1
|
Kung RW, Takyi NA, Wetmore SD. Effects of a Second Local DNA Damage Event on the Toxicity of the Human Carcinogen 4-Aminobiphenyl: A Molecular Dynamics Study of a Damaged DNA Structure. Chem Res Toxicol 2022; 35:499-511. [PMID: 35147430 DOI: 10.1021/acs.chemrestox.1c00405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Exposure of humans to carcinogenic aromatic amines (AAs) occurs daily. AAs are bioactivated in cells into products that attack DNA, primarily leading to N-linked C8-dG adducts. Previous work on DNA containing a single AA-derived adduct (monoadducted DNA) has shown a structure-function relationship between the damaged DNA conformation and cellular outcomes. However, relatively little is known about the conformation and biological outcomes of DNA containing two bulky adducts (diadducted DNA) in close proximity. To fill this current void in the literature, the present work uses quintuplet 0.5 μs MD simulations to understand the structural impact of DNA exposure to the potent bladder carcinogen 4-aminobiphenyl (ABP), which is found in cigarette smoke and select dyes, and results in the widely studied N-linked ABPdG adduct. Specifically, 18 unique DNA duplexes were investigated that contain one or two ABPdG adducts in the anti and/or syn glycosidic orientation(s) in all combinations of three G positions in the NarI mutation hotspot for AAs (5'-G1G2CG3CC). Monoadducted DNA displays sequence-dependent conformational heterogeneity, with the G1 site having the greatest anti preference, and highlights the range of helical structures associated with the syn lesion orientation [i.e., stacked (S), intercalated (I), and wedge (W) conformations]. Diadducted DNA results in interesting lesion separation effects on the conformational heterogeneity, including a greater anti preference for neighboring adducts (G1G2) and a greater syn preference for next-nearest neighbor damaged sites (G2G3) compared to monoadducted DNA. As a result, an increase in the number of ABPdG adducts changes the conformational heterogeneity of ABP-exposed DNA depending on the relative positions of the lesions and thereby could result in increased or decreased toxicity upon human exposure to elevated levels of ABP.
Collapse
Affiliation(s)
- Ryan W Kung
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada
| | - Nathania A Takyi
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada
| | - Stacey D Wetmore
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada
| |
Collapse
|
2
|
Cai A, Wilson KA, Patnaik S, Wetmore SD, Cho BP. DNA base sequence effects on bulky lesion-induced conformational heterogeneity during DNA replication. Nucleic Acids Res 2019; 46:6356-6370. [PMID: 29800374 PMCID: PMC6158707 DOI: 10.1093/nar/gky409] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 05/03/2018] [Indexed: 12/11/2022] Open
Abstract
4-Aminobiphenyl (ABP) and its structure analog 2-aminofluorene (AF) are well-known carcinogens. In the present work, an unusual sequence effect in the 5′-CTTCTG1G2TCCTCATTC-3′ DNA duplex is reported for ABP- and AF-modified G. Specifically, the ABP modification at G1 resulted in a mixture of 67% major groove B-type (B) and 33% stacked (S) conformers, while at the ABP modification at G2 exclusively resulted in the B-conformer. The AF modification at G1 and G2 lead to 25%:75% and 83%:17% B:S population ratios, respectively. These differences in preferred conformation are due to an interplay between stabilizing (hydrogen bonding and stacking that is enhanced by lesion planarity) and destabilizing (solvent exposure) forces at the lesion site. Furthermore, while the B-conformer is a thermodynamic stabilizer and the S-conformer is a destabilizer in duplex settings, the situation is reversed at the single strands/double strands (ss/ds) junction. Specifically, the twisted biphenyl is a better stacker at the ss/ds junction than the coplanar AF. Therefore, the ABP modification leads to a stronger strand binding affinity of the ss/ds junction than the AF modification. Overall, the current work provides conformational insights into the role of sequence and lesion effects in modulating DNA replication.
Collapse
Affiliation(s)
- Ang Cai
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02881, USA
| | - Katie A Wilson
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada
| | - Satyakam Patnaik
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02881, USA
| | - Stacey D Wetmore
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada
| | - Bongsup P Cho
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02881, USA
| |
Collapse
|
3
|
Kathuria P, Sharma P, Manderville RA, Wetmore SD. Molecular Dynamics Simulations of Mismatched DNA Duplexes Associated with the Major C8-Linked 2′-Deoxyguanosine Adduct of the Food Mutagen Ochratoxin A: Influence of Opposing Base, Adduct Ionization State, and Sequence on the Structure of Damaged DNA. Chem Res Toxicol 2018; 31:712-720. [DOI: 10.1021/acs.chemrestox.8b00064] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Preetleen Kathuria
- Computational Biochemistry Laboratory, Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Purshotam Sharma
- Computational Biochemistry Laboratory, Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Richard A. Manderville
- Departments of Chemistry and Toxicology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Stacey D. Wetmore
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| |
Collapse
|
4
|
Kung RW, Sharma P, Wetmore SD. Effect of Size and Shape of Nitrogen-Containing Aromatics on Conformational Preferences of DNA Containing Damaged Guanine. J Chem Inf Model 2018; 58:1415-1425. [PMID: 29923712 DOI: 10.1021/acs.jcim.8b00238] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Ryan W. Kung
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, Canada T1K 3M4
| | - Purshotam Sharma
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, Canada T1K 3M4
| | - Stacey D. Wetmore
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, Canada T1K 3M4
| |
Collapse
|
5
|
Xu L, Cho BP. Conformational Insights into the Mechanism of Acetylaminofluorene-dG-Induced Frameshift Mutations in the NarI Mutational Hotspot. Chem Res Toxicol 2016; 29:213-26. [PMID: 26733364 DOI: 10.1021/acs.chemrestox.5b00484] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Frameshift mutagenesis encompasses the gain or loss of DNA base pairs, resulting in altered genetic outcomes. The NarI restriction site sequence 5'-G1G2CG3CX-3' in Escherichia coli is a well-known mutational hotspot, in which lesioning of acetylaminofluorene (AAF) at G3* induces a greater -2 deletion frequency than that at other guanine sites. Its mutational efficiency is modulated by the nature of the nucleotide in the X position (C ∼ A > G ≫ T). Here, we conducted a series of polymerase-free solution experiments that examine the conformational and thermodynamic basis underlying the propensity of adducted G3 to form a slipped mutagenic intermediate (SMI) and its sequence dependence during translesion synthesis (TLS). Instability of the AAF-dG3:dC pair at the replication fork promoted slippage to form a G*C bulge-out SMI structure, consisting of S- ("lesion stacked") and B-SMI ("lesion exposed") conformations, with conformational rigidity increasing as a function of primer elongation. We found greater stability of the S- compared to the B-SMI conformer throughout TLS. The dependence of their population ratios was determined by the 3'-next flanking base X at fully elongated bulge structures, with 59% B/41% S and 86% B/14% S for the dC and dT series, respectively. These results indicate the importance of direct interactions of the hydrophobic AAF lesion with the 3'-next flanking base pair and its stacking fit within the -2 bulge structure. A detailed conformational understanding of the SMI structures and their sequence dependence may provide a useful model for DNA polymerase complexes.
Collapse
Affiliation(s)
- Lifang Xu
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island , Kingston, Rhode Island 02881, United States
| | - Bongsup P Cho
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island , Kingston, Rhode Island 02881, United States
| |
Collapse
|
6
|
Sproviero M, Verwey AMR, Rankin KM, Witham AA, Soldatov DV, Manderville RA, Fekry MI, Sturla SJ, Sharma P, Wetmore SD. Structural and biochemical impact of C8-aryl-guanine adducts within the NarI recognition DNA sequence: influence of aryl ring size on targeted and semi-targeted mutagenicity. Nucleic Acids Res 2014; 42:13405-21. [PMID: 25361967 PMCID: PMC4245952 DOI: 10.1093/nar/gku1093] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Chemical mutagens with an aromatic ring system may be enzymatically transformed to afford aryl radical species that preferentially react at the C8-site of 2′-deoxyguanosine (dG). The resulting carbon-linked C8-aryl-dG adduct possesses altered biophysical and genetic coding properties compared to the precursor nucleoside. Described herein are structural and in vitro mutagenicity studies of a series of fluorescent C8-aryl-dG analogues that differ in aryl ring size and are representative of authentic DNA adducts. These structural mimics have been inserted into a hotspot sequence for frameshift mutations, namely, the reiterated G3-position of the NarI sequence within 12mer (NarI(12)) and 22mer (NarI(22)) oligonucleotides. In the NarI(12) duplexes, the C8-aryl-dG adducts display a preference for adopting an anti-conformation opposite C, despite the strong syn preference of the free nucleoside. Using the NarI(22) sequence as a template for DNA synthesis in vitro, mutagenicity of the C8-aryl-dG adducts was assayed with representative high-fidelity replicative versus lesion bypass Y-family DNA polymerases, namely, Escherichia coli pol I Klenow fragment exo− (Kf−) and Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4). Our experiments provide a basis for a model involving a two-base slippage and subsequent realignment process to relate the miscoding properties of C-linked C8-aryl-dG adducts with their chemical structures.
Collapse
Affiliation(s)
- Michael Sproviero
- Department of Chemistry and Toxicology, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| | - Anne M R Verwey
- Department of Chemistry and Toxicology, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| | - Katherine M Rankin
- Department of Chemistry and Toxicology, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| | - Aaron A Witham
- Department of Chemistry and Toxicology, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| | - Dmitriy V Soldatov
- Department of Chemistry and Toxicology, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| | - Richard A Manderville
- Department of Chemistry and Toxicology, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| | - Mostafa I Fekry
- Department of Health Sciences and Technology, Institute of Food, Nutrition and Health, ETH Zürich, 8032 Zürich, Switzerland Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo 11562, Egypt
| | - Shana J Sturla
- Department of Health Sciences and Technology, Institute of Food, Nutrition and Health, ETH Zürich, 8032 Zürich, Switzerland
| | - Purshotam Sharma
- Department of Chemistry & Biochemistry, University of Lethbridge, Lethbridge, AB, Canada, T1K 3M4
| | - Stacey D Wetmore
- Department of Chemistry and Toxicology, University of Guelph, Guelph, Ontario, Canada, N1G 2W1 Department of Health Sciences and Technology, Institute of Food, Nutrition and Health, ETH Zürich, 8032 Zürich, Switzerland Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo 11562, Egypt Department of Chemistry & Biochemistry, University of Lethbridge, Lethbridge, AB, Canada, T1K 3M4
| |
Collapse
|
7
|
Xu L, Vaidyanathan VG, Cho BP. Real-time surface plasmon resonance study of biomolecular interactions between polymerase and bulky mutagenic DNA lesions. Chem Res Toxicol 2014; 27:1796-807. [PMID: 25195494 PMCID: PMC4203393 DOI: 10.1021/tx500252z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
Surface plasmon resonance (SPR) was
used to measure polymerase-binding
interactions of the bulky mutagenic DNA lesions N-(2′-deoxyguanosin-8-yl)-4′-fluoro-4-aminobiphenyl
(FABP) or N-(2′-deoxyguanosin-8-yl)-7-fluoro-2-acetylaminofluorene
(FAAF) in the context of two unique 5′-flanking bases (CG*A and TG*A). The enzymes used
were exo-nuclease-deficient Klenow fragment (Kf-exo–) or polymerase β (pol β). Specific binary and ternary
DNA binding affinities of the enzymes were characterized at subnanomolar
concentrations. The SPR results showed that Kf-exo– binds strongly to a double strand/single strand template/primer
junction, whereas pol β binds preferentially to double-stranded
DNA having a one-nucleotide gap. Both enzymes exhibited tight binding
to native DNA, with high nucleotide selectivity, where the KD values for each base pair increased in the
order dCTP ≪ dTTP ∼ dATP ≪ dGTP. In contrast
to that for pol β, Kf-exo– binds tightly to
lesion-modified templates; however, both polymerases exhibited minimal
nucleotide selectivity toward adducted DNA. Primer steady-state kinetics
and 19F NMR results support the SPR data. The relative
insertion efficiency fins of dCTP opposite
FABP was significantly higher in the TG*A sequence
compared to that in CG*A. Although Kf-exo– was not sensitive to the presence of a DNA lesion,
FAAF-induced conformational heterogeneity perturbed the active site
of pol β, weakening the enzyme’s ability to bind to FAAF
adducts compared to FABP adducts. The present study demonstrates the
effectiveness of SPR for elucidating how lesion-induced conformational
heterogeneity affects the binding capability of polymerases and ultimately
the nucleotide insertion efficiency.
Collapse
Affiliation(s)
- Lifang Xu
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island , Kingston, Rhode Island 02881, United States
| | | | | |
Collapse
|
8
|
Jain V, Vaidyanathan VG, Patnaik S, Gopal S, Cho BP. Conformational insights into the lesion and sequence effects for arylamine-induced translesion DNA synthesis: 19F NMR, surface plasmon resonance, and primer kinetic studies. Biochemistry 2014; 53:4059-71. [PMID: 24915610 PMCID: PMC4075988 DOI: 10.1021/bi5003212] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
![]()
Adduct-induced DNA damage can affect
transcription efficiency and
DNA replication and repair. We previously investigated the effects
of the 3′-next flanking base (G*CT vs G*CA; G*, FABP, N-(2′-deoxyguanosin-8-yl)-4′-fluoro-4-aminobiphenyl;
FAF, N-(2′-deoxyguanosin-8-yl)-7-fluoro-2-aminofluorene)
on the conformation of arylamine-DNA lesions in relation to E. coli nucleotide excision repair (JainV., HiltonB., LinB., PatnaikS., LiangF., DarianE., ZouY., MackerellA. D.Jr., and ChoB. P. (2013) , 41, 869−88023180767). Here,
we report the differential effects of the same pair of sequences on
DNA replication in vitro by the polymerases exofree
Klenow fragment (Kf-exo–) and Dpo4. We obtained
dynamic 19F NMR spectra for two 19-mer modified templates
during primer elongation: G*CA [d(5′-CTTACCATCG*CAACCATTC-3′)]
and G*CT [d(5′-CTTACCATCG*CTACCATTC-3′)].
We found that lesion stacking is favored in the G*CT sequence compared to the G*CA counterpart. Surface
plasmon resonance binding results showed consistently weaker affinities
for the modified DNA with the binding strength in the order of FABP
> FAF and G*CA > G*CT. Primer extension was stalled at
(n) and near (n – 1 and n + 1) the lesion site, and the extent of blockage and the extension
rates across the lesion were influenced by not only the DNA sequences
but also the nature of the adduct’s chemical structure (FAF
vs FABP) and the polymerase employed (Kf-exo– vs
Dpo4). Steady-state kinetics analysis with Kf-exo– revealed the most dramatic sequence and lesion effects at the lesion
(n) and postinsertion (n + 1) sites,
respectively. Taken together, these results provide insights into
the important role of lesion-induced conformational heterogeneity
in modulating translesion DNA synthesis.
Collapse
Affiliation(s)
- Vipin Jain
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island , Kingston, Rhode Island 02881, United States
| | | | | | | | | |
Collapse
|
9
|
Kuska MS, Witham AA, Sproviero M, Manderville RA, Majdi Yazdi M, Sharma P, Wetmore SD. Structural Influence of C8-Phenoxy-Guanine in the NarI Recognition DNA Sequence. Chem Res Toxicol 2013; 26:1397-408. [DOI: 10.1021/tx400252g] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Michael S. Kuska
- Departments
of Chemistry and Toxicology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Aaron A. Witham
- Departments
of Chemistry and Toxicology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Michael Sproviero
- Departments
of Chemistry and Toxicology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Richard A. Manderville
- Departments
of Chemistry and Toxicology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Mohadeseh Majdi Yazdi
- Department
of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada T1K 3M4
| | - Purshotam Sharma
- Department
of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada T1K 3M4
| | - Stacey D. Wetmore
- Department
of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada T1K 3M4
| |
Collapse
|
10
|
Jain V, Hilton B, Lin B, Jain A, MacKerell AD, Zou Y, Cho BP. Structural and thermodynamic insight into Escherichia coli UvrABC-mediated incision of cluster diacetylaminofluorene adducts on the NarI sequence. Chem Res Toxicol 2013; 26:1251-62. [PMID: 23841451 DOI: 10.1021/tx400186v] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cluster DNA damage refers to two or more lesions in a single turn of the DNA helix. Such clustering may occur with bulky DNA lesions, which may be responsible for their sequence-dependent repair and mutational outcomes. Here we prepared three 16-mer cluster duplexes in which two fluoroacetylaminofluorene adducts (dG-FAAF) are separated by zero, one, and two nucleotides in the Escherichia coli NarI mutational hot spot (5'-CTCTCG1G2CG3CCATCAC-3'): 5'-CG1*G2*CG3CC-3', 5'-CG1G2*CG3*CC-3', and 5'-CG1*G2CG3*CC-3' (G* = dG-FAAF), respectively. We conducted spectroscopic, thermodynamic, and molecular dynamics studies of these di-FAAF duplexes, and the results were compared with those of the corresponding mono-FAAF adducts in the same NarI sequence [Jain, V., et al. (2012) Nucleic Acids Res. 40, 3939-3951]. Our nucleotide excision repair results showed the diadducts were more reparable than the corresponding monoadducts. Moreover, we observed dramatic flanking base sequence effects on their repair efficiency in the following order: NarI-G2G3 > NarI-G1G3 > NarI-G1G2. The nuclear magnetic resonance, circular dichroism, ultraviolet melting, and molecular dynamics simulation results revealed that in contrast to the monoadducts, diadducts produced a synergistic effect on duplex destabilization. In addition, dG-FAAF at G2G3 and G1G3 destacks the neighboring bases, with greater destabilization occurring with the former. Overall, the results indicate the importance of base stacking and related thermal and thermodynamic destabilization in the repair of bulky cluster arylamine DNA adducts.
Collapse
Affiliation(s)
- Vipin Jain
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Vaidyanathan VG, Liang F, Beard WA, Shock DD, Wilson SH, Cho BP. Insights into the conformation of aminofluorene-deoxyguanine adduct in a DNA polymerase active site. J Biol Chem 2013; 288:23573-85. [PMID: 23798703 DOI: 10.1074/jbc.m113.476150] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The active site conformation of the mutagenic fluoroaminofluorene-deoxyguanine adduct (dG-FAF, N-(2'-deoxyguanosin-8-yl)-7-fluoro-2-aminofluorene) has been investigated in the presence of Klenow fragment of Escherichia coli DNA polymerase I (Kfexo(-)) and DNA polymerase β (pol β) using (19)F NMR, insertion assay, and surface plasmon resonance. In a single nucleotide gap, the dG-FAF adduct adopts both a major-groove- oriented and base-displaced stacked conformation, and this heterogeneity is retained upon binding pol β. The addition of a non-hydrolysable 2'-deoxycytosine-5'-[(α,β)-methyleno]triphosphate (dCMPcPP) nucleotide analog to the binary complex results in an increase of the major groove conformation of the adduct at the expense of the stacked conformation. Similar results were obtained with the addition of an incorrect dAMPcPP analog but with formation of the minor groove binding conformer. In contrast, dG-FAF adduct at the replication fork for the Kfexo(-) complex adopts a mix of the major and minor groove conformers with minimal effect upon the addition of non-hydrolysable nucleotides. For pol β, the insertion of dCTP was preferred opposite the dG-FAF adduct in a single nucleotide gap assay consistent with (19)F NMR data. Surface plasmon resonance binding kinetics revealed that pol β binds tightly with DNA in the presence of correct dCTP, but the adduct weakens binding with no nucleotide specificity. These results provide molecular insights into the DNA binding characteristics of FAF in the active site of DNA polymerases and the role of DNA structure and sequence on its coding potential.
Collapse
Affiliation(s)
- Vaidyanathan G Vaidyanathan
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881, USA
| | | | | | | | | | | |
Collapse
|
12
|
Jain V, Hilton B, Lin B, Patnaik S, Liang F, Darian E, Zou Y, MacKerell AD, Cho BP. Unusual sequence effects on nucleotide excision repair of arylamine lesions: DNA bending/distortion as a primary recognition factor. Nucleic Acids Res 2013; 41:869-80. [PMID: 23180767 PMCID: PMC3553991 DOI: 10.1093/nar/gks1077] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 10/11/2012] [Accepted: 10/15/2012] [Indexed: 12/30/2022] Open
Abstract
The environmental arylamine mutagens are implicated in the etiology of various sporadic human cancers. Arylamine-modified dG lesions were studied in two fully paired 11-mer duplexes with a -G*CN- sequence context, in which G* is a C8-substituted dG adduct derived from fluorinated analogs of 4-aminobiphenyl (FABP), 2-aminofluorene (FAF) or 2-acetylaminofluorene (FAAF), and N is either dA or dT. The FABP and FAF lesions exist in a simple mixture of 'stacked' (S) and 'B-type' (B) conformers, whereas the N-acetylated FAAF also samples a 'wedge' (W) conformer. FAAF is repaired three to four times more efficiently than FABP and FAF. A simple A- to -T polarity swap in the G*CA/G*CT transition produced a dramatic increase in syn-conformation and resulted in 2- to 3-fold lower nucleotide excision repair (NER) efficiencies in Escherichia coli. These results indicate that lesion-induced DNA bending/thermodynamic destabilization is an important DNA damage recognition factor, more so than the local S/B-conformational heterogeneity that was observed previously for FAF and FAAF in certain sequence contexts. This work represents a novel 3'-next flanking sequence effect as a unique NER factor for bulky arylamine lesions in E. coli.
Collapse
Affiliation(s)
- Vipin Jain
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02881, Department of Biomedical Sciences, East Tennessee State University, Johnson city, TN 37614 and Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201, USA
| | - Benjamin Hilton
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02881, Department of Biomedical Sciences, East Tennessee State University, Johnson city, TN 37614 and Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201, USA
| | - Bin Lin
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02881, Department of Biomedical Sciences, East Tennessee State University, Johnson city, TN 37614 and Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201, USA
| | - Satyakam Patnaik
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02881, Department of Biomedical Sciences, East Tennessee State University, Johnson city, TN 37614 and Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201, USA
| | - Fengting Liang
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02881, Department of Biomedical Sciences, East Tennessee State University, Johnson city, TN 37614 and Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201, USA
| | - Eva Darian
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02881, Department of Biomedical Sciences, East Tennessee State University, Johnson city, TN 37614 and Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201, USA
| | - Yue Zou
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02881, Department of Biomedical Sciences, East Tennessee State University, Johnson city, TN 37614 and Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201, USA
| | - Alexander D. MacKerell
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02881, Department of Biomedical Sciences, East Tennessee State University, Johnson city, TN 37614 and Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201, USA
| | - Bongsup P. Cho
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02881, Department of Biomedical Sciences, East Tennessee State University, Johnson city, TN 37614 and Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201, USA
| |
Collapse
|
13
|
Yeo JE, Khoo A, Fagbemi AF, Schärer OD. The efficiencies of damage recognition and excision correlate with duplex destabilization induced by acetylaminofluorene adducts in human nucleotide excision repair. Chem Res Toxicol 2012; 25:2462-8. [PMID: 23088760 DOI: 10.1021/tx3003033] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Nucleotide excision repair (NER) removes lesions caused by environmental mutagens or UV light from DNA. A hallmark of NER is the extraordinarily wide substrate specificity, raising the question of how one set of proteins is able to recognize structurally diverse lesions. Two key features of good NER substrates are that they are bulky and thermodynamically destabilize DNA duplexes. To understand what the limiting step in damage recognition in NER is, we set out to test the hypothesis that there is a correlation of the degree of thermodynamic destabilization induced by a lesion, binding affinity to the damage recognition protein XPC-RAD23B, and overall NER efficiency. We chose to use acetylaminofluorene (AAF) and aminofluorene (AF) adducts at the C8 position of guanine in different positions within the NarI (GGCGCC) sequence, as it is known that the structures of the duplexes depend on the position of the lesion in this context. We found that the efficiency of NER and the binding affinity of the damage recognition factor XPC-RAD23B correlated with the thermodynamic destabilization induced by the lesion. Our study is the first systematic analysis correlating these three parameters and supports the idea that initial damage recognition by XPC-RAD23B is a key rate-limiting step in NER.
Collapse
Affiliation(s)
- Jung-Eun Yeo
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA
| | | | | | | |
Collapse
|
14
|
C8-linked bulky guanosine DNA adducts: experimental and computational insights into adduct conformational preferences and resulting mutagenicity. Future Med Chem 2012; 4:1981-2007. [PMID: 23088278 DOI: 10.4155/fmc.12.138] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Bulky DNA adducts are formed through the covalent attachment of aryl groups to the DNA nucleobases. Many of these adducts are known to possess conformational heterogeneity, which is responsible for the variety of mutagenic outcomes associated with these lesions. The present contribution reviews several conformational and mutagenic themes that are prevalent among the DNA adducts formed at the C8-site of the guanine nucleobase. The most important conclusions obtained (to date) from experiments are summarized including the anti/syn conformational preference of the adducts, their potential to inflict DNA mutations and mismatch stabilization, and their interactions with DNA polymerases and repair enzymes. Additionally, the unique role that computer calculations can play in understanding the structural properties of these adducts are highlighted.
Collapse
|
15
|
Mu H, Kropachev K, Wang L, Zhang L, Kolbanovskiy A, Kolbanovskiy M, Geacintov NE, Broyde S. Nucleotide excision repair of 2-acetylaminofluorene- and 2-aminofluorene-(C8)-guanine adducts: molecular dynamics simulations elucidate how lesion structure and base sequence context impact repair efficiencies. Nucleic Acids Res 2012; 40:9675-90. [PMID: 22904073 PMCID: PMC3479214 DOI: 10.1093/nar/gks788] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Nucleotide excision repair (NER) efficiencies of DNA lesions can vary by orders of magnitude, for reasons that remain unclear. An example is the pair of N-(2′-deoxyguanosin-8-yl)-2-aminofluorene (dG-C8-AF) and N-(2′-deoxyguanosin-8-yl)-2-acetylaminofluorene (dG-C8-AAF) adducts that differ by a single acetyl group. The NER efficiencies in human HeLa cell extracts of these lesions are significantly different when placed at G1, G2 or G3 in the duplex sequence (5′-CTCG1G2CG3CCATC-3′) containing the NarI mutational hot spot. Furthermore, the dG-C8-AAF adduct is a better substrate of NER than dG-C8-AF in all three NarI sequence contexts. The conformations of each of these adducts were investigated by Molecular dynamics (MD) simulation methods. In the base-displaced conformational family, the greater repair susceptibility of dG-C8-AAF in all sequences stems from steric hindrance effects of the acetyl group which significantly diminish the adduct-base stabilizing van der Waals stacking interactions relative to the dG-C8-AF case. Base sequence context effects for each adduct are caused by differences in helix untwisting and minor groove opening that are derived from the differences in stacking patterns. Overall, the greater NER efficiencies are correlated with greater extents of base sequence-dependent local untwisting and minor groove opening together with weaker stacking interactions.
Collapse
Affiliation(s)
- Hong Mu
- Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Manderville RA, Omumi A, Rankin née Schlitt KM, Wilson KA, Millen AL, Wetmore SD. Fluorescent C-linked C8-aryl-guanine probe for distinguishing syn from anti structures in duplex DNA. Chem Res Toxicol 2012; 25:1271-82. [PMID: 22667322 DOI: 10.1021/tx300152q] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The synthesis and optical properties of the carbon (C)-linked C(8)-(2"-benzo[b]thienyl)-2'-deoxyguanosine ((Bth)dG), which acts as a fluorescent reporter of syn versus anti glycosidic conformations in duplex DNA, are described. In the syn-conformation, the probe stabilizes a G:G mismatch, emits at ∼385 nm (excitation ∼285 nm), and shows an induced circular dichroism (ICD) signal at ∼320 nm. Molecular dynamics (MD) simulations predict a wedge (W)-conformation for the mismatched duplex with the C(8)-benzo[b]thienyl moiety residing in the minor groove. In contrast, the probe destabilizes the duplex when base paired with its normal pyrimidine partner C. With flanking purine bases, a major groove B-type duplex is favored with (Bth)dG present in the anti-conformation emitting at ∼413 nm (excitation ∼326 nm) and no ICD signal. However, with flanking pyrimidine bases, (Bth)dG adopts the syn-conformation when base paired with C, and MD simulations predict a base-displaced stacked (S)-conformation, with the opposing C flipped out of the helix. The different duplex (B-, S-, and W-) conformers formed upon incorporation of (Bth)dG are known to play a critical role in the biological activity of N-linked C8-dG adducts formed by arylamine carcinogens. Bulky environment-sensitive fluorescent C(8)-dG adducts that mimic the duplex structures formed by carcinogens may be useful in luminescence-based DNA polymerase assays.
Collapse
|
17
|
Vaidyanathan VG, Cho BP. Sequence Effects on Translesion Synthesis of an Aminofluorene–DNA Adduct: Conformational, Thermodynamic, and Primer Extension Kinetic Studies. Biochemistry 2012; 51:1983-95. [DOI: 10.1021/bi2017443] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- V. G. Vaidyanathan
- Department of Biomedical and Pharmaceutical
Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Bongsup P. Cho
- Department of Biomedical and Pharmaceutical
Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881, United States
| |
Collapse
|
18
|
Jain V, Hilton B, Patnaik S, Zou Y, Chiarelli MP, Cho BP. Conformational and thermodynamic properties modulate the nucleotide excision repair of 2-aminofluorene and 2-acetylaminofluorene dG adducts in the NarI sequence. Nucleic Acids Res 2012; 40:3939-51. [PMID: 22241773 PMCID: PMC3351159 DOI: 10.1093/nar/gkr1307] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Nucleotide excision repair (NER) is a major repair pathway that recognizes and corrects various lesions in cellular DNA. We hypothesize that damage recognition is an initial step in NER that senses conformational anomalies in the DNA caused by lesions. We prepared three DNA duplexes containing the carcinogen adduct N-(2'-deoxyguanosin-8-yl)-7-fluoro-2-acetylaminofluorene (FAAF) at G(1), G(2) or G(3) of NarI sequence (5'-CCG(1)G(2)CG(3)CC-3'). Our (19)F-NMR/ICD results showed that FAAF at G(1) and G(3) prefer syn S- and W-conformers, whereas anti B-conformer was predominant for G(2). We found that the repair of FAAF occurs in a conformation-specific manner, i.e. the highly S/W-conformeric G(3) and -G(1) duplexes incised more efficiently than the B-type G(2) duplex (G(3)∼G(1)> G(2)). The melting and thermodynamic data indicate that the S- and W-conformers produce greater DNA distortion and thermodynamic destabilization. The N-deacetylated N-(2'-deoxyguanosin-8-yl)-7-fluoro-2-aminofluorene (FAF) adducts in the same NarI sequence are repaired 2- to 3-fold less than FAAF: however, the incision efficiency was in order of G(2)∼G(1)> G(3), a reverse trend of the FAAF case. We have envisioned the so-called N-acetyl factor as it could raise conformational barriers of FAAF versus FAF. The present results provide valuable conformational insight into the sequence-dependent UvrABC incisions of the bulky aminofluorene DNA adducts.
Collapse
Affiliation(s)
- Vipin Jain
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02881, USA
| | | | | | | | | | | |
Collapse
|
19
|
Millen AL, Kamenz BL, Leavens FMV, Manderville RA, Wetmore SD. Conformational flexibility of C8-phenoxylguanine adducts in deoxydinucleoside monophosphates. J Phys Chem B 2011; 115:12993-3002. [PMID: 21942470 DOI: 10.1021/jp2057332] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
M06-2X/6-31G(d,p) is used to calculate the structure of all natural deoxydinucleoside monophosphates with G in the 5' or 3' position, the anti or syn conformation, and each natural (A, C, G, T) base in the corresponding flanking position. When the ortho or para C8-phenoxyl-2'-deoxyguanosine (C8-phenoxyl-dG) adduct replaces G in each model, there is little change in the relative base-base orientation or backbone conformation. However, the orientation of the C8-phenoxyl group can be characterized according to the position (5' versus 3'), conformation (anti versus syn), and isomer (ortho versus para) of damage. Although the degree of coplanarity between the phenoxyl ring and G base in the ortho adduct is highly affected by the sequence since the hydroxyl group can interact with neighboring bases, the para adduct generally does not exhibit discrete interactions with flanking bases. For both adducts, steric clashes between the phenoxyl group and the backbone or flanking base destabilize the anti conformation preferred by the natural nucleotide and thereby result in a clear preference for the syn conformation regardless of the sequence or position. This contrasts the conclusions drawn from smaller (nucleoside, nucleotide) models previously used in the literature, which stresses the importance of using models that address the steric constraints present due to the surrounding environment. Since replication errors for other C8-dG bulky adducts have been linked to a preference for the syn conformation, our findings provide insight into the possible mutagenicity of phenolic adducts.
Collapse
Affiliation(s)
- Andrea L Millen
- Department of Chemistry, University of Lethbridge, Lethbridge, Alberta, Canada
| | | | | | | | | |
Collapse
|
20
|
Liang F, Cho BP. Conformational and thermodynamic impact of bulky aminofluorene adduction on simulated translesion DNA synthesis. Chem Res Toxicol 2011; 24:597-605. [PMID: 21410284 DOI: 10.1021/tx2000587] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We report a systematic spectroscopic investigation on the conformational evolution during primer extension of a bulky fluoroaminofluorene-modified dG adduct (FAF-dG) in chemically simulated translesion synthesis. FAF-dG was paired either with dC or dA (dC-match and dA-mismatch series, respectively). Dynamic (19)F NMR/CD results showed that the FAF-adduct exists in a syn/anti equilibrium and that its conformational characteristics are modulated by the identity of an inserted nucleotide at the lesion site and the extent of primer elongation. At the pre-insertion site, the adduct adopted preferentially a syn conformation where FAF stacked with preceding bases. Insertion of the correct nucleotide dC at the lesion site and subsequent elongation resulted in a gradual transition to the anti conformation. By contrast, the syn conformer was persistent along with primer extension in the dA-mismatch series. In the dC-match series, FAF-induced thermal (T(m)) and thermodynamic (-ΔG°(37 °C)) stabilities were significantly reduced relative to those of the controls. However, the corresponding T(m) and -ΔG°(37 °C) values were increased in the FAF-modified mismatched dA series. The lesion impact persisted up to three 5'-nucleotides from the lesion. Occupation of the minor groove of the W-conformer with the bulky carcinogenic fluorene moiety not only would limit the DNA mobility but also would impose a serious difficulty for the active site of a polymerase throughout the replication process. Our spectroscopic results are consistent with reported data on AF, which showed dramatic (~10(4)-fold) differences in the nucleotide insertion rates between the dC-match and dA-mismatch series. The results emphasize the importance of adduct-induced steric constraints for determining the replication fidelity of a polymerase.
Collapse
Affiliation(s)
- Fengting Liang
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, United States
| | | |
Collapse
|
21
|
Patnaik S, Cho BP. Structures of 2-acetylaminofluorene modified DNA revisited: insight into conformational heterogeneity. Chem Res Toxicol 2010; 23:1650-2. [PMID: 20954689 DOI: 10.1021/tx100341u] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Despite the extensive data on dG-AAF, the major DNA adduct derived from the model carcinogen 2-acetylaminofluorene, little is known with respect to its solution structures. Here, we provide NMR/CD evidence for three conformers of dG-AAF in duplex DNA: major groove B-type (B), base-displaced stacked (S), and minor groove wedge (W). The S/B/W-conformational heterogeneities were found to be sensitive to the nature of the flanking DNA sequence contexts and pH.
Collapse
Affiliation(s)
- Satyakam Patnaik
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881, USA
| | | |
Collapse
|
22
|
Rechkoblit O, Kolbanovskiy A, Malinina L, Geacintov NE, Broyde S, Patel DJ. Mechanism of error-free and semitargeted mutagenic bypass of an aromatic amine lesion by Y-family polymerase Dpo4. Nat Struct Mol Biol 2010; 17:379-88. [PMID: 20154704 PMCID: PMC4215948 DOI: 10.1038/nsmb.1771] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Accepted: 12/09/2009] [Indexed: 12/22/2022]
Abstract
The aromatic amine carcinogen 2-aminofluorene (AF) forms covalent adducts with DNA, predominantly with guanine at the C8 position. Such lesions are bypassed by Y-family polymerases such as Dpo4 via error-free and error-prone mechanisms. We show that Dpo4 catalyzes elongation from a correct 3′-terminal C opposite [AF]G in a nonrepetitive template sequence with low efficiency. This extension leads to cognate full-length product, as well as mis-elongated products containing base mutations and deletions. Crystal structures of the Dpo4 ternary complex with the 3′-terminal primer C base opposite [AF]G in the anti conformation and with the AF-moiety positioned in the major groove, revealed both accurate and misalignment-mediated mutagenic extension pathways. The mutagenic template/primer-dNTP arrangement is promoted by interactions between the polymerase and the bulky lesion, rather than by a base pairstabilized misaligment. Further extension leads to semi-targeted mutations via this proposed polymerase-guided mechanism.
Collapse
Affiliation(s)
- Olga Rechkoblit
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | | | | | | | | | | |
Collapse
|
23
|
Liang F, Cho BP. Enthalpy-entropy contribution to carcinogen-induced DNA conformational heterogeneity. Biochemistry 2010; 49:259-66. [PMID: 19961237 DOI: 10.1021/bi901629p] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
DNA damage by adduct formation is a critical step for the initiation of carcinogenesis. Aromatic amines are strong inducers of environmental carcinogenesis. Their DNA adducts are known to exist in an equilibrium between the major groove (B) and base-displaced stacked (S) conformations. However, the factors governing such heterogeneity remain unclear. Here we conducted extensive calorimetry/NMR/CD studies on the model DNA lesions caused by fluorinated 2-aminfluorene (FAF) and 4-aminobiphenyl (FABP) in order to gain thermodynamic and kinetic insights into the S/B conformational equilibrium. We demonstrate that there are large differences in enthalpy-entropy compensations for FABP and FAF. The small and flexible FABP exclusively adopts the less perturbed B conformer with small enthalpy (DeltaDeltaH-2.7 kcal/mol)/entropy (DeltaDeltaS-0.7 eu) change. In contrast, FAF stacks better and exists as a mixture of B and S conformers with large enthalpy (DeltaDeltaH-13.4 kcal/mol)/entropy (DeltaDeltaS-34.2 eu) compensation. van't Hoff analysis of dynamic (19)F NMR data indicated DeltaH(B<-->S) = 4.1 kcal/mol in favor of the B conformer and DeltaS(B<-->S) = 15.6 cal mol(-1) K(-1) in favor of the intercalated S conformer. These findings demonstrate that the favorable entropy of the S conformer over B conformer determines the S/B population ratios at physiological temperatures.
Collapse
Affiliation(s)
- Fengting Liang
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island 02881, USA
| | | |
Collapse
|