1
|
Young TW, Kappler MP, Call ED, Brown QJ, Jacobson SC. Integrated In-Plane Nanofluidic Devices for Resistive-Pulse Sensing. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2024; 17:221-242. [PMID: 38608295 DOI: 10.1146/annurev-anchem-061622-030223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Single-particle (or digital) measurements enhance sensitivity (10- to 100-fold improvement) and uncover heterogeneity within a population (one event in 100 to 10,000). Many biological systems are significantly influenced by rare or infrequent events, and determining what species is present, in what quantity, and the role of that species is critically important to unraveling many questions. To develop these measurement systems, resistive-pulse sensing is used as a label-free, single-particle detection technique and can be combined with a range of functional elements, e.g., mixers, reactors, filters, separators, and pores. Virtually, any two-dimensional layout of the micro- and nanofluidic conduits can be envisioned, designed, and fabricated in the plane of the device. Multiple nanopores in series lead to higher-precision measurements of particle size, shape, and charge, and reactions coupled directly with the particle-size measurements improve temporal response. Moreover, other detection techniques, e.g., fluorescence, are highly compatible with the in-plane format. These integrated in-plane nanofluidic devices expand the toolbox of what is possible with single-particle measurements.
Collapse
Affiliation(s)
- Tanner W Young
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA;
| | - Michael P Kappler
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA;
| | - Ethan D Call
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA;
| | - Quintin J Brown
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA;
| | | |
Collapse
|
2
|
Chua GNL, Liu S. When Force Met Fluorescence: Single-Molecule Manipulation and Visualization of Protein-DNA Interactions. Annu Rev Biophys 2024; 53:169-191. [PMID: 38237015 DOI: 10.1146/annurev-biophys-030822-032904] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Myriad DNA-binding proteins undergo dynamic assembly, translocation, and conformational changes while on DNA or alter the physical configuration of the DNA substrate to control its metabolism. It is now possible to directly observe these activities-often central to the protein function-thanks to the advent of single-molecule fluorescence- and force-based techniques. In particular, the integration of fluorescence detection and force manipulation has unlocked multidimensional measurements of protein-DNA interactions and yielded unprecedented mechanistic insights into the biomolecular processes that orchestrate cellular life. In this review, we first introduce the different experimental geometries developed for single-molecule correlative force and fluorescence microscopy, with a focus on optical tweezers as the manipulation technique. We then describe the utility of these integrative platforms for imaging protein dynamics on DNA and chromatin, as well as their unique capabilities in generating complex DNA configurations and uncovering force-dependent protein behaviors. Finally, we give a perspective on the future directions of this emerging research field.
Collapse
Affiliation(s)
- Gabriella N L Chua
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, New York, USA;
- Tri-Institutional PhD Program in Chemical Biology, New York, New York, USA
| | - Shixin Liu
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, New York, USA;
| |
Collapse
|
3
|
Malinowska AM, van Mameren J, Peterman EJG, Wuite GJL, Heller I. Introduction to Optical Tweezers: Background, System Designs, and Applications. Methods Mol Biol 2024; 2694:3-28. [PMID: 37823997 DOI: 10.1007/978-1-0716-3377-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Optical tweezers are a means to manipulate objects with light. With the technique, microscopically small objects can be held and steered, allowing for accurate measurement of the forces applied to these objects. Optical tweezers can typically obtain a nanometer spatial resolution, a picoNewton force resolution, and a millisecond time resolution, which makes the technique well suited for the study of biological processes from the single-cell down to the single-molecule level. In this chapter, we aim to provide an introduction to the use of optical tweezers for single-molecule analyses. We start from the basic principles and methodology involved in optical trapping, force calibration, and force measurements. Next, we describe the components of an optical tweezers setup and their experimental relevance. Finally, we will provide an overview of the broad applications in context of biological research, with the emphasis on the measurement modes, experimental assays, and possible combinations with fluorescence microscopy techniques.
Collapse
Affiliation(s)
- Agata M Malinowska
- LaserLaB Amsterdam and Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Joost van Mameren
- Institute of Physics, University of Amsterdam, Amsterdam, The Netherlands
| | - Erwin J G Peterman
- LaserLaB Amsterdam and Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Gijs J L Wuite
- LaserLaB Amsterdam and Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Iddo Heller
- LaserLaB Amsterdam and Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
4
|
Lu S, Chemla YR. Optical traps induce fluorophore photobleaching by two-photon excitation. Biophys J 2023; 122:4316-4325. [PMID: 37828742 PMCID: PMC10698272 DOI: 10.1016/j.bpj.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/20/2023] [Accepted: 10/10/2023] [Indexed: 10/14/2023] Open
Abstract
Techniques combining optical tweezers with fluorescence microscopy have become increasingly popular. Unfortunately, the high-power, infrared lasers used to create optical traps can have a deleterious effect on dye stability. Previous studies have shown that dye photobleaching is enhanced by absorption of visible fluorescence excitation plus infrared trap photons, a process that can be significantly reduced by minimizing simultaneous exposure to both light sources. Here, we report another photobleaching pathway that results from direct excitation by the trapping laser alone. Our results show that this trap-induced fluorescence loss is a two-photon absorption process, as demonstrated by a quadratic dependence on the intensity of the trapping laser. We further show that, under conditions typical of many trap-based experiments, fluorescence emission of certain fluorophores near the trap focus can drop by 90% within 1 min. We investigate how photostability is affected by the choice of dye molecule, excitation and emission wavelength, and labeled molecule. Finally, we discuss the different photobleaching pathways in combined trap-fluorescence measurements, which guide the selection of optimal dyes and conditions for more robust experimental protocols.
Collapse
Affiliation(s)
- Suoang Lu
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Yann R Chemla
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois; Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois; Center of the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, Illinois.
| |
Collapse
|
5
|
Man T, Geldhof JJ, Peterman EJG, Wuite GJL, Heller I. One-Dimensional STED Microscopy in Optical Tweezers. Methods Mol Biol 2022; 2478:101-122. [PMID: 36063320 DOI: 10.1007/978-1-0716-2229-2_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Optical tweezers and fluorescence microscopy are powerful methods for investigating the mechanical and structural properties of biomolecules and for studying the dynamics of the biomolecular processes that these molecules are involved in. Here we provide an outline of the concurrent use of optical tweezers and fluorescence microscopy for analyzing biomolecular processes. In particular, we focus on the use of super-resolution microscopy in optical tweezers, which allows visualization of molecules at the higher molecular densities that are typically encountered in living systems. We provide specific details on the alignment procedures of the optical pathways for confocal fluorescence microscopy and 1D-STED microscopy and elaborate on how to diagnose and correct optical aberrations and STED phase plate misalignments.
Collapse
Affiliation(s)
- Tianlong Man
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Joost J Geldhof
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Erwin J G Peterman
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Gijs J L Wuite
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Iddo Heller
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
6
|
Kuscu M, Ramezani H, Dinc E, Akhavan S, Akan OB. Fabrication and microfluidic analysis of graphene-based molecular communication receiver for Internet of Nano Things (IoNT). Sci Rep 2021; 11:19600. [PMID: 34599208 PMCID: PMC8486847 DOI: 10.1038/s41598-021-98609-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 08/17/2021] [Indexed: 02/08/2023] Open
Abstract
Bio-inspired molecular communications (MC), where molecules are used to transfer information, is the most promising technique to realise the Internet of Nano Things (IoNT), thanks to its inherent biocompatibility, energy-efficiency, and reliability in physiologically-relevant environments. Despite a substantial body of theoretical work concerning MC, the lack of practical micro/nanoscale MC devices and MC testbeds has led researchers to make overly simplifying assumptions about the implications of the channel conditions and the physical architectures of the practical transceivers in developing theoretical models and devising communication methods for MC. On the other hand, MC imposes unique challenges resulting from the highly complex, nonlinear, time-varying channel properties that cannot be always tackled by conventional information and communication tools and technologies (ICT). As a result, the reliability of the existing MC methods, which are mostly adopted from electromagnetic communications and not validated with practical testbeds, is highly questionable. As the first step to remove this discrepancy, in this study, we report on the fabrication of a nanoscale MC receiver based on graphene field-effect transistor biosensors. We perform its ICT characterisation in a custom-designed microfluidic MC system with the information encoded into the concentration of single-stranded DNA molecules. This experimental platform is the first practical implementation of a micro/nanoscale MC system with nanoscale MC receivers, and can serve as a testbed for developing realistic MC methods and IoNT applications.
Collapse
Affiliation(s)
- Murat Kuscu
- Internet of Everything (IoE) Group, Department of Engineering, University of Cambridge, Cambridge, CB3 0FA, UK.
- Cambridge Graphene Centre (CGC), Department of Engineering, University of Cambridge, Cambridge, CB3 0FA, UK.
- Department of Electrical and Electronics Engineering, Koc University, Istanbul, 34450, Turkey.
| | - Hamideh Ramezani
- Internet of Everything (IoE) Group, Department of Engineering, University of Cambridge, Cambridge, CB3 0FA, UK
- Cambridge Graphene Centre (CGC), Department of Engineering, University of Cambridge, Cambridge, CB3 0FA, UK
| | - Ergin Dinc
- Internet of Everything (IoE) Group, Department of Engineering, University of Cambridge, Cambridge, CB3 0FA, UK
- Battcock Centre for Experimental Astrophysics, Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Shahab Akhavan
- Cambridge Graphene Centre (CGC), Department of Engineering, University of Cambridge, Cambridge, CB3 0FA, UK
- Institute for Materials Discovery, University College London, Torrington Place, London, WC1E 7JE, UK
| | - Ozgur B Akan
- Internet of Everything (IoE) Group, Department of Engineering, University of Cambridge, Cambridge, CB3 0FA, UK
- Department of Electrical and Electronics Engineering, Koc University, Istanbul, 34450, Turkey
| |
Collapse
|
7
|
Magnetic Tweezers-Based Single-Molecule Assays to Study Interaction of E. coli SSB with DNA and RecQ Helicase. Methods Mol Biol 2021; 2281:93-115. [PMID: 33847954 DOI: 10.1007/978-1-0716-1290-3_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The ability of magnetic tweezers to apply forces and measure molecular displacements has resulted in its extensive use to study the activity of enzymes involved in various aspects of nucleic acid metabolism. These studies have led to the discovery of key aspects of protein-protein and protein-nucleic acid interaction, uncovering dynamic heterogeneities that are lost to ensemble averaging in bulk experiments. The versatility of magnetic tweezers lies in the possibility and ease of tracking multiple parallel single-molecule events to yield statistically relevant single-molecule data. Moreover, they allow tracking both fast millisecond dynamics and slow processes (spanning several hours). In this chapter, we present the protocols used to study the interaction between E. coli SSB, single-stranded DNA (ssDNA), and E. coli RecQ helicase using magnetic tweezers. In particular, we propose constant force and force modulation assays to investigate SSB binding to DNA, as well as to characterize various facets of RecQ helicase activity stimulation by SSB.
Collapse
|
8
|
Bustamante CJ, Chemla YR, Liu S, Wang MD. Optical tweezers in single-molecule biophysics. NATURE REVIEWS. METHODS PRIMERS 2021; 1:25. [PMID: 34849486 PMCID: PMC8629167 DOI: 10.1038/s43586-021-00021-6] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/12/2021] [Indexed: 12/15/2022]
Abstract
Optical tweezers have become the method of choice in single-molecule manipulation studies. In this Primer, we first review the physical principles of optical tweezers and the characteristics that make them a powerful tool to investigate single molecules. We then introduce the modifications of the method to extend the measurement of forces and displacements to torques and angles, and to develop optical tweezers with single-molecule fluorescence detection capabilities. We discuss force and torque calibration of these instruments, their various modes of operation and most common experimental geometries. We describe the type of data obtained in each experimental design and their analyses. This description is followed by a survey of applications of these methods to the studies of protein-nucleic acid interactions, protein/RNA folding and molecular motors. We also discuss data reproducibility, the factors that lead to the data variability among different laboratories and the need to develop field standards. We cover the current limitations of the methods and possible ways to optimize instrument operation, data extraction and analysis, before suggesting likely areas of future growth.
Collapse
Affiliation(s)
- Carlos J. Bustamante
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Department of Physics, University of California, Berkeley, CA, USA
- Department of Chemistry, University of California, Berkeley, CA, USA
- Kavli Energy NanoScience Institute, University of California, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
| | - Yann R. Chemla
- Department of Physics, Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Shixin Liu
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, NY, USA
| | - Michelle D. Wang
- Department of Physics, Laboratory of Atomic and Solid State Physics, Howard Hughes Medical Institute, Cornell University, Ithaca, NY, USA
| |
Collapse
|
9
|
Li Y, Struwe WB, Kukura P. Single molecule mass photometry of nucleic acids. Nucleic Acids Res 2020; 48:e97. [PMID: 32756898 PMCID: PMC7515692 DOI: 10.1093/nar/gkaa632] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022] Open
Abstract
Mass photometry is a recently developed methodology capable of measuring the mass of individual proteins under solution conditions. Here, we show that this approach is equally applicable to nucleic acids, enabling their facile, rapid and accurate detection and quantification using sub-picomoles of sample. The ability to count individual molecules directly measures relative concentrations in complex mixtures without need for separation. Using a dsDNA ladder, we find a linear relationship between the number of bases per molecule and the associated imaging contrast for up to 1200 bp, enabling us to quantify dsDNA length with up to 2 bp accuracy. These results introduce mass photometry as an accurate, rapid and label-free single molecule method complementary to existing DNA characterization techniques.
Collapse
Affiliation(s)
- Yiwen Li
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| | - Weston B Struwe
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| | - Philipp Kukura
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| |
Collapse
|
10
|
Desai VP, Frank F, Lee A, Righini M, Lancaster L, Noller HF, Tinoco I, Bustamante C. Co-temporal Force and Fluorescence Measurements Reveal a Ribosomal Gear Shift Mechanism of Translation Regulation by Structured mRNAs. Mol Cell 2019; 75:1007-1019.e5. [PMID: 31471187 DOI: 10.1016/j.molcel.2019.07.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 06/12/2019] [Accepted: 07/15/2019] [Indexed: 11/18/2022]
Abstract
The movement of ribosomes on mRNA is often interrupted by secondary structures that present mechanical barriers and play a central role in translation regulation. We investigate how ribosomes couple their internal conformational changes with the activity of translocation factor EF-G to unwind mRNA secondary structures using high-resolution optical tweezers with single-molecule fluorescence capability. We find that hairpin opening occurs during EF-G-catalyzed translocation and is driven by the forward rotation of the small subunit head. Modulating the magnitude of the hairpin barrier by force shows that ribosomes respond to strong barriers by shifting their operation to an alternative 7-fold-slower kinetic pathway prior to translocation. Shifting into a slow gear results from an allosteric switch in the ribosome that may allow it to exploit thermal fluctuations to overcome mechanical barriers. Finally, we observe that ribosomes occasionally open the hairpin in two successive sub-codon steps, revealing a previously unobserved translocation intermediate.
Collapse
Affiliation(s)
- Varsha P Desai
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA; Jason L. Choy Laboratory of Single-Molecule Biophysics, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Filipp Frank
- Jason L. Choy Laboratory of Single-Molecule Biophysics, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Antony Lee
- Jason L. Choy Laboratory of Single-Molecule Biophysics, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Physics, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Maurizio Righini
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA; Jason L. Choy Laboratory of Single-Molecule Biophysics, University of California, Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences, QB3, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Laura Lancaster
- Department of Molecular, Cell, and Developmental Biology and Center for Molecular Biology of RNA, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Harry F Noller
- Department of Molecular, Cell, and Developmental Biology and Center for Molecular Biology of RNA, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Ignacio Tinoco
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Carlos Bustamante
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA; Jason L. Choy Laboratory of Single-Molecule Biophysics, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Physics, University of California, Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences, QB3, University of California, Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Kavli Energy Nanoscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
11
|
Mallis RJ, Brazin KN, Duke-Cohan JS, Hwang W, Wang JH, Wagner G, Arthanari H, Lang MJ, Reinherz EL. NMR: an essential structural tool for integrative studies of T cell development, pMHC ligand recognition and TCR mechanobiology. JOURNAL OF BIOMOLECULAR NMR 2019; 73:319-332. [PMID: 30815789 PMCID: PMC6693947 DOI: 10.1007/s10858-019-00234-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 02/06/2019] [Indexed: 05/05/2023]
Abstract
Early studies of T cell structural biology using X-ray crystallography, surface plasmon resonance (SPR) and isothermal titration calorimetry (ITC) focused on a picture of the αβT cell receptor (αβTCR) component domains and their cognate ligands (peptides bound to MHC molecules, i.e. pMHCs) as static interaction partners. Moving forward requires integrating this corpus of data with dynamic technologies such as NMR, molecular dynamics (MD) simulations and real-time single molecule (SM) studies exemplified by optical tweezers (OT). NMR bridges relevant timescales and provides the potential for an all-atom dynamic description of αβTCR components prior to and during interactions with binding partners. SM techniques have opened up vistas in understanding the non-equilibrium nature of T cell signaling through the introduction of force-mediated binding measurements into the paradigm for T cell function. In this regard, bioforces consequent to T-lineage cell motility are now perceived as placing piconewton (pN)-level loads on single receptor-pMHC bonds to impact structural change and αβT-lineage biology, including peptide discrimination, cellular activation, and developmental progression. We discuss herein essential NMR technologies in illuminating the role of ligand binding in the preT cell receptor (preTCR), the αβTCR developmental precursor, and convergence of NMR, SM and MD data in advancing our comprehension of T cell development. More broadly we review the central hypothesis that the αβTCR is a mechanosensor, fostered by breakthrough NMR-based structural insights. Collectively, elucidating dynamic aspects through the integrative use of NMR, SM, and MD shall advance fundamental appreciation of the mechanism of T cell signaling as well as inform translational efforts in αβTCR and chimeric T cell (CAR-T) immunotherapies and T cell vaccinology.
Collapse
Affiliation(s)
- Robert J Mallis
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
- Department of Dermatology, Harvard Medical School, Boston, MA, 02115, USA
- Laboratory of Immunobiology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
| | - Kristine N Brazin
- Laboratory of Immunobiology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Jonathan S Duke-Cohan
- Laboratory of Immunobiology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Wonmuk Hwang
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA
- Department of Materials Science & Engineering, Texas A&M University, College Station, TX, 77843, USA
- School of Computational Sciences, Korea Institute for Advanced Study, Seoul, 02455, Republic of Korea
| | - Jia-Huai Wang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
- Laboratory of Immunobiology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Gerhard Wagner
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Haribabu Arthanari
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA.
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA.
| | - Matthew J Lang
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, 37235, USA.
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, 37235, USA.
| | - Ellis L Reinherz
- Laboratory of Immunobiology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA.
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
12
|
Jia F, Wang S, Man Y, Kumar P, Liu B. Recent Developments in the Interactions of Classic Intercalated Ruthenium Compounds: [Ru(bpy)₂dppz] 2+ and [Ru(phen)₂dppz] 2+ with a DNA Molecule. Molecules 2019; 24:molecules24040769. [PMID: 30791625 PMCID: PMC6412511 DOI: 10.3390/molecules24040769] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/12/2019] [Accepted: 02/12/2019] [Indexed: 12/19/2022] Open
Abstract
[Ru(bpy)2dppz]2+ and [Ru(phen)2dppz]2+ as the light switches of the deoxyribose nucleic acid (DNA) molecule have attracted much attention and have become a powerful tool for exploring the structure of the DNA helix. Their interactions have been intensively studied because of the excellent photophysical and photochemical properties of ruthenium compounds. In this perspective, this review describes the recent developments in the interactions of these two classic intercalated compounds with a DNA helix. The mechanism of the molecular light switch effect and the selectivity of these two compounds to different forms of a DNA helix has been discussed. In addition, the specific binding modes between them have been discussed in detail, for a better understanding the mechanism of the light switch and the luminescence difference. Finally, recent studies of single molecule force spectroscopy have also been included so as to precisely interpret the kinetics, equilibrium constants, and the energy landscape during the process of the dynamic assembly of ligands into a single DNA helix.
Collapse
Affiliation(s)
- Fuchao Jia
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Shuo Wang
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Yan Man
- Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| | - Parveen Kumar
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Bo Liu
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China.
| |
Collapse
|
13
|
Brouwer I, Moschetti T, Candelli A, Garcin EB, Modesti M, Pellegrini L, Wuite GJ, Peterman EJ. Two distinct conformational states define the interaction of human RAD51-ATP with single-stranded DNA. EMBO J 2018; 37:embj.201798162. [PMID: 29507080 PMCID: PMC5881629 DOI: 10.15252/embj.201798162] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 02/07/2018] [Accepted: 02/08/2018] [Indexed: 12/14/2022] Open
Abstract
An essential mechanism for repairing DNA double‐strand breaks is homologous recombination (HR). One of its core catalysts is human RAD51 (hRAD51), which assembles as a helical nucleoprotein filament on single‐stranded DNA, promoting DNA‐strand exchange. Here, we study the interaction of hRAD51 with single‐stranded DNA using a single‐molecule approach. We show that ATP‐bound hRAD51 filaments can exist in two different states with different contour lengths and with a free‐energy difference of ~4 kBT per hRAD51 monomer. Upon ATP hydrolysis, the filaments convert into a disassembly‐competent ADP‐bound configuration. In agreement with the single‐molecule analysis, we demonstrate the presence of two distinct protomer interfaces in the crystal structure of a hRAD51‐ATP filament, providing a structural basis for the two conformational states of the filament. Together, our findings provide evidence that hRAD51‐ATP filaments can exist in two interconvertible conformational states, which might be functionally relevant for DNA homology recognition and strand exchange.
Collapse
Affiliation(s)
- Ineke Brouwer
- Department of Physics and Astronomy and LaserLaB, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | | - Andrea Candelli
- Department of Physics and Astronomy and LaserLaB, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Edwige B Garcin
- Cancer Research Center of Marseille, CNRS UMR7258, Inserm U1068, Institut Paoli-Calmettes, Aix-Marseille Université, Marseille, France
| | - Mauro Modesti
- Cancer Research Center of Marseille, CNRS UMR7258, Inserm U1068, Institut Paoli-Calmettes, Aix-Marseille Université, Marseille, France
| | - Luca Pellegrini
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Gijs Jl Wuite
- Department of Physics and Astronomy and LaserLaB, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Erwin Jg Peterman
- Department of Physics and Astronomy and LaserLaB, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
14
|
Madariaga-Marcos J, Hormeño S, Pastrana CL, Fisher GLM, Dillingham MS, Moreno-Herrero F. Force determination in lateral magnetic tweezers combined with TIRF microscopy. NANOSCALE 2018; 10:4579-4590. [PMID: 29461549 PMCID: PMC5831119 DOI: 10.1039/c7nr07344e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 12/07/2017] [Indexed: 06/08/2023]
Abstract
Combining single-molecule techniques with fluorescence microscopy has attracted much interest because it allows the correlation of mechanical measurements with directly visualized DNA : protein interactions. In particular, its combination with total internal reflection fluorescence microscopy (TIRF) is advantageous because of the high signal-to-noise ratio this technique achieves. This, however, requires stretching long DNA molecules across the surface of a flow cell to maximize polymer exposure to the excitation light. In this work, we develop a module to laterally stretch DNA molecules at a constant force, which can be easily implemented in regular or combined magnetic tweezers (MT)-TIRF setups. The pulling module is further characterized in standard flow cells of different thicknesses and glass capillaries, using two types of micrometer size superparamagnetic beads, long DNA molecules, and a home-built device to rotate capillaries with mrad precision. The force range achieved by the magnetic pulling module was between 0.1 and 30 pN. A formalism for estimating forces in flow-stretched tethered beads is also proposed, and the results compared with those of lateral MT, demonstrating that lateral MT achieve higher forces with lower dispersion. Finally, we show the compatibility with TIRF microscopy and the parallelization of measurements by characterizing DNA binding by the centromere-binding protein ParB from Bacillus subtilis. Simultaneous MT pulling and fluorescence imaging demonstrate the non-specific binding of BsParB on DNA under conditions restrictive to condensation.
Collapse
Affiliation(s)
- J. Madariaga-Marcos
- Department of Macromolecular Structures , Centro Nacional de Biotecnología , Consejo Superior de Investigaciones Científicas , 28049 Cantoblanco , Madrid , Spain .
| | - S. Hormeño
- Department of Macromolecular Structures , Centro Nacional de Biotecnología , Consejo Superior de Investigaciones Científicas , 28049 Cantoblanco , Madrid , Spain .
| | - C. L. Pastrana
- Department of Macromolecular Structures , Centro Nacional de Biotecnología , Consejo Superior de Investigaciones Científicas , 28049 Cantoblanco , Madrid , Spain .
| | - G. L. M. Fisher
- DNA:Protein Interactions Unit , School of Biochemistry , Biomedical Sciences Building , University of Bristol , Bristol , BS8 1TD , UK
| | - M. S. Dillingham
- DNA:Protein Interactions Unit , School of Biochemistry , Biomedical Sciences Building , University of Bristol , Bristol , BS8 1TD , UK
| | - F. Moreno-Herrero
- Department of Macromolecular Structures , Centro Nacional de Biotecnología , Consejo Superior de Investigaciones Científicas , 28049 Cantoblanco , Madrid , Spain .
| |
Collapse
|
15
|
Overstretching partially alkyne functionalized dsDNA using near infrared optical tweezers. Biochem Biophys Res Commun 2018; 496:975-980. [PMID: 29339160 DOI: 10.1016/j.bbrc.2018.01.087] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 01/11/2018] [Indexed: 11/23/2022]
Abstract
The force-extension behaviour of synthesized double-stranded DNAs (dsDNAs) designed to have 2.1% or 6.6% of the thymine bases alkyne functionalized was studied using near infrared (NIR) optical tweezers. Measurements were carried out on substrates with and without flurophores covalently attached to the alkyne moiety over an extended force range (F=0-70 pN) and results were compared to those obtained from an unmodified control. In accordance with earlier work [1] (measured over a force range F=0-5 pN), the force-extension of the dsDNA containing 2.1% modified-bases agreed well with that of the control. By contrast, the force-extension of the dsDNA containing 6.6% modified-bases showed an increasing deviation from that of the control as the dsDNA extension approached the molecule's contour length. These results indicate that incorporating alkyne functionalized bases can modify the mechanical properties of the dsDNA and that degree of functionalization should be carefully considered if a fluorescent mechanical analogue is required. A discrepancy between 1) the control dsDNA force-extension measured in Ref. [1] and that measured here and 2) dsDNA extensions carried out on the same duplex at different laser powers was noted; this was attributed to beam heating by the NIR trapping laser which was estimated to raise the local temperature at the optical traps by ΔT≈10-15°C.
Collapse
|
16
|
van Mameren J, Wuite GJL, Heller I. Introduction to Optical Tweezers: Background, System Designs, and Commercial Solutions. Methods Mol Biol 2018; 1665:3-23. [PMID: 28940061 DOI: 10.1007/978-1-4939-7271-5_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Optical tweezers are a means to manipulate objects with light. With the technique, microscopically small objects can be held and steered, while forces on the trapped objects can be accurately measured and exerted. Optical tweezers can typically obtain a nanometer spatial resolution, a picoNewton force resolution, and a millisecond time resolution, which makes them excellently suited to study biological processes from the single-cell down to the single-molecule level. In this chapter, we will provide an introduction on the use of optical tweezers in single-molecule approaches. We will introduce the basic principles and methodology involved in optical trapping, force calibration, and force measurements. Next we describe the components of an optical tweezers setup and their experimental relevance in single-molecule approaches. Finally, we provide a concise overview of commercial optical tweezers systems. Commercial systems are becoming increasingly available and provide access to single-molecule optical tweezers experiments without the need for a thorough background in physics.
Collapse
Affiliation(s)
- Joost van Mameren
- Institute of Physics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Gijs J L Wuite
- LaserLaB and Department of Physics and Astronomy, Vrije Universiteit, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands.
| | - Iddo Heller
- LaserLaB and Department of Physics and Astronomy, Vrije Universiteit, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
17
|
Abstract
Genetic recombination occurs in all organisms and is vital for genome stability. Indeed, in humans, aberrant recombination can lead to diseases such as cancer. Our understanding of homologous recombination is built upon more than a century of scientific inquiry, but achieving a more complete picture using ensemble biochemical and genetic approaches is hampered by population heterogeneity and transient recombination intermediates. Recent advances in single-molecule and super-resolution microscopy methods help to overcome these limitations and have led to new and refined insights into recombination mechanisms, including a detailed understanding of DNA helicase function and synaptonemal complex structure. The ability to view cellular processes at single-molecule resolution promises to transform our understanding of recombination and related processes.
Collapse
|
18
|
Tardin C. The mechanics of DNA loops bridged by proteins unveiled by single-molecule experiments. Biochimie 2017; 142:80-92. [PMID: 28804000 DOI: 10.1016/j.biochi.2017.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 08/06/2017] [Indexed: 12/28/2022]
Abstract
Protein-induced DNA bridging and looping is a common mechanism for various and essential processes in bacterial chromosomes. This mechanism is preserved despite the very different bacterial conditions and their expected influence on the thermodynamic and kinetic characteristics of the bridge formation and stability. Over the last two decades, single-molecule techniques carried out on in vitro DNA systems have yielded valuable results which, in combination with theoretical works, have clarified the effects of different parameters of nucleoprotein complexes on the protein-induced DNA bridging and looping process. In this review, I will outline the features that can be measured for such processes with various single-molecule techniques in use in the field. I will then describe both the experimental results and the theoretical models that illuminate the contribution of the DNA molecule itself as well as that of the bridging proteins in the DNA looping mechanism at play in the nucleoid of E. coli.
Collapse
Affiliation(s)
- Catherine Tardin
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, France.
| |
Collapse
|
19
|
Lisica A, Grill SW. Optical tweezers studies of transcription by eukaryotic RNA polymerases. Biomol Concepts 2017; 8:1-11. [PMID: 28222010 DOI: 10.1515/bmc-2016-0028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 01/10/2017] [Indexed: 11/15/2022] Open
Abstract
Transcription is the first step in the expression of genetic information and it is carried out by large macromolecular enzymes called RNA polymerases. Transcription has been studied for many years and with a myriad of experimental techniques, ranging from bulk studies to high-resolution transcript sequencing. In this review, we emphasise the advantages of using single-molecule techniques, particularly optical tweezers, to study transcription dynamics. We give an overview of the latest results in the single-molecule transcription field, focusing on transcription by eukaryotic RNA polymerases. Finally, we evaluate recent quantitative models that describe the biophysics of RNA polymerase translocation and backtracking dynamics.
Collapse
Affiliation(s)
- Ana Lisica
- BIOTEC, Technical University Dresden, Tatzberg 47/49, D-01307 Dresden, Germany; and Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, D-01307 Dresden, Germany
| | - Stephan W Grill
- BIOTEC, Technical University Dresden, Tatzberg 47/49, D-01307 Dresden, Germany; and Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, D-01307 Dresden, Germany
| |
Collapse
|
20
|
High-Resolution "Fleezers": Dual-Trap Optical Tweezers Combined with Single-Molecule Fluorescence Detection. Methods Mol Biol 2017; 1486:183-256. [PMID: 27844430 DOI: 10.1007/978-1-4939-6421-5_8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Recent advances in optical tweezers have greatly expanded their measurement capabilities. A new generation of hybrid instrument that combines nanomechanical manipulation with fluorescence detection-fluorescence optical tweezers, or "fleezers"-is providing a powerful approach to study complex macromolecular dynamics. Here, we describe a combined high-resolution optical trap/confocal fluorescence microscope that can simultaneously detect sub-nanometer displacements, sub-piconewton forces, and single-molecule fluorescence signals. The primary technical challenge to these hybrid instruments is how to combine both measurement modalities without sacrificing the sensitivity of either one. We present general design principles to overcome this challenge and provide detailed, step-by-step instructions to implement them in the construction and alignment of the instrument. Lastly, we present a set of protocols to perform a simple, proof-of-principle experiment that highlights the instrument capabilities.
Collapse
|
21
|
Heller I, Laurens N, Vorselen D, Broekmans OD, Biebricher AS, King GA, Brouwer I, Wuite GJL, Peterman EJG. Versatile Quadruple-Trap Optical Tweezers for Dual DNA Experiments. Methods Mol Biol 2017; 1486:257-272. [PMID: 27844431 DOI: 10.1007/978-1-4939-6421-5_9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Optical manipulation techniques provide researchers the powerful ability to directly move, probe and interrogate molecular complexes. Quadruple optical trapping is an emerging method for optical manipulation and force spectroscopy that has found its primary use in studying dual DNA interactions, but is certainly not limited to DNA investigations. The key benefit of quadruple optical trapping is that two molecular strands can be manipulated independently and simultaneously. The molecular geometries of the strands can thus be controlled and their interactions can be quantified by force measurements. Accurate control of molecular geometry is of critical importance for the analysis of, for example, protein-mediated DNA-bridging, which plays an important role in DNA compaction. Here, we describe the design of a dedicated and robust quadruple optical trapping-instrument. This instrument can be switched straightforwardly to a high-resolution dual trap and it is integrated with microfluidics and single-molecule fluorescence microscopy, making it a highly versatile tool for correlative single-molecule analysis of a wide range of biomolecular systems.
Collapse
Affiliation(s)
- Iddo Heller
- Department of Physics and Astronomy and LaserLab, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Niels Laurens
- Department of Physics and Astronomy and LaserLab, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Daan Vorselen
- Department of Physics and Astronomy and LaserLab, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Onno D Broekmans
- Department of Physics and Astronomy and LaserLab, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Andreas S Biebricher
- Department of Physics and Astronomy and LaserLab, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Graeme A King
- Department of Physics and Astronomy and LaserLab, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Ineke Brouwer
- Department of Physics and Astronomy and LaserLab, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Gijs J L Wuite
- Department of Physics and Astronomy and LaserLab, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Erwin J G Peterman
- Department of Physics and Astronomy and LaserLab, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
22
|
Frykholm K, Nyberg LK, Westerlund F. Exploring DNA–protein interactions on the single DNA molecule level using nanofluidic tools. Integr Biol (Camb) 2017; 9:650-661. [DOI: 10.1039/c7ib00085e] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This review highlights the use of nanofluidic channels for studying DNA–protein interactions on the single DNA molecule level.
Collapse
Affiliation(s)
- Karolin Frykholm
- Department of Biology and Biological Engineering
- Chalmers University of Technology
- Gothenburg
- Sweden
| | - Lena K. Nyberg
- Department of Biology and Biological Engineering
- Chalmers University of Technology
- Gothenburg
- Sweden
| | - Fredrik Westerlund
- Department of Biology and Biological Engineering
- Chalmers University of Technology
- Gothenburg
- Sweden
| |
Collapse
|
23
|
Kim KI, Lee S, Jin X, Kim SJ, Jo K, Lee JH. DNA Binding Peptide Directed Synthesis of Continuous DNA Nanowires for Analysis of Large DNA Molecules by Scanning Electron Microscope. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1601926. [PMID: 27813273 DOI: 10.1002/smll.201601926] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 10/04/2016] [Indexed: 06/06/2023]
Abstract
Synthesis of smooth and continuous DNA nanowires, preserving the original structure of native DNA, and allowing its analysis by scanning electron microscope (SEM), is demonstrated. Gold nanoparticles densely assembled on the DNA backbone via thiol-tagged DNA binding peptides work as seeds for metallization of DNA. This method allows whole analysis of DNA molecules with entangled 3D features.
Collapse
Affiliation(s)
- Kyung-Il Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Seonghyun Lee
- Department of Chemistry and Interdisciplinary Program of Integrated Biotechnology, Sogang University, Seoul, 04107, Republic of Korea
| | - Xuelin Jin
- Department of Chemistry and Interdisciplinary Program of Integrated Biotechnology, Sogang University, Seoul, 04107, Republic of Korea
| | - Su Ji Kim
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Kyubong Jo
- Department of Chemistry and Interdisciplinary Program of Integrated Biotechnology, Sogang University, Seoul, 04107, Republic of Korea
| | - Jung Heon Lee
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| |
Collapse
|
24
|
Fornander LH, Frykholm K, Fritzsche J, Araya J, Nevin P, Werner E, Çakır A, Persson F, Garcin EB, Beuning PJ, Mehlig B, Modesti M, Westerlund F. Visualizing the Nonhomogeneous Structure of RAD51 Filaments Using Nanofluidic Channels. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:8403-8412. [PMID: 27479732 DOI: 10.1021/acs.langmuir.6b01877] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
RAD51 is the key component of the homologous recombination pathway in eukaryotic cells and performs its task by forming filaments on DNA. In this study we investigate the physical properties of RAD51 filaments formed on DNA using nanofluidic channels and fluorescence microscopy. Contrary to the bacterial ortholog RecA, RAD51 forms inhomogeneous filaments on long DNA in vitro, consisting of several protein patches. We demonstrate that a permanent "kink" in the filament is formed where two patches meet if the stretch of naked DNA between the patches is short. The kinks are readily seen in the present microscopy approach but would be hard to identify using conventional single DNA molecule techniques where the DNA is more stretched. We also demonstrate that protein patches separated by longer stretches of bare DNA roll up on each other and this is visualized as transiently overlapping filaments. RAD51 filaments can be formed at several different conditions, varying the cation (Mg(2+) or Ca(2+)), the DNA substrate (single-stranded or double-stranded), and the RAD51 concentration during filament nucleation, and we compare the properties of the different filaments formed. The results provide important information regarding the physical properties of RAD51 filaments but also demonstrate that nanofluidic channels are perfectly suited to study protein-DNA complexes.
Collapse
Affiliation(s)
| | | | | | - Joshua Araya
- Department of Chemistry and Chemical Biology, Northeastern University , Boston, Massachusetts 02115, United States
| | - Philip Nevin
- Department of Chemistry and Chemical Biology, Northeastern University , Boston, Massachusetts 02115, United States
| | - Erik Werner
- Department of Physics, University of Gothenburg , 412 96 Gothenburg, Sweden
| | - Ali Çakır
- Department of Physics, University of Gothenburg , 412 96 Gothenburg, Sweden
| | - Fredrik Persson
- Department for Cell and Molecular Biology, Science for Life Laboratory, Uppsala University , 751 24 Uppsala, Sweden
| | - Edwige B Garcin
- Cancer Research Center of Marseille, CNRS UMR7258, Inserm U1068, Institut Paoli-Calmettes, Aix-Marseille Université , 13273 Marseille, France
| | - Penny J Beuning
- Department of Chemistry and Chemical Biology, Northeastern University , Boston, Massachusetts 02115, United States
| | - Bernhard Mehlig
- Department of Physics, University of Gothenburg , 412 96 Gothenburg, Sweden
| | - Mauro Modesti
- Cancer Research Center of Marseille, CNRS UMR7258, Inserm U1068, Institut Paoli-Calmettes, Aix-Marseille Université , 13273 Marseille, France
| | | |
Collapse
|
25
|
Chemla YR. High‐resolution, hybrid optical trapping methods, and their application to nucleic acid processing proteins. Biopolymers 2016; 105:704-14. [DOI: 10.1002/bip.22880] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 05/12/2016] [Accepted: 05/16/2016] [Indexed: 12/31/2022]
Affiliation(s)
- Yann R. Chemla
- Department of Physics, Center for the Physics of Living Cells, Center for Biophysics and Quantitative BiologyUniversity of IllinoisUrbana‐Champaign
| |
Collapse
|
26
|
Candelli A, Hoekstra TP, Farge G, Gross P, Peterman EJG, Wuite GJL. A toolbox for generating single-stranded DNA in optical tweezers experiments. Biopolymers 2016; 99:611-20. [PMID: 23444293 DOI: 10.1002/bip.22225] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 02/19/2013] [Indexed: 12/25/2022]
Abstract
Essential genomic transactions such as DNA-damage repair and DNA replication take place on single-stranded DNA (ssDNA) or require specific single-stranded/double-stranded DNA (ssDNA/dsDNA) junctions (SDSJ). A significant challenge in single-molecule studies of DNA-protein interactions using optical trapping is the design and generation of appropriate DNA templates. In contrast to dsDNA, only a limited toolbox is available for the generation of ssDNA constructs for optical tweezers experiments. Here, we present several kinds of DNA templates suitable for single-molecule experiments requiring segments of ssDNA of several kilobases in length. These different biotinylated dsDNA templates can be tethered between optically trapped microspheres and can, by the subsequent use of force-induced DNA melting, be converted into partial or complete ssDNA molecules. We systematically investigated the time scale and efficiency of force-induced melting at different ionic strengths for DNA molecules of different sequences and lengths. Furthermore, we quantified the impact of microspheres of different sizes on the lifetime of ssDNA tethers in optical tweezers experiments. Together, these experiments provide deeper insights into the variables that impact the production of ssDNA for single molecules studies and represent a starting point for further optimization of DNA templates that permit the investigation of protein binding and kinetics on ssDNA.
Collapse
Affiliation(s)
- Andrea Candelli
- Institute for Lasers, Life and Biophotonics, Department of Physics and Astronomy, VU University Amsterdam, Amsterdam, 1081, HV, The Netherlands
| | | | | | | | | | | |
Collapse
|
27
|
Almaqwashi AA, Paramanathan T, Rouzina I, Williams MC. Mechanisms of small molecule-DNA interactions probed by single-molecule force spectroscopy. Nucleic Acids Res 2016; 44:3971-88. [PMID: 27085806 PMCID: PMC4872107 DOI: 10.1093/nar/gkw237] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 03/24/2016] [Indexed: 12/31/2022] Open
Abstract
There is a wide range of applications for non-covalent DNA binding ligands, and optimization of such interactions requires detailed understanding of the binding mechanisms. One important class of these ligands is that of intercalators, which bind DNA by inserting aromatic moieties between adjacent DNA base pairs. Characterizing the dynamic and equilibrium aspects of DNA-intercalator complex assembly may allow optimization of DNA binding for specific functions. Single-molecule force spectroscopy studies have recently revealed new details about the molecular mechanisms governing DNA intercalation. These studies can provide the binding kinetics and affinity as well as determining the magnitude of the double helix structural deformations during the dynamic assembly of DNA–ligand complexes. These results may in turn guide the rational design of intercalators synthesized for DNA-targeted drugs, optical probes, or integrated biological self-assembly processes. Herein, we survey the progress in experimental methods as well as the corresponding analysis framework for understanding single molecule DNA binding mechanisms. We discuss briefly minor and major groove binding ligands, and then focus on intercalators, which have been probed extensively with these methods. Conventional mono-intercalators and bis-intercalators are discussed, followed by unconventional DNA intercalation. We then consider the prospects for using these methods in optimizing conventional and unconventional DNA-intercalating small molecules.
Collapse
Affiliation(s)
- Ali A Almaqwashi
- Department of Physics, Northeastern University, Boston, MA 02115, USA
| | | | - Ioulia Rouzina
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH 43210, USA
| | - Mark C Williams
- Department of Physics, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
28
|
Song D, Graham TGW, Loparo JJ. A general approach to visualize protein binding and DNA conformation without protein labelling. Nat Commun 2016; 7:10976. [PMID: 26952553 PMCID: PMC4786781 DOI: 10.1038/ncomms10976] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 02/08/2016] [Indexed: 01/29/2023] Open
Abstract
Single-molecule manipulation methods, such as magnetic tweezers and flow stretching, generally use the measurement of changes in DNA extension as a proxy for examining interactions between a DNA-binding protein and its substrate. These approaches are unable to directly measure protein–DNA association without fluorescently labelling the protein, which can be challenging. Here we address this limitation by developing a new approach that visualizes unlabelled protein binding on DNA with changes in DNA conformation in a relatively high-throughput manner. Protein binding to DNA molecules sparsely labelled with Cy3 results in an increase in fluorescence intensity due to protein-induced fluorescence enhancement (PIFE), whereas DNA length is monitored under flow of buffer through a microfluidic flow cell. Given that our assay uses unlabelled protein, it is not limited to the low protein concentrations normally required for single-molecule fluorescence imaging and should be broadly applicable to studying protein–DNA interactions. Single-molecule imaging of protein-DNA association requires fluorescently labelled protein, which limits the protein concentration that can be used. Here the authors exploit protein induced fluorescent enhancement of DNA sparsely labelled with Cy3 to visualize protein binding and correlate it with changes in DNA conformation.
Collapse
Affiliation(s)
- Dan Song
- Harvard Biophysics Program, Harvard Medical School, Boston, Massachusetts 02115, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Seeley G. Mudd Room 204B, Boston, Massachusetts 02115, USA
| | - Thomas G W Graham
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Seeley G. Mudd Room 204B, Boston, Massachusetts 02115, USA.,Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Joseph J Loparo
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Seeley G. Mudd Room 204B, Boston, Massachusetts 02115, USA
| |
Collapse
|
29
|
Duesterberg VK, Fischer-Hwang IT, Perez CF, Hogan DW, Block SM. Observation of long-range tertiary interactions during ligand binding by the TPP riboswitch aptamer. eLife 2015; 4. [PMID: 26709838 PMCID: PMC4775224 DOI: 10.7554/elife.12362] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 12/27/2015] [Indexed: 12/13/2022] Open
Abstract
The thiamine pyrophosphate (TPP) riboswitch is a cis-regulatory element in mRNA that modifies gene expression in response to TPP concentration. Its specificity is dependent upon conformational changes that take place within its aptamer domain. Here, the role of tertiary interactions in ligand binding was studied at the single-molecule level by combined force spectroscopy and Förster resonance energy transfer (smFRET), using an optical trap equipped for simultaneous smFRET. The ‘Force-FRET’ approach directly probes secondary and tertiary structural changes during folding, including events associated with binding. Concurrent transitions observed in smFRET signals and RNA extension revealed differences in helix-arm orientation between two previously-identified ligand-binding states that had been undetectable by spectroscopy alone. Our results show that the weaker binding state is able to bind to TPP, but is unable to form a tertiary docking interaction that completes the binding process. Long-range tertiary interactions stabilize global riboswitch structure and confer increased ligand specificity. DOI:http://dx.doi.org/10.7554/eLife.12362.001 When a gene is switched on, its DNA is first copied to make a molecule of messenger ribonucleic acid (mRNA). The genetic code in the mRNA is then translated into a protein. There are also untranslated regions within mRNAs that do not code for protein themselves, but serve to regulate whether or not a protein is produced from the rest of the mRNA. For example, many mRNAs contain a motif in their untranslated region called a 'riboswitch'. These motifs selectively bind to molecules that are the products of metabolic processes. One riboswitch found in bacteria, animals and plants binds to a molecule known as thiamine pyrophosphate (TPP) and regulates genes that control the uptake of a vitamin called thiamine into cells. Newly made mRNA molecules are linear strands that then fold into three-dimensional structures. The TPP riboswitch can adopt distinct shapes depending on whether it is bound to TPP or not. Knowledge of these structures is crucial for understanding how riboswitches regulate protein production. Previous research reported the folding of a TPP riboswitch from bacteria. Here, Duesterberg et al. used a combination of two techniques known as force spectroscopy and Förster resonance energy transfer (FRET) to study the folding of the TPP riboswitch from a plant called Arabidopsis thaliana. The experiments show that in the presence of TPP, structural changes occur in two arm-like appendages – known as helix arms – that extend out of the core of the riboswitch. The riboswitch adopts a particular shape when TPP is strongly bound to it, and in this shape the riboswitch can regulate the activity of certain genes. However, if the riboswitch is only weakly associated with TPP, it takes on a shape in which the two helix arms are further apart and the riboswitch is unable to form the interactions required to complete the process of binding to TPP. Duesterberg et al.’s findings reveal that the way in which the A. thaliana riboswitch changes shape when it is bound to TPP is different to that of its bacterial counterpart. The next challenge will be to observe these shape changes in even more detail, and to use these new techniques to study other riboswitches in various organisms. DOI:http://dx.doi.org/10.7554/eLife.12362.002
Collapse
Affiliation(s)
| | | | | | - Daniel W Hogan
- Department of Applied Physics, Stanford University, Stanford, United States
| | - Steven M Block
- Department of Applied Physics, Stanford University, Stanford, United States.,Department of Biology, Stanford University, Stanford, United States
| |
Collapse
|
30
|
Suei S, Raudsepp A, Kent LM, Keen SAJ, Filichev VV, Williams MAK. DNA visualization in single molecule studies carried out with optical tweezers: Covalent versus non-covalent attachment of fluorophores. Biochem Biophys Res Commun 2015; 466:226-31. [PMID: 26362181 DOI: 10.1016/j.bbrc.2015.09.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 09/03/2015] [Indexed: 11/26/2022]
Abstract
In this study, we investigated the use of the covalent attachment of fluorescent dyes to double-stranded DNA (dsDNA) stretched between particles using optical tweezers (OT) and compared the mechanical properties of the covalently-functionalized chain to that of unmodified DNA and to DNA bound to a previously uncharacterized groove-binder, SYBR-gold. Modified DNA species were obtained by covalently linking azide-functionalized organic fluorophores onto the backbone of DNA chains via the alkyne moieties of modified bases that were incorporated during PCR. These DNA molecules were then constructed into dumbbells by attaching polystyrene particles to the respective chain ends via biotin or digoxigenin handles that had been pre-attached to the PCR primers which formed the ends of the synthesized molecule. Using the optical tweezers, the DNA was stretched by separating the two optically trapped polystyrene particles. Displacements of the particles were measured in 3D using an interpolation-based normalized cross-correlation method and force-extension curves were calculated and fitted to the worm-like chain model to parameterize the mechanical properties of the DNA. Results showed that both the contour and persistence length of the covalently-modified dsDNAs were indistinguishable from that of the unmodified dsDNA, whereas SYBR-gold binding perturbed the contour length of the chain in a force-dependent manner.
Collapse
Affiliation(s)
- Sandy Suei
- Institute of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand; MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - Allan Raudsepp
- Institute of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand
| | - Lisa M Kent
- Institute of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand; Riddet Institute, Massey University, Palmerston North 4442, New Zealand
| | - Stephen A J Keen
- Institute of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand; MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - Vyacheslav V Filichev
- Institute of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand
| | - Martin A K Williams
- Institute of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand; MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand; Riddet Institute, Massey University, Palmerston North 4442, New Zealand.
| |
Collapse
|
31
|
The fluorescence properties and binding mechanism of SYTOX green, a bright, low photo-damage DNA intercalating agent. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2015; 44:337-48. [PMID: 26024786 DOI: 10.1007/s00249-015-1027-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 04/05/2015] [Accepted: 04/08/2015] [Indexed: 10/23/2022]
Abstract
DNA intercalators are widely used in cancer therapeutics, to probe protein-DNA interactions and to investigate the statistical-mechanical properties of DNA. Here, we employ single-molecule fluorescence microscopy, magnetic tweezers, and ensemble-binding assays to investigate the fluorescence properties and binding mechanism of SYTOX green, a DNA labeling dye previously used for staining dead cells and becoming of common use for single-molecule methodologies. Specifically, we show that SYTOX green presents several advantages with respect to other dyes: (1) binds DNA rapidly and with high affinity; (2) has a good signal-to-noise ratio even at low concentrations; (3) exhibits a low photobleaching rate; and (4) induces lower light-induced DNA degradation. Finally, we show that SYTOX green is a DNA intercalator that binds DNA cooperatively with a binding site of 3.5 bp, increasing the DNA length upon binding by 43%, while not affecting its mechanical properties.
Collapse
|
32
|
Arias-Gonzalez JR. Single-molecule portrait of DNA and RNA double helices. Integr Biol (Camb) 2015; 6:904-25. [PMID: 25174412 DOI: 10.1039/c4ib00163j] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The composition and geometry of the genetic information carriers were described as double-stranded right helices sixty years ago. The flexibility of their sugar-phosphate backbones and the chemistry of their nucleotide subunits, which give rise to the RNA and DNA polymers, were soon reported to generate two main structural duplex states with biological relevance: the so-called A and B forms. Double-stranded (ds) RNA adopts the former whereas dsDNA is stable in the latter. The presence of flexural and torsional stresses in combination with environmental conditions in the cell or in the event of specific sequences in the genome can, however, stabilize other conformations. Single-molecule manipulation, besides affording the investigation of the elastic response of these polymers, can test the stability of their structural states and transition models. This approach is uniquely suited to understanding the basic features of protein binding molecules, the dynamics of molecular motors and to shedding more light on the biological relevance of the information blocks of life. Here, we provide a comprehensive single-molecule analysis of DNA and RNA double helices in the context of their structural polymorphism to set a rigorous interpretation of their material response both inside and outside the cell. From early knowledge of static structures to current dynamic investigations, we review their phase transitions and mechanochemical behaviour and harness this fundamental knowledge not only through biological sciences, but also for Nanotechnology and Nanomedicine.
Collapse
Affiliation(s)
- J Ricardo Arias-Gonzalez
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Calle Faraday no. 9, Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
33
|
Cordova JC, Das DK, Manning HW, Lang MJ. Combining single-molecule manipulation and single-molecule detection. Curr Opin Struct Biol 2014; 28:142-8. [DOI: 10.1016/j.sbi.2014.08.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 07/24/2014] [Accepted: 08/12/2014] [Indexed: 11/24/2022]
|
34
|
Narayanaswamy N, Kumar M, Das S, Sharma R, Samanta PK, Pati SK, Dhar SK, Kundu TK, Govindaraju T. A thiazole coumarin (TC) turn-on fluorescence probe for AT-base pair detection and multipurpose applications in different biological systems. Sci Rep 2014; 4:6476. [PMID: 25252596 PMCID: PMC4174567 DOI: 10.1038/srep06476] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 08/27/2014] [Indexed: 11/09/2022] Open
Abstract
Sequence-specific recognition of DNA by small turn-on fluorescence probes is a promising tool for bioimaging, bioanalytical and biomedical applications. Here, the authors report a novel cell-permeable and red fluorescent hemicyanine-based thiazole coumarin (TC) probe for DNA recognition, nuclear staining and cell cycle analysis. TC exhibited strong fluorescence enhancement in the presence of DNA containing AT-base pairs, but did not fluoresce with GC sequences, single-stranded DNA, RNA and proteins. The fluorescence staining of HeLa S3 and HEK 293 cells by TC followed by DNase and RNase digestion studies depicted the selective staining of DNA in the nucleus over the cytoplasmic region. Fluorescence-activated cell sorting (FACS) analysis by flow cytometry demonstrated the potential application of TC in cell cycle analysis in HEK 293 cells. Metaphase chromosome and malaria parasite DNA imaging studies further confirmed the in vivo diagnostic and therapeutic applications of probe TC. Probe TC may find multiple applications in fluorescence spectroscopy, diagnostics, bioimaging and molecular and cell biology.
Collapse
Affiliation(s)
- Nagarjun Narayanaswamy
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, Karnataka, India
| | - Manoj Kumar
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, Karnataka, India
| | - Sadhan Das
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, Karnataka, India
| | - Rahul Sharma
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Pralok K Samanta
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P. O., Bangalore 560064, India
| | - Swapan K Pati
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P. O., Bangalore 560064, India
| | - Suman K Dhar
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Tapas K Kundu
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, Karnataka, India
| | - T Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, Karnataka, India
| |
Collapse
|
35
|
Rao AN, Grainger DW. BIOPHYSICAL PROPERTIES OF NUCLEIC ACIDS AT SURFACES RELEVANT TO MICROARRAY PERFORMANCE. Biomater Sci 2014; 2:436-471. [PMID: 24765522 PMCID: PMC3992954 DOI: 10.1039/c3bm60181a] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Both clinical and analytical metrics produced by microarray-based assay technology have recognized problems in reproducibility, reliability and analytical sensitivity. These issues are often attributed to poor understanding and control of nucleic acid behaviors and properties at solid-liquid interfaces. Nucleic acid hybridization, central to DNA and RNA microarray formats, depends on the properties and behaviors of single strand (ss) nucleic acids (e.g., probe oligomeric DNA) bound to surfaces. ssDNA's persistence length, radius of gyration, electrostatics, conformations on different surfaces and under various assay conditions, its chain flexibility and curvature, charging effects in ionic solutions, and fluorescent labeling all influence its physical chemistry and hybridization under assay conditions. Nucleic acid (e.g., both RNA and DNA) target interactions with immobilized ssDNA strands are highly impacted by these biophysical states. Furthermore, the kinetics, thermodynamics, and enthalpic and entropic contributions to DNA hybridization reflect global probe/target structures and interaction dynamics. Here we review several biophysical issues relevant to oligomeric nucleic acid molecular behaviors at surfaces and their influences on duplex formation that influence microarray assay performance. Correlation of biophysical aspects of single and double-stranded nucleic acids with their complexes in bulk solution is common. Such analysis at surfaces is not commonly reported, despite its importance to microarray assays. We seek to provide further insight into nucleic acid-surface challenges facing microarray diagnostic formats that have hindered their clinical adoption and compromise their research quality and value as genomics tools.
Collapse
Affiliation(s)
- Archana N. Rao
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112 USA
| | - David W. Grainger
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112 USA
- Department of Bioengineering, University of Utah, Salt Lake City, UT 84112 USA
| |
Collapse
|
36
|
Heller I, Sitters G, Broekmans OD, Biebricher AS, Wuite GJL, Peterman EJG. Mobility analysis of super-resolved proteins on optically stretched DNA: comparing imaging techniques and parameters. Chemphyschem 2014; 15:727-33. [PMID: 24470208 DOI: 10.1002/cphc.201300813] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 12/04/2013] [Indexed: 12/14/2022]
Abstract
Fluorescence microscopy in conjunction with optical tweezers is well suited to the study of protein mobility on DNA. Here, we evaluate the benefits and drawbacks of super-resolution and conventional imaging techniques for the analysis of one-dimensional (1D) protein diffusion as commonly observed for DNA-binding proteins. In particular, we demonstrate the visualization of DNA-bound proteins using wide-field, confocal, and stimulated emission depletion (STED) microscopy. We review the suitability of these techniques to conditions of high protein density, and quantify their performance in terms of spatial and temporal resolution. Tracking proteins on DNA forces one to make a choice between localization precision on the one hand, and the number and rate of localizations on the other, by altering imaging modality, excitation intensity, and acquisition rate. Using simulated diffusion data, we quantify the effect of these imaging conditions on the accuracy of 1D diffusion analysis. In addition, we consider the case of diffusion confined between local roadblocks, a case particularly relevant for proteins bound to DNA. Together these results provide guidelines that can assist in judiciously optimizing the experimental conditions required for the analysis of protein mobility on DNA and other 1D systems.
Collapse
Affiliation(s)
- Iddo Heller
- Department of Physics and Astronomy and LaserLab Amsterdam, VU University Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam (The Netherlands)
| | | | | | | | | | | |
Collapse
|
37
|
Heller I, Hoekstra TP, King GA, Peterman EJG, Wuite GJL. Optical tweezers analysis of DNA-protein complexes. Chem Rev 2014; 114:3087-119. [PMID: 24443844 DOI: 10.1021/cr4003006] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Iddo Heller
- Department of Physics and Astronomy and LaserLaB Amsterdam, VU University Amsterdam , De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
38
|
Langer A, Kaiser W, Svejda M, Schwertler P, Rant U. Molecular Dynamics of DNA–Protein Conjugates on Electrified Surfaces: Solutions to the Drift-Diffusion Equation. J Phys Chem B 2014; 118:597-607. [DOI: 10.1021/jp410640z] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- A. Langer
- Walter Schottky Institute and Chemistry Department, Technische Universität München, 85748 Garching, Germany
- Dynamic
Biosensors
GmbH, 82152 Munich, Germany
| | - W. Kaiser
- Walter Schottky Institute and Chemistry Department, Technische Universität München, 85748 Garching, Germany
- Dynamic
Biosensors
GmbH, 82152 Munich, Germany
| | - M. Svejda
- Walter Schottky Institute and Chemistry Department, Technische Universität München, 85748 Garching, Germany
| | - P. Schwertler
- Walter Schottky Institute and Chemistry Department, Technische Universität München, 85748 Garching, Germany
| | - U. Rant
- Walter Schottky Institute and Chemistry Department, Technische Universität München, 85748 Garching, Germany
- Dynamic
Biosensors
GmbH, 82152 Munich, Germany
| |
Collapse
|
39
|
Yuan H, Orrit M. Temperature cycles unravel the dynamics of single biomolecules. Biophys J 2014; 106:3-4. [PMID: 24411230 PMCID: PMC3907218 DOI: 10.1016/j.bpj.2013.11.1120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 11/19/2013] [Indexed: 10/25/2022] Open
Affiliation(s)
- Haifeng Yuan
- MoNOS, LION, Leiden University, Leiden, The Netherlands
| | - Michel Orrit
- MoNOS, LION, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
40
|
Optical Methods to Study Protein-DNA Interactions in Vitro and in Living Cells at the Single-Molecule Level. Int J Mol Sci 2013; 14:3961-92. [PMID: 23429188 PMCID: PMC3588080 DOI: 10.3390/ijms14023961] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Revised: 01/13/2013] [Accepted: 02/04/2013] [Indexed: 12/13/2022] Open
Abstract
The maintenance of intact genetic information, as well as the deployment of transcription for specific sets of genes, critically rely on a family of proteins interacting with DNA and recognizing specific sequences or features. The mechanisms by which these proteins search for target DNA are the subject of intense investigations employing a variety of methods in biology. A large interest in these processes stems from the faster-than-diffusion association rates, explained in current models by a combination of 3D and 1D diffusion. Here, we present a review of the single-molecule approaches at the forefront of the study of protein-DNA interaction dynamics and target search in vitro and in vivo. Flow stretch, optical and magnetic manipulation, single fluorophore detection and localization as well as combinations of different methods are described and the results obtained with these techniques are discussed in the framework of the current facilitated diffusion model.
Collapse
|
41
|
Moayed F, Mashaghi A, Tans SJ. A polypeptide-DNA hybrid with selective linking capability applied to single molecule nano-mechanical measurements using optical tweezers. PLoS One 2013; 8:e54440. [PMID: 23336001 PMCID: PMC3545873 DOI: 10.1371/journal.pone.0054440] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 12/13/2012] [Indexed: 12/15/2022] Open
Abstract
Many applications in biosensing, biomaterial engineering and single molecule biophysics require multiple non-covalent linkages between DNA, protein molecules, and surfaces that are specific yet strong. Here, we present a novel method to join proteins and dsDNA molecule at their ends, in an efficient, rapid and specific manner, based on the recently developed linkage between the protein StrepTactin (STN) and the peptide StrepTag II (ST). We introduce a two-step approach, in which we first construct a hybrid between DNA and a tandem of two STs peptides (tST). In a second step, this hybrid is linked to polystyrene bead surfaces and Maltose Binding Protein (MBP) using STN. Furthermore, we show the STN-tST linkage is more stable against forces applied by optical tweezers than the commonly used biotin-Streptavidin (STV) linkage. It can be used in conjunction with Neutravidin (NTV)-biotin linkages to form DNA tethers that can sustain applied forces above 65 pN for tens of minutes in a quarter of the cases. The method is general and can be applied to construct other surface-DNA and protein-DNA hybrids. The reversibility, high mechanical stability and specificity provided by this linking procedure make it highly suitable for single molecule mechanical studies, as well as biosensing and lab on chip applications.
Collapse
|
42
|
Kim H, Ha T. Single-molecule nanometry for biological physics. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2013; 76:016601. [PMID: 23249673 PMCID: PMC3549428 DOI: 10.1088/0034-4885/76/1/016601] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Precision measurement is a hallmark of physics but the small length scale (∼nanometer) of elementary biological components and thermal fluctuations surrounding them challenge our ability to visualize their action. Here, we highlight the recent developments in single-molecule nanometry where the position of a single fluorescent molecule can be determined with nanometer precision, reaching the limit imposed by the shot noise, and the relative motion between two molecules can be determined with ∼0.3 nm precision at ∼1 ms time resolution, as well as how these new tools are providing fundamental insights into how motor proteins move on cellular highways. We will also discuss how interactions between three and four fluorescent molecules can be used to measure three and six coordinates, respectively, allowing us to correlate the movements of multiple components. Finally, we will discuss recent progress in combining angstrom-precision optical tweezers with single-molecule fluorescent detection, opening new windows for multi-dimensional single-molecule nanometry for biological physics.
Collapse
Affiliation(s)
- Hajin Kim
- Howard Hughes Medical Institute, Urbana, IL 61801, USA
| | | |
Collapse
|
43
|
Abstract
A virus is a complex molecular machine that propagates by channeling its genetic information from cell to cell. Unlike macroscopic engines, it operates in a nanoscopic world under continuous thermal agitation. Viruses have developed efficient passive and active strategies to pack and release nucleic acids. Some aspects of the dynamic behavior of viruses and their substrates can be studied using structural and biochemical techniques. Recently, physical techniques have been applied to dynamic studies of viruses in which their intrinsic mechanical activity can be measured directly. Optical tweezers are a technology that can be used to measure the force, torque and strain produced by molecular motors, as a function of time and at the single-molecule level. Thanks to this technique, some bacteriophages are now known to be powerful nanomachines; they exert force in the piconewton range and their motors work in a highly coordinated fashion for packaging the viral nucleic acid genome. Nucleic acids, whose elasticity and condensation behavior are inherently coupled to the viral packaging mechanisms, are also amenable to examination with optical tweezers. In this chapter, we provide a comprehensive analysis of this laser-based tool, its combination with imaging methods and its application to the study of viruses and viral molecules.
Collapse
Affiliation(s)
- J Ricardo Arias-Gonzalez
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), c/Faraday 9, Campus de Cantoblanco, 28049, Madrid, Spain,
| |
Collapse
|
44
|
Juul S, Ho YP, Stougaard M, Koch J, Andersen FF, Leong KW, Knudsen BR. Microfluidics-mediated isothermal detection of enzyme activity at the single molecule level. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2012; 2011:3258-61. [PMID: 22255034 DOI: 10.1109/iembs.2011.6090885] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Conventional analysis of enzymatic activity, often carried out on pools of cells, is blind to heterogeneity in the population. Here, we combine microfluidics with a previously developed isothermal rolling circle amplification-based assay to investigate multiple enzymatic activities in down to single cells. This microfluidics-meditated assay performs at very high sensitivity in picoliter incubators with small quantities of biological materials. Furthermore, we demonstrate the assay's capability of multiplexed detection of at least three enzyme activities at the single molecule level.
Collapse
Affiliation(s)
- Sissel Juul
- Department of Molecular Biology and Interdisciplinary Nanoscience Center, iNANO, Aarhus University, Denmark
| | | | | | | | | | | | | |
Collapse
|
45
|
Affiliation(s)
| | - Cees Dekker
- Kavli Institute of Nanoscience, Delft University of Technology, Delft, 2628 CJ, The Netherlands;
| |
Collapse
|
46
|
Tycon MA, Dial CF, Faison K, Melvin W, Fecko CJ. Quantification of dye-mediated photodamage during single-molecule DNA imaging. Anal Biochem 2012; 426:13-21. [PMID: 22484041 DOI: 10.1016/j.ab.2012.03.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 03/26/2012] [Accepted: 03/28/2012] [Indexed: 11/30/2022]
Abstract
Single-molecule fluorescence imaging of DNA-binding proteins has enabled detailed investigations of their interactions. However, the intercalating dyes used to visually locate DNA molecules have the undesirable effect of photochemically damaging the DNA through radical intermediaries. Unfortunately, this damage occurs as single-strand breaks (SSBs), which are visually undetectable but can heavily influence protein behavior. We investigated the formation of SSBs on DNA molecules by the dye YOYO-1 using complementary single-molecule imaging and gel electrophoresis-based damage assays. The single-molecule assay imaged hydrodynamically elongated lambda DNA, enabling the real-time detection of double-strand breaks (DSBs). The gel assay, which used supercoiled plasmid DNA, was sensitive to both SSBs and DSBs. This enabled the quantification of SSBs that precede DSB formation. Using the parameters determined from the gel damage assay, we applied a model of stochastic DNA damage to the time-resolved DNA breakage data, extracting the rates of single-strand breakage at two dye staining ratios and measuring the damage reduction from the radical scavengers ascorbic acid and β-mercaptoethanol. These results enable the estimation of the number of SSBs that occur during imaging and are scalable over a wide range of laser intensities used in fluorescence microscopy.
Collapse
Affiliation(s)
- Michael A Tycon
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | |
Collapse
|
47
|
Laurens N, Rusling DA, Pernstich C, Brouwer I, Halford SE, Wuite GJL. DNA looping by FokI: the impact of twisting and bending rigidity on protein-induced looping dynamics. Nucleic Acids Res 2012; 40:4988-97. [PMID: 22373924 PMCID: PMC3367208 DOI: 10.1093/nar/gks184] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Protein-induced DNA looping is crucial for many genetic processes such as transcription, gene regulation and DNA replication. Here, we use tethered-particle motion to examine the impact of DNA bending and twisting rigidity on loop capture and release, using the restriction endonuclease FokI as a test system. To cleave DNA efficiently, FokI bridges two copies of an asymmetric sequence, invariably aligning the sites in parallel. On account of the fixed alignment, the topology of the DNA loop is set by the orientation of the sites along the DNA. We show that both the separation of the FokI sites and their orientation, altering, respectively, the twisting and the bending of the DNA needed to juxtapose the sites, have profound effects on the dynamics of the looping interaction. Surprisingly, the presence of a nick within the loop does not affect the observed rigidity of the DNA. In contrast, the introduction of a 4-nt gap fully relaxes all of the torque present in the system but does not necessarily enhance loop stability. FokI therefore employs torque to stabilise its DNA-looping interaction by acting as a ‘torsional’ catch bond.
Collapse
Affiliation(s)
- Niels Laurens
- Department of Physics and Astronomy, VU University, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
48
|
Normanno D, Dahan M, Darzacq X. Intra-nuclear mobility and target search mechanisms of transcription factors: a single-molecule perspective on gene expression. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:482-93. [PMID: 22342464 DOI: 10.1016/j.bbagrm.2012.02.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 01/26/2012] [Accepted: 02/03/2012] [Indexed: 12/26/2022]
Abstract
Precise expression of specific genes in time and space is at the basis of cellular viability as well as correct development of organisms. Understanding the mechanisms of gene regulation is fundamental and still one of the great challenges for biology. Gene expression is regulated also by specific transcription factors that recognize and bind to specific DNA sequences. Transcription factors dynamics, and especially the way they sample the nucleoplasmic space during the search for their specific target in the genome, are a key aspect for regulation and it has been puzzling researchers for forty years. The scope of this review is to give a state-of-the-art perspective over the intra-nuclear mobility and the target search mechanisms of specific transcription factors at the molecular level. Going through the seminal biochemical experiments that have raised the first questions about target localization and the theoretical grounds concerning target search processes, we describe the most recent experimental achievements and current challenges in understanding transcription factors dynamics and interactions with DNA using in vitro assays as well as in live prokaryotic and eukaryotic cells. This article is part of a Special Issue entitled: Nuclear Transport and RNA Processing.
Collapse
Affiliation(s)
- Davide Normanno
- Institut de Biologie de l'Ecole normale supérieure (IBENS), CNRS UMR 8197, Ecole normale supérieure, 46, Rue d'Ulm, 75005 Paris, France.
| | | | | |
Collapse
|
49
|
Liu C, Qu Y, Luo Y, Fang N. Recent advances in single-molecule detection on micro- and nano-fluidic devices. Electrophoresis 2012; 32:3308-18. [PMID: 22134976 DOI: 10.1002/elps.201100159] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Single-molecule detection (SMD) allows static and dynamic heterogeneities from seemingly equal molecules to be revealed in the studies of molecular structures and intra- and inter-molecular interactions. Micro- and nanometer-sized structures, including channels, chambers, droplets, etc., in microfluidic and nanofluidic devices allow diffusion-controlled reactions to be accelerated and provide high signal-to-noise ratio for optical signals. These two active research frontiers have been combined to provide unprecedented capabilities for chemical and biological studies. This review summarizes the advances of SMD performed on microfluidic and nanofluidic devices published in the past five years. The latest developments on optical SMD methods, microfluidic SMD platforms, and on-chip SMD applications are discussed herein and future development directions are also envisioned.
Collapse
Affiliation(s)
- Chang Liu
- Ames Laboratory, US Department of Energy, Ames, Iowa, USA
| | | | | | | |
Collapse
|
50
|
Słowicka AM, Ekiel-Jeżewska ML, Sadlej K, Wajnryb E. Dynamics of fibers in a wide microchannel. J Chem Phys 2012; 136:044904. [DOI: 10.1063/1.3678852] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|