1
|
Bian T, Pei Y, Gao S, Zhou S, Sun X, Dong M, Song J. Xeno Nucleic Acids as Functional Materials: From Biophysical Properties to Application. Adv Healthc Mater 2024; 13:e2401207. [PMID: 39036821 DOI: 10.1002/adhm.202401207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/14/2024] [Indexed: 07/23/2024]
Abstract
Xeno nucleic acid (XNA) are artificial nucleic acids, in which the chemical composition of the sugar moiety is changed. These modifications impart distinct physical and chemical properties to XNAs, leading to changes in their biological, chemical, and physical stability. Additionally, these alterations influence the binding dynamics of XNAs to their target molecules. Consequently, XNAs find expanded applications as functional materials in diverse fields. This review provides a comprehensive summary of the distinctive biophysical properties exhibited by various modified XNAs and explores their applications as innovative functional materials in expanded fields.
Collapse
Affiliation(s)
- Tianyuan Bian
- Academy of Medical Engineering and Translational Medicine (AMT), Tianjin University, Tianjin, 300072, China
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Yufeng Pei
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Shitao Gao
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, 310022, China
- College of Materials Science and Engineering, Zhejiang University of Technology, ChaoWang Road 18, HangZhou, 310014, China
| | - Songtao Zhou
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Xinyu Sun
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, 310022, China
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, Aarhus, DK-8000, Denmark
| | - Jie Song
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, 310022, China
| |
Collapse
|
2
|
Kawamoto Y, Wu Y, Takahashi Y, Takakura Y. Development of nucleic acid medicines based on chemical technology. Adv Drug Deliv Rev 2023; 199:114872. [PMID: 37244354 DOI: 10.1016/j.addr.2023.114872] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/01/2023] [Accepted: 05/12/2023] [Indexed: 05/29/2023]
Abstract
Oligonucleotide-based therapeutics have attracted attention as an emerging modality that includes the modulation of genes and their binding proteins related to diseases, allowing us to take action on previously undruggable targets. Since the late 2010s, the number of oligonucleotide medicines approved for clinical uses has dramatically increased. Various chemistry-based technologies have been developed to improve the therapeutic properties of oligonucleotides, such as chemical modification, conjugation, and nanoparticle formation, which can increase nuclease resistance, enhance affinity and selectivity to target sites, suppress off-target effects, and improve pharmacokinetic properties. Similar strategies employing modified nucleobases and lipid nanoparticles have been used for developing coronavirus disease 2019 mRNA vaccines. In this review, we provide an overview of the development of chemistry-based technologies aimed at using nucleic acids for developing therapeutics over the past several decades, with a specific emphasis on the structural design and functionality of chemical modification strategies.
Collapse
Affiliation(s)
- Yusuke Kawamoto
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan.
| | - You Wu
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Yuki Takahashi
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Yoshinobu Takakura
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan.
| |
Collapse
|
3
|
Sabat N, Katkevica D, Pajuste K, Flamme M, Stämpfli A, Katkevics M, Hanlon S, Bisagni S, Püntener K, Sladojevich F, Hollenstein M. Towards the controlled enzymatic synthesis of LNA containing oligonucleotides. Front Chem 2023; 11:1161462. [PMID: 37179777 PMCID: PMC10172484 DOI: 10.3389/fchem.2023.1161462] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/17/2023] [Indexed: 05/15/2023] Open
Abstract
Enzymatic, de novo XNA synthesis represents an alternative method for the production of long oligonucleotides containing chemical modifications at distinct locations. While such an approach is currently developed for DNA, controlled enzymatic synthesis of XNA remains at a relative state of infancy. In order to protect the masking groups of 3'-O-modified LNA and DNA nucleotides against removal caused by phosphatase and esterase activities of polymerases, we report the synthesis and biochemical characterization of nucleotides equipped with ether and robust ester moieties. While the resulting ester-modified nucleotides appear to be poor substrates for polymerases, ether-blocked LNA and DNA nucleotides are readily incorporated into DNA. However, removal of the protecting groups and modest incorporation yields represent obstacles for LNA synthesis via this route. On the other hand, we have also shown that the template-independent RNA polymerase PUP represents a valid alternative to the TdT and we have also explored the possibility of using engineered DNA polymerases to increase substrate tolerance for such heavily modified nucleotide analogs.
Collapse
Affiliation(s)
- Nazarii Sabat
- Institut Pasteur, Université de Paris Cité, CNRS UMR3523, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, Paris, France
| | | | | | - Marie Flamme
- Institut Pasteur, Université de Paris Cité, CNRS UMR3523, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, Paris, France
| | - Andreas Stämpfli
- Pharma Research and Early Development, Roche Innovation Center Basel, F Hoffmann-La Roche Ltd., Basel, Switzerland
| | | | - Steven Hanlon
- Pharmaceutical Division, Synthetic Molecules Technical Development, Process Development and Catalysis, F Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Serena Bisagni
- Pharmaceutical Division, Synthetic Molecules Technical Development, Process Development and Catalysis, F Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Kurt Püntener
- Pharmaceutical Division, Synthetic Molecules Technical Development, Process Development and Catalysis, F Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Filippo Sladojevich
- Pharma Research and Early Development, Roche Innovation Center Basel, F Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Marcel Hollenstein
- Institut Pasteur, Université de Paris Cité, CNRS UMR3523, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, Paris, France
- *Correspondence: Marcel Hollenstein,
| |
Collapse
|
4
|
Flamme M, Katkevica D, Pajuste K, Katkevics M, Sabat N, Hanlon S, Marzuoli I, Püntener K, Sladojevich F, Hollenstein M. Benzoyl and pivaloyl as efficient protecting groups for controlled enzymatic synthesis of DNA and XNA oligonucleotides. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Marie Flamme
- Institut Pasteur Structrual Biology and Chemistry FRANCE
| | - Dace Katkevica
- Latvian Institute of Organic Synthesis: Latvijas Organiskas sintezes instituts Chemistry LATVIA
| | - Karlis Pajuste
- Latvian Institute of Organic Synthesis: Latvijas Organiskas sintezes instituts Chemistry LATVIA
| | - Martins Katkevics
- Latvian Institute of Organic Synthesis: Latvijas Organiskas sintezes instituts Chemistry LATVIA
| | - Nazarii Sabat
- Institut Pasteur Structural Biology and Chemistry FRANCE
| | - Steven Hanlon
- Hoffmann-La Roche Ltd Synthetic Molecules Technical Development SWITZERLAND
| | - Irene Marzuoli
- Hoffmann-La Roche Ltd Synthetic Molecules Technical Development SWITZERLAND
| | - Kurt Püntener
- Hoffmann-La Roche Ltd Synthetic Molecules Technical Development SWITZERLAND
| | | | - Marcel Hollenstein
- Institut Pasteur Department of Structural Biology and Chemistry 28 Rue du Dr. Roux 75015 Paris FRANCE
| |
Collapse
|
5
|
Saito-Tarashima N, Murai A, Minakawa N. Rewriting the Central Dogma with Synthetic Genetic Polymers. Chem Pharm Bull (Tokyo) 2022; 70:310-315. [DOI: 10.1248/cpb.c21-00960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - Akiho Murai
- Graduate School of Pharmaceutical Science, Tokushima University
| | | |
Collapse
|
6
|
Hoshino H, Kasahara Y, Kuwahara M, Obika S. DNA Polymerase Variants with High Processivity and Accuracy for Encoding and Decoding Locked Nucleic Acid Sequences. J Am Chem Soc 2020; 142:21530-21537. [PMID: 33306372 DOI: 10.1021/jacs.0c10902] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Xenobiotic nucleic acids (XNAs) are chemically modified nucleic acid analogues with potential applications in nucleic acid-based therapeutics including nucleic acid aptamers, ribozymes, small interfering RNAs, and antisense oligonucleotides. We have developed a promising XNA for therapeutic uses, 2',4'-bridged nucleic acid (2',4'-BNA), also known as locked nucleic acid (LNA). Unlike the rational design of small interfering and antisense oligonucleotides, the development of LNA aptamers and catalysts requires genetically engineered polymerases that enable the synthesis of LNA from DNA and the converse reverse transcription. However, no LNA decoders or encoders with sufficient performance have been developed. In this study, we developed variants of KOD DNA polymerase, a family B DNA polymerase derived from Thermococcus kodakarensis KOD1, which are effective LNA decoders and encoders, via structural analyses. KOD DGLNK (KOD: N210D/Y409G/A485L/D614N/E664K) enabled LNA synthesis from DNA (DNA → LNA), and KOD DLK (KOD: N210D/A485L/E664K) enabled LNA reverse transcription to DNA (LNA → DNA). Both variants exhibited greatly improved efficiency and accuracy. Notably, we synthesized LNAs longer than one kilobase using KOD DGLNK. We also showed that these variants can accept 2'-O-methyl (2'-OMe), a common modification for therapeutic uses. Here, we also show that LNA and 2'-OMe mix aptamer can be practically obtained via SELEX. The variants can be used as powerful tools for creating XNA aptamers and catalysts to completely eliminate the natural species, DNA and RNA.
Collapse
Affiliation(s)
- Hidekazu Hoshino
- National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan.,Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yuuya Kasahara
- National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan.,Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masayasu Kuwahara
- Graduate School of Integrated Basic Sciences, Nihon University, 3-25-40 Sakurajosui, Setagaya-ku, Tokyo 156-8550, Japan
| | - Satoshi Obika
- National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan.,Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
7
|
Espinasse A, Lembke HK, Cao AA, Carlson EE. Modified nucleoside triphosphates in bacterial research for in vitro and live-cell applications. RSC Chem Biol 2020; 1:333-351. [PMID: 33928252 PMCID: PMC8081287 DOI: 10.1039/d0cb00078g] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022] Open
Abstract
Modified nucleoside triphosphates (NTPs) are invaluable tools to probe bacterial enzymatic mechanisms, develop novel genetic material, and engineer drugs and proteins with new functionalities. Although the impact of nucleobase alterations has predominantly been studied due to their importance for protein recognition, sugar and phosphate modifications have also been investigated. However, NTPs are cell impermeable due to their negatively charged phosphate tail, a major hurdle to achieving live bacterial studies. Herein, we review the recent advances made to investigate and evolve bacteria and their processes with the use of modified NTPs by exploring alterations in one of the three moieties: the nucleobase, the sugar and the phosphate tail. We also present the innovative methods that have been devised to internalize NTPs into bacteria for in vivo applications.
Collapse
Affiliation(s)
- Adeline Espinasse
- Department of Chemistry, University of Minnesota207 Pleasant Street SEMinneapolisMinnesota 55455USA
| | - Hannah K. Lembke
- Department of Chemistry, University of Minnesota207 Pleasant Street SEMinneapolisMinnesota 55455USA
| | - Angela A. Cao
- Department of Chemistry, University of Minnesota207 Pleasant Street SEMinneapolisMinnesota 55455USA
| | - Erin E. Carlson
- Department of Chemistry, University of Minnesota207 Pleasant Street SEMinneapolisMinnesota 55455USA
- Department of Medicinal Chemistry, University of Minnesota208 Harvard Street SEMinneapolisMinnesota 55454USA
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota321 Church St SEMinneapolisMinnesota 55454USA
| |
Collapse
|
8
|
Matyašovský J, Hocek M. 2-Substituted 2'-deoxyinosine 5'-triphosphates as substrates for polymerase synthesis of minor-groove-modified DNA and effects on restriction endonuclease cleavage. Org Biomol Chem 2020; 18:255-262. [PMID: 31815989 DOI: 10.1039/c9ob02502b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Five 2-substituted 2'-deoxyinosine triphosphates (dRITP) were synthesized and tested as substrates in enzymatic synthesis of minor-groove base-modified DNA. Only 2-methyl and 2-vinyl derivatives proved to be good substrates for Therminator DNA polymerase, whilst all other dRITPs and other tested DNA polymerases did not give full length products in primer extension. The DNA containing 2-vinylhypoxanthine was then further modified through thiol-ene reactions with thiols. Cross-linking reaction between cysteine-containing minor-groove binding dodecapeptide and DNA proceeded thanks to the proximity effect between thiol and vinyl groups inside the minor groove. 2-Substituted dIRTPs and also previously prepared 2-substituted 2'-deoxyadenosine triphosphates (dRATP) were then used for enzymatic synthesis of minor-groove modified DNA to study the effect of minor-groove modifications on cleavage of DNA by type II restriction endonucleases (REs). Although the REs should recognize the sequence through H-bonds in the major groove, some minor-groove modifications also had an inhibiting effect on the cleavage.
Collapse
Affiliation(s)
- Ján Matyašovský
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo namesti 2, CZ-16610 Prague 6, Czech Republic.
| | | |
Collapse
|
9
|
Antipova OM, Zavyalova EG, Golovin AV, Pavlova GV, Kopylov AM, Reshetnikov RV. Advances in the Application of Modified Nucleotides in SELEX Technology. BIOCHEMISTRY (MOSCOW) 2018; 83:1161-1172. [PMID: 30472954 DOI: 10.1134/s0006297918100024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Aptamers are widely used as molecular recognition elements for detecting and blocking functional biological molecules. Since the common "alphabet" of DNA and RNA consists of only four letters, the chemical diversity of aptamers is less than the diversity of protein recognition elements built of 20 amino acids. Chemical modification of nucleotides enlarges the potential of DNA/RNA aptamers. This review describes the latest achievements in a variety of approaches to aptamers selection with an extended genetic alphabet.
Collapse
Affiliation(s)
- O M Antipova
- Lomonosov Moscow State University, Faculty of Chemistry, Moscow, 119991, Russia. .,Apto-Pharm Ltd., Moscow, 115564, Russia
| | - E G Zavyalova
- Lomonosov Moscow State University, Faculty of Chemistry, Moscow, 119991, Russia.,Apto-Pharm Ltd., Moscow, 115564, Russia
| | - A V Golovin
- Apto-Pharm Ltd., Moscow, 115564, Russia.,Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Moscow, 119234, Russia.,Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Moscow, 119991, Russia
| | - G V Pavlova
- Apto-Pharm Ltd., Moscow, 115564, Russia.,Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Moscow, 119991, Russia.,Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia.,Burdenko National Scientific and Practical Center for Neurosurgery, Ministry of Healthcare of the Russian Federation, Moscow, 125047, Russia
| | - A M Kopylov
- Lomonosov Moscow State University, Faculty of Chemistry, Moscow, 119991, Russia.,Apto-Pharm Ltd., Moscow, 115564, Russia
| | - R V Reshetnikov
- Apto-Pharm Ltd., Moscow, 115564, Russia.,Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Moscow, 119234, Russia.,Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Moscow, 119991, Russia.,Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| |
Collapse
|
10
|
Matyašovský J, Pohl R, Hocek M. 2-Allyl- and Propargylamino-dATPs for Site-Specific Enzymatic Introduction of a Single Modification in the Minor Groove of DNA. Chemistry 2018; 24:14938-14941. [PMID: 30074286 PMCID: PMC6221035 DOI: 10.1002/chem.201803973] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Indexed: 12/15/2022]
Abstract
A series of 2-alkylamino-2'-deoxyadenosine triphosphates (dATP) was prepared and found to be substrates for the Therminator DNA polymerase, which incorporated only one modified nucleotide into the primer. Using a template encoding for two consecutive adenines, conditions were found for incorporation of either one or two modified nucleotides. In all cases, addition of a mixture of natural dNTPs led to primer extension resulting in site-specific single modification of DNA in the minor groove. The allylamino-substituted DNA was used for the thiol-ene addition, whereas the propargylamino-DNA for the CuAAC click reaction was used to label the DNA with a fluorescent dye in the minor groove. The approach was used to construct FRET probes for detection of oligonucleotides.
Collapse
Affiliation(s)
- Ján Matyašovský
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesFlemingovo nam. 216610Prague 6Czech Republic
- Department of Organic ChemistryFaculty of ScienceCharles University in PragueHlavova 812843Prague 2Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesFlemingovo nam. 216610Prague 6Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesFlemingovo nam. 216610Prague 6Czech Republic
- Department of Organic ChemistryFaculty of ScienceCharles University in PragueHlavova 812843Prague 2Czech Republic
| |
Collapse
|
11
|
Saito Y, Hudson RH. Base-modified fluorescent purine nucleosides and nucleotides for use in oligonucleotide probes. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2018. [DOI: 10.1016/j.jphotochemrev.2018.07.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Kumar P, El-Sagheer AH, Truong L, Brown T. Locked nucleic acid (LNA) enhances binding affinity of triazole-linked DNA towards RNA. Chem Commun (Camb) 2018; 53:8910-8913. [PMID: 28748236 PMCID: PMC5708354 DOI: 10.1039/c7cc05159j] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
LNA improves the RNA-binding affinity and enzymatic stability of triazole-linked DNA.
Oligonucleotides containing internal triazole–3′-LNA linkages bind to complementary RNA with similar affinity and specificity to unmodified oligonucleotides, and significantly better than oligonucleotides containing triazole alone. In contrast LNA on the 5′-side of the triazole does not stabilise duplexes. Triazole–LNA confers great resistance towards enzymatic degradation relative to LNA alone.
Collapse
Affiliation(s)
- Pawan Kumar
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Afaf H El-Sagheer
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK. and Chemistry Branch, Department of Science and Mathematics, Faculty of Petroleum and Mining Engineering, Suez University, Suez 43721, Egypt
| | - Lynda Truong
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Tom Brown
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| |
Collapse
|
13
|
Inomata E, Tashiro E, Miyakawa S, Nakamura Y, Akita K. Alkaline-tolerant RNA aptamers useful to purify acid-sensitive antibodies in neutral conditions. Biochimie 2017; 145:113-124. [PMID: 29104137 DOI: 10.1016/j.biochi.2017.10.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 10/30/2017] [Indexed: 12/20/2022]
Abstract
Recently, several oligonucleotides have been launched for clinical use and a number of therapeutic oligonucleotides are under clinical trials. Aptamer is one of the oligonucleotide therapeutics and has received a lot of attention as a new technology and an efficacious pharmaceutical compound comparable to antibody. Aptamer could be used for various purposes, not only therapeutics but also diagnostics, and applicable to affinity chromatography as a carrier molecule to purify proteins of interest. Here we demonstrate the usage and advantages of RNA aptamer to Fc region of human IgG (i.e., IgG aptamer) for purification of human antibodies. IgG aptamer requires divalent cations for binding to IgG and bound IgG dissociates easily upon treatment with chelating reagent, such as EDTA, under neutral conditions. This elution step is very mild and advantageous for maintaining active conformations of therapeutic antibodies compared to the widely used affinity purification with Protein A/G, which requires acidic elution that often damages the active conformation of antibodies. In fact, of several monoclonal antibodies tested, three antibodies were prone to aggregate on acidic elution from the Protein A/G resin, while remained fully active upon neutral elution from the IgG aptamer resin. The IgG aptamer was fully manipulated to alkaline resistant by ribose 2'-modifications, and thereby reusable numerous times with 1 N NaOH washing. The capacity of the aptamer resin to bind IgG was equivalent to that of the Protein A/G resin. Therefore, the IgG aptamer will provide us with a unique tool to uncover and purify human monoclonal antibodies, which hold therapeutic potential but lose the activity upon acidic elution from Protein A/G-based affinity resin.
Collapse
Affiliation(s)
| | | | | | - Yoshikazu Nakamura
- RIBOMIC Inc., Minato-ku, Tokyo 108-0071, Japan; The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | | |
Collapse
|
14
|
Mass-spectrometry analysis of modifications at DNA termini induced by DNA polymerases. Sci Rep 2017; 7:6674. [PMID: 28751641 PMCID: PMC5532294 DOI: 10.1038/s41598-017-06136-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 06/01/2017] [Indexed: 12/27/2022] Open
Abstract
Non-natural nucleotide substrates are widely used in the enzymatic synthesis of modified DNA. The terminal activity of polymerases in the presence of modified nucleotides is an important, but poorly characterized, aspect of enzymatic DNA synthesis. Here, we studied different types of polymerase activity at sequence ends using extendable and non-extendable synthetic models in the presence of the Cy5-dUTP analog Y. In primer extension reactions with selected exonuclease-deficient polymerases, nucleotide Y appeared to be a preferential substrate for non-templated 3'-tailing, as determined by MALDI mass-spectrometry and gel-electrophoresis. This result was further confirmed by the 3'-tailing of a non-extendable hairpin oligonucleotide model. Additionally, DNA polymerases induce an exchange of the 3' terminal thymidine for a non-natural nucleotide via pyrophosphorolysis in the presence of inorganic pyrophosphate. In primer extension reactions, the proofreading polymerases Vent, Pfu, and Phusion did not support the synthesis of Y-modified primer strand. Nevertheless, Pfu and Phusion polymerases were shown to initiate terminal nucleotide exchange at the template. Unlike non-proofreading polymerases, these two enzymes recruit 3'-5' exonuclease functions to cleave the 3' terminal thymidine in the absence of pyrophosphate.
Collapse
|
15
|
Morihiro K, Kasahara Y, Obika S. Biological applications of xeno nucleic acids. MOLECULAR BIOSYSTEMS 2017; 13:235-245. [PMID: 27827481 DOI: 10.1039/c6mb00538a] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Xeno nucleic acids (XNAs) are a group of chemically modified nucleic acid analogues that have been applied to various biological technologies such as antisense oligonucleotides, siRNAs and aptamers.
Collapse
Affiliation(s)
- Kunihiko Morihiro
- National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan and Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Yuuya Kasahara
- National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan and Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Satoshi Obika
- National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan and Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
16
|
Volk DE, Lokesh GLR. Development of Phosphorothioate DNA and DNA Thioaptamers. Biomedicines 2017; 5:E41. [PMID: 28703779 PMCID: PMC5618299 DOI: 10.3390/biomedicines5030041] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/03/2017] [Accepted: 07/11/2017] [Indexed: 02/07/2023] Open
Abstract
Nucleic acid aptamers are short RNA- or DNA-based affinity reagents typically selected from combinatorial libraries to bind to a specific target such as a protein, a small molecule, whole cells or even animals. Aptamers have utility in the development of diagnostic, imaging and therapeutic applications due to their size, physico-chemical nature and ease of synthesis and modification to suit the application. A variety of oligonucleotide modifications have been used to enhance the stability of aptamers from nuclease degradation in vivo. The non-bridging oxygen atoms of the phosphodiester backbones of RNA and DNA aptamers can be substituted with one or two sulfur atoms, resulting in thioaptamers with phosphorothioate or phosphorodithioate linkages, respectively. Such thioaptamers are known to have increased binding affinity towards their target, as well as enhanced resistance to nuclease degradation. In this review, we discuss the development of phosphorothioate chemistry and thioaptamers, with a brief review of selection methods.
Collapse
Affiliation(s)
- David E Volk
- McGovern Medical School, Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center, Houston, TX 77030, USA.
| | - Ganesh L R Lokesh
- McGovern Medical School, Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center, Houston, TX 77030, USA.
| |
Collapse
|
17
|
Abstract
Aptamers are nucleic acid-based scaffolds that can bind with high affinity to a variety of biological targets. Aptamers are identified from large DNA or RNA libraries through a process of directed molecular evolution (SELEX). Chemical modification of nucleic acids considerably increases the functional and structural diversity of aptamer libraries and substantially increases the affinity of the aptamers. Additionally, modified aptamers exhibit much greater resistance to biodegradation. The evolutionary selection of modified aptamers is conditioned by the possibility of the enzymatic synthesis and replication of non-natural nucleic acids. Wild-type or mutant polymerases and their non-natural nucleotide substrates that can support SELEX are highlighted in the present review. A focus is made on the efforts to find the most suitable type of nucleotide modifications and the engineering of new polymerases. Post-SELEX modification as a complementary method will be briefly considered as well.
Collapse
Affiliation(s)
- Sergey A Lapa
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
| | - Alexander V Chudinov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Edward N Timofeev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
18
|
Matyašovský J, Perlíková P, Malnuit V, Pohl R, Hocek M. 2-Substituted dATP Derivatives as Building Blocks for Polymerase-Catalyzed Synthesis of DNA Modified in the Minor Groove. Angew Chem Int Ed Engl 2016; 55:15856-15859. [PMID: 27879047 PMCID: PMC6680173 DOI: 10.1002/anie.201609007] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Indexed: 12/11/2022]
Abstract
2'-Deoxyadenosine triphosphate (dATP) derivatives bearing diverse substituents (Cl, NH2 , CH3 , vinyl, ethynyl, and phenyl) at position 2 were prepared and tested as substrates for DNA polymerases. The 2-phenyl-dATP was not a substrate for DNA polymerases, but the dATPs bearing smaller substituents were good substrates in primer-extension experiments, producing DNA substituted in the minor groove. The vinyl-modified DNA was applied in thiol-ene addition and the ethynyl-modified DNA was applied in a CuAAC click reaction to form DNA labelled with fluorescent dyes in the minor groove.
Collapse
Affiliation(s)
- Ján Matyašovský
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic
| | - Pavla Perlíková
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic
| | - Vincent Malnuit
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic.,Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 12843, Prague 2, Czech Republic
| |
Collapse
|
19
|
Matyašovský J, Perlíková P, Malnuit V, Pohl R, Hocek M. 2-Substituted dATP Derivatives as Building Blocks for Polymerase-Catalyzed Synthesis of DNA Modified in the Minor Groove. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201609007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ján Matyašovský
- Institute of Organic Chemistry and Biochemistry; Czech Academy of Sciences; Flemingovo nam. 2 16610 Prague 6 Czech Republic
| | - Pavla Perlíková
- Institute of Organic Chemistry and Biochemistry; Czech Academy of Sciences; Flemingovo nam. 2 16610 Prague 6 Czech Republic
| | - Vincent Malnuit
- Institute of Organic Chemistry and Biochemistry; Czech Academy of Sciences; Flemingovo nam. 2 16610 Prague 6 Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry; Czech Academy of Sciences; Flemingovo nam. 2 16610 Prague 6 Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry; Czech Academy of Sciences; Flemingovo nam. 2 16610 Prague 6 Czech Republic
- Department of Organic Chemistry, Faculty of Science; Charles University in Prague; Hlavova 8 12843 Prague 2 Czech Republic
| |
Collapse
|
20
|
Lipi F, Chen S, Chakravarthy M, Rakesh S, Veedu RN. In vitro evolution of chemically-modified nucleic acid aptamers: Pros and cons, and comprehensive selection strategies. RNA Biol 2016; 13:1232-1245. [PMID: 27715478 PMCID: PMC5207382 DOI: 10.1080/15476286.2016.1236173] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Nucleic acid aptamers are single-stranded DNA or RNA oligonucleotide sequences that bind to a specific target molecule with high affinity and specificity through their ability to adopt 3-dimensional structure in solution. Aptamers have huge potential as targeted therapeutics, diagnostics, delivery agents and as biosensors. However, aptamers composed of natural nucleotide monomers are quickly degraded in vivo and show poor pharmacodynamic properties. To overcome this, chemically-modified nucleic acid aptamers are developed by incorporating modified nucleotides after or during the selection process by Systematic Evolution of Ligands by EXponential enrichment (SELEX). This review will discuss the development of chemically-modified aptamers and provide the pros and cons, and new insights on in vitro aptamer selection strategies by using chemically-modified nucleic acid libraries.
Collapse
Affiliation(s)
- Farhana Lipi
- a Western Australian Neuroscience Research Institute , Perth , Australia
| | - Suxiang Chen
- a Western Australian Neuroscience Research Institute , Perth , Australia.,b Centre for Comparative Genomics, Murdoch University , Perth , Australia
| | - Madhuri Chakravarthy
- a Western Australian Neuroscience Research Institute , Perth , Australia.,b Centre for Comparative Genomics, Murdoch University , Perth , Australia
| | - Shilpa Rakesh
- a Western Australian Neuroscience Research Institute , Perth , Australia
| | - Rakesh N Veedu
- a Western Australian Neuroscience Research Institute , Perth , Australia.,b Centre for Comparative Genomics, Murdoch University , Perth , Australia
| |
Collapse
|
21
|
Tang S, Wei H, Hu T, Jiang J, Chang J, Guan Y, Zhao G. Suppression of rolling circle amplification by nucleotide analogs in circular template for three DNA polymerases. Biosci Biotechnol Biochem 2016; 80:1555-61. [PMID: 27151504 DOI: 10.1080/09168451.2016.1171699] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Among wide applications of nucleotide analogs, their roles in enzyme catalytic reactions are significant in both fundamental and medical researches. By introducing analogs into circular templates, we succeeded in determining effects of four analogs on RCA efficiency for three different DNA polymerases. Results showed an obvious suppression effect for 2'-OMeRNA modification, which might be due to the size of the C2'-modified moieties. 2'-F RNA, LNA and PS had little interference, suggesting good analog candidates for application in RCA. Different polymerases and nucleobases made a little difference according to analogs we used. These results are useful for understanding polymerase catalytic mechanism and analogs applications in RCA reaction.
Collapse
Affiliation(s)
- Suming Tang
- a Department of Biochemistry and Molecular Biology , China Medical University , Shenyang , China
| | - Hua Wei
- a Department of Biochemistry and Molecular Biology , China Medical University , Shenyang , China.,b Department of Aquaculture , Animal Science and Veterinary Medicine College, Shenyang Agricultural University , Shenyang , China
| | - Tianyu Hu
- a Department of Biochemistry and Molecular Biology , China Medical University , Shenyang , China
| | - Jiquan Jiang
- a Department of Biochemistry and Molecular Biology , China Medical University , Shenyang , China
| | - Jinglin Chang
- a Department of Biochemistry and Molecular Biology , China Medical University , Shenyang , China
| | - Yifu Guan
- a Department of Biochemistry and Molecular Biology , China Medical University , Shenyang , China
| | - Guojie Zhao
- a Department of Biochemistry and Molecular Biology , China Medical University , Shenyang , China
| |
Collapse
|
22
|
Dellafiore MA, Montserrat JM, Iribarren AM. Modified Nucleoside Triphosphates for In-vitro Selection Techniques. Front Chem 2016; 4:18. [PMID: 27200340 PMCID: PMC4854868 DOI: 10.3389/fchem.2016.00018] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 04/05/2016] [Indexed: 12/22/2022] Open
Abstract
The development of SELEX (Selective Enhancement of Ligands by Exponential Enrichment) provides a powerful tool for the search of functional oligonucleotides with the ability to bind ligands with high affinity and selectivity (aptamers) and for the discovery of nucleic acid sequences with diverse enzymatic activities (ribozymes and DNAzymes). This technique has been extensively applied to the selection of natural DNA or RNA molecules but, in order to improve chemical and structural diversity as well as for particular applications where further chemical or biological stability is necessary, the extension of this strategy to modified oligonucleotides is desirable. Taking into account these needs, this review intends to collect the research carried out during the past years, focusing mainly on the use of modified nucleotides in SELEX and the development of mutant enzymes for broadening nucleoside triphosphates acceptance. In addition, comments regarding the synthesis of modified nucleoside triphosphate will be briefly discussed.
Collapse
Affiliation(s)
- María A Dellafiore
- Laboratorio de Química de Ácidos Nucleicos, INGEBI (CONICET) Ciudad Autónoma de Buenos Aires, Argentina
| | - Javier M Montserrat
- Laboratorio de Química de Ácidos Nucleicos, INGEBI (CONICET)Ciudad Autónoma de Buenos Aires, Argentina; Instituto de Ciencias, Universidad Nacional de General SarmientoLos Polvorines, Argentina
| | - Adolfo M Iribarren
- Laboratorio de Química de Ácidos Nucleicos, INGEBI (CONICET)Ciudad Autónoma de Buenos Aires, Argentina; Laboratorio de Biotransformaciones, Universidad Nacional de QuilmesBernal, Argentina
| |
Collapse
|
23
|
Hoshino H, Kasahara Y, Fujita H, Kuwahara M, Morihiro K, Tsunoda SI, Obika S. Consecutive incorporation of functionalized nucleotides with amphiphilic side chains by novel KOD polymerase mutant. Bioorg Med Chem Lett 2015; 26:530-533. [PMID: 26627581 DOI: 10.1016/j.bmcl.2015.11.079] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 11/19/2015] [Accepted: 11/21/2015] [Indexed: 11/29/2022]
Abstract
Recently, 7-substituted 7-deazapurine nucleoside triphosphates and 5-substituted pyrimidine nucleoside triphosphates (dN(am)TPs) were synthesized to extend enzymatically using commercially available polymerase. However, extension was limited when we attempted to incorporate the substrates consecutively. To address this, we have produced a mutant polymerase that can efficiently accept the modified nucleotide with amphiphilic groups as substrates. Here we show that the KOD polymerase mutant, KOD exo(-)/A485L, had the ability to incorporate dN(am)TP continuously over 50nt, indicating that the mutant is sufficient for generating functional nucleic acid molecules.
Collapse
Affiliation(s)
- Hidekazu Hoshino
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Yuuya Kasahara
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Hiroto Fujita
- Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | - Masayasu Kuwahara
- Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan.
| | - Kunihiko Morihiro
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Shin-Ichi Tsunoda
- National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Satoshi Obika
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan.
| |
Collapse
|
24
|
Kokil GR, Veedu RN, Ramm GA, Prins JB, Parekh HS. Type 2 diabetes mellitus: limitations of conventional therapies and intervention with nucleic acid-based therapeutics. Chem Rev 2015; 115:4719-43. [PMID: 25918949 DOI: 10.1021/cr5002832] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ganesh R Kokil
- †School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Rakesh N Veedu
- §Center for Comparative Genomics, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia.,∥Western Australian Neuroscience Research Institute, Perth, WA 6150, Australia.,‡School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane QLD 4072 Australia
| | - Grant A Ramm
- ⊥The Hepatic Fibrosis Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia.,#Faculty of Medicine and Biomedical Sciences, The University of Queensland, Brisbane, QLD 4006, Australia
| | - Johannes B Prins
- ∇Mater Research Institute, The University of Queensland, Brisbane, QLD 4101, Australia
| | - Harendra S Parekh
- †School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Brisbane, QLD 4102, Australia
| |
Collapse
|
25
|
Tarashima N, Sumitomo T, Ando H, Furukawa K, Ishida T, Minakawa N. Synthesis of DNA fragments containing 2′-deoxy-4′-selenonucleoside units using DNA polymerases: comparison of dNTPs with O, S and Se at the 4′-position in replication. Org Biomol Chem 2015; 13:6949-52. [DOI: 10.1039/c5ob00941c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The first synthesis of 4′-selenoDNA was achieved using 4′-selenothymidine triphosphate by taking advantage of its bioequivalence against DNA polymerases.
Collapse
Affiliation(s)
- N. Tarashima
- Graduate School of Pharmaceutical Sciences
- Tokushima University
- Tokushima 770-8505
- Japan
| | - T. Sumitomo
- Graduate School of Pharmaceutical Sciences
- Tokushima University
- Tokushima 770-8505
- Japan
| | - H. Ando
- Graduate School of Pharmaceutical Sciences
- Tokushima University
- Tokushima 770-8505
- Japan
| | - K. Furukawa
- Graduate School of Pharmaceutical Sciences
- Tokushima University
- Tokushima 770-8505
- Japan
| | - T. Ishida
- Graduate School of Pharmaceutical Sciences
- Tokushima University
- Tokushima 770-8505
- Japan
| | - N. Minakawa
- Graduate School of Pharmaceutical Sciences
- Tokushima University
- Tokushima 770-8505
- Japan
| |
Collapse
|
26
|
Wang X, Zhang J, Li Y, Chen G, Wang X. Enzymatic synthesis of modified oligonucleotides by PEAR using Phusion and KOD DNA polymerases. Nucleic Acid Ther 2014; 25:27-34. [PMID: 25517220 DOI: 10.1089/nat.2014.0513] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Antisense synthetic oligonucleotides have been developed as potential gene-targeted therapeutics. We previously reported polymerase-endonuclease amplification reaction (PEAR) for amplification of natural and 5'-O-(1-thiotriphosphate) (S)-modified oligonucleotides. Here, we extended the PEAR technique for enzymatic preparation of 2'-deoxy-2'-fluoro-(2'-F) and 2'-F/S double-modified oligonucleotides. The result showed that KOD and Phusion DNA polymerase could synthesize oligonucleotides with one or two modified nucleotides, and KOD DNA polymerase is more suitable than Phusion DNA polymerase for PEAR amplification of 2'-F and 2'-F/S double modified oligonucleotides. The composition of PEAR products were analyzed by electrospray ionization liquid chromatography mass spectrometry (ESI/LC/MS) detection and showed that the sequence of the PEAR products are maintained at an extremely high accuracy (>99.9%), and after digestion the area percent of full-length modified oligonucleotides reaches 89.24%. PEAR is suitable for synthesis of modified oligonucleotides efficiently and with high purity.
Collapse
Affiliation(s)
- Xuxiang Wang
- Department of Biotechnology, College of Marine Life Sciences, Ocean University of China , Qingdao, Shandong Province, China
| | | | | | | | | |
Collapse
|
27
|
Fujita H, Nakajima K, Kasahara Y, Ozaki H, Kuwahara M. Polymerase-mediated high-density incorporation of amphiphilic functionalities into DNA: enhancement of nuclease resistance and stability in human serum. Bioorg Med Chem Lett 2014; 25:333-6. [PMID: 25475204 DOI: 10.1016/j.bmcl.2014.11.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 11/11/2014] [Accepted: 11/13/2014] [Indexed: 12/20/2022]
Abstract
Modified oligodeoxyribonucleotides (mdODNs) bearing multiple copies of an amphiphilic functional group were enzymatically synthesized by simultaneous incorporation of base-modified 5'-triphosphate analogs of 2'-deoxyguanosine (dG(am)TP), 2'-deoxyuridine (dU(am)TP), 2'-deoxyadenosine (dA(am)TP), and 2'-deoxycytosine (dC(am)TP). The amphiphilic functionality, that is, (E)-38,53-dioxo-2,5,8,11,14,17,20,23,26,29,32,35-dodecaoxa-39,52-diazapentapentacont-54-en-55-yl group, consists of the water soluble dodeca(ethylene glycol) chain and the hydrophobic dodecyl chain. An enzymatically synthesized ODN, composed of a 20-mer 5'-terminal segment containing 2'-O,4'-C-methylene-bridged/linked bicyclic ribonucleotide (B/L nucleotide) and a 12-mer 3'-terminal segment containing the nucleobase-modified analogs, exhibits very high resistance against phosphodiesterase I and is stable in human serum for a longer period when compared with ODN, where the 12-mer 3'-terminal segment contains unmodified nucleotides.
Collapse
Affiliation(s)
- Hiroto Fujita
- Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | - Kohsuke Nakajima
- Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | - Yuuya Kasahara
- Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan; National Institute of Biomedical Innovation (NIBIO), 7-6-8 Asagi, Saito, Ibaraki, Osaka 567-0085, Japan
| | - Hiroaki Ozaki
- Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | - Masayasu Kuwahara
- Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan.
| |
Collapse
|
28
|
Hagiwara K, Fujita H, Kasahara Y, Irisawa Y, Obika S, Kuwahara M. In vitro selection of DNA-based aptamers that exhibit RNA-like conformations using a chimeric oligonucleotide library that contains two different xeno-nucleic acids. MOLECULAR BIOSYSTEMS 2014; 11:71-6. [PMID: 25325213 DOI: 10.1039/c4mb00436a] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We successfully generated chimeric DNA aptamers that contained six nucleoside analogs of 2'-O,4'-C-methylene bridged/locked nucleic acid (2',4'-BNA/LNA) in the primer region and multiple guanosine analogs of 2'-deoxy-2'-fluoro-ribonucleic acid (FNA) in the non-primer region using capillary electrophoresis-systematic evolution of ligands by exponential enrichment (CE-SELEX). Active species enrichment became saturated only after five selection rounds, and we obtained DNA-based xeno-nucleic acid (XNA) aptamers that had high binding affinities for the target human thrombin, with dissociation constant (Kd) values of ≥10 nanomolar. Based on sequence and circular dichroism (CD) analyses, these XNA aptamers exhibited RNA-like conformations, which could cause DNA-based strands to adopt structurally diverse conformations.
Collapse
Affiliation(s)
- Kenta Hagiwara
- Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan.
| | | | | | | | | | | |
Collapse
|
29
|
Poongavanam V, Madala PK, Højland T, Veedu RN. Computational investigation of locked nucleic acid (LNA) nucleotides in the active sites of DNA polymerases by molecular docking simulations. PLoS One 2014; 9:e102126. [PMID: 25036012 PMCID: PMC4103837 DOI: 10.1371/journal.pone.0102126] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 06/16/2014] [Indexed: 01/07/2023] Open
Abstract
Aptamers constitute a potential class of therapeutic molecules typically selected from a large pool of oligonucleotides against a specific target. With a scope of developing unique shorter aptamers with very high biostability and affinity, locked nucleic acid (LNA) nucleotides have been investigated as a substrate for various polymerases. Various reports showed that some thermophilic B-family DNA polymerases, particularly KOD and Phusion DNA polymerases, accepted LNA-nucleoside 5'-triphosphates as substrates. In this study, we investigated the docking of LNA nucleotides in the active sites of RB69 and KOD DNA polymerases by molecular docking simulations. The study revealed that the incoming LNA-TTP is bound in the active site of the RB69 and KOD DNA polymerases in a manner similar to that seen in the case of dTTP, and with LNA structure, there is no other option than the locked C3'-endo conformation which in fact helps better orienting within the active site.
Collapse
Affiliation(s)
- Vasanthanathan Poongavanam
- Nucleic Acid Center and Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M, Denmark
| | - Praveen K. Madala
- Institute of Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Torben Højland
- Nucleic Acid Center and Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M, Denmark
| | - Rakesh N. Veedu
- Nucleic Acid Center and Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M, Denmark
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- * E-mail:
| |
Collapse
|
30
|
Kong HY, Byun J. Nucleic Acid aptamers: new methods for selection, stabilization, and application in biomedical science. Biomol Ther (Seoul) 2014; 21:423-34. [PMID: 24404332 PMCID: PMC3879913 DOI: 10.4062/biomolther.2013.085] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 11/05/2013] [Accepted: 11/05/2013] [Indexed: 12/19/2022] Open
Abstract
The adoption of oligonucleotide aptamer is well on the rise, serving an ever increasing demand for versatility in biomedical field. Through the SELEX (Systematic Evolution of Ligands by EXponential enrichment), aptamer that can bind to specific target with high affinity and specificity can be obtained. Aptamers are single-stranded nucleic acid molecules that can fold into complex threedimensional structures, forming binding pockets and clefts for the specific recognition and tight binding of any given molecular target. Recently, aptamers have attracted much attention because they not only have all of the advantages of antibodies, but also have unique merits such as thermal stability, ease of synthesis, reversibility, and little immunogenicity. The advent of novel technologies is revolutionizing aptamer applications. Aptamers can be easily modified by various chemical reactions to introduce functional groups and/or nucleotide extensions. They can also be conjugated to therapeutic molecules such as drugs, drug containing carriers, toxins, or photosensitizers. Here, we discuss new SELEX strategies and stabilization methods as well as applications in drug delivery and molecular imaging.
Collapse
Affiliation(s)
- Hoon Young Kong
- Department of Molecular Biology, Institute of Nanosensor and Biotechnology, Dankook University, Yongin 448-701, Republic of Korea
| | - Jonghoe Byun
- Department of Molecular Biology, Institute of Nanosensor and Biotechnology, Dankook University, Yongin 448-701, Republic of Korea
| |
Collapse
|
31
|
Kuwahara M, Obika S. In vitro selection of BNA (LNA) aptamers. ARTIFICIAL DNA, PNA & XNA 2014; 4:39-48. [PMID: 24044051 DOI: 10.4161/adna.25786] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 07/17/2013] [Indexed: 01/03/2023]
Abstract
Recently, we achieved the first in vitro selection of 2'-O,4'-C-methylene bridged/locked nucleic acid (2',4'-BNA/LNA) aptamers. High-affinity thrombin-binding aptamers (TBAs) were obtained from DNA-based libraries containing 2'-O,4'-C-methylene-bridged/linked bicyclic ribonucleotides (B/L nucleotides) in the 5'-primer region, using the method of capillary electrophoresis systematic evolution of ligands by exponential enrichment (CE-SELEX). Furthermore, a similar selection protocol could provide TBAs that contain B/L nucleotides in both primer and random regions. We review technical challenges involved in the generation of various BNA libraries using analogs of B/L nucleoside-5'-triphosphate and polymerase variants and also discuss applications of these libraries to the selection of BNA (LNA) aptamers, as well as future prospects for their therapeutic and diagnostic uses.
Collapse
Affiliation(s)
- Masayasu Kuwahara
- Graduate School of Science and Technology; Gunma University; Gunma, Japan
| | | |
Collapse
|
32
|
Kojima T, Furukawa K, Maruyama H, Inoue N, Tarashima N, Matsuda A, Minakawa N. PCR amplification of 4'-thioDNA using 2'-deoxy-4'-thionucleoside 5'-triphosphates. ACS Synth Biol 2013; 2:529-36. [PMID: 23957635 DOI: 10.1021/sb400074w] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
2'-Deoxy-4'-thioribonucleic acid (4'-thioDNA) having a sulfur atom instead of an oxygen atom in the furanose ring has a nuclease resistance and hybridization ability higher than that of natural DNA. Despite its great potential for various biological applications, a long 4'-thioDNA having all four kinds of 2'-deoxy-4'-thionucleosides has not been reported. In this study, we describe systematic analysis of the incorporation of 2'-deoxy-4'-thionucleoside 5'-triphosphates (dSNTPs) using various DNA polymerases. We found that family B DNA polymerases, which do not have 3'→5' exonuclease activity, could efficiently incorporate dSNTPs via single nucleotide insertion and primer extension. Moreover, 104-mer PCR product was obtained even under the conditions in the presence of all four kinds of dSNTPs when KOD Dash DNA polymerase was used. The resulting PCR product was converted into a natural dsDNA by using PCR with dNTPs, and sequencing of the natural dsDNA revealed that the PCR cycle successfully proceeded without losing the sequence information of the template. To the best of our knowledge, this is the first example of accurate PCR amplification of highly modified DNA in the presence of only unnatural dNTPs.
Collapse
Affiliation(s)
- Takamitsu Kojima
- Graduate School of Pharmaceutical
Sciences, The University of Tokushima,
Shomachi 1-78-1, Tokushima 770-8505, Japan
| | - Kazuhiro Furukawa
- Graduate School of Pharmaceutical
Sciences, The University of Tokushima,
Shomachi 1-78-1, Tokushima 770-8505, Japan
| | - Hideto Maruyama
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo
060-0812, Japan
| | - Naonori Inoue
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo
060-0812, Japan
| | - Noriko Tarashima
- Graduate School of Pharmaceutical
Sciences, The University of Tokushima,
Shomachi 1-78-1, Tokushima 770-8505, Japan
| | - Akira Matsuda
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo
060-0812, Japan
| | - Noriaki Minakawa
- Graduate School of Pharmaceutical
Sciences, The University of Tokushima,
Shomachi 1-78-1, Tokushima 770-8505, Japan
| |
Collapse
|
33
|
Imaizumi Y, Kasahara Y, Fujita H, Kitadume S, Ozaki H, Endoh T, Kuwahara M, Sugimoto N. Efficacy of base-modification on target binding of small molecule DNA aptamers. J Am Chem Soc 2013; 135:9412-9. [PMID: 23734784 DOI: 10.1021/ja4012222] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Nucleic acid aptamers are receptors of single-stranded oligonucleotides that specifically bind to their targets. Significant interest is currently focused on development of small molecule aptamers owing to their applications in biosensing, diagnostics, and therapeutics involving low molecular weight biomarkers and drugs. Despite great potential for their diverse applications, relatively few aptamers that bind to small molecules have been reported, and methodologies to enhance and broaden their functions by expanding chemical repertories have barely been examined. Here we describe construction of a modified DNA library that includes (E)-5-(2-(N-(2-(N(6)-adeninyl)ethyl))carbamylvinyl)-uracil bases and discovery of high-affinity camptothecin-binding DNA aptamers using a systematic evolution of ligands by the exponential enrichment method. Our results are the first to demonstrate the superior efficacy of base modification on affinity enhancement and the usefulness of unnatural nucleic acid libraries for development of small molecule aptamers.
Collapse
Affiliation(s)
- Yuri Imaizumi
- Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Affiliation(s)
- Kasper K Karlsen
- Nucleic Acid Center, Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Odense M, Denmark
| | | |
Collapse
|
35
|
Kasahara Y, Irisawa Y, Fujita H, Yahara A, Ozaki H, Obika S, Kuwahara M. Capillary electrophoresis-systematic evolution of ligands by exponential enrichment selection of base- and sugar-modified DNA aptamers: target binding dominated by 2'-O,4'-C-methylene-bridged/locked nucleic acid primer. Anal Chem 2013; 85:4961-7. [PMID: 23662585 DOI: 10.1021/ac400058z] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chemically modified DNA aptamers specific to human α-thrombin were obtained from oligodeoxyribonucleotide (ODN) libraries by using a capillary electrophoresis-systematic evolution of ligands by exponential enrichment (CE-SELEX) method. These libraries contained 2'-O,4'-C-methylene-bridged/linked bicyclic ribonucleotides (B/L nucleotides) in the primer region and/or C5-modified thymidine bearing N(6)-ethyladenine (t) in the nonprimer region. Modified DNA aptamers showed high binding affinities to the target, with dissociation constants (Kd) values in the range of subnanomolar to several ten nanomolar levels. The introduction of base modification significantly suppressed the frequency of G-quadruplex motifs, which are often seen in thrombin-binding DNA aptamers. The resulting alternatives contained the 10-mer consensus sequence t5Gt2G2, which is frequently found in modified DNA aptamers with subnanomolar protein binding affinities. Furthermore, some base- and sugar-modified DNA aptamers with the 12-mer consensus sequence t2G2tC(A/G)A2G2t displayed binding activities that were dependent on the presence of B/L nucleotides in the primer region. Such aptamers were interestingly not recovered from a natural DNA library or from DNA libraries modified with either B/L nucleotides or t's. This emerging characteristic binding property will enable the creation of a direct selection methodology for DNA-based molecular switches that are triggered by chemical conversion of B/L nucleotides introduced to constant sequence regions in ODN libraries.
Collapse
Affiliation(s)
- Yuuya Kasahara
- Graduate School of Science and Technology, Gunma University, Kiryu, Gunma, Japan
| | | | | | | | | | | | | |
Collapse
|
36
|
Wenge U, Ehrenschwender T, Wagenknecht HA. Synthesis of 2'-O-propargyl nucleoside triphosphates for enzymatic oligonucleotide preparation and "click" modification of DNA with Nile red as fluorescent probe. Bioconjug Chem 2013; 24:301-4. [PMID: 23425139 DOI: 10.1021/bc300624m] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Uridine, adenosine, guanosine, and cytidine that carry a propargyl group attached to the 2'-oxygen were converted efficiently to the corresponding nucleoside triphosphates (pNTPs). Primer extension experiments revealed that pUTP, pATP, and pGTP can be successfully incorporated in oligonucleotides in the so-called 9°N and Therminator DNA polymerases. Most importantly, the ethynyl group as single 2'-modification of the enzymatically prepared oligonucleotides can be applied for postsynthetic labeling. This was representatively shown by PAGE analysis after the "click"-type cycloaddition with the fluorescent nile red azide. These results show that the 2'-position as one of the most important modification sites in oligonucleotides is now accessible not only for synthetic, but also for enzymatic oligonucleotide preparation.
Collapse
Affiliation(s)
- Ulrike Wenge
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), D-76131, Karlsruhe, Germany
| | | | | |
Collapse
|
37
|
Kasahara Y, Irisawa Y, Ozaki H, Obika S, Kuwahara M. 2',4'-BNA/LNA aptamers: CE-SELEX using a DNA-based library of full-length 2'-O,4'-C-methylene-bridged/linked bicyclic ribonucleotides. Bioorg Med Chem Lett 2013; 23:1288-92. [PMID: 23374873 DOI: 10.1016/j.bmcl.2012.12.093] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Revised: 12/25/2012] [Accepted: 12/28/2012] [Indexed: 01/24/2023]
Abstract
DNA-based aptamers that contain 2'-O,4'-C-methylene-bridged/linked bicyclic ribonucleotides (B/L nucleotides) over the entire length were successfully obtained using a capillary electrophoresis systematic evolution of ligands by exponential enrichment (CE-SELEX) method. A modified DNA library was prepared with an enzyme mix of KOD Dash and KOD mutant DNA polymerases. Forty 2'-O,4'-C-methylene bridged/locked nucleic acid (2',4'-BNA/LNA) aptamers were isolated from an enriched pool and classified into six groups according to their sequence. 2',4'-BNA/LNA aptamers of groups V and VI bound human thrombin with K(d) values in the range of several 10 nanomolar levels.
Collapse
Affiliation(s)
- Yuuya Kasahara
- Graduate School of Engineering, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | | | | | | | | |
Collapse
|
38
|
Lundin KE, Højland T, Hansen BR, Persson R, Bramsen JB, Kjems J, Koch T, Wengel J, Smith CIE. Biological activity and biotechnological aspects of locked nucleic acids. ADVANCES IN GENETICS 2013; 82:47-107. [PMID: 23721720 DOI: 10.1016/b978-0-12-407676-1.00002-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Locked nucleic acid (LNA) is one of the most promising new nucleic acid analogues that has been produced under the past two decades. In this chapter, we have tried to cover many of the different areas, where this molecule has been used to improve the function of synthetic oligonucleotides (ONs). The use of LNA in antisense ONs, including gapmers, splice-switching ONs, and siLNA, as well as antigene ONs, is reviewed. Pharmacokinetics as well as pharmacodynamics of LNA ONs and a description of selected compounds in, or close to, clinical testing are described. In addition, new LNA modifications and the adaptation of enzymes for LNA incorporation are reviewed. Such enzymes may become important for the development of stabilized LNA-containing aptamers.
Collapse
Affiliation(s)
- Karin E Lundin
- Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Novum, Huddinge, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Amplification and re-generation of LNA-modified libraries. Molecules 2012; 17:13087-97. [PMID: 23128088 PMCID: PMC6268865 DOI: 10.3390/molecules171113087] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Revised: 10/31/2012] [Accepted: 11/01/2012] [Indexed: 12/14/2022] Open
Abstract
Locked nucleic acids (LNA) confer high thermal stability and nuclease resistance to oligonucleotides. The discovery of polymerases that accept LNA triphosphates has led us to propose a scheme for the amplification and re-generation of LNA-containing oligonucleotide libraries. Such libraries could be used for in vitro selection of e.g., native LNA aptamers. We maintained an oligonucleotide library encoding 40 randomized positions with LNA ATP, GTP, CTP, and TTP for 7 rounds of ‘mock’ in vitro selection in the absence of a target and analyzed the sequence composition after rounds 1, 4 and 7. We observed a decrease in LNA-A content from 20.5% in round 1 to 6.6% in round 7. This decrease was accompanied by a substantial bias against successive LNA-As (poly-LNA adenosine tracts) and a relative over-representation of single LNA-As. Maintaining a library with LNA TTP yielded similar results. Together, these results suggest that dispersed LNA monomers are tolerated in our in vitro selection protocol, and that LNA-modified libraries can be sustained for up to at least seven selection rounds, albeit at reduced levels. This enables the discovery of native LNA aptamers and similar oligonucleotide structures.
Collapse
|
40
|
Kasahara Y, Kuwahara M. Artificial specific binders directly recovered from chemically modified nucleic acid libraries. J Nucleic Acids 2012; 2012:156482. [PMID: 23094139 PMCID: PMC3472525 DOI: 10.1155/2012/156482] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2012] [Accepted: 08/19/2012] [Indexed: 11/18/2022] Open
Abstract
Specific binders comprised of nucleic acids, that is, RNA/DNA aptamers, are attractive functional biopolymers owing to their potential broad application in medicine, food hygiene, environmental analysis, and biological research. Despite the large number of reports on selection of natural DNA/RNA aptamers, there are not many examples of direct screening of chemically modified nucleic acid aptamers. This is because of (i) the inferior efficiency and accuracy of polymerase reactions involving transcription/reverse-transcription of modified nucleotides compared with those of natural nucleotides, (ii) technical difficulties and additional time and effort required when using modified nucleic acid libraries, and (iii) ambiguous efficacies of chemical modifications in binding properties until recently; in contrast, the effects of chemical modifications on biostability are well studied using various nucleotide analogs. Although reports on the direct screening of a modified nucleic acid library remain in the minority, chemical modifications would be essential when further functional expansion of nucleic acid aptamers, in particular for medical and biological uses, is considered. This paper focuses on enzymatic production of chemically modified nucleic acids and their application to random screenings. In addition, recent advances and possible future research are also described.
Collapse
Affiliation(s)
- Yuuya Kasahara
- Graduate School of Engineering, Gunma University, 1-5-1 Tenjin-cho, Kiryu 376-8515, Japan
| | - Masayasu Kuwahara
- Graduate School of Engineering, Gunma University, 1-5-1 Tenjin-cho, Kiryu 376-8515, Japan
| |
Collapse
|
41
|
Enzymatic polymerisation involving 2'-amino-LNA nucleotides. Bioorg Med Chem Lett 2012; 22:3522-6. [PMID: 22503454 DOI: 10.1016/j.bmcl.2012.03.073] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 03/19/2012] [Accepted: 03/21/2012] [Indexed: 11/21/2022]
Abstract
The triphosphate of the thymine derivative of 2'-amino-LNA (2'-amino-LNA-TTP) was synthesised and found to be a good substrate for Phusion® HF DNA polymerase, allowing enzymatic synthesis of modified DNA encoded by an unmodified template. To complement this, 2'-amino-LNA-T phosphoramidites were incorporated into DNA oligonucleotides which were used as templates for enzymatic synthesis of unmodified DNA using either KOD, KOD XL or Phusion polymerases. 2'-Amino-LNA-T in the template and 2'-amino-LNA-TTP as a substrate both decreased reaction rate and yield compared to unmodified DNA, especially for sequences with multiple 2'-amino-LNA-T nucleotides.
Collapse
|
42
|
Højland T, Veedu RN, Vester B, Wengel J. Enzymatic synthesis of DNA strands containing α-L-LNA (α-L-configured locked nucleic acid) thymine nucleotides. ARTIFICIAL DNA, PNA & XNA 2012; 3:14-21. [PMID: 22679529 PMCID: PMC3368812 DOI: 10.4161/adna.19272] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We describe the first enzymatic incorporation of an α-L-LNA nucleotide into an oligonucleotide. It was found that the 5'-triphosphate of α-L-LNA is a substrate for the DNA polymerases KOD, 9°N(m), Phusion and HIV RT. Three dispersed α-L-LNA thymine nucleotides can be incorporated into DNA strands by all four polymerases, but they were unable to perform consecutive incorporations of α-L-LNA nucleotides. In addition it was found that primer extension can be achieved using templates containing one α-L-LNA nucleotide.
Collapse
Affiliation(s)
- Torben Højland
- Department of Physics, Chemistry and Pharmacy; Nucleic Acid Center; Department of Biochemistry and Molecular Biology; University of Southern Denmark; Odense, Denmark
| | - Rakesh N. Veedu
- Department of Physics, Chemistry and Pharmacy; Nucleic Acid Center; Department of Biochemistry and Molecular Biology; University of Southern Denmark; Odense, Denmark
- School of Chemistry and Molecular Biosciences; The University of Queensland; Brisbane, Australia
| | - Birte Vester
- Department of Physics, Chemistry and Pharmacy; Nucleic Acid Center; Department of Biochemistry and Molecular Biology; University of Southern Denmark; Odense, Denmark
| | - Jesper Wengel
- Department of Physics, Chemistry and Pharmacy; Nucleic Acid Center; Department of Biochemistry and Molecular Biology; University of Southern Denmark; Odense, Denmark
| |
Collapse
|
43
|
Yang S, Herdewijn P. Polymerase-dependent DNA synthesis from phosphoramidate-activated nucleotides. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2011; 30:597-608. [PMID: 21888550 DOI: 10.1080/15257770.2011.598491] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Nucleoside triphosphate mimetics, which are substrates for polymerases, can be used in the enzymatic synthesis of nucleic acids. Alternatively, they might also become reversible or irreversible enzyme inhibitors. In order to analyze the effects of 5'-phosphoramidate modification of deoxynucleotide in DNA synthesis, 3-phosphono-L-Ala-dNMP (N = A, T, or G) were evaluated as substrates of HIV-1 RT, Vent (exo(-)), and Therminator polymerase, respectively. The DNA-dependent DNA polymerase activity is significantly higher for Vent exo(-) polymerase than for HIV-1 RT, which is reflected by the capacity of Vent exo(-) polymerase to efficiently synthesize DNA without stalling effects. In addition, Vent (exo(-)) polymerase proved to be more accurate than Therminator polymerase, based on Watson-Crick base-pairing. The optimal yield (88%-97%) of full-length elongation can be obtained in 60 minutes by Vent (exo(-)) polymerase at 0.025 U/μL, with the phosphoramidate analogues as substrates. These data led us to conclude that the optimal pyrophosphate mimetic for the enzyme-catalyzed synthesis of DNA is polymerase dependent.
Collapse
Affiliation(s)
- Shiqiong Yang
- Laboratory of Medicinal Chemistry, Rega Institute for Medical Research, Katholieke Universiteit Leuven, Leuven, Belgium
| | | |
Collapse
|
44
|
Lauridsen LH, Rothnagel JA, Veedu RN. Enzymatic recognition of 2'-modified ribonucleoside 5'-triphosphates: towards the evolution of versatile aptamers. Chembiochem 2011; 13:19-25. [PMID: 22162282 DOI: 10.1002/cbic.201100648] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Indexed: 01/21/2023]
Abstract
The quest for effective, selective and nontoxic nucleic-acid-based drugs has led to designing modifications of naturally occurring nucleosides. A number of modified nucleic acids have been made in the past decades in the hope that they would prove useful in target-validation studies and therapeutic applications involving antisense, RNAi, aptamer, and ribozyme-based technologies. Since their invention in the early 1990s, aptamers have emerged as a very promising class of therapeutics, with one drug entering the market for the treatment of age-related macular degeneration. To combat the limitations of aptamers containing naturally occurring nucleotides, chemically modified nucleotides have to be used. In order to apply modified nucleotides in aptamer drug development, their enzyme-recognition capabilities must be understood. For this purpose, several modified nucleoside 5'-triphosphates were synthesized and investigated as substrates for various enzymes. Herein, we review studies on the enzyme-recognition of various 2'-sugar-modified NTPs that were carried out with a view to their effective utilization in SELEX processes to generate versatile aptamers.
Collapse
Affiliation(s)
- Lasse H Lauridsen
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | | | | |
Collapse
|
45
|
Martínez O, Ecochard V, Mahéo S, Gross G, Bodin P, Teissié J, Escudier JM, Paquereau L. α,β-D-constrained nucleic acids are strong terminators of thermostable DNA polymerases in polymerase chain reaction. PLoS One 2011; 6:e25510. [PMID: 21991314 PMCID: PMC3185000 DOI: 10.1371/journal.pone.0025510] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Accepted: 09/07/2011] [Indexed: 11/18/2022] Open
Abstract
(S(C5'), R(P)) α,β-D- Constrained Nucleic Acids (CNA) are dinucleotide building blocks that can feature either B-type torsional angle values or non-canonical values, depending on their 5'C and P absolute stereochemistry. These CNA are modified neither on the nucleobase nor on the sugar structure and therefore represent a new class of nucleotide with specific chemical and structural characteristics. They promote marked bending in a single stranded DNA so as to preorganize it into a loop-like structure, and they have been shown to induce rigidity within oligonucleotides. Following their synthesis, studies performed on CNA have only focused on the constraints that this family of nucleotides introduced into DNA. On the assumption that bending in a DNA template may produce a terminator structure, we investigated whether CNA could be used as a new strong terminator of polymerization in PCR. We therefore assessed the efficiency of CNA as a terminator in PCR, using triethylene glycol phosphate units as a control. Analyses were performed by denaturing gel electrophoresis and several PCR products were further analysed by sequencing. The results showed that the incorporation of only one CNA was always skipped by the polymerases tested. On the other hand, two CNA units always stopped proofreading polymerases, such as Pfu DNA polymerase, as expected for a strong replication terminator. Non-proofreading enzymes, e.g. Taq DNA polymerase, did not recognize this modification as a strong terminator although it was predominantly stopped by this structure. In conclusion, this first functional use of CNA units shows that these modified nucleotides can be used as novel polymerization terminators of proofreading polymerases. Furthermore, our results lead us to propose that CNA and their derivatives could be useful tools for investigating the behaviour of different classes of polymerases.
Collapse
Affiliation(s)
- Olivier Martínez
- Institut de Pharmacologie et de Biologie Structurale, Unité Mixte de Recherche 5089, Centre National de la Recherche Scientifique, Toulouse, France
- Université Paul Sabatier Toulouse III, Faculté des Sciences et d'Ingénierie, Toulouse, France
| | - Vincent Ecochard
- Institut de Pharmacologie et de Biologie Structurale, Unité Mixte de Recherche 5089, Centre National de la Recherche Scientifique, Toulouse, France
- Université Paul Sabatier Toulouse III, Faculté des Sciences et d'Ingénierie, Toulouse, France
| | - Sabrina Mahéo
- Institut de Pharmacologie et de Biologie Structurale, Unité Mixte de Recherche 5089, Centre National de la Recherche Scientifique, Toulouse, France
- Université Paul Sabatier Toulouse III, Faculté des Sciences et d'Ingénierie, Toulouse, France
| | - Grégori Gross
- Institut de Pharmacologie et de Biologie Structurale, Unité Mixte de Recherche 5089, Centre National de la Recherche Scientifique, Toulouse, France
- Université Paul Sabatier Toulouse III, Faculté des Sciences et d'Ingénierie, Toulouse, France
| | - Pierre Bodin
- Institut de Pharmacologie et de Biologie Structurale, Unité Mixte de Recherche 5089, Centre National de la Recherche Scientifique, Toulouse, France
- Université Paul Sabatier Toulouse III, Faculté des Sciences et d'Ingénierie, Toulouse, France
| | - Justin Teissié
- Institut de Pharmacologie et de Biologie Structurale, Unité Mixte de Recherche 5089, Centre National de la Recherche Scientifique, Toulouse, France
- Université Paul Sabatier Toulouse III, Faculté des Sciences et d'Ingénierie, Toulouse, France
| | - Jean-Marc Escudier
- Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique, Unité Mixte de Recherche 5068, Centre National de la Recherche Scientifique, Toulouse , France
| | - Laurent Paquereau
- Institut de Pharmacologie et de Biologie Structurale, Unité Mixte de Recherche 5089, Centre National de la Recherche Scientifique, Toulouse, France
- Université Paul Sabatier Toulouse III, Faculté des Sciences et d'Ingénierie, Toulouse, France
- * E-mail:
| |
Collapse
|
46
|
Doessing H, Vester B. Locked and unlocked nucleosides in functional nucleic acids. Molecules 2011; 16:4511-26. [PMID: 21629180 PMCID: PMC6264650 DOI: 10.3390/molecules16064511] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 05/19/2011] [Accepted: 05/25/2011] [Indexed: 12/28/2022] Open
Abstract
Nucleic acids are able to adopt a plethora of structures, many of which are of interest in therapeutics, bio- or nanotechnology. However, structural and biochemical stability is a major concern which has been addressed by incorporating a range of modifications and nucleoside derivatives. This review summarizes the use of locked nucleic acid (LNA) and un-locked nucleic acid (UNA) monomers in functional nucleic acids such as aptamers, ribozymes, and DNAzymes.
Collapse
Affiliation(s)
| | - Birte Vester
- Nucleic Acid Center, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, Odense M 5230, Denmark; E-Mail: (H.D.)
| |
Collapse
|
47
|
Kajiyama T, Kuwahara M, Goto M, Kambara H. Optimization of pyrosequencing reads by superior successive incorporation efficiency of improved 2'-deoxyadenosine-5'-triphosphate analogs. Anal Biochem 2011; 416:8-17. [PMID: 21601555 DOI: 10.1016/j.ab.2011.04.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 04/23/2011] [Accepted: 04/26/2011] [Indexed: 11/28/2022]
Abstract
Conventional pyrosequencing using 2'-deoxyadenosine-5'-O-(1-thiotriphosphate) (dATPαS) is problematic due to the high cost of the substrate (dATPαS) and deterioration in the accuracy of incorporation to read through poly(T) regions. One reason for these problems is that dATPαS has a sulfur on the α-phosphate and also has isomers (Sp and Rp). To solve these problems, 11 nucleotide substrates, which could replace dATPαS in pyrosequencing, were newly synthesized. All substrates were modified on the seventh or eighth position of the adenine base from normal dATP. We found that the substrate that had an ethenyl-linked modified group on the seventh position of the adenine base had low activity in the luciferase reaction and high incorporation efficiency with the thymine base. One substrate in particular had 10-fold better incorporation efficiency than dATPαS. The new nucleotide substrate satisfied all conditions as a replacement of dATPαS.
Collapse
Affiliation(s)
- Tomoharu Kajiyama
- Central Research Laboratory, Hitachi, Kokubunji-shi, Tokyo 185-8601, Japan.
| | | | | | | |
Collapse
|
48
|
Kuwahara M, Takano Y, Kasahara Y, Nara H, Ozaki H, Sawai H, Sugiyama A, Obika S. Study on suitability of KOD DNA polymerase for enzymatic production of artificial nucleic acids using base/sugar modified nucleoside triphosphates. Molecules 2010; 15:8229-40. [PMID: 21076389 PMCID: PMC6259326 DOI: 10.3390/molecules15118229] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 11/06/2010] [Accepted: 11/10/2010] [Indexed: 01/26/2023] Open
Abstract
Recently, KOD and its related DNA polymerases have been used for preparing various modified nucleic acids, including not only base-modified nucleic acids, but also sugar-modified ones, such as bridged/locked nucleic acid (BNA/LNA) which would be promising candidates for nucleic acid drugs. However, thus far, reasons for the effectiveness of KOD DNA polymerase for such purposes have not been clearly elucidated. Therefore, using mutated KOD DNA polymerases, we studied here their catalytic properties upon enzymatic incorporation of nucleotide analogues with base/sugar modifications. Experimental data indicate that their characteristic kinetic properties enabled incorporation of various modified nucleotides. Among those KOD mutants, one achieved efficient successive incorporation of bridged nucleotides with a 2′-ONHCH2CH2-4′ linkage. In this study, the characteristic kinetic properties of KOD DNA polymerase for modified nucleoside triphosphates were shown, and the effectiveness of genetic engineering in improvement of the enzyme for modified nucleotide polymerization has been demonstrated.
Collapse
Affiliation(s)
- Masayasu Kuwahara
- Graduate School of Engineering, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Veedu RN, Burri HV, Kumar P, Sharma PK, Hrdlicka PJ, Vester B, Wengel J. Polymerase-directed synthesis of C5-ethynyl locked nucleic acids. Bioorg Med Chem Lett 2010; 20:6565-8. [PMID: 20932755 DOI: 10.1016/j.bmcl.2010.09.044] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 09/06/2010] [Accepted: 09/08/2010] [Indexed: 11/17/2022]
Abstract
Modified nucleic acids have considerable potential in nanobiotechnology for the development of nanomedicines and new materials. Locked nucleic acid (LNA) is one of the most prominent nucleic acid analogues reported so far and we herein for the first time report the enzymatic incorporation of LNA-U and C5-ethynyl LNA-U nucleotides into oligonucleotides. Phusion High Fidelity and KOD DNA polymerases efficiently incorporated LNA-U and C5-ethynyl LNA-U nucleotides into a DNA strand and T7 RNA polymerase successfully accepted the LNA-U nucleoside 5'-triphosphate as substrate for RNA transcripts.
Collapse
Affiliation(s)
- Rakesh N Veedu
- Nucleic Acid Center, Department of Physics & Chemistry, University of Southern Denmark, Campusvej 55, Odense M 5230, Denmark.
| | | | | | | | | | | | | |
Collapse
|
50
|
Kuwahara M, Sugimoto N. Molecular evolution of functional nucleic acids with chemical modifications. Molecules 2010; 15:5423-44. [PMID: 20714306 PMCID: PMC6257756 DOI: 10.3390/molecules15085423] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 07/14/2010] [Accepted: 08/06/2010] [Indexed: 01/10/2023] Open
Abstract
Nucleic acids are attractive materials for creating functional molecules that have applications as catalysts, specific binders, and molecular switches. Nucleic acids having such functions can be obtained by random screening, typically using in vitro selection methods. These methods have helped explore the potential abilities of nucleic acids and steadily contributed to their evolution, i.e., creation of RNA/DNA enzymes, aptamers, and aptazymes. Chemical modification would be a key means to further increase their performance, e.g., expansion of function diversity, enhancement of activity, and improvement of biostability for biological use. Indeed, in the past two decades, random screening involving chemical modification, post-SELEX chemical modification, and rational design methods have been advanced, and combining and integrating these methods may produce a new class of functional nucleic acids. This review focuses on the effectiveness of chemical modifications on the evolution of nucleic acids as functional molecules and the outlook for related technologies.
Collapse
Affiliation(s)
- Masayasu Kuwahara
- Chemistry Laboratory of Artificial Biomolecules (CLAB), Graduate School of Engineering, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | - Naoki Sugimoto
- Frontier Institute for Biomolecular Engineering Research (FIBER) and Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojima-Minamimachi, Chuo-Ku, Kobe 650-0047, Japan; E-Mail: (N.S.)
| |
Collapse
|