (TBP). The first three factors appear to be critical for CR3 function. RNA interference against human TBP showed no significant reduction in transactivation by any CR3 tested. These results indicate that the cellular factors previously shown to be important for transactivation by Ad5 CR3 are similarly bound by the E1A proteins of other types. This was confirmed experimentally using a transcriptional squelching assay, which demonstrated that the CR3 regions of each Ad type could compete with Ad5 CR3 for limiting factors. Interestingly, a mutant of Ad5 CR3 (V147L) was capable of squelching wild-type Ad5 CR3, despite its failure to bind TBP, MED23, p300/CBP-associated factor (pCAF), or p300/CBP, suggestive of the possibility that an additional as yet unidentified cellular factor is required for transactivation by E1A CR3.
Collapse
|
42
|
Abstract
Species C adenovirus establishes a latent infection in lymphocytes of the tonsils and adenoids. To understand how this lytic virus is maintained in these cells, four human lymphocytic cell lines that support the entire virus life cycle were examined. The T-cell line Jurkat ceased proliferation and died shortly after virus infection. BJAB, Ramos (B cells), and KE37 (T cells) continued to divide at nearly normal rates while replicating the virus genome. Viral genome numbers peaked and then declined in BJAB cells below one genome per cell at 130 to 150 days postinfection. Ramos and KE37 cells maintained the virus genome at over 100 copies per cell over a comparable period of time. BJAB cells maintained the viral DNA as a monomeric episome. All three persistently infected cells lost expression of the cell surface coxsackie and adenovirus receptor (CAR) within 24 h postinfection, and CAR expression remained low for at least 340 days postinfection. CAR loss proceeded via a two-stage process. First, an initial loss of cell surface staining for CAR required virus late gene expression and a CAR-binding fiber protein even while CAR protein and mRNA levels remained high. Second, CAR mRNA disappeared at around 30 days postinfection and remained low even after virus DNA was lost from the cells. At late times postinfection (day 180), BJAB cells could not be reinfected with adenovirus, even when CAR was reintroduced to the cells via retroviral transduction, suggesting that the expression of multiple genes had been stably altered in these cells following infection.
Collapse
|
43
|
Structural basis for subversion of cellular control mechanisms by the adenoviral E1A oncoprotein. Proc Natl Acad Sci U S A 2009; 106:13260-5. [PMID: 19651603 DOI: 10.1073/pnas.0906770106] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The adenovirus early region 1A (E1A) oncoprotein mediates cell transformation by deregulating host cellular processes and activating viral gene expression by recruitment of cellular proteins that include cyclic-AMP response element binding (CREB) binding protein (CBP)/p300 and the retinoblastoma protein (pRb). While E1A is capable of independent interaction with CBP/p300 or pRb, simultaneous binding of both proteins is required for maximal biological activity. To obtain insights into the mechanism by which E1A hijacks the cellular transcription machinery by competing with essential transcription factors for binding to CBP/p300, we have determined the structure of the complex between the transcriptional adaptor zinc finger-2 (TAZ2) domain of CBP and the conserved region-1 (CR1) domain of E1A. The E1A CR1 domain is unstructured in the free state and upon binding folds into a local helical structure mediated by an extensive network of intermolecular hydrophobic contacts. By NMR titrations, we show that E1A efficiently competes with the N-terminal transactivation domain of p53 for binding to TAZ2 and that pRb interacts with E1A at 2 independent sites located in CR1 and CR2. We show that pRb and the CBP TAZ2 domain can bind simultaneously to the CR1 site of E1A to form a ternary complex and propose a structural model for the pRb:E1A:CBP complex on the basis of published x-ray data for homologous binary complexes. These observations reveal the molecular basis by which E1A inhibits p53-mediated transcriptional activation and provide a rationale for the efficiency of cellular transformation by the adenoviral E1A oncoprotein.
Collapse
|
44
|
Pelka P, Ablack JNG, Shuen M, Yousef AF, Rasti M, Grand RJ, Turnell AS, Mymryk JS. Identification of a second independent binding site for the pCAF acetyltransferase in adenovirus E1A. Virology 2009; 391:90-8. [PMID: 19541337 DOI: 10.1016/j.virol.2009.05.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 04/22/2009] [Accepted: 05/26/2009] [Indexed: 11/19/2022]
Abstract
The conserved region 3 (CR3) portion of the human adenovirus (HAdV) 5 E1A protein functions as a potent transcriptional activator that induces expression of viral early genes during infection. Expression of HAdV-5 CR3 in the yeast Saccharomyces cerevisiae inhibits growth, as do the corresponding regions of the HAdV-3, 4, 9, 12 and 40 E1A proteins, which represent the remaining five HAdV subgroups. Growth inhibition is alleviated by disruption of the SAGA transcriptional regulatory complex, suggesting that CR3 targets the yeast SAGA complex. In yeast, transcriptional activation by several, but not all, of the CR3 regions requires the Gcn5 acetyltransferase component of SAGA. The CR3 regions of HAdV-3, 5, 9 and 40, but not HAdV-4 and 12 interact with the pCAF acetyltransferase, a mammalian ortholog of yeast Gcn5. Disruption of the previously described N-terminal pCAF binding site abrogates binding by the HAdV-5 243R E1A protein, but not the larger 289R E1A protein, which is otherwise identical except for the presence of CR3. RNA interference directed against pCAF decreased HAdV-5 CR3 dependent transcriptional activation in mammalian cells. Our results identify a second independent binding site for pCAF in E1A and suggest that it contributes to CR3 dependent transcriptional activation.
Collapse
Affiliation(s)
- Peter Pelka
- Department of Oncology, The University of Western Ontario, London Regional Cancer Centre, London, Ontario, Canada N6A 4L6
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Yousef AF, Brandl CJ, Mymryk JS. Requirements for E1A dependent transcription in the yeast Saccharomyces cerevisiae. BMC Mol Biol 2009; 10:32. [PMID: 19374760 PMCID: PMC2674444 DOI: 10.1186/1471-2199-10-32] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Accepted: 04/17/2009] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND The human adenovirus type 5 early region 1A (E1A) gene encodes proteins that are potent regulators of transcription. E1A does not bind DNA directly, but is recruited to target promoters by the interaction with sequence specific DNA binding proteins. In mammalian systems, E1A has been shown to contain two regions that can independently induce transcription when fused to a heterologous DNA binding domain. When expressed in Saccharomyces cerevisiae, each of these regions of E1A also acts as a strong transcriptional activator. This allows yeast to be used as a model system to study mechanisms by which E1A stimulates transcription. RESULTS Using 81 mutant yeast strains, we have evaluated the effect of deleting components of the ADA, COMPASS, CSR, INO80, ISW1, NuA3, NuA4, Mediator, PAF, RSC, SAGA, SAS, SLIK, SWI/SNF and SWR1 transcriptional regulatory complexes on E1A dependent transcription. In addition, we examined the role of histone H2B ubiquitylation by Rad6/Bre1 on transcriptional activation. CONCLUSION Our analysis indicates that the two activation domains of E1A function via distinct mechanisms, identify new factors regulating E1A dependent transcription and suggest that yeast can serve as a valid model system for at least some aspects of E1A function.
Collapse
Affiliation(s)
- Ahmed F Yousef
- Department of Microbiology & Immunology, University of Western Ontario, London, Ontario, Canada.
| | | | | |
Collapse
|