1
|
Lanskikh D, Kuziakova O, Baklanov I, Penkova A, Doroshenko V, Buriak I, Zhmenia V, Kumeiko V. Cell-Based Glioma Models for Anticancer Drug Screening: From Conventional Adherent Cell Cultures to Tumor-Specific Three-Dimensional Constructs. Cells 2024; 13:2085. [PMID: 39768176 PMCID: PMC11674823 DOI: 10.3390/cells13242085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/08/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
Gliomas are a group of primary brain tumors characterized by their aggressive nature and resistance to treatment. Infiltration of surrounding normal tissues limits surgical approaches, wide inter- and intratumor heterogeneity hinders the development of universal therapeutics, and the presence of the blood-brain barrier reduces the efficiency of their delivery. As a result, patients diagnosed with gliomas often face a poor prognosis and low survival rates. The spectrum of anti-glioma drugs used in clinical practice is quite narrow. Alkylating agents are often used as first-line therapy, but their effectiveness varies depending on the molecular subtypes of gliomas. This highlights the need for new, more effective therapeutic approaches. Standard drug-screening methods involve the use of two-dimensional cell cultures. However, these models cannot fully replicate the conditions present in real tumors, making it difficult to extrapolate the results to humans. We describe the advantages and disadvantages of existing glioma cell-based models designed to improve the situation and build future prospects to make drug discovery comprehensive and more effective for each patient according to personalized therapy paradigms.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Vadim Kumeiko
- School of Medicine and Life Sciences, Far Eastern Federal University, 690922 Vladivostok, Russia; (D.L.); (O.K.); (I.B.); (A.P.); (V.D.); (I.B.); (V.Z.)
| |
Collapse
|
2
|
Kuczak M, Cieślik W, Musioł R, Mrozek-Wilczkiewicz A. 4-Furanylvinylquinoline derivative as a new scaffold for the design of oxidative stress initiator and glucose transporter inhibitor drugs. Sci Rep 2024; 14:28454. [PMID: 39557921 PMCID: PMC11574108 DOI: 10.1038/s41598-024-79698-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 11/11/2024] [Indexed: 11/20/2024] Open
Abstract
In the present study, a detailed analysis of the effect of a substitution at the C4 position of the quinoline ring by styryl or furanylvinyl substituents on the structure-antitumour activity relationship was conducted. After analysing a library of derivatives from the styrylquinoline and furanylvinylquinoline groups, we selected the most active (IC50 below 100 nM) derivative 13, which contained the strongly electron-withdrawing nitro group in the furan substituent. The mechanism of action of this compound was studied on cell lines that differed in their p53 protein status. For this derivative, both cell cycle arrest (in G2/M phase in both HCT 116 cell lines and S phase for U-251 cell line) and the induction of apoptosis (up to 66% for U-251 cell line) were revealed. These studies were then confirmed by other methods at the gene and protein levels. Interestingly, we observed differences in the mechanism of action depending on the presence and mutation of the p53 protein, thus confirming its key role in cellular processes. Incubation with derivative 13 resulted in the induction of oxidative stress and triggered a cascade of cellular defence proteins that failed in the face of such an active compound. In addition, the results showed an inhibition of the GLUT-1 glucose transporter, which is extremely important in the context of anti-cancer activity.
Collapse
Affiliation(s)
- Michał Kuczak
- A. Chelkowski Institute of Physics, University of Silesia in Katowice, 75 Pulku Piechoty 1a, Chorzow, 41- 500, Poland
- Institute of Chemistry, University of Silesia in Katowice, Szkolna 9, Katowice, 40-006, Poland
| | - Wioleta Cieślik
- Institute of Chemistry, University of Silesia in Katowice, Szkolna 9, Katowice, 40-006, Poland
| | - Robert Musioł
- Institute of Chemistry, University of Silesia in Katowice, Szkolna 9, Katowice, 40-006, Poland
| | - Anna Mrozek-Wilczkiewicz
- A. Chelkowski Institute of Physics, University of Silesia in Katowice, 75 Pulku Piechoty 1a, Chorzow, 41- 500, Poland.
- Department of Systems Biology and Engineering, Silesian University of Technology, Akademicka 2A, Gliwice, 44-100, Poland.
| |
Collapse
|
3
|
Lyu TJ, Ma J, Zhang XY, Xie GG, Liu C, Du J, Xu YN, Yang DC, Cen C, Wang MY, Lyu NY, Wang Y, Zhang HQ. Deficiency of FRMD5 results in neurodevelopmental dysfunction and autistic-like behavior in mice. Mol Psychiatry 2024; 29:1253-1264. [PMID: 38228891 DOI: 10.1038/s41380-024-02407-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/17/2023] [Accepted: 01/02/2024] [Indexed: 01/18/2024]
Abstract
The pathophysiology of autism spectrum disorders (ASDs) is causally linked to postsynaptic scaffolding proteins, as evidenced by numerous large-scale genomic studies [1, 2] and in vitro and in vivo neurobiological studies of mutations in animal models [3, 4]. However, due to the distinct phenotypic and genetic heterogeneity observed in ASD patients, individual mutation genes account for only a small proportion (<2%) of cases [1, 5]. Recently, a human genetic study revealed a correlation between de novo variants in FERM domain-containing-5 (FRMD5) and neurodevelopmental abnormalities [6]. In this study, we demonstrate that deficiency of the scaffolding protein FRMD5 leads to neurodevelopmental dysfunction and ASD-like behavior in mice. FRMD5 deficiency results in morphological abnormalities in neurons and synaptic dysfunction in mice. Frmd5-deficient mice display learning and memory dysfunction, impaired social function, and increased repetitive stereotyped behavior. Mechanistically, tandem mass tag (TMT)-labeled quantitative proteomics revealed that FRMD5 deletion affects the distribution of synaptic proteins involved in the pathological process of ASD. Collectively, our findings delineate the critical role of FRMD5 in neurodevelopment and ASD pathophysiology, suggesting potential therapeutic implications for the treatment of ASD.
Collapse
Affiliation(s)
- Tian-Jie Lyu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, 100191, Beijing, China
| | - Ji Ma
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, State Key Laboratory of Molecular Oncology and International Cancer Institute, Peking University Health Science Center, 100191, Beijing, China
| | - Xi-Yin Zhang
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, 100191, Beijing, China
| | - Guo-Guang Xie
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, 100191, Beijing, China
| | - Cheng Liu
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, State Key Laboratory of Molecular Oncology and International Cancer Institute, Peking University Health Science Center, 100191, Beijing, China
| | - Juan Du
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, State Key Laboratory of Molecular Oncology and International Cancer Institute, Peking University Health Science Center, 100191, Beijing, China
| | - Yi-Nuo Xu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, 100191, Beijing, China
| | - De-Cao Yang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, State Key Laboratory of Molecular Oncology and International Cancer Institute, Peking University Health Science Center, 100191, Beijing, China
| | - Cheng Cen
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, 100191, Beijing, China
| | - Meng-Yuan Wang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, State Key Laboratory of Molecular Oncology and International Cancer Institute, Peking University Health Science Center, 100191, Beijing, China
| | - Na-Yun Lyu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, 100191, Beijing, China
| | - Yun Wang
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, 100191, Beijing, China.
- PKU-IDG/McGovern Institute for Brain Research, Peking University, 100871, Beijing, China.
| | - Hong-Quan Zhang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, State Key Laboratory of Molecular Oncology and International Cancer Institute, Peking University Health Science Center, 100191, Beijing, China.
| |
Collapse
|
4
|
Trivedi R, Bhat KP. Liquid biopsy: creating opportunities in brain space. Br J Cancer 2023; 129:1727-1746. [PMID: 37752289 PMCID: PMC10667495 DOI: 10.1038/s41416-023-02446-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/10/2023] [Accepted: 09/15/2023] [Indexed: 09/28/2023] Open
Abstract
In recent years, liquid biopsy has emerged as an alternative method to diagnose and monitor tumors. Compared to classical tissue biopsy procedures, liquid biopsy facilitates the repetitive collection of diverse cellular and acellular analytes from various biofluids in a non/minimally invasive manner. This strategy is of greater significance for high-grade brain malignancies such as glioblastoma as the quantity and accessibility of tumors are limited, and there are collateral risks of compromised life quality coupled with surgical interventions. Currently, blood and cerebrospinal fluid (CSF) are the most common biofluids used to collect circulating cells and biomolecules of tumor origin. These liquid biopsy analytes have created opportunities for real-time investigations of distinct genetic, epigenetic, transcriptomics, proteomics, and metabolomics alterations associated with brain tumors. This review describes different classes of liquid biopsy biomarkers present in the biofluids of brain tumor patients. Moreover, an overview of the liquid biopsy applications, challenges, recent technological advances, and clinical trials in the brain have also been provided.
Collapse
Affiliation(s)
- Rakesh Trivedi
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Krishna P Bhat
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|
5
|
Sasaki K, Takahashi S, Ouchi K, Otsuki Y, Wakayama S, Ishioka C. Different impacts of TP53 mutations on cell cycle-related gene expression among cancer types. Sci Rep 2023; 13:4868. [PMID: 36964217 PMCID: PMC10039000 DOI: 10.1038/s41598-023-32092-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/22/2023] [Indexed: 03/26/2023] Open
Abstract
Functional properties caused by TP53 mutations are involved in cancer development and progression. Although most of the mutations lose normal p53 functions, some of them, gain-of-function (GOF) mutations, exhibiting novel oncogenic functions. No reports have analyzed the impact of TP53 mutations on the gene expression profile of the p53 signaling pathway across cancer types. This study is a cross-cancer type analysis of the effects of TP53 mutations on gene expression. A hierarchical cluster analysis of the expression profile of the p53 signaling pathway classified 21 cancer types into two clusters (A1 and A2). Changes in the expression of cell cycle-related genes and MKI67 by TP53 mutations were greater in cluster A1 than in cluster A2. There was no distinct difference in the effects between GOF and non-GOF mutations on the gene expression profile of the p53 signaling pathway.
Collapse
Affiliation(s)
- Keiju Sasaki
- Department of Clinical Oncology, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan
- Department of Medical Oncology, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Shin Takahashi
- Department of Clinical Oncology, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan
| | - Kota Ouchi
- Department of Clinical Oncology, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan
- Department of Medical Oncology, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Yasufumi Otsuki
- Department of Clinical Oncology, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan
- Department of Medical Oncology, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Shonosuke Wakayama
- Department of Clinical Oncology, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan
- Department of Medical Oncology, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Chikashi Ishioka
- Department of Clinical Oncology, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan.
- Department of Medical Oncology, Tohoku University Hospital, Sendai, Miyagi, Japan.
- Department of Clinical Oncology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan.
| |
Collapse
|
6
|
Zhao Y, Chen Y, Wei L, Ran J, Wang K, Zhu S, Liu Q. p53 inhibits the Urea cycle and represses polyamine biosynthesis in glioma cell lines. Metab Brain Dis 2023; 38:1143-1153. [PMID: 36745250 DOI: 10.1007/s11011-023-01173-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/18/2023] [Indexed: 02/07/2023]
Abstract
Glioma is the most common malignant tumor of the central nervous system. The urea cycle (UC) is an essential pathway to convert excess nitrogen and ammonia into the less toxic urea in humans. However, less is known about the functional significance of the urea cycle in glioma. p53 functions as a tumor suppressor and modulates several cellular functions and disease processes. In the present study, we aimed to explore whether p53 influences glioma progression by regulating the urea cycle. Here, we demonstrated the inhibitory impact of p53 on the expression of urea cycle enzymes and urea genesis in glioma cells. The level of polyamine, a urea cycle metabolite, was also regulated by p53 in glioma cells. Carbamoyl phosphate synthetase-1 (CPS1) is the first key enzyme involved in the urea cycle. Functionally, we demonstrated that CPS1 knockdown suppressed glioma cell proliferation, migration and invasion. Mechanistically, we demonstrated that the expression of ornithine decarboxylase (ODC), which determines the generation of polyamine, was regulated by CPS1. In addition, the impacts of p53 knockdown on ODC expression, glioma cell growth and aggressive phenotypes were significantly reversed by CPS1 inhibition. In conclusion, these results demonstrated that p53 inhibits polyamine metabolism by suppressing the urea cycle, which inhibits glioma progression.
Collapse
Affiliation(s)
- Yuhong Zhao
- Institute of Neuroscience, Chongqing Medical University Basic Medical College, Chongqing, 400016, China
| | - Yingxi Chen
- Department of basic Medicine, Chongqing College of traditional Chinese Medicine, Chongqing, 402760, PR China
| | - Ling Wei
- Institute of Neuroscience, Chongqing Medical University Basic Medical College, Chongqing, 400016, China
| | - Jianhua Ran
- Institute of Neuroscience, Chongqing Medical University Basic Medical College, Chongqing, 400016, China
| | - Kejian Wang
- Institute of Neuroscience, Chongqing Medical University Basic Medical College, Chongqing, 400016, China
| | - Shujuan Zhu
- Institute of Neuroscience, Chongqing Medical University Basic Medical College, Chongqing, 400016, China
| | - Qian Liu
- Institute of Neuroscience, Chongqing Medical University Basic Medical College, Chongqing, 400016, China.
- Department of basic Medicine, Chongqing College of traditional Chinese Medicine, Chongqing, 402760, PR China.
| |
Collapse
|
7
|
Zhu Y, Chen Z, Kim SN, Gan C, Ryl T, Lesjak MS, Rodemerk J, Zhong RD, Wrede K, Dammann P, Sure U. Characterization of Temozolomide Resistance Using a Novel Acquired Resistance Model in Glioblastoma Cell Lines. Cancers (Basel) 2022; 14:cancers14092211. [PMID: 35565340 PMCID: PMC9101568 DOI: 10.3390/cancers14092211] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Temozolomide (TMZ) is the first-line drug for chemotherapy of GBM, the most aggressive and incurable brain tumor. Acquired chemoresistance is a hallmark that causes the poor prognosis of GBM. Therefore, understanding the underlying mechanisms by using a proper model becomes emergent. Previous models usually take weeks/months and are often not fully representative of characteristics of TMZ resistance. We established an acute acquired TMZ resistance model using GBM cell lines with different genomic backgrounds. In response to TMZ, the resistant cells showed less susceptibility and sustained regrowth, high clonogenicity, reduced DNA damage accompanied by attenuated MMR, shortened G2/M arrest, uncontrolled DNA replication, and evasion of apoptosis. Moreover, these TMZ resistant cells presented stem cell properties that are critical for chemoresistance. Thus, our model recapitulates all key features of TMZ resistance and is believed to be a promising model to study the underlying mechanisms and define therapeutics for GBM in the future. Abstract Temozolomide (TMZ) is the first line of standard therapy in glioblastoma (GBM). However, relapse occurs due to TMZ resistance. We attempted to establish an acquired TMZ resistance model that recapitulates the TMZ resistance phenotype and the relevant gene signature. Two GBM cell lines received two cycles of TMZ (150 µM) treatment for 72 h each. Regrown cells (RG2) were defined as TMZ resistant cells. MTT assay revealed significantly less susceptibility and sustained growth of RG2 compared with parental cells after TMZ challenge. TMZ-induced DNA damage significantly decreased in 53BP1-foci reporter transduced-RG2 cells compared with parental cells, associated with downregulation of MSH2 and MSH6. Flow cytometry revealed reduced G2/M arrest, increased EdU incorporation and suppressed apoptosis in RG2 cells after TMZ treatment. Colony formation and neurosphere assay demonstrated enhanced clonogenicity and neurosphere formation capacity in RG2 cells, accompanied by upregulation of stem markers. Collectively, we established an acute TMZ resistance model that recapitulated key features of TMZ resistance involving impaired mismatch repair, redistribution of cell cycle phases, increased DNA replication, reduced apoptosis and enhanced self-renewal. Therefore, this model may serve as a promising research tool for studying mechanisms of TMZ resistance and for defining therapeutic approaches to GBM in the future.
Collapse
Affiliation(s)
- Yuan Zhu
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (Z.C.); (S.N.K.); (C.G.); (T.R.); (M.S.L.); (J.R.); (R.D.Z.); (K.W.); (P.D.); (U.S.)
- Center for Translational Neuro- & Behavioral Sciences (C-TNBS), University of Duisburg-Essen, 45147 Essen, Germany
- Correspondence: ; Tel.: +0049-201-723-1231
| | - Zhen Chen
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (Z.C.); (S.N.K.); (C.G.); (T.R.); (M.S.L.); (J.R.); (R.D.Z.); (K.W.); (P.D.); (U.S.)
- Center for Translational Neuro- & Behavioral Sciences (C-TNBS), University of Duisburg-Essen, 45147 Essen, Germany
| | - Su Na Kim
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (Z.C.); (S.N.K.); (C.G.); (T.R.); (M.S.L.); (J.R.); (R.D.Z.); (K.W.); (P.D.); (U.S.)
- Center for Translational Neuro- & Behavioral Sciences (C-TNBS), University of Duisburg-Essen, 45147 Essen, Germany
| | - Chao Gan
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (Z.C.); (S.N.K.); (C.G.); (T.R.); (M.S.L.); (J.R.); (R.D.Z.); (K.W.); (P.D.); (U.S.)
| | - Tatsiana Ryl
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (Z.C.); (S.N.K.); (C.G.); (T.R.); (M.S.L.); (J.R.); (R.D.Z.); (K.W.); (P.D.); (U.S.)
| | - Michaela Silvia Lesjak
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (Z.C.); (S.N.K.); (C.G.); (T.R.); (M.S.L.); (J.R.); (R.D.Z.); (K.W.); (P.D.); (U.S.)
| | - Jan Rodemerk
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (Z.C.); (S.N.K.); (C.G.); (T.R.); (M.S.L.); (J.R.); (R.D.Z.); (K.W.); (P.D.); (U.S.)
- Center for Translational Neuro- & Behavioral Sciences (C-TNBS), University of Duisburg-Essen, 45147 Essen, Germany
| | - Rong De Zhong
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (Z.C.); (S.N.K.); (C.G.); (T.R.); (M.S.L.); (J.R.); (R.D.Z.); (K.W.); (P.D.); (U.S.)
| | - Karsten Wrede
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (Z.C.); (S.N.K.); (C.G.); (T.R.); (M.S.L.); (J.R.); (R.D.Z.); (K.W.); (P.D.); (U.S.)
- Center for Translational Neuro- & Behavioral Sciences (C-TNBS), University of Duisburg-Essen, 45147 Essen, Germany
| | - Philipp Dammann
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (Z.C.); (S.N.K.); (C.G.); (T.R.); (M.S.L.); (J.R.); (R.D.Z.); (K.W.); (P.D.); (U.S.)
- Center for Translational Neuro- & Behavioral Sciences (C-TNBS), University of Duisburg-Essen, 45147 Essen, Germany
| | - Ulrich Sure
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (Z.C.); (S.N.K.); (C.G.); (T.R.); (M.S.L.); (J.R.); (R.D.Z.); (K.W.); (P.D.); (U.S.)
- Center for Translational Neuro- & Behavioral Sciences (C-TNBS), University of Duisburg-Essen, 45147 Essen, Germany
| |
Collapse
|
8
|
Kuczak M, Musiał M, Malarz K, Rurka P, Zorębski E, Musioł R, Dzida M, Mrozek-Wilczkiewicz A. Anticancer potential and through study of the cytotoxicity mechanism of ionic liquids that are based on the trifluoromethanesulfonate and bis(trifluoromethylsulfonyl)imide anions. JOURNAL OF HAZARDOUS MATERIALS 2022; 427:128160. [PMID: 34979392 DOI: 10.1016/j.jhazmat.2021.128160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/05/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
Ionic liquids (ILs) are known for their unique physicochemical properties. However, despite the great number of published papers, still little attention has been paid to their biological activity. Anticancer potential and the molecular mechanisms underlying the toxicity of these compounds are especially interesting and still unexplored. In the current work, a broad analysis of the cytotoxicity towards colon and breast cancers as well as glioblastoma of the ILs with pyridinium, piperidinium, pyrrolidinium, and imidazolium cations and trifluoromethanesulfonate or bis(trifluoromethylsulfonyl)imide anions indicated previously as the most toxic for normal human dermal fibroblasts were presented. In the case of MCF-7 cells, the activity of 1-decyl-3-methylimidazolium trifluoromethanesulfonate was more than twice as high as cisplatin. It was found that the inhibition of the cell cycle of colon cancer and glioblastoma cells occurs in different phases. More importantly, the different types of cell death were detected for both selected ILs, namely 1-hexyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide and 1-hexyl-3-methylimidazolium trifluoromethane-sulfonate, on colon cancer and glioblastoma, respectively, apoptosis and autophagy, confirmed at the gene and protein levels. Additionally, kinetic studies of the reactive oxygen species indicated that the tested ILs disturbed the cellular redox homeostasis.
Collapse
Affiliation(s)
- Micha Kuczak
- A. Chełkowski Institute of Physics and Silesian Center for Education and Interdisciplinary Research, University of Silesia in Katowice, 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland; Institute of Chemistry, University of Silesia in Katowice, Szkolna 9, 40-006 Katowice, Poland
| | - Małgorzata Musiał
- A. Chełkowski Institute of Physics and Silesian Center for Education and Interdisciplinary Research, University of Silesia in Katowice, 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland
| | - Katarzyna Malarz
- A. Chełkowski Institute of Physics and Silesian Center for Education and Interdisciplinary Research, University of Silesia in Katowice, 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland
| | - Patryk Rurka
- A. Chełkowski Institute of Physics and Silesian Center for Education and Interdisciplinary Research, University of Silesia in Katowice, 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland
| | - Edward Zorębski
- Institute of Chemistry, University of Silesia in Katowice, Szkolna 9, 40-006 Katowice, Poland
| | - Robert Musioł
- Institute of Chemistry, University of Silesia in Katowice, Szkolna 9, 40-006 Katowice, Poland
| | - Marzena Dzida
- Institute of Chemistry, University of Silesia in Katowice, Szkolna 9, 40-006 Katowice, Poland
| | - Anna Mrozek-Wilczkiewicz
- A. Chełkowski Institute of Physics and Silesian Center for Education and Interdisciplinary Research, University of Silesia in Katowice, 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland.
| |
Collapse
|
9
|
Yuan F, Sun Q, Zhang S, Ye L, Xu Y, Deng G, Xu Z, Zhang S, Liu B, Chen Q. The dual role of p62 in ferroptosis of glioblastoma according to p53 status. Cell Biosci 2022; 12:20. [PMID: 35216629 PMCID: PMC8881833 DOI: 10.1186/s13578-022-00764-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/17/2022] [Indexed: 01/14/2023] Open
Abstract
Background Ferroptosis plays a key role in human cancer, but its function and mechanism in glioma is not clear. P62/SQSTM1 was reported to inhibit ferroptosis via the activation of NRF2 signaling pathway. In this study we reveal a dual role of p62 in ferroptosis of glioblastoma (GBM) according to p53 status. Method Lipid peroxidation analysis, transmission electron microscopy (TEM), GSH assay were performed to determine the level of ferroptosis. Western blot and qPCR were obtained to detect the expression of ferroptosis markers. Construction of mutant plasmids, immunoprecipitation, luciferase assay and rescue-experiments were performed to explore the regulatory mechanism. Results P62 overexpression facilitates ferroptosis and inhibits SLC7A11 expression in p53 mutant GBM, while attenuates ferroptosis and promotes SLC7A11 expression in p53 wild-type GBM. P62 associates with p53 and inhibits its ubiquitination. The p53-NRF2 association and p53-mediated suppression of NRF2 antioxidant activity are diversely regulated by p62 according to p53 status. P53 mutation status is required for the dual regulation of p62 on ferroptosis. In wild-type p53 GBM, the classical p62-mediated NRF2 activation pathway plays a major regulatory role of ferroptosis, leading to increased SLC7A11 expression, resulting in a anti-ferroptosis role. In mutant p53 GBM, stronger interaction of mutant-p53/NRF2 by p62 enhance the inhibitory effect of mutant p53 on NRF2 signaling, which reversing the classical p62-mediated NRF2 activation pathway, together with increased p53’s transcriptional suppression on SLC7A11 by p62, leading to a decrease of SLC7A11, resulting in a pro-ferroptosis role. Conclusion Together, this study shows novel molecular mechanisms of ferroptosis regulated by p62; the mutation status of p53 is an important factor that determines the therapeutic response to p62-mediated ferroptosis-targeted therapies in GBM. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00764-z.
Collapse
Affiliation(s)
- Fanen Yuan
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China
| | - Qian Sun
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China
| | - Si Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China
| | - Liguo Ye
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China
| | - Yang Xu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China
| | - Gang Deng
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China
| | - Zhou Xu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China
| | - Shenqi Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China
| | - Baohui Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China. .,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China.
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China. .,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China.
| |
Collapse
|
10
|
He YH, Yeh MH, Chen HF, Wang TS, Wong RH, Wei YL, Huynh TK, Hu DW, Cheng FJ, Chen JY, Hu SW, Huang CC, Chen Y, Yu J, Cheng WC, Shen PC, Liu LC, Huang CH, Chang YJ, Huang WC. ERα determines the chemo-resistant function of mutant p53 involving the switch between lincRNA-p21 and DDB2 expressions. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 25:536-553. [PMID: 34589276 PMCID: PMC8463322 DOI: 10.1016/j.omtn.2021.07.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 07/30/2021] [Indexed: 12/16/2022]
Abstract
Mutant p53 (mutp53) commonly loses its DNA binding affinity to p53 response elements (p53REs) and fails to induce apoptosis fully. However, the p53 mutation does not predict chemoresistance in all subtypes of breast cancers, and the critical determinants remain to be identified. In this study, mutp53 was found to mediate chemotherapy-induced long intergenic noncoding RNA-p21 (lincRNA-p21) expression by targeting the G-quadruplex structure rather than the p53RE on its promoter to promote chemosensitivity. However, estrogen receptor alpha (ERα) suppressed mutp53-mediated lincRNA-p21 expression by hijacking mutp53 to upregulate damaged DNA binding protein 2 (DDB2) transcription for subsequent DNA repair and chemoresistance. Levels of lincRNA-p21 positively correlated with the clinical responses of breast cancer patients to neoadjuvant chemotherapy and had an inverse correlation with the ER status and DDB2 level. In contrast, the carboplatin-induced DDB2 expression was higher in ER-positive breast tumor tissues. These results demonstrated that ER status determines the oncogenic function of mutp53 in chemoresistance by switching its target gene preference from lincRNA-p21 to DDB2 and suggest that induction of lincRNA-p21 and targeting DDB2 would be effective strategies to increase the chemosensitivity of mutp53 breast cancer patients.
Collapse
Affiliation(s)
- Yu-Hao He
- The PhD Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung 40402, Taiwan
- Center for Molecular Medicine, China Medical University Hospital, Taichung 40402, Taiwan
| | - Ming-Hsin Yeh
- Department of Surgery, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- Institute of Medicine, School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Hsiao-Fan Chen
- Center for Molecular Medicine, China Medical University Hospital, Taichung 40402, Taiwan
- Drug Development Center, China Medical University, Taichung 40402, Taiwan
| | - Tsu-Shing Wang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Ruey-Hong Wong
- Department of Public Health, Chung Shan Medical University, Taichung 40201, Taiwan
- Department of Occupational Medicine, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Ya-Ling Wei
- Center for Molecular Medicine, China Medical University Hospital, Taichung 40402, Taiwan
| | - Thanh Kieu Huynh
- Center for Molecular Medicine, China Medical University Hospital, Taichung 40402, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
| | - Dai-Wei Hu
- Center for Molecular Medicine, China Medical University Hospital, Taichung 40402, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
| | - Fang-Ju Cheng
- Center for Molecular Medicine, China Medical University Hospital, Taichung 40402, Taiwan
- Graduate Institute of Basic Medical Sciences, China Medical University, Taichung 40402, Taiwan
| | - Jhen-Yu Chen
- Center for Molecular Medicine, China Medical University Hospital, Taichung 40402, Taiwan
| | - Shu-Wei Hu
- Center for Molecular Medicine, China Medical University Hospital, Taichung 40402, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
| | - Chia-Chen Huang
- Department of Public Health, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Yeh Chen
- Drug Development Center, China Medical University, Taichung 40402, Taiwan
- Institute of New Drug Development, China Medical University, Taichung 40402, Taiwan
| | - Jiaxin Yu
- AI Innovation Center, China Medical University Hospital, Taiwan 40402, Taiwan
| | - Wei-Chung Cheng
- The PhD Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung 40402, Taiwan
- Research Center for Cancer Biology, China Medical University, Taichung 40402, Taiwan
| | - Pei-Chun Shen
- Research Center for Cancer Biology, China Medical University, Taichung 40402, Taiwan
| | - Liang-Chih Liu
- Division of Breast Surgery, China Medical University Hospital, Taichung 40402, Taiwan
| | - Chih-Hao Huang
- Division of Breast Surgery, China Medical University Hospital, Taichung 40402, Taiwan
| | - Ya-Jen Chang
- The PhD Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung 40402, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Wei-Chien Huang
- The PhD Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung 40402, Taiwan
- Center for Molecular Medicine, China Medical University Hospital, Taichung 40402, Taiwan
- Drug Development Center, China Medical University, Taichung 40402, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
- Research Center for Cancer Biology, China Medical University, Taichung 40402, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung 41354, Taiwan
| |
Collapse
|
11
|
Gaweł AM, Ratajczak M, Gajda E, Grzanka M, Paziewska A, Cieślicka M, Kulecka M, Oczko-Wojciechowska M, Godlewska M. Analysis of the Role of FRMD5 in the Biology of Papillary Thyroid Carcinoma. Int J Mol Sci 2021; 22:6726. [PMID: 34201607 PMCID: PMC8268710 DOI: 10.3390/ijms22136726] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/09/2021] [Accepted: 06/17/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Thyroid carcinoma (TC) is the most common endocrine system malignancy, and papillary thyroid carcinoma (PTC) accounts for >80% of all TC cases. Nevertheless, PTC pathogenesis is still not fully understood. The aim of the study was to elucidate the role of the FRMD5 protein in the regulation of biological pathways associated with the development of PTC. We imply that the presence of certain genetic aberrations (e.g., BRAF V600E mutation) is associated with the activity of FRMD5. METHODS The studies were conducted on TPC1 and BCPAP (BRAF V600E) model PTC-derived cells. Transfection with siRNA was used to deplete the expression of FRMD5. The mRNA expression and protein yield were evaluated using RT-qPCR and Western blot techniques. Proliferation, migration, invasiveness, adhesion, spheroid formation, and survival tests were performed. RNA sequencing and phospho-kinase proteome profiling were used to assess signaling pathways associated with the FRMD5 expressional status. RESULTS The obtained data indicate that the expression of FRMD5 is significantly enhanced in BRAF V600E tumor specimens and cells. It was observed that a drop in intracellular yield of FRMD5 results in significant alternations in the migration, invasiveness, adhesion, and spheroid formation potential of PTC-derived cells. Importantly, significant divergences in the effect of FRMD5 depletion in both BRAF-wt and BRAF-mutated PTC cells were observed. It was also found that knockdown of FRMD5 significantly alters the expression of multidrug resistant genes. CONCLUSIONS This is the first report highlighting the importance of the FRMD5 protein in the biology of PTCs. The results suggest that the FRMD5 protein can play an important role in controlling the metastatic potential and multidrug resistance of thyroid tumor cells.
Collapse
Affiliation(s)
- Agata M. Gaweł
- Centre of Postgraduate Medical Education, Department of Biochemistry and Molecular Biology, Marymoncka 99/103, 01-813 Warsaw, Poland; (A.M.G.); (M.G.)
- Faculty of Medicine, Medical University of Warsaw, Histology and Embryology Students’ Science Association HESA, Chałubinskiego 5, 02-004 Warsaw, Poland
| | - Maciej Ratajczak
- Centre of Postgraduate Medical Education, Department of Endocrinology, Marymoncka 99/103, 01-813 Warsaw, Poland;
| | - Ewa Gajda
- Centre of Postgraduate Medical Education, Department of Immunohematology, Marymoncka 99/103, 01-813 Warsaw, Poland;
| | - Małgorzata Grzanka
- Centre of Postgraduate Medical Education, Department of Biochemistry and Molecular Biology, Marymoncka 99/103, 01-813 Warsaw, Poland; (A.M.G.); (M.G.)
| | - Agnieszka Paziewska
- Centre of Postgraduate Medical Education, Department of Gastroenterology, Hepatology and Clinical Oncology, Marymoncka 99/103, 01-813 Warsaw, Poland; (A.P.); (M.K.)
- Centre of Postgraduate Medical Education, Department of Neuroendocrinology, Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Marta Cieślicka
- Department of Genetic and Molecular Diagnostics of Cancer, M. Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Wybrzeze Armii Krajowej 15, 44-102 Gliwice, Poland; (M.C.); (M.O.-W.)
| | - Maria Kulecka
- Centre of Postgraduate Medical Education, Department of Gastroenterology, Hepatology and Clinical Oncology, Marymoncka 99/103, 01-813 Warsaw, Poland; (A.P.); (M.K.)
| | - Małgorzata Oczko-Wojciechowska
- Department of Genetic and Molecular Diagnostics of Cancer, M. Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Wybrzeze Armii Krajowej 15, 44-102 Gliwice, Poland; (M.C.); (M.O.-W.)
| | - Marlena Godlewska
- Centre of Postgraduate Medical Education, Department of Biochemistry and Molecular Biology, Marymoncka 99/103, 01-813 Warsaw, Poland; (A.M.G.); (M.G.)
| |
Collapse
|
12
|
Malarz K, Mularski J, Kuczak M, Mrozek-Wilczkiewicz A, Musiol R. Novel Benzenesulfonate Scaffolds with a High Anticancer Activity and G2/M Cell Cycle Arrest. Cancers (Basel) 2021; 13:cancers13081790. [PMID: 33918637 PMCID: PMC8068801 DOI: 10.3390/cancers13081790] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 12/12/2022] Open
Abstract
Sulfonates, unlike their derivatives, sulphonamides, have rarely been investigated for their anticancer activity. Unlike the well-known sulphonamides, esters are mainly used as convenient intermediates in a synthesis. Here, we present the first in-depth investigation of quinazoline sulfonates. A small series of derivatives were synthesized and tested for their anticancer activity. Based on their structural similarity, these compounds resemble tyrosine kinase inhibitors and the p53 reactivator CP-31398. Their biological activity profile, however, was more related to sulphonamides because there was a strong cell cycle arrest in the G2/M phase. Further investigation revealed a multitargeted mechanism of the action that corresponded to the p53 protein status in the cell. Although the compounds expressed a high submicromolar activity against leukemia and colon cancers, pancreatic cancer and glioblastoma were also susceptible. Apoptosis and autophagy were confirmed as the cell death modes that corresponded with the inhibition of metabolic activity and the activation of the p53-dependent and p53-independent pathways. Namely, there was a strong activation of the p62 protein and GADD44. Other proteins such as cdc2 were also expressed at a higher level. Moreover, the classical caspase-dependent pathway in leukemia was observed at a lower concentration, which again confirmed a multitargeted mechanism. It can therefore be concluded that the sulfonates of quinazolines can be regarded as promising scaffolds for developing anticancer agents.
Collapse
Affiliation(s)
- Katarzyna Malarz
- A. Chełkowski Institute of Physics and Silesian Centre for Education and Interdisciplinary Research, University of Silesia in Katowice, 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland; (M.K.); (A.M.-W.)
- Correspondence: (K.M.); (R.M.)
| | - Jacek Mularski
- Institute of Chemistry, University of Silesia in Katowice, 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland;
| | - Michał Kuczak
- A. Chełkowski Institute of Physics and Silesian Centre for Education and Interdisciplinary Research, University of Silesia in Katowice, 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland; (M.K.); (A.M.-W.)
- Institute of Chemistry, University of Silesia in Katowice, 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland;
| | - Anna Mrozek-Wilczkiewicz
- A. Chełkowski Institute of Physics and Silesian Centre for Education and Interdisciplinary Research, University of Silesia in Katowice, 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland; (M.K.); (A.M.-W.)
| | - Robert Musiol
- Institute of Chemistry, University of Silesia in Katowice, 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland;
- Correspondence: (K.M.); (R.M.)
| |
Collapse
|
13
|
Sheng J, He X, Yu W, Chen Y, Long Y, Wang K, Zhu S, Liu Q. p53-targeted lncRNA ST7-AS1 acts as a tumour suppressor by interacting with PTBP1 to suppress the Wnt/β-catenin signalling pathway in glioma. Cancer Lett 2021; 503:54-68. [PMID: 33476649 DOI: 10.1016/j.canlet.2020.12.039] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/22/2020] [Accepted: 12/26/2020] [Indexed: 12/12/2022]
Abstract
Glioma is the most prevalent intracranial tumour, with considerable morbidity. Long non-coding RNAs are important in the biological processes of various cancers. However, little is known about ST7 antisense RNA 1 (ST7-AS1) and its role in glioma progression. ST7-AS1 expression was reduced in glioma tissues and cells in comparison to normal brain tissues. p53 transcriptionally targeted the ST7-AS1 promoter in U251 glioma cells. The targeting significantly inhibited cell migration, invasion, and proliferation, and promoted apoptosis. ST7-AS1 directly bound to and downregulated polypyrimidine tract-binding protein 1 (PTBP1) at the post-transcriptional level. ST7-AS1 overexpression inhibited glioma progression by suppressing Wnt/β-catenin signalling by downregulating PTBP1 expression. Additionally, p53 expression negatively correlated with PTBP1 expression. Glioma progression is regulated by a positive feedback loop involving the p53/ST7-AS1/PTBP1 axis, which might be a promising therapeutic target for glioma treatment.
Collapse
Affiliation(s)
- Jie Sheng
- Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China
| | - Xin He
- Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China
| | - Wei Yu
- Department of Hematology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China
| | - Yingxi Chen
- Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China
| | - Yuxiang Long
- Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China
| | - Kejian Wang
- Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China
| | - Shujuan Zhu
- Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China
| | - Qian Liu
- Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
14
|
Exploitation of a novel phenothiazine derivative for its anti-cancer activities in malignant glioblastoma. Apoptosis 2021; 25:261-274. [PMID: 32036474 DOI: 10.1007/s10495-020-01594-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Glioblastoma remains the most malignant of all primary adult brain tumours with poor patient survival and limited treatment options. This study adopts a drug repurposing approach by investigating the anti-cancer activity of a derivative of the antipsychotic drug phenothiazine (DS00329) in malignant U251 and U87 glioblastoma cells. Results from MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and clonogenic assays showed that DS00329 inhibited short-term glioblastoma cell viability and long-term survival while sparing non-cancerous cells. Western blot analysis with an antibody to γH2AX showed that DS00329 induced DNA damage and flow cytometry and western blotting confirmed that it triggered a G1 cell cycle arrest which correlated with decreased levels in Cyclin A, Cyclin B, Cyclin D1 and cyclin dependent kinase 2 and an increase in levels of the cyclin dependent kinase inhibitor p21. DS00329 treated glioblastoma cells exhibited morphological and molecular markers typical of apoptotic cells such as membrane blebbing and cell shrinkage and an increase in levels of cleaved PARP. Flow cytometry with annexin V-FITC/propidium iodide staining confirmed that DS00329 induced apoptotic cell death in glioblastoma cells. We also show that DS00329 treatment of glioblastoma cells led to an increase in the autophagosome marker LC3-II and autophagy inhibition studies using bafilomycin A1 and wortmannin, showed that DS00329-induced-autophagy was a pro-death mechanism. Furthermore, DS00329 treatment of glioblastoma cells inhibited the phosphatidylinositol 3'-kinase/Akt cell survival pathway. Our findings suggest that DS00329 may be an effective treatment for glioblastoma and provide a rationale for further exploration and validation of the use of phenothiazines and their derivatives in the treatment of glioblastoma.
Collapse
|
15
|
Liu Z, Chen Y, Gao H, Xu W, Zhang C, Lai J, Liu X, Sun Y, Huang H. Berberine Inhibits Cell Proliferation by Interfering with Wild-Type and Mutant P53 in Human Glioma Cells. Onco Targets Ther 2020; 13:12151-12162. [PMID: 33262612 PMCID: PMC7699991 DOI: 10.2147/ott.s279002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/04/2020] [Indexed: 12/21/2022] Open
Abstract
Introduction Glioma is the most common malignant brain tumor. TP53 is the most common mutant gene in human cancer. Wild-type p53 (wtp53) is a tumor suppressor protein whereas mutant p53 (mutp53) is an oncoprotein that promotes tumor cell proliferation. Our aim was to examine the inhibitory effects of berberine on the proliferation of human glioma cells via regulation of wtp53, mutp53, and their downstream molecules. Methods We selected wtp53 cells (U87 cells) and mutp53 cells (U251 cells termed p53 R273H) to examine the inhibitory effects of berberine on human glioma cells. We used the CCK-8 kit to detect the toxic effect of berberine. Flow cytometry was used to detect the effect of berberine. Clone formation test was used to test the inhibitory effect of berberine on the proliferation of glioma cells. Western blot was used to detect the changes of related proteins such as p53, p-p53, p21 and cyclin D1. Lentivirus transduction was used to transduce wild-type p53 into U251 cells to further examine the effect of berberine. The nude mouse subcutaneous tumor model was used to detect the effect of berberine on inhibiting the proliferation of glioma cells in vivo. Results Berberine promoted the phosphorylation of wtp53, increased the expression of p21 protein, reduced cyclin D1 content, and caused G1 phase arrest in U87 cells. Berberine also reduced mutp53 content and caused G2 phase arrest in U251 cells with a concurrent decrease in p21, cyclin D1, and cyclin B1 content. Transduction with wtp53 enhanced the effects on cell cycle arrest. Further, berberine significantly inhibited glioma growth in vivo mouse tumor model. Discussion Glioma is a group of heterogeneous brain tumors with unique biological and clinical characteristics. Berberine can inhibit glioma cells through a variety of ways. Our research indicated that berberine inhibited the proliferation of glioma cells by interfering with wtp53 and mutp53. This indicates that berberine could be used as a potential drug to treat wild-type and mutant p53 glioma.
Collapse
Affiliation(s)
- Ziqiang Liu
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Yong Chen
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Haijun Gao
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Weidong Xu
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Chaochao Zhang
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Jiacheng Lai
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Xingxing Liu
- Department of Internal Medicine, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Yuxue Sun
- Department of Neurosurgery, Henan Provincial People's Hospital, Zhengzhou, People's Republic of China
| | - Haiyan Huang
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, People's Republic of China
| |
Collapse
|
16
|
Satta N, Weppe R, Pagano S, Frias M, Juillard C, Vuilleumier N. Auto-antibodies against apolipoprotein A-1 block cancer cells proliferation and induce apoptosis. Oncotarget 2020; 11:4266-4280. [PMID: 33245719 PMCID: PMC7679029 DOI: 10.18632/oncotarget.27814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/27/2020] [Indexed: 11/25/2022] Open
Abstract
Auto-antibodies against apoA-1 (anti-apoA-1 IgGs) have been identified as important actors of atherosclerosis development through pro-inflammatory and pro-atherogenic properties and to also induce apoptosis in tumoral neuronal and lymphocyte derived cell lines through unknown mechanisms. The purpose of this study was to explore the cellular pathways involved in tumoral cell survival modulated by anti-apoA-1 antibodies. We observed that anti-apoA-1 antibodies induce growth arrest (in G2/M phase) and cell apoptosis through caspase 3 activation, accompanied by a selective p53 phosphorylation on serine 15. RNA sequencing indicated that anti-apoA-1 IgGs affect the expression of more than 950 genes belonging to five major groups of genes and respectively involved in i) cell proliferation inhibition, ii) p53 stabilisation and regulation, iii) apoptosis regulation, iv) inflammation regulation, and v) oxidative stress. In conclusion, anti-apoA-1 antibodies seem to have a role in blocking tumoral cell proliferation and survival, by activating a major tumor suppressor protein and by modulating the inflammatory and oxidative stress response. Further investigations are needed to explore a possible anti-cancer therapeutic approach of these antibodies in very specific and circumscribed conditions.
Collapse
Affiliation(s)
- Nathalie Satta
- Division of Laboratory Medicine, Department of Diagnostic, Geneva University Hospitals, Geneva, Switzerland.,Department of Medicine, Medical Faculty, Geneva University, Geneva, Switzerland
| | - Rémy Weppe
- Division of Laboratory Medicine, Department of Diagnostic, Geneva University Hospitals, Geneva, Switzerland.,Department of Medicine, Medical Faculty, Geneva University, Geneva, Switzerland
| | - Sabrina Pagano
- Division of Laboratory Medicine, Department of Diagnostic, Geneva University Hospitals, Geneva, Switzerland.,Department of Medicine, Medical Faculty, Geneva University, Geneva, Switzerland
| | - Miguel Frias
- Division of Laboratory Medicine, Department of Diagnostic, Geneva University Hospitals, Geneva, Switzerland.,Department of Medicine, Medical Faculty, Geneva University, Geneva, Switzerland
| | - Catherine Juillard
- Division of Laboratory Medicine, Department of Diagnostic, Geneva University Hospitals, Geneva, Switzerland.,Department of Medicine, Medical Faculty, Geneva University, Geneva, Switzerland
| | - Nicolas Vuilleumier
- Division of Laboratory Medicine, Department of Diagnostic, Geneva University Hospitals, Geneva, Switzerland.,Department of Medicine, Medical Faculty, Geneva University, Geneva, Switzerland
| |
Collapse
|
17
|
Kong LR, Ong RW, Tan TZ, Mohamed Salleh NAB, Thangavelu M, Chan JV, Koh LYJ, Periyasamy G, Lau JA, Le TBU, Wang L, Lee M, Kannan S, Verma CS, Lim CM, Chng WJ, Lane DP, Venkitaraman A, Hung HT, Cheok CF, Goh BC. Targeting codon 158 p53-mutant cancers via the induction of p53 acetylation. Nat Commun 2020; 11:2086. [PMID: 32350249 PMCID: PMC7190866 DOI: 10.1038/s41467-020-15608-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 03/19/2020] [Indexed: 12/14/2022] Open
Abstract
Gain of function (GOF) DNA binding domain (DBD) mutations of TP53 upregulate chromatin regulatory genes that promote genome-wide histone methylation and acetylation. Here, we therapeutically exploit the oncogenic GOF mechanisms of p53 codon 158 (Arg158) mutation, a DBD mutant found to be prevalent in lung carcinomas. Using high throughput compound screening and combination analyses, we uncover that acetylating mutp53R158G could render cancers susceptible to cisplatin-induced DNA stress. Acetylation of mutp53R158G alters DNA binding motifs and upregulates TRAIP, a RING domain-containing E3 ubiquitin ligase which dephosphorylates IĸB and impedes nuclear translocation of RelA (p65), thus repressing oncogenic nuclear factor kappa-B (NF-ĸB) signaling and inducing apoptosis. Given that this mechanism of cytotoxic vulnerability appears inapt in p53 wild-type (WT) or other hotspot GOF mutp53 cells, our work provides a therapeutic opportunity specific to Arg158-mutp53 tumors utilizing a regimen consisting of DNA-damaging agents and mutp53 acetylators, which is currently being pursued clinically. Codon 158 gain-of-function mutant p53 (158-mutp53) promotes tumourigenesis in lung cancer. Here, the authors show that 158-mutp53 render cancers sensitive to cisplatin and p53 acetylation agents through a mechanism where acetylated mutant p53 upregulates TRAIP and inhibits NF-ĸB signaling.
Collapse
Affiliation(s)
- Li Ren Kong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore. .,Medical Research Council Cancer Unit, University of Cambridge, Cambridge, CB2 0XZ, UK.
| | - Richard Weijie Ong
- Laboratory of Molecular Endocrinology, National Cancer Centre Singapore, Singapore, Singapore
| | - Tuan Zea Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | | | - Matan Thangavelu
- Genome Institute of Singapore, Agency for Science, Technology & Research (A*STAR), Singapore, 138672, Singapore
| | - Jane Vin Chan
- Genome Institute of Singapore, Agency for Science, Technology & Research (A*STAR), Singapore, 138672, Singapore
| | - Lie Yong Judice Koh
- Genome Institute of Singapore, Agency for Science, Technology & Research (A*STAR), Singapore, 138672, Singapore
| | - Giridharan Periyasamy
- Genome Institute of Singapore, Agency for Science, Technology & Research (A*STAR), Singapore, 138672, Singapore
| | - Jieying Amelia Lau
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Thi Bich Uyen Le
- Laboratory of Molecular Endocrinology, National Cancer Centre Singapore, Singapore, Singapore
| | - Lingzhi Wang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore.,Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Miyoung Lee
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge, CB2 0XZ, UK
| | - Srinivasaraghavan Kannan
- Bioinformatics Institute, Agency for Science, Technology, and Research (A*STAR), Singapore, 138671, Singapore
| | - Chandra S Verma
- Bioinformatics Institute, Agency for Science, Technology, and Research (A*STAR), Singapore, 138671, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore, 117558, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| | - Chwee Ming Lim
- Division of Surgical Oncology (Head and Neck Surgery), National University Cancer Institute, Singapore (NCIS), Singapore, 119074, Singapore
| | - Wee Joo Chng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore.,Department of Haematology-Oncology, National University Cancer Institute, Singapore, 119074, Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - David P Lane
- p53 Laboratory (p53Lab), Agency for Science, Technology, and Research (A*STAR), Singapore, 138648, Singapore
| | - Ashok Venkitaraman
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge, CB2 0XZ, UK
| | - Huynh The Hung
- Laboratory of Molecular Endocrinology, National Cancer Centre Singapore, Singapore, Singapore
| | - Chit Fang Cheok
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology, and Research (A*STAR), Singapore, 138673, Singapore.,Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119074, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596, Singapore
| | - Boon Cher Goh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore. .,Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore. .,Department of Haematology-Oncology, National University Cancer Institute, Singapore, 119074, Singapore.
| |
Collapse
|
18
|
The Rich World of p53 DNA Binding Targets: The Role of DNA Structure. Int J Mol Sci 2019; 20:ijms20225605. [PMID: 31717504 PMCID: PMC6888028 DOI: 10.3390/ijms20225605] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 10/29/2019] [Accepted: 11/08/2019] [Indexed: 12/14/2022] Open
Abstract
The tumor suppressor functions of p53 and its roles in regulating the cell cycle, apoptosis, senescence, and metabolism are accomplished mainly by its interactions with DNA. p53 works as a transcription factor for a significant number of genes. Most p53 target genes contain so-called p53 response elements in their promoters, consisting of 20 bp long canonical consensus sequences. Compared to other transcription factors, which usually bind to one concrete and clearly defined DNA target, the p53 consensus sequence is not strict, but contains two repeats of a 5′RRRCWWGYYY3′ sequence; therefore it varies remarkably among target genes. Moreover, p53 binds also to DNA fragments that at least partially and often completely lack this consensus sequence. p53 also binds with high affinity to a variety of non-B DNA structures including Holliday junctions, cruciform structures, quadruplex DNA, triplex DNA, DNA loops, bulged DNA, and hemicatenane DNA. In this review, we summarize information of the interactions of p53 with various DNA targets and discuss the functional consequences of the rich world of p53 DNA binding targets for its complex regulatory functions.
Collapse
|
19
|
Mrozek-Wilczkiewicz A, Kuczak M, Malarz K, Cieślik W, Spaczyńska E, Musiol R. The synthesis and anticancer activity of 2-styrylquinoline derivatives. A p53 independent mechanism of action. Eur J Med Chem 2019; 177:338-349. [DOI: 10.1016/j.ejmech.2019.05.061] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/21/2019] [Accepted: 05/21/2019] [Indexed: 12/13/2022]
|
20
|
Voce DJ, Bernal GM, Wu L, Crawley CD, Zhang W, Mansour NM, Cahill KE, Szymura SJ, Uppal A, Raleigh DR, Spretz R, Nunez L, Larsen G, Khodarev NN, Weichselbaum RR, Yamini B. Temozolomide Treatment Induces lncRNA MALAT1 in an NF-κB and p53 Codependent Manner in Glioblastoma. Cancer Res 2019; 79:2536-2548. [PMID: 30940658 DOI: 10.1158/0008-5472.can-18-2170] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 01/17/2019] [Accepted: 03/28/2019] [Indexed: 01/03/2023]
Abstract
Alkylating chemotherapy is a central component of the management of glioblastoma (GBM). Among the factors that regulate the response to alkylation damage, NF-κB acts to both promote and block cytotoxicity. In this study, we used genome-wide expression analysis in U87 GBM to identify NF-κB-dependent factors altered in response to temozolomide and found the long noncoding RNA (lncRNA) MALAT1 as one of the most significantly upregulated. In addition, we demonstrated that MALAT1 expression was coregulated by p50 (p105) and p53 via novel κB- and p53-binding sites in the proximal MALAT1 coding region. Temozolomide treatment inhibited p50 recruitment to its cognate element as a function of Ser329 phosphorylation while concomitantly increasing p53 recruitment. Moreover, luciferase reporter studies demonstrated that both κB and p53 cis-elements were required for efficient transactivation in response to temozolomide. Depletion of MALAT1 sensitized patient-derived GBM cells to temozolomide cytotoxicity, and in vivo delivery of nanoparticle-encapsulated anti-MALAT1 siRNA increased the efficacy of temozolomide in mice bearing intracranial GBM xenografts. Despite these observations, in situ hybridization of GBM specimens and analysis of publicly available datasets revealed that MALAT1 expression within GBM tissue was not prognostic of overall survival. Together, these findings support MALAT1 as a target for chemosensitization of GBM and identify p50 and p52 as primary regulators of this ncRNA. SIGNIFICANCE: These findings identify NF-κB and p53 as regulators of the lncRNA MALAT1 and suggest MALAT1 as a potential target for the chemosensitization of GBM.
Collapse
Affiliation(s)
- David J Voce
- Department of Neurosurgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Giovanna M Bernal
- Department of Surgery, Section of Neurosurgery, The University of Chicago, Chicago, Illinois
| | - Longtao Wu
- Department of Surgery, Section of Neurosurgery, The University of Chicago, Chicago, Illinois
| | - Clayton D Crawley
- Department of Surgery, Section of Neurosurgery, The University of Chicago, Chicago, Illinois
| | - Wei Zhang
- Department of Preventative Medicine, Northwestern University, Chicago, Illinois
| | - Nassir M Mansour
- Department of Surgery, Section of Neurosurgery, The University of Chicago, Chicago, Illinois
| | - Kirk E Cahill
- Department of Surgery, Section of Neurosurgery, The University of Chicago, Chicago, Illinois
| | - Szymon J Szymura
- Department of Surgery, Section of Neurosurgery, The University of Chicago, Chicago, Illinois
| | - Abhineet Uppal
- Department of Surgery, Section of Neurosurgery, The University of Chicago, Chicago, Illinois
| | - David R Raleigh
- Department of Surgery, Section of Neurosurgery, The University of Chicago, Chicago, Illinois
| | | | - Luis Nunez
- LNK Chemsolutions LLC, Lincoln, Nebraska
| | | | - Nikolai N Khodarev
- Department of Radiation and Cellular Oncology, and The Ludwig Center for Metastasis Research, The University of Chicago, Chicago, Illinois
| | - Ralph R Weichselbaum
- Department of Radiation and Cellular Oncology, and The Ludwig Center for Metastasis Research, The University of Chicago, Chicago, Illinois
| | - Bakhtiar Yamini
- Department of Surgery, Section of Neurosurgery, The University of Chicago, Chicago, Illinois.
| |
Collapse
|
21
|
Mrozek-Wilczkiewicz A, Malarz K, Rejmund M, Polanski J, Musiol R. Anticancer activity of the thiosemicarbazones that are based on di-2-pyridine ketone and quinoline moiety. Eur J Med Chem 2019; 171:180-194. [PMID: 30921758 DOI: 10.1016/j.ejmech.2019.03.027] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/07/2019] [Accepted: 03/11/2019] [Indexed: 01/08/2023]
Abstract
Thiosemicarbazones (TSC) are a subclass of iron-chelating agents that are believed to have an anticancer activity. The high potential for the application of this compound class can be illustrated by a fact that three TSC have entered clinical trials. The ability to chelate metal ions results in several biochemical changes in the cellular metabolism and growth. An important factor that determines the antitumor activity of TSC is a level of iron regulatory proteins and the antioxidant potential that is specific for each type of cancer cell. However, despite the increasing interest in TSC, their mechanism of anticancer activity is still unclear. For a more effective and rational design, it is crucial to determine and describe the abovementioned issues. In this report, we describe a series of new TSC that are designed on the four main structural scaffolds. The anticancer activity of these compounds was evaluated against a panel of cancer cell lines including colon and breast cancers and gliomas. Special attention was paid to the metal-dependent proteins. The impact of the tested TSC on the cell cycle and redox homeostasis was also determined. These results confirm a p53-independent mechanism of apoptosis.
Collapse
Affiliation(s)
- Anna Mrozek-Wilczkiewicz
- A. Chelkowski Institute of Physics and Silesian Center for Education and Interdisciplinary Research, University of Silesia, Chorzow, Poland.
| | - Katarzyna Malarz
- A. Chelkowski Institute of Physics and Silesian Center for Education and Interdisciplinary Research, University of Silesia, Chorzow, Poland
| | - Marta Rejmund
- Institute of Chemistry, University of Silesia, Katowice, Poland
| | | | - Robert Musiol
- Institute of Chemistry, University of Silesia, Katowice, Poland
| |
Collapse
|
22
|
Dual redox labeling of DNA as a tool for electrochemical detection of p53 protein-DNA interactions. Anal Chim Acta 2019; 1050:123-131. [DOI: 10.1016/j.aca.2018.10.053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 10/04/2018] [Accepted: 10/23/2018] [Indexed: 12/18/2022]
|
23
|
The p53 Pathway in Glioblastoma. Cancers (Basel) 2018; 10:cancers10090297. [PMID: 30200436 PMCID: PMC6162501 DOI: 10.3390/cancers10090297] [Citation(s) in RCA: 249] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/17/2018] [Accepted: 08/28/2018] [Indexed: 12/27/2022] Open
Abstract
The tumor suppressor and transcription factor p53 plays critical roles in tumor prevention by orchestrating a wide variety of cellular responses, including damaged cell apoptosis, maintenance of genomic stability, inhibition of angiogenesis, and regulation of cell metabolism and tumor microenvironment. TP53 is one of the most commonly deregulated genes in cancer. The p53-ARF-MDM2 pathway is deregulated in 84% of glioblastoma (GBM) patients and 94% of GBM cell lines. Deregulated p53 pathway components have been implicated in GBM cell invasion, migration, proliferation, evasion of apoptosis, and cancer cell stemness. These pathway components are also regulated by various microRNAs and long non-coding RNAs. TP53 mutations in GBM are mostly point mutations that lead to a high expression of a gain of function (GOF) oncogenic variants of the p53 protein. These relatively understudied GOF p53 mutants promote GBM malignancy, possibly by acting as transcription factors on a set of genes other than those regulated by wild type p53. Their expression correlates with worse prognosis, highlighting their potential importance as markers and targets for GBM therapy. Understanding mutant p53 functions led to the development of novel approaches to restore p53 activity or promote mutant p53 degradation for future GBM therapies.
Collapse
|
24
|
Proteomic analysis of the response of Trichinella spiralis muscle larvae to exogenous nitric oxide. PLoS One 2018; 13:e0198205. [PMID: 29870543 PMCID: PMC5988324 DOI: 10.1371/journal.pone.0198205] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 05/15/2018] [Indexed: 12/11/2022] Open
Abstract
Trichinella spiralis mainly dwells in the muscle tissue of its host and is the main causative agent of trichinellosis in humans. Nitric oxide (NO), an important intracellular signaling molecule that may restrict pathogen growth in infected hosts, has been known for its anti-pathogenic activity, including resistance to T. spiralis. Herein, we applied label-free analysis to investigate the effect of sodium nitroprusside (SNP, a NO donor compound) on the proteome of T. spiralis muscle larvae (ML), followed by Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway cluster analyses. Of the 1,476 proteins detected in the ML, 121 proteins showed differential expression, including 50 significantly upregulated and 71 downregulated proteins. The functions of the 108 annotated proteins were primarily related to signal transduction, transcription/translation, material metabolism, protein synthesis/assembly/degradation, and stress/defense/antioxidation. Quantitative real-time polymerase chain reaction (qRT-PCR) assay verified that FRMD5 and CUT-1 gene expression levels were significantly increased, while COX2 gene expression level was significantly decreased. GO annotation and KEGG pathway analyses showed that the majority of differentially expressed proteins were mainly involved in the molecular function of the catalytic activity, biological process of the immune system process, metabolic process, cellular component organization, biological adhesion, and cellular component of the macromolecular complex. Our results demonstrate the first comprehensive protein expression profile of the ML in response to NO stress and provide novel references for understanding the potential mechanism underlying the effects of NO on trichinellosis.
Collapse
|
25
|
Xiao M, An Y, Wang F, Yao C, Zhang C, Xin J, Duan Y, Zhao X, Fang N, Ji S. A chimeric protein PTEN-L-p53 enters U251 cells to repress proliferation and invasion. Exp Cell Res 2018; 369:234-242. [PMID: 29802838 DOI: 10.1016/j.yexcr.2018.05.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 05/13/2018] [Accepted: 05/22/2018] [Indexed: 12/21/2022]
Abstract
PTEN, a well-known tumor suppressor, dephosphorylates PIP3 and inhibits AKT activity. A translational variant of PTEN has been identified and termed PTEN-Long (PTEN-L). The additional 173 amino acids (PTEN-L leader) at the N-terminal constitute a potential signal peptide. Differing from canonical PTEN, PTEN-L is secreted into the extracellular fluid and re-enters recipient cells, playing the similar roles as PTEN in vivo and in vitro. This character confers the PTEN-L a therapeutic ability via directly protein delivering instead of traditional DNA and RNA vector options. In the present study, we employed PTEN-L leader to assemble a fusion protein, PTEN-L-p53, inosculated with the transcriptional regulator TP53, which is another powerful tumor suppressor. We overexpressed PTEN-L-p53 in HEK293T cells and detected it in both the cytoplasm and nucleus. Subsequently, we found that PTEN-L-p53 was secreted outside of the cells and detected in the culture media by immunoblotting. Furthermore, we demonstrated that PTEN-L-p53 freely entered the cells and suppressed the viability of U251cells (p53R273H, a cell line with p53 R273H-mutation). PTEN-L-p53 is composed of endogenous protein/peptide bearing low immunogenicity, and only the junction region between PTEN-L leader and p53 can act as a new immune epitope. Accordingly, this fusion protein can potentially be used as a therapeutic option for TP53-abnormality cancers.
Collapse
Affiliation(s)
- Man Xiao
- Department of Biochemistry and Molecular Biology, Medical School, Henan University, Kaifeng, Henan Province, China
| | - Yang An
- Department of Biochemistry and Molecular Biology, Medical School, Henan University, Kaifeng, Henan Province, China
| | - Fengling Wang
- Department of Biochemistry and Molecular Biology, Medical School, Henan University, Kaifeng, Henan Province, China
| | - Chao Yao
- Department of Biochemistry and Molecular Biology, Medical School, Henan University, Kaifeng, Henan Province, China
| | - Chu Zhang
- Department of Biochemistry and Molecular Biology, Medical School, Henan University, Kaifeng, Henan Province, China
| | - Junfang Xin
- Department of Biochemistry and Molecular Biology, Medical School, Henan University, Kaifeng, Henan Province, China
| | - Yongjian Duan
- Department of Oncology, The First Affiliated Hospital of Henan University, Kaifeng, Henan Province, China
| | | | - Na Fang
- Department of Biochemistry and Molecular Biology, Medical School, Henan University, Kaifeng, Henan Province, China.
| | - Shaoping Ji
- Department of Biochemistry and Molecular Biology, Medical School, Henan University, Kaifeng, Henan Province, China; Department of Oncology, The First Affiliated Hospital of Henan University, Kaifeng, Henan Province, China.
| |
Collapse
|
26
|
Stiewe T, Haran TE. How mutations shape p53 interactions with the genome to promote tumorigenesis and drug resistance. Drug Resist Updat 2018; 38:27-43. [PMID: 29857816 DOI: 10.1016/j.drup.2018.05.001] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/27/2018] [Accepted: 05/03/2018] [Indexed: 12/31/2022]
Abstract
The tumor suppressive transcription factor p53 regulates a wide array of cellular processes that confer upon cells an essential protection against cancer development. Wild-type p53 regulates gene expression by directly binding to DNA in a sequence-specific manner. p53 missense mutations are the most common mutations in malignant cells and can be regarded as synonymous with anticancer drug resistance and poor prognosis. The current review provides an overview of how the extraordinary variety of more than 2000 different mutant p53 proteins, known as the p53 mutome, affect the interaction of p53 with DNA. We discuss how the classification of p53 mutations to loss of function (LOF), gain of function (GOF), and dominant-negative (DN) inhibition of a remaining wild-type allele, hides a complex p53 mutation spectrum that depends on the distinctive nature of each mutant protein, requiring different therapeutic strategies for each mutant p53 protein. We propose to regard the different mutant p53 categories as continuous variables, that may not be independent of each other. In particular, we suggest here to consider GOF mutations as a special subset of LOF mutations, especially when mutant p53 binds to DNA through cooperation with other transcription factors, and we present a model for GOF mechanism that consolidates many observations on the GOF phenomenon. We review how novel mutant p53 targeting approaches aim to restore a wild-type-like DNA interaction and to overcome resistance to cancer therapy.
Collapse
Affiliation(s)
- Thorsten Stiewe
- Institute of Molecular Oncology, Philipps-University, 35037 Marburg, Germany.
| | - Tali E Haran
- Department of Biology, Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel.
| |
Collapse
|
27
|
Rejmund M, Mrozek-Wilczkiewicz A, Malarz K, Pyrkosz-Bulska M, Gajcy K, Sajewicz M, Musiol R, Polanski J. Piperazinyl fragment improves anticancer activity of Triapine. PLoS One 2018; 13:e0188767. [PMID: 29652894 PMCID: PMC5898707 DOI: 10.1371/journal.pone.0188767] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 11/13/2017] [Indexed: 12/17/2022] Open
Abstract
A new class of TSCs containing piperazine (piperazinylogs) of Triapine, was designed to fulfill the di-substitution pattern at the TSCs N4 position, which is a crucial prerequisite for the high activity of the previously obtained TSC compounds–DpC and Dp44mT. We tested the important physicochemical characteristics of the novel compounds L1-L12. The studied ligands are neutral at physiological pH, which allows them to permeate cell membranes and bind cellular Fe pools more readily than less lipid-soluble ligands, e.g. DFO. The selectivity and anti-cancer activity of the novel TSCs were examined in a variety of cancer cell types. In general, the novel compounds demonstrated the greatest promise as anti-cancer agents with both a potent and selective anti-proliferative activity. We investigated the mechanism of action more deeply, and revealed that studied compounds inhibit the cell cycle (G1/S phase). Additionally we detected apoptosis, which is dependent on cell line’s specific genetic profile. Accordingly, structure-activity relationship studies suggest that the combination of the piperazine ring with Triapine allows potent and selective anticancer chelators that warrant further in vivo examination to be identified. Significantly, this study proved the importance of the di-substitution pattern of the amine N4 function.
Collapse
Affiliation(s)
- Marta Rejmund
- Institute of Chemistry, University of Silesia, Katowice, Poland
| | - Anna Mrozek-Wilczkiewicz
- A. Chełkowski Institute of Physics, University of Silesia, Katowice, Poland
- Silesian Center for Education and Interdisciplinary Research, University of Silesia, Chorzów, Poland
| | - Katarzyna Malarz
- Institute of Chemistry, University of Silesia, Katowice, Poland
- Silesian Center for Education and Interdisciplinary Research, University of Silesia, Chorzów, Poland
| | | | - Kamila Gajcy
- Institute of Chemistry, University of Silesia, Katowice, Poland
| | | | - Robert Musiol
- Institute of Chemistry, University of Silesia, Katowice, Poland
| | - Jaroslaw Polanski
- Institute of Chemistry, University of Silesia, Katowice, Poland
- * E-mail:
| |
Collapse
|
28
|
Ivanov DP, Grabowska AM. In Vitro Tissue Microarrays for Quick and Efficient Spheroid Characterization. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2018; 23:211-217. [PMID: 29072965 PMCID: PMC5784453 DOI: 10.1177/2472555217740576] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 10/12/2017] [Accepted: 10/13/2017] [Indexed: 01/22/2023]
Abstract
Three-dimensional (3D) in vitro microphysiological cultures, such as spheroids and organoids, promise increased patient relevance and therapeutic predictivity compared with reductionist cell monolayers. However, high-throughput characterization techniques for 3D models are currently limited to simplistic live/dead assays. By sectioning and staining in vitro microtissues, researchers can examine their structure; detect DNA, RNA, and protein targets; and visualize them at the level of single cells. The morphological examination and immunochemistry staining for in vitro cultures has historically been done in a laborious manner involving testing one set of cultures at a time. We have developed a technology to rapidly screen spheroid phenotype and protein expression by arranging 66 spheroids in a gel array for paraffin embedding, sectioning, and immunohistochemsitry. The process is quick, mostly automatable, and uses 11 times less reagents than conventional techniques. Here we showcase the capabilities of the technique in an array made up of 11 different cell lines stained in conventional hematoxylin and eosin (H&E) staining, as well as immunohistochemistry staining for estrogen (ER), progesterone (PR), and human epidermal growth factor (Her-2) receptors, and TP53. This new methodology can be used in optimizing stem cell-based models of disease and development, for tissue engineering, safety screening, and efficacy screens in cancer research.
Collapse
Affiliation(s)
- D. P. Ivanov
- Safety Screening Centre, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Alderley Park, Macclesfield, UK
| | - A. M. Grabowska
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, Queen’s Medical Centre, University of Nottingham, Nottingham, UK
| |
Collapse
|
29
|
Arbab AS, Rashid MH, Angara K, Borin TF, Lin PC, Jain M, Achyut BR. Major Challenges and Potential Microenvironment-Targeted Therapies in Glioblastoma. Int J Mol Sci 2017; 18:ijms18122732. [PMID: 29258180 PMCID: PMC5751333 DOI: 10.3390/ijms18122732] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/13/2017] [Accepted: 12/15/2017] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma (GBM) is considered one of the most malignant, genetically heterogeneous, and therapy-resistant solid tumor. Therapeutic options are limited in GBM and involve surgical resection followed by chemotherapy and/or radiotherapy. Adjuvant therapies, including antiangiogenic treatments (AATs) targeting the VEGF–VEGFR pathway, have witnessed enhanced infiltration of bone marrow-derived myeloid cells, causing therapy resistance and tumor relapse in clinics and in preclinical models of GBM. This review article is focused on gathering previous clinical and preclinical reports featuring major challenges and lessons in GBM. Potential combination therapies targeting the tumor microenvironment (TME) to overcome the myeloid cell-mediated resistance problem in GBM are discussed. Future directions are focused on the use of TME-directed therapies in combination with standard therapy in clinical trials, and the exploration of novel therapies and GBM models for preclinical studies. We believe this review will guide the future of GBM research and therapy.
Collapse
Affiliation(s)
- Ali S Arbab
- Tumor Angiogenesis laboratory, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA.
| | - Mohammad H Rashid
- Tumor Angiogenesis laboratory, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA.
| | - Kartik Angara
- Tumor Angiogenesis laboratory, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA.
| | - Thaiz F Borin
- Tumor Angiogenesis laboratory, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA.
| | - Ping-Chang Lin
- Tumor Angiogenesis laboratory, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA.
| | - Meenu Jain
- Tumor Angiogenesis laboratory, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA.
| | - Bhagelu R Achyut
- Tumor Angiogenesis laboratory, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA.
| |
Collapse
|
30
|
Jung CH, Ho JN, Park JK, Kim EM, Hwang SG, Um HD. Involvement of SULF2 in y-irradiation-induced invasion and resistance of cancer cells by inducing IL-6 expression. Oncotarget 2017; 7:16090-103. [PMID: 26895473 PMCID: PMC4941299 DOI: 10.18632/oncotarget.7449] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 02/05/2016] [Indexed: 11/25/2022] Open
Abstract
Cancer cells that survive radiotherapy often display enhanced invasiveness and resistance to death stimuli. Previous findings have suggested that ionizing radiation (IR) induces such undesirable effects by stimulating the STAT3/Bcl-XL pathway. To identify novel cellular components that mediate these actions of IR, we irradiated lung cancer cells with sublethal doses of y-rays and screened for the induction of IR-responsive genes by microarray analysis. The genes encoding 2 extracellular proteins, SULF2 and IL-6, were found to be upregulated, and these results were confirmed by polymerase chain reactions and western blot analyses. Because the IR-mediated induction of SULF2 was a novel finding, we also confirmed the phenomenon in vivo using xenograft tumors in mice. Analyses of signaling processes revealed that IR induced SULF2 expression via p53, which then promoted IL-6 expression by stabilizing β-catenin, followed by stimulation of the STAT3/Bcl-XL pathway. Consistently, both SULF2 and IL-6 mediated IR-induced invasion and resistance to death stimuli. To investigate whether SULF2 contributes to IR-induced tumor metastasis, we irradiated tumors in mice with sublethal doses of IR. This treatment promoted the entry of tumor cells into the blood stream (intravasation), which was abolished by downregulating SULF2 expression in tumor cells. These results demonstrated that SULF2 can mediate the detrimental effects of IR in vivo. Therefore, SULF2 may be potentially used as a therapeutic and diagnostic target to predict and overcome the malignant effects of IR, particularly in tumors expressing p53 wild-type.
Collapse
Affiliation(s)
- Chan-Hun Jung
- Division of Radiation Cancer Biology, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Korea
| | - Jin-Nyoung Ho
- Division of Radiation Cancer Biology, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Korea.,Present address: Biomedical Research Institute, Department of Urology, Seoul National University Bundang Hospital, Seongnam 463-707, Korea
| | - Jong Kuk Park
- Division of Radiation Cancer Biology, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Korea
| | - Eun Mi Kim
- Division of Radiation Cancer Biology, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Korea
| | - Sang-Gu Hwang
- Division of Radiation Cancer Biology, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Korea
| | - Hong-Duck Um
- Division of Radiation Cancer Biology, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Korea
| |
Collapse
|
31
|
Sarma PP, Dutta D, Mirza Z, Saikia KK, Baishya BK. Point mutations in the DNA binding domain of p53 contribute to glioma progression and poor prognosis. Mol Biol 2017. [DOI: 10.1134/s0026893317020182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Zhu C, Yamaguchi K, Ohsugi T, Terakado Y, Noguchi R, Ikenoue T, Furukawa Y. Identification of FERM domain-containing protein 5 as a novel target of β-catenin/TCF7L2 complex. Cancer Sci 2017; 108:612-619. [PMID: 28117551 PMCID: PMC5406541 DOI: 10.1111/cas.13174] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/13/2017] [Accepted: 01/18/2017] [Indexed: 01/08/2023] Open
Abstract
Deregulation of the canonical Wnt signaling pathway plays an important role in human tumorigenesis through the accumulation of β‐catenin and subsequent transactivation of TCF7L2. Although some of the consequences associated with the accumulated β‐catenin have been clarified, the comprehensive effect of activated β‐catenin/TCF7L2 transcriptional complex on tumorigenesis remains to be elucidated. To understand the precise molecular mechanisms underlying colorectal cancer, we searched for genes regulated by the complex in colorectal tumors. We performed expression profile analysis of HCT116 and SW480 colon cancer cells treated with β‐catenin siRNAs, and ChIP‐sequencing using anti‐TCF7L2 antibody. Combination of these data with public microarray data of LS174 cells with a dominant‐negative form of TCF7L2 identified a total of 11 candidate genes. In this paper, we focused on FERM domain‐containing protein 5 (FRMD5), and confirmed that it is regulated by both β‐catenin and TCF7L2. An additional reporter assay disclosed that a region in intron1 transcriptionally regulated the expression of FRMD5. ChIP assay also corroborated that TCF7L2 associates with this region. These data suggested that FRMD5 is a novel direct target of the β‐catenin/TCF7L2 complex.
Collapse
Affiliation(s)
- Chi Zhu
- Division of Clinical Genome Research, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kiyoshi Yamaguchi
- Division of Clinical Genome Research, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Tomoyuki Ohsugi
- Division of Clinical Genome Research, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yumi Terakado
- Division of Clinical Genome Research, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Rei Noguchi
- Division of Clinical Genome Research, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Tsuneo Ikenoue
- Division of Clinical Genome Research, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yoichi Furukawa
- Division of Clinical Genome Research, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
33
|
Brázda V, Coufal J. Recognition of Local DNA Structures by p53 Protein. Int J Mol Sci 2017; 18:ijms18020375. [PMID: 28208646 PMCID: PMC5343910 DOI: 10.3390/ijms18020375] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 02/03/2017] [Indexed: 02/06/2023] Open
Abstract
p53 plays critical roles in regulating cell cycle, apoptosis, senescence and metabolism and is commonly mutated in human cancer. These roles are achieved by interaction with other proteins, but particularly by interaction with DNA. As a transcription factor, p53 is well known to bind consensus target sequences in linear B-DNA. Recent findings indicate that p53 binds with higher affinity to target sequences that form cruciform DNA structure. Moreover, p53 binds very tightly to non-B DNA structures and local DNA structures are increasingly recognized to influence the activity of wild-type and mutant p53. Apart from cruciform structures, p53 binds to quadruplex DNA, triplex DNA, DNA loops, bulged DNA and hemicatenane DNA. In this review, we describe local DNA structures and summarize information about interactions of p53 with these structural DNA motifs. These recent data provide important insights into the complexity of the p53 pathway and the functional consequences of wild-type and mutant p53 activation in normal and tumor cells.
Collapse
Affiliation(s)
- Václav Brázda
- Institute of Biophysics, Academy of Sciences of the Czech Republic v.v.i., Královopolská 135, 612 65 Brno, Czech Republic.
| | - Jan Coufal
- Institute of Biophysics, Academy of Sciences of the Czech Republic v.v.i., Královopolská 135, 612 65 Brno, Czech Republic.
| |
Collapse
|
34
|
p53 Specifically Binds Triplex DNA In Vitro and in Cells. PLoS One 2016; 11:e0167439. [PMID: 27907175 PMCID: PMC5131957 DOI: 10.1371/journal.pone.0167439] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 11/14/2016] [Indexed: 11/30/2022] Open
Abstract
Triplex DNA is implicated in a wide range of biological activities, including regulation of gene expression and genomic instability leading to cancer. The tumor suppressor p53 is a central regulator of cell fate in response to different type of insults. Sequence and structure specific modes of DNA recognition are core attributes of the p53 protein. The focus of this work is the structure-specific binding of p53 to DNA containing triplex-forming sequences in vitro and in cells and the effect on p53-driven transcription. This is the first DNA binding study of full-length p53 and its deletion variants to both intermolecular and intramolecular T.A.T triplexes. We demonstrate that the interaction of p53 with intermolecular T.A.T triplex is comparable to the recognition of CTG-hairpin non-B DNA structure. Using deletion mutants we determined the C-terminal DNA binding domain of p53 to be crucial for triplex recognition. Furthermore, strong p53 recognition of intramolecular T.A.T triplexes (H-DNA), stabilized by negative superhelicity in plasmid DNA, was detected by competition and immunoprecipitation experiments, and visualized by AFM. Moreover, chromatin immunoprecipitation revealed p53 binding T.A.T forming sequence in vivo. Enhanced reporter transactivation by p53 on insertion of triplex forming sequence into plasmid with p53 consensus sequence was observed by luciferase reporter assays. In-silico scan of human regulatory regions for the simultaneous presence of both consensus sequence and T.A.T motifs identified a set of candidate p53 target genes and p53-dependent activation of several of them (ABCG5, ENOX1, INSR, MCC, NFAT5) was confirmed by RT-qPCR. Our results show that T.A.T triplex comprises a new class of p53 binding sites targeted by p53 in a DNA structure-dependent mode in vitro and in cells. The contribution of p53 DNA structure-dependent binding to the regulation of transcription is discussed.
Collapse
|
35
|
Chunharojrith P, Nakayama Y, Jiang X, Kery RE, Ma J, De La Hoz Ulloa CS, Zhang X, Zhou Y, Klibanski A. Tumor suppression by MEG3 lncRNA in a human pituitary tumor derived cell line. Mol Cell Endocrinol 2015; 416:27-35. [PMID: 26284494 PMCID: PMC4605874 DOI: 10.1016/j.mce.2015.08.018] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 08/11/2015] [Accepted: 08/12/2015] [Indexed: 01/01/2023]
Abstract
Human clinically non-functioning pituitary adenomas (NFAs) account for approximately 40% of diagnosed pituitary tumors. Epigenetic mutations in tumor suppressive genes play an important role in NFA development. Maternally expressed gene 3 (MEG3) is a long non-coding RNA (lncRNA) and we hypothesized that it is a candidate tumor suppressor whose epigenetic silencing is specifically linked to NFA development. In this study, we introduced MEG3 expression into PDFS cells, derived from a human NFA, using both inducible and constitutively active expression systems. MEG3 expression significantly suppressed xenograft tumor growth in vivo in nude mice. When induced in culture, MEG3 caused cell cycle arrest at the G1 phase. In addition, inactivation of p53 completely abolished tumor suppression by MEG3, indicating that MEG3 tumor suppression is mediated by p53. In conclusion, our data support the hypothesis that MEG3 is a lncRNA tumor suppressor in the pituitary and its inactivation contributes to NFA development.
Collapse
Affiliation(s)
- Paweena Chunharojrith
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Yuki Nakayama
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Xiaobing Jiang
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Rachel E Kery
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Jun Ma
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | | | - Xun Zhang
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Yunli Zhou
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| | - Anne Klibanski
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
36
|
5-Lipoxygenase is a direct p53 target gene in humans. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:1003-16. [DOI: 10.1016/j.bbagrm.2015.06.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 05/19/2015] [Accepted: 06/07/2015] [Indexed: 11/18/2022]
|
37
|
Platinum (IV) coiled coil nanotubes selectively kill human glioblastoma cells. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:913-25. [PMID: 25680541 DOI: 10.1016/j.nano.2015.01.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 01/21/2015] [Accepted: 01/26/2015] [Indexed: 12/24/2022]
Abstract
UNLABELLED Malignant glioma are often fatal and pose a significant therapeutic challenge. Here we have employed α-helical right handed coiled coils (RHCC) which self-assemble into tetrameric nanotubes that stably associate with platinum (Pt) (IV) compound. This Pt(IV)-RHCC complex showed superior in vitro and in vivo toxicity in human malignant glioma cells at up to 5 fold lower platinum concentrations when compared to free Pt(IV). Pt(IV)-RHCC nanotubes activated multiple cell death pathways in GB cells without affecting astrocytes in vitro or causing damage to normal mouse brain. This Pt(IV)-RHCC nanotubes may serve as a promising new therapeutic tool for low dose Pt(IV) prodrug application for highly efficient and selective treatment of human brain tumors. FROM THE CLINICAL EDITOR The prognosis of malignant glioma remains poor despite medical advances. Platinum, one of the chemotherapeutic agents used, has significant systemic side effects. In this article, the authors employed α-helical right handed coiled coil (RHCC) protein nanotubes as a carrier for cisplatin. It was shown that the new compound achieved higher tumor kill rate but lower toxicity to normal cells and thus may hold promise to be a highly efficient treatment for the future.
Collapse
|
38
|
Battle against cancer: an everlasting saga of p53. Int J Mol Sci 2014; 15:22109-27. [PMID: 25470027 PMCID: PMC4284697 DOI: 10.3390/ijms151222109] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 10/23/2014] [Accepted: 11/25/2014] [Indexed: 02/07/2023] Open
Abstract
Cancer is one of the most life-threatening diseases characterized by uncontrolled growth and spread of malignant cells. The tumor suppressor p53 is the master regulator of tumor cell growth and proliferation. In response to various stress signals, p53 can be activated and transcriptionally induces a myriad of target genes, including both protein-encoding and non-coding genes, controlling cell cycle progression, DNA repair, senescence, apoptosis, autophagy and metabolism of tumor cells. However, around 50% of human cancers harbor mutant p53 and, in the majority of the remaining cancers, p53 is inactivated through multiple mechanisms. Herein, we review the recent progress in understanding the molecular basis of p53 signaling, particularly the newly identified ribosomal stress—p53 pathway, and the development of chemotherapeutics via activating wild-type p53 or restoring mutant p53 functions in cancer. A full understanding of p53 regulation will aid the development of effective cancer treatments.
Collapse
|
39
|
Hu J, Niu M, Li X, Lu D, Cui J, Xu W, Li G, Zhan J, Zhang H. FERM domain-containing protein FRMD5 regulates cell motility via binding to integrin β5 subunit and ROCK1. FEBS Lett 2014; 588:4348-56. [PMID: 25448675 DOI: 10.1016/j.febslet.2014.10.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 09/17/2014] [Accepted: 10/08/2014] [Indexed: 10/24/2022]
Abstract
FRMD5 is a novel FERM domain-containing protein depicted in tumor progression. However, the mechanisms underlying FRMD5 inhibition of cell migration is largely unknown. Here, we show that FRMD5 regulates cell migration by interacting with integrin β5 cytoplasmic tail and ROCK1 in human lung cancer cells. FRMD5 promotes cell-matrix adhesion and cell spreading on vitronectin, and thus inhibits cell migration. Furthermore, FRMD5 interacts with ROCK1 and inhibits its activation that leads to the inhibition of myosin light chain phosphorylation and the actin stress fiber formation. Taken together, these findings demonstrate that the putative tumor suppressive protein FRMD5 regulates tumor cell motility via a dual pathway involving FRMD5 binding to integrin β5 tail and to ROCK1.
Collapse
Affiliation(s)
- Jinxia Hu
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Peking University Health Science Center, Beijing 100191, China; State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing 100191, China; Laboratory of Molecular Cell Biology and Tumor Biology, Department of Anatomy, Histology and Embryology, Peking University Health Science Center, Beijing 100191, China; Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China; Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai 264000, Shandong, China
| | - Miaomiao Niu
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Peking University Health Science Center, Beijing 100191, China; State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing 100191, China; Laboratory of Molecular Cell Biology and Tumor Biology, Department of Anatomy, Histology and Embryology, Peking University Health Science Center, Beijing 100191, China
| | - Xueying Li
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Peking University Health Science Center, Beijing 100191, China; State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing 100191, China; Laboratory of Molecular Cell Biology and Tumor Biology, Department of Anatomy, Histology and Embryology, Peking University Health Science Center, Beijing 100191, China
| | - Danyu Lu
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Peking University Health Science Center, Beijing 100191, China; State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing 100191, China; Laboratory of Molecular Cell Biology and Tumor Biology, Department of Anatomy, Histology and Embryology, Peking University Health Science Center, Beijing 100191, China
| | - Jia Cui
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Peking University Health Science Center, Beijing 100191, China; State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing 100191, China; Laboratory of Molecular Cell Biology and Tumor Biology, Department of Anatomy, Histology and Embryology, Peking University Health Science Center, Beijing 100191, China
| | - Weizhi Xu
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Peking University Health Science Center, Beijing 100191, China; State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing 100191, China; Laboratory of Molecular Cell Biology and Tumor Biology, Department of Anatomy, Histology and Embryology, Peking University Health Science Center, Beijing 100191, China
| | - Gang Li
- Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | - Jun Zhan
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Peking University Health Science Center, Beijing 100191, China; State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing 100191, China; Laboratory of Molecular Cell Biology and Tumor Biology, Department of Anatomy, Histology and Embryology, Peking University Health Science Center, Beijing 100191, China
| | - Hongquan Zhang
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Peking University Health Science Center, Beijing 100191, China; State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing 100191, China; Laboratory of Molecular Cell Biology and Tumor Biology, Department of Anatomy, Histology and Embryology, Peking University Health Science Center, Beijing 100191, China.
| |
Collapse
|
40
|
Girardini JE, Walerych D, Del Sal G. Cooperation of p53 mutations with other oncogenic alterations in cancer. Subcell Biochem 2014; 85:41-70. [PMID: 25201188 DOI: 10.1007/978-94-017-9211-0_3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Following the initial findings suggesting a pro-oncogenic role for p53 point mutants, more than 30 years of research have unveiled the critical role exerted by these mutants in human cancer. A growing body of evidence, including mouse models and clinical data, has clearly demonstrated a connection between mutant p53 and the development of aggressive and metastatic tumors. Even if the molecular mechanisms underlying mutant p53 activities are still the object of intense scrutiny, it seems evident that full activation of its oncogenic role requires the functional interaction with other oncogenic alterations. p53 point mutants, with their pleiotropic effects, simultaneously activating several mechanisms of aggressiveness, are engaged in multiple cross-talk with a variety of other cancer-related processes, thus depicting a complex molecular landscape for the mutant p53 network. In this chapter revealing evidence illustrating different ways through which this cooperation may be achieved will be discussed. Considering the proposed role for mutant p53 as a driver of cancer aggressiveness, disarming mutant p53 function by uncoupling the cooperation with other oncogenic alterations, stands out as an exciting possibility for the development of novel anti-cancer therapies.
Collapse
Affiliation(s)
- Javier E Girardini
- Molecular Oncology Group, Institute of Molecular and Cell Biology of Rosario, IBR-CONICET, Rosario, Argentina
| | | | | |
Collapse
|
41
|
Girardini JE, Marotta C, Del Sal G. Disarming mutant p53 oncogenic function. Pharmacol Res 2013; 79:75-87. [PMID: 24246451 DOI: 10.1016/j.phrs.2013.11.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 11/07/2013] [Indexed: 01/01/2023]
Abstract
In the last decade intensive research has confirmed the long standing hypothesis that some p53 point mutants acquire novel activities able to cooperate with oncogenic mechanisms. Particular attention has attracted the ability of several such mutants to actively promote the development of aggressive and metastatic tumors in vivo. This knowledge opens a new dimension on rational therapy design, suggesting novel strategies based on pharmacological manipulation of those neomorphic activities. P53 point mutants have several characteristics that make them attractive targets for anti-cancer therapies. Remarkably, mutant p53 has been found predominantly in tumor cells and may act pleiotropically by interfering with a variety of cellular processes. Therefore, drugs targeting mutant p53 may selectively affect tumor cells, inactivating simultaneously several mechanisms of tumor promotion. Moreover, the high frequency of missense mutations on the p53 gene suggests that interfering with mutant p53 function may provide a valuable approach for the development of efficient therapies able to target a wide range of tumor types.
Collapse
Affiliation(s)
- Javier E Girardini
- Institute of Molecular and Cell Biology of Rosario, IBR-CONICET, Argentina
| | - Carolina Marotta
- Laboratorio Nazionale CIB (LNCIB), Area Science Park, Trieste, Italy; Dipartimento di Scienze della Vita, Università degli Studi di Trieste, 34127 Trieste, Italy
| | - Giannino Del Sal
- Laboratorio Nazionale CIB (LNCIB), Area Science Park, Trieste, Italy; Dipartimento di Scienze della Vita, Università degli Studi di Trieste, 34127 Trieste, Italy.
| |
Collapse
|
42
|
Abstract
Our understanding of the FERM (4.1/ezrin/radixin/moesin) protein family has been rapidly expanding in the last few years, with the result that many new physiological functions have been ascribed to these biochemically unique proteins. In the present review, we will discuss a number of new FRMD (FERM domain)-containing proteins that were initially discovered from genome sequencing but are now being established through biochemical and genetic studies to be involved both in normal cellular processes, but are also associated with a variety of human diseases.
Collapse
|
43
|
England B, Huang T, Karsy M. Current understanding of the role and targeting of tumor suppressor p53 in glioblastoma multiforme. Tumour Biol 2013; 34:2063-74. [PMID: 23737287 DOI: 10.1007/s13277-013-0871-3] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Accepted: 05/15/2013] [Indexed: 12/22/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common primary malignancy in the brain and confers a uniformly poor prognosis. Despite decades of research on the topic, limited progress has been made to improve the poor survival associated with this disease. GBM arises de novo (primary GBM) or via dedifferentiation of lower grade glioma (secondary GBM). While distinct mutations are predominant in each subtype, alterations of tumor suppressor p53 are the most common, seen in 25-30 % of primary GBM and 60-70 % of secondary GBM. Various roles of p53 that protect against neoplastic transformation include modulation of cell cycle, DNA repair, apoptosis, senescence, angiogenesis, and metabolism, resulting in an extremely complex signaling network. Mutations of p53 in GBM are most common in the DNA-binding domain, namely within six hotspot mutation sites (codons 175, 245, 248, 249, 273, and 282). These alterations generally result in loss-of-function, gain-of-function, and dominant-negative mutational effects for p53, however, the distinct effect of these mutation types in GBM pathogenesis remain unclear. Signaling alterations downstream from p53 (e.g., MDM2, MDM4, INK4/ARF), p53 isoforms (e.g., p63, p73), and microRNAs (e.g., miR-34) also play critical roles in modulating the p53 pathway. Despite novel mouse models of GBM showing that p53 combined with other mutation generate tumors de novo, the role of p53 as a molecular marker of GBM remains controversial with most studies failing to show an association with prognosis. Regarding treatment in GBM, p53 targeted-gene therapy and vaccinations have reached phase I clinical trials while therapeutic drugs are still in preclinical development. This review aims to discuss the most recent findings regarding the impact of p53 mutations on GBM pathogenesis, prognosis, and treatment.
Collapse
Affiliation(s)
- Bryant England
- Department of Neurosurgery, New York Medical College, Valhalla, NY 10595, USA
| | | | | |
Collapse
|
44
|
Preferential binding of hot spot mutant p53 proteins to supercoiled DNA in vitro and in cells. PLoS One 2013; 8:e59567. [PMID: 23555710 PMCID: PMC3608670 DOI: 10.1371/journal.pone.0059567] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 02/19/2013] [Indexed: 11/21/2022] Open
Abstract
Hot spot mutant p53 (mutp53) proteins exert oncogenic gain-of-function activities. Binding of mutp53 to DNA is assumed to be involved in mutp53-mediated repression or activation of several mutp53 target genes. To investigate the importance of DNA topology on mutp53-DNA recognition in vitro and in cells, we analyzed the interaction of seven hot spot mutp53 proteins with topologically different DNA substrates (supercoiled, linear and relaxed) containing and/or lacking mutp53 binding sites (mutp53BS) using a variety of electrophoresis and immunoprecipitation based techniques. All seven hot spot mutp53 proteins (R175H, G245S, R248W, R249S, R273C, R273H and R282W) were found to have retained the ability of wild-type p53 to preferentially bind circular DNA at native negative superhelix density, while linear or relaxed circular DNA was a poor substrate. The preference of mutp53 proteins for supercoiled DNA (supercoil-selective binding) was further substantiated by competition experiments with linear DNA or relaxed DNA in vitro and ex vivo. Using chromatin immunoprecipitation, the preferential binding of mutp53 to a sc mutp53BS was detected also in cells. Furthermore, we have shown by luciferase reporter assay that the DNA topology influences p53 regulation of BAX and MSP/MST1 promoters. Possible modes of mutp53 binding to topologically constrained DNA substrates and their biological consequences are discussed.
Collapse
|
45
|
Abstract
There is now strong evidence that mutation not only abrogates p53 tumor-suppressive functions, but in some instances can also endow mutant proteins with novel activities. Such neomorphic p53 proteins are capable of dramatically altering tumor cell behavior, primarily through their interactions with other cellular proteins and regulation of cancer cell transcriptional programs. Different missense mutations in p53 may confer unique activities and thereby offer insight into the mutagenic events that drive tumor progression. Here we review mechanisms by which mutant p53 exerts its cellular effects, with a particular focus on the burgeoning mutant p53 transcriptome, and discuss the biological and clinical consequences of mutant p53 gain of function.
Collapse
|
46
|
Quante T, Otto B, Brázdová M, Kejnovská I, Deppert W, Tolstonog GV. Mutant p53 is a transcriptional co-factor that binds to G-rich regulatory regions of active genes and generates transcriptional plasticity. Cell Cycle 2012; 11:3290-303. [PMID: 22894900 DOI: 10.4161/cc.21646] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The molecular mechanisms underlying mutant p53 (mutp53) "gain-of-function" (GOF) are still insufficiently understood, but there is evidence that mutp53 is a transcriptional regulator that is recruited by specialized transcription factors. Here we analyzed the binding sites of mutp53 and the epigenetic status of mutp53-regulated genes that had been identified by global expression profiling upon depletion of endogenous mutp53 (R273H) expression in U251 glioblastoma cells. We found that mutp53 preferentially and autonomously binds to G/C-rich DNA around transcription start sites (TSS) of many genes characterized by active chromatin marks (H3K4me3) and frequently associated with transcription-competent RNA polymerase II. Mutp53-bound regions overlap predominantly with CpG islands and are enriched in G4-motifs that are prone to form G-quadruplex structures. In line, mutp53 binds and stabilizes a well-characterized G-quadruplex structure in vitro. Hence, we assume that binding of mutp53 to G/C-rich DNA regions associated with a large set of cancer-relevant genes is an initial step in their regulation by mutp53. Using GAS1 and HTR2A as model genes, we show that mutp53 affects several parameters of active transcription. Finally, we discuss a dual mode model of mutp53 GOF, which includes both stochastic and deterministic components.
Collapse
|
47
|
Wang T, Pei X, Zhan J, Hu J, Yu Y, Zhang H. FERM-containing protein FRMD5 is a p120-catenin interacting protein that regulates tumor progression. FEBS Lett 2012; 586:3044-50. [PMID: 22846708 DOI: 10.1016/j.febslet.2012.07.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 07/03/2012] [Accepted: 07/06/2012] [Indexed: 11/26/2022]
Abstract
FERM family proteins have been known to play an important role in tumor progression. FERM-domain containing protein 5 (FRMD5), a novel putative cytoskeletal protein, is an unknown function protein. Here, we reported that FRMD5 localized at the cell adherens junction and formed a molecular complex with p120-catenin through its C-terminal region. Functionally, we found that knockdown of endogenous FRMD5 promotes lung cancer cell migration and invasion in vitro as well as tumor growth in vivo, suggesting a tumor suppressive effect. These findings indicated that FRMD5 may play a role in p120-catenin-based cell-cell contact and is involved in the regulation of tumor progression.
Collapse
Affiliation(s)
- Tao Wang
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Peking University Health Science Center, Beijing, China
| | | | | | | | | | | |
Collapse
|
48
|
Horáková P, Macíčková-Cahová H, Pivoňková H, Spaček J, Havran L, Hocek M, Fojta M. Tail-labelling of DNA probes using modified deoxynucleotide triphosphates and terminal deoxynucleotidyl transferase. Application in electrochemical DNA hybridization and protein-DNA binding assays. Org Biomol Chem 2011; 9:1366-71. [PMID: 21203615 DOI: 10.1039/c0ob00856g] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple approach to DNA tail-labelling using terminal deoxynucleotidyl transferase and modified deoxynucleoside triphosphates is presented. Amino- and nitrophenyl-modified dNTPs were found to be good substrates for this enzyme giving 3'-end stretches of different lengths depending on the nucleotide and concentration. 3-Nitrophenyl-7-deazaG was selected as the most useful label because its dNTP was efficiently incorporated by the transferase to form long tail-labels at any oligonucleotide. Accumulation of many nitrophenyl tags per oligonucleotide resulted in a considerable enhancement of voltammetric signals due to the nitro group reduction, thus improving the sensitivity of electrochemical detection of the tail-labelled probes. We demonstrate a perfect discrimination between complementary and non-complementary target DNAs sequences by tail-labelled hybridization probes as well as the ability of tumour suppressor p53 protein to recognize a specific binding site within tail-labelled DNA substrates, making the methodology useful in electrochemical DNA hybridization and DNA-protein interaction assays.
Collapse
Affiliation(s)
- Petra Horáková
- Institute of Biophysics, v.v.i., Academy of Sciences of the Czech Republic, Kralovopolska 135, CZ-612 65, Brno, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
49
|
Němcová K, Havran L, Šebest P, Brázdová M, Pivoňková H, Fojta M. A label-free electrochemical test for DNA-binding activities of tumor suppressor protein p53 using immunoprecipitation at magnetic beads. Anal Chim Acta 2010; 668:166-70. [DOI: 10.1016/j.aca.2010.04.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 04/02/2010] [Accepted: 04/07/2010] [Indexed: 01/27/2023]
|
50
|
Gurtner A, Starace G, Norelli G, Piaggio G, Sacchi A, Bossi G. Mutant p53-induced up-regulation of mitogen-activated protein kinase kinase 3 contributes to gain of function. J Biol Chem 2010; 285:14160-9. [PMID: 20223820 PMCID: PMC2863202 DOI: 10.1074/jbc.m109.094813] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 03/09/2010] [Indexed: 01/02/2023] Open
Abstract
Mitogen-activated protein kinase kinase 3 (MAP2K3) is a member of the dual specificity kinase group. Growing evidence links MAP2K3 to invasion and tumor progression. Here, we identify MAP2K3 as a transcriptional target of endogenous gain-of-function p53 mutants R273H, R175H, and R280K. We show that MAP2K3 modulation occurred at the mRNA and protein levels and that endogenous mutant p53 proteins are capable of binding to and activate the MAP2K3 promoter. In addition, we found that the studied p53 mutants regulate MAP2K3 gene expression through the involvement of the transcriptional cofactors NF-Y and NF-kappaB. Finally, functional studies showed that endogenous MAP2K3 knockdown inhibits proliferation and survival of human tumor cells, whereas the ectopic expression of MAP2K3 can rescue the proliferative defect induced by mutant p53 knockdown. Taken together, our findings define a novel player through which mutant p53 exerts its gain-of-function activity in cancer cells.
Collapse
Affiliation(s)
- Aymone Gurtner
- From the Molecular Oncogenesis Laboratory, Department of Experimental Oncology, Regina Elena Cancer Institute, Via delle Messi D'Oro 156, 00158 Rome, Italy and
| | - Giuseppe Starace
- the National Council of Research, Istituto di Neurobiologia e Medicina Molecolare, 00133 Rome, Italy
| | - Giuseppe Norelli
- From the Molecular Oncogenesis Laboratory, Department of Experimental Oncology, Regina Elena Cancer Institute, Via delle Messi D'Oro 156, 00158 Rome, Italy and
| | - Giulia Piaggio
- From the Molecular Oncogenesis Laboratory, Department of Experimental Oncology, Regina Elena Cancer Institute, Via delle Messi D'Oro 156, 00158 Rome, Italy and
| | - Ada Sacchi
- From the Molecular Oncogenesis Laboratory, Department of Experimental Oncology, Regina Elena Cancer Institute, Via delle Messi D'Oro 156, 00158 Rome, Italy and
| | - Gianluca Bossi
- From the Molecular Oncogenesis Laboratory, Department of Experimental Oncology, Regina Elena Cancer Institute, Via delle Messi D'Oro 156, 00158 Rome, Italy and
| |
Collapse
|