1
|
Kim HI, Kim GN, Yu KL, Park SH, You JC. Identification of Novel Nucleocapsid Chimeric Proteins Inhibiting HIV-1 Replication. Int J Mol Sci 2022; 23:ijms232012340. [PMID: 36293198 PMCID: PMC9604505 DOI: 10.3390/ijms232012340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/04/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
The positive transcription elongation factor b (P-TEFb) is an essential factor that induces transcription elongation and is also negatively regulated by the cellular factor HEXIM1. Previously, the chimeric protein HEXIM1-Tat (HT) was demonstrated to inhibit human immunodeficiency virus-1 (HIV)-1 transcription. In this study, we attempted to develop an improved antiviral protein that specifically binds viral RNA (vRNA) by fusing HT to HIV-1 nucleocapsid (NC). Thus, we synthesized NC-HEXIM1-Tat (NHT) and HEXIM1-Tat-NC (HTN). NHT and HTN inhibited virus proliferation more effectively than HT, and they did not attenuate the function of HT. Notably, NHT and HTN inhibited the infectivity of the progeny virus, whereas HT had no such effect. NHT and HTN selectively and effectively interacted with vRNA and inhibited the proper packaging of the HIV-1 genome. Taken together, our results illustrated that the novel NC-fused chimeric proteins NHT and HTN display novel mechanisms of anti-HIV effects by inhibiting both HIV-1 transcription and packaging.
Collapse
Affiliation(s)
- Hae-In Kim
- National Research Laboratory of Molecular Virology, Department of Pathology, School of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Korea
| | - Ga-Na Kim
- National Research Laboratory of Molecular Virology, Department of Pathology, School of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Korea
| | - Kyung-Lee Yu
- National Research Laboratory of Molecular Virology, Department of Pathology, School of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Korea
| | - Seong-Hyun Park
- Graduate Program in Bio-industrial Engineering, College of Life Science and Biotechnology, The Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Ji Chang You
- National Research Laboratory of Molecular Virology, Department of Pathology, School of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Korea
- Correspondence:
| |
Collapse
|
2
|
Bernacchi S. Visualization of Retroviral Gag-Genomic RNA Cellular Interactions Leading to Genome Encapsidation and Viral Assembly: An Overview. Viruses 2022; 14:324. [PMID: 35215917 PMCID: PMC8876502 DOI: 10.3390/v14020324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/25/2022] [Accepted: 02/03/2022] [Indexed: 11/16/2022] Open
Abstract
Retroviruses must selectively recognize their unspliced RNA genome (gRNA) among abundant cellular and spliced viral RNAs to assemble into newly formed viral particles. Retroviral gRNA packaging is governed by Gag precursors that also orchestrate all the aspects of viral assembly. Retroviral life cycles, and especially the HIV-1 one, have been previously extensively analyzed by several methods, most of them based on molecular biology and biochemistry approaches. Despite these efforts, the spatio-temporal mechanisms leading to gRNA packaging and viral assembly are only partially understood. Nevertheless, in these last decades, progress in novel bioimaging microscopic approaches (as FFS, FRAP, TIRF, and wide-field microscopy) have allowed for the tracking of retroviral Gag and gRNA in living cells, thus providing important insights at high spatial and temporal resolution of the events regulating the late phases of the retroviral life cycle. Here, the implementation of these recent bioimaging tools based on highly performing strategies to label fluorescent macromolecules is described. This report also summarizes recent gains in the current understanding of the mechanisms employed by retroviral Gag polyproteins to regulate molecular mechanisms enabling gRNA packaging and the formation of retroviral particles, highlighting variations and similarities among the different retroviruses.
Collapse
Affiliation(s)
- Serena Bernacchi
- Architecture et Réactivité de l'ARN-UPR 9002, IBMC, CNRS, Université de Strasbourg, F-67000 Strasbourg, France
| |
Collapse
|
3
|
Durand S, Seigneuret F, Burlaud-Gaillard J, Lemoine R, Tassi MF, Moreau A, Mougel M, Roingeard P, Tauber C, de Rocquigny H. Quantitative analysis of the formation of nucleoprotein complexes between HIV-1 Gag protein and genomic RNA using transmission electron microscopy. J Biol Chem 2022; 298:101500. [PMID: 34929171 PMCID: PMC8760521 DOI: 10.1016/j.jbc.2021.101500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 12/05/2021] [Indexed: 01/06/2023] Open
Abstract
In HIV, the polyprotein precursor Gag orchestrates the formation of the viral capsid. In the current view of this viral assembly, Gag forms low-order oligomers that bind to the viral genomic RNA triggering the formation of high-ordered ribonucleoprotein complexes. However, this assembly model was established using biochemical or imaging methods that do not describe the cellular location hosting Gag-gRNA complex nor distinguish gRNA packaging in single particles. Here, we studied the intracellular localization of these complexes by electron microscopy and monitored the distances between the two partners by morphometric analysis of gold beads specifically labeling Gag and gRNA. We found that formation of these viral clusters occurred shortly after the nuclear export of the gRNA. During their transport to the plasma membrane, the distance between Gag and gRNA decreases together with an increase of gRNA packaging. Point mutations in the zinc finger patterns of the nucleocapsid domain of Gag caused an increase in the distance between Gag and gRNA as well as a sharp decrease of gRNA packaged into virions. Finally, we show that removal of stem loop 1 of the 5'-untranslated region does not interfere with gRNA packaging, whereas combined with the removal of stem loop 3 is sufficient to decrease but not abolish Gag-gRNA cluster formation and gRNA packaging. In conclusion, this morphometric analysis of Gag-gRNA cluster formation sheds new light on HIV-1 assembly that can be used to describe at nanoscale resolution other viral assembly steps involving RNA or protein-protein interactions.
Collapse
Affiliation(s)
- Stéphanie Durand
- Morphogenesis and Antigenicity of HIV and Hepatitis Viruses, Inserm - U1259 MAVIVH, Bretonneau Hospital, Tours Cedex 1, France
| | - Florian Seigneuret
- Morphogenesis and Antigenicity of HIV and Hepatitis Viruses, Inserm - U1259 MAVIVH, Bretonneau Hospital, Tours Cedex 1, France
| | - Julien Burlaud-Gaillard
- Microscopy IBiSA Platform, PPF ASB, University of Tours and CHRU of Tours, Tours Cedex 1, France
| | - Roxane Lemoine
- B Cell Ressources Platform, EA4245 "Transplantation, Immunology and Inflammation", University of Tours, Tours Cedex 1, France
| | - Marc-Florent Tassi
- Morphogenesis and Antigenicity of HIV and Hepatitis Viruses, Inserm - U1259 MAVIVH, Bretonneau Hospital, Tours Cedex 1, France
| | - Alain Moreau
- Morphogenesis and Antigenicity of HIV and Hepatitis Viruses, Inserm - U1259 MAVIVH, Bretonneau Hospital, Tours Cedex 1, France
| | - Marylène Mougel
- Équipe R2D2 Retroviral RNA Dynamics and Delivery, IRIM, CNRS UMR9004, University of Montpellier, Montpellier, France
| | - Philippe Roingeard
- Morphogenesis and Antigenicity of HIV and Hepatitis Viruses, Inserm - U1259 MAVIVH, Bretonneau Hospital, Tours Cedex 1, France; Microscopy IBiSA Platform, PPF ASB, University of Tours and CHRU of Tours, Tours Cedex 1, France
| | - Clovis Tauber
- UMR U1253 iBrain, Inserm, University of Tours, Tours Cedex 1, France
| | - Hugues de Rocquigny
- Morphogenesis and Antigenicity of HIV and Hepatitis Viruses, Inserm - U1259 MAVIVH, Bretonneau Hospital, Tours Cedex 1, France.
| |
Collapse
|
4
|
Mouhand A, Pasi M, Catala M, Zargarian L, Belfetmi A, Barraud P, Mauffret O, Tisné C. Overview of the Nucleic-Acid Binding Properties of the HIV-1 Nucleocapsid Protein in Its Different Maturation States. Viruses 2020; 12:v12101109. [PMID: 33003650 PMCID: PMC7601788 DOI: 10.3390/v12101109] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/23/2020] [Accepted: 09/26/2020] [Indexed: 12/17/2022] Open
Abstract
HIV-1 Gag polyprotein orchestrates the assembly of viral particles. Its C-terminus consists of the nucleocapsid (NC) domain that interacts with nucleic acids, and p1 and p6, two unstructured regions, p6 containing the motifs to bind ALIX, the cellular ESCRT factor TSG101 and the viral protein Vpr. The processing of Gag by the viral protease subsequently liberates NCp15 (NC-p1-p6), NCp9 (NC-p1) and NCp7, NCp7 displaying the optimal chaperone activity of nucleic acids. This review focuses on the nucleic acid binding properties of the NC domain in the different maturation states during the HIV-1 viral cycle.
Collapse
Affiliation(s)
- Assia Mouhand
- Expression Génétique Microbienne, UMR 8261, CNRS, Université de Paris, Institut de Biologie Physico-Chimique (IBPC), 75005 Paris, France; (A.M.); (M.C.); (P.B.)
| | - Marco Pasi
- Laboratoire de Biologie et de Pharmacologie Appliquée (LBPA), UMR 8113 CNRS, Institut D’Alembert, École Normale Supérieure Paris-Saclay, Université Paris-Saclay, 4, Avenue des Sciences, 91190 Gif sur Yvette, France; (M.P.); (L.Z.); (A.B.)
| | - Marjorie Catala
- Expression Génétique Microbienne, UMR 8261, CNRS, Université de Paris, Institut de Biologie Physico-Chimique (IBPC), 75005 Paris, France; (A.M.); (M.C.); (P.B.)
| | - Loussiné Zargarian
- Laboratoire de Biologie et de Pharmacologie Appliquée (LBPA), UMR 8113 CNRS, Institut D’Alembert, École Normale Supérieure Paris-Saclay, Université Paris-Saclay, 4, Avenue des Sciences, 91190 Gif sur Yvette, France; (M.P.); (L.Z.); (A.B.)
| | - Anissa Belfetmi
- Laboratoire de Biologie et de Pharmacologie Appliquée (LBPA), UMR 8113 CNRS, Institut D’Alembert, École Normale Supérieure Paris-Saclay, Université Paris-Saclay, 4, Avenue des Sciences, 91190 Gif sur Yvette, France; (M.P.); (L.Z.); (A.B.)
| | - Pierre Barraud
- Expression Génétique Microbienne, UMR 8261, CNRS, Université de Paris, Institut de Biologie Physico-Chimique (IBPC), 75005 Paris, France; (A.M.); (M.C.); (P.B.)
| | - Olivier Mauffret
- Laboratoire de Biologie et de Pharmacologie Appliquée (LBPA), UMR 8113 CNRS, Institut D’Alembert, École Normale Supérieure Paris-Saclay, Université Paris-Saclay, 4, Avenue des Sciences, 91190 Gif sur Yvette, France; (M.P.); (L.Z.); (A.B.)
- Correspondence: (O.M.); (C.T.)
| | - Carine Tisné
- Expression Génétique Microbienne, UMR 8261, CNRS, Université de Paris, Institut de Biologie Physico-Chimique (IBPC), 75005 Paris, France; (A.M.); (M.C.); (P.B.)
- Correspondence: (O.M.); (C.T.)
| |
Collapse
|
5
|
Gamba E, Sosic A, Saccone I, Magli E, Frecentese F, Gatto B. Multiple in Vitro Inhibition of HIV-1 Proteins by 2,6-Dipeptidyl-anthraquinone Conjugates Targeting the PBS RNA. ACS Med Chem Lett 2020; 11:949-955. [PMID: 32435410 DOI: 10.1021/acsmedchemlett.9b00682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 03/23/2020] [Indexed: 11/28/2022] Open
Abstract
We recently reported a series of 2,6-dipeptidyl-anthraquinone conjugates (AQs) as Trans-Activation Response element (TAR) RNA-binding agents able to inhibit in vitro the HIV-1 nucleocapsid (NC) protein-mediated processes. Because NC is a highly adaptable nucleic acid chaperone assisting several crucial steps along reverse transcription, in this study we investigate the ability of AQs to interact with other virus-derived nucleic acid structures thus potentially inhibiting multiple NC functions. Focusing on the HIV-1 Primer Binding Site (PBS) RNA sequence, we demonstrate that properly substituted dipeptidyl-anthraquinone conjugates efficiently inhibit the NC-mediated primer annealing in the low micromolar range. Similarly, we extended the analysis to the HIV-1 trans-activator of transcription (Tat) peptide, which has been recently shown to mimic the annealer functions of NC upon interacting with the same nucleic acid regulatory sequences. Our results highlight how RNA-targeting agents can act as multimode inhibitors of key viral proteins affecting their chaperone activity in reverse transcription processes.
Collapse
Affiliation(s)
- Elia Gamba
- Dipartimento di Scienze del Farmaco, Università di Padova, via Marzolo 5, 35131 Padova, Italy
| | - Alice Sosic
- Dipartimento di Scienze del Farmaco, Università di Padova, via Marzolo 5, 35131 Padova, Italy
| | - Irene Saccone
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II", Via D. Montesano 49, 80131 Napoli, Italy
| | - Elisa Magli
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II", Via D. Montesano 49, 80131 Napoli, Italy
| | - Francesco Frecentese
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II", Via D. Montesano 49, 80131 Napoli, Italy
| | - Barbara Gatto
- Dipartimento di Scienze del Farmaco, Università di Padova, via Marzolo 5, 35131 Padova, Italy
| |
Collapse
|
6
|
Mori M, Dasso Lang MC, Saladini F, Palombi N, Kovalenko L, De Forni D, Poddesu B, Friggeri L, Giannini A, Malancona S, Summa V, Zazzi M, Mely Y, Botta M. Synthesis and Evaluation of Bifunctional Aminothiazoles as Antiretrovirals Targeting the HIV-1 Nucleocapsid Protein. ACS Med Chem Lett 2019; 10:463-468. [PMID: 30996780 DOI: 10.1021/acsmedchemlett.8b00506] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 12/07/2018] [Indexed: 02/07/2023] Open
Abstract
Small molecule inhibitors of the HIV-1 nucleocapsid protein (NC) are considered as promising agents in the treatment of HIV/AIDS. In an effort to exploit the privileged 2-amino-4-phenylthiazole moiety in NC inhibition, here we conceived, synthesized, and tested in vitro 18 NC inhibitors (NCIs) bearing a double functionalization. In these NCIs, one part of the molecule is deputed to interact noncovalently with the NC hydrophobic pocket, while the second portion is designed to interact with the N-terminal domain of NC. This binding hypothesis was verified by molecular dynamics simulations, while the linkage between these two pharmacophores was found to enhance antiretroviral activity both on the wild-type virus and on HIV-1 strains with resistance to currently licensed drugs. The two most interesting compounds 6 and 13 showed no cytotoxicity, thus becoming valuable leads for further investigations.
Collapse
Affiliation(s)
- Mattia Mori
- Department of Biotechnology, Chemistry and Pharmacy, “Department of Excellence 2018-2022”, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Maria Chiara Dasso Lang
- Department of Biotechnology, Chemistry and Pharmacy, “Department of Excellence 2018-2022”, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Francesco Saladini
- Department of Medical Biotechnologies, University of Siena, Viale Mario Bracci, 16, 53100 Siena, Italy
| | - Nastasja Palombi
- Department of Biotechnology, Chemistry and Pharmacy, “Department of Excellence 2018-2022”, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Lesia Kovalenko
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, Faculté
de Pharmacie, Université de Strasbourg, CNRS, 74 Route du Rhin, 67401 Illkirch, France
| | - Davide De Forni
- ViroStatics S.r.l., Viale Umberto I 46, 07100 Sassari, Italy
| | - Barbara Poddesu
- ViroStatics S.r.l., Viale Umberto I 46, 07100 Sassari, Italy
| | - Laura Friggeri
- Department of Biotechnology, Chemistry and Pharmacy, “Department of Excellence 2018-2022”, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Alessia Giannini
- Department of Medical Biotechnologies, University of Siena, Viale Mario Bracci, 16, 53100 Siena, Italy
| | - Savina Malancona
- IRBM Science Park S.p.A., Via Pontina Km 30.600, 00071 Pomezia (RM), Italy
| | - Vincenzo Summa
- IRBM Science Park S.p.A., Via Pontina Km 30.600, 00071 Pomezia (RM), Italy
| | - Maurizio Zazzi
- Department of Medical Biotechnologies, University of Siena, Viale Mario Bracci, 16, 53100 Siena, Italy
| | - Yves Mely
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, Faculté
de Pharmacie, Université de Strasbourg, CNRS, 74 Route du Rhin, 67401 Illkirch, France
| | - Maurizio Botta
- Department of Biotechnology, Chemistry and Pharmacy, “Department of Excellence 2018-2022”, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, BioLife Science Bldg., Suite
333, 1900 N 12th Street, Philadelphia, Pennsylvania 19122, United States
- Lead Discovery Siena s.r.l., Via Vittorio Alfieri 31, 53019 Castelnuovo, Berardenga, Italy
| |
Collapse
|
7
|
Hadpech S, Nangola S, Chupradit K, Fanhchaksai K, Furnon W, Urvoas A, Valerio-Lepiniec M, Minard P, Boulanger P, Hong SS, Tayapiwatana C. Alpha-helicoidal HEAT-like Repeat Proteins (αRep) Selected as Interactors of HIV-1 Nucleocapsid Negatively Interfere with Viral Genome Packaging and Virus Maturation. Sci Rep 2017; 7:16335. [PMID: 29180782 PMCID: PMC5703948 DOI: 10.1038/s41598-017-16451-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 11/13/2017] [Indexed: 12/21/2022] Open
Abstract
A new generation of artificial proteins, derived from alpha-helicoidal HEAT-like repeat protein scaffolds (αRep), was previously characterized as an effective source of intracellular interfering proteins. In this work, a phage-displayed library of αRep was screened on a region of HIV-1 Gag polyprotein encompassing the C-terminal domain of the capsid, the SP1 linker and the nucleocapsid. This region is known to be essential for the late steps of HIV-1 life cycle, Gag oligomerization, viral genome packaging and the last cleavage step of Gag, leading to mature, infectious virions. Two strong αRep binders were isolated from the screen, αRep4E3 (32 kDa; 7 internal repeats) and αRep9A8 (28 kDa; 6 internal repeats). Their antiviral activity against HIV-1 was evaluated in VLP-producer cells and in human SupT1 cells challenged with HIV-1. Both αRep4E3 and αRep9A8 showed a modest but significant antiviral effects in all bioassays and cell systems tested. They did not prevent the proviral integration reaction, but negatively interfered with late steps of the HIV-1 life cycle: αRep4E3 blocked the viral genome packaging, whereas αRep9A8 altered both virus maturation and genome packaging. Interestingly, SupT1 cells stably expressing αRep9A8 acquired long-term resistance to HIV-1, implying that αRep proteins can act as antiviral restriction-like factors.
Collapse
Affiliation(s)
- Sudarat Hadpech
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand.,Faculty of Pharmaceutical Science, Burapha University, Muang District, Chonburi Province, 20131, Thailand.,University Lyon 1, UMR754-INRA-EPHE, Viral Infections and Comparative Pathology, 50, Avenue Tony Garnier, 69366, Lyon Cedex 07, France
| | - Sawitree Nangola
- Division of Clinical Immunology and Transfusion Sciences, School of Allied Health Sciences, University of Phayao, Phayao, 56000, Thailand
| | - Koollawat Chupradit
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Kanda Fanhchaksai
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Wilhelm Furnon
- University Lyon 1, UMR754-INRA-EPHE, Viral Infections and Comparative Pathology, 50, Avenue Tony Garnier, 69366, Lyon Cedex 07, France
| | - Agathe Urvoas
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Marie Valerio-Lepiniec
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Philippe Minard
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Pierre Boulanger
- University Lyon 1, UMR754-INRA-EPHE, Viral Infections and Comparative Pathology, 50, Avenue Tony Garnier, 69366, Lyon Cedex 07, France
| | - Saw-See Hong
- University Lyon 1, UMR754-INRA-EPHE, Viral Infections and Comparative Pathology, 50, Avenue Tony Garnier, 69366, Lyon Cedex 07, France. .,Institut National de la Santé et de la Recherche Médicale, 101, rue de Tolbiac, 75654, Paris Cedex 13, France.
| | - Chatchai Tayapiwatana
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand. .,Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
8
|
Current Peptide and Protein Candidates Challenging HIV Therapy beyond the Vaccine Era. Viruses 2017; 9:v9100281. [PMID: 28961190 PMCID: PMC5691633 DOI: 10.3390/v9100281] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 09/27/2017] [Accepted: 09/28/2017] [Indexed: 12/13/2022] Open
Abstract
Human immunodeficiency virus (HIV) is a causative agent of acquired immune deficiency syndrome (AIDS). Highly active antiretroviral therapy (HAART) can slow down the replication of HIV-1, leading to an improvement in the survival of HIV-1-infected patients. However, drug toxicities and poor drug administration has led to the emergence of a drug-resistant strain. HIV-1 immunotherapy has been continuously developed, but antibody therapy and HIV vaccines take time to improve its efficiency and have limitations. HIV-1-specific chimeric antigen receptor (CAR)-based immunotherapy founded on neutralizing antibodies is now being developed. In HIV-1 therapy, anti-HIV chimeric antigen receptors showed promising data in the suppression of HIV-1 replication; however, autologous transfusion is still a problem. This has led to the development of effective peptides and proteins for an alternative HIV-1 treatment. In this paper, we provide a comprehensive review of potent anti-HIV-1 peptides and proteins that reveal promising therapeutic activities. The inhibitory mechanisms of each therapeutic molecule in the different stages of the HIV-1 life cycle will be discussed herein.
Collapse
|
9
|
The Life-Cycle of the HIV-1 Gag-RNA Complex. Viruses 2016; 8:v8090248. [PMID: 27626439 PMCID: PMC5035962 DOI: 10.3390/v8090248] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 08/30/2016] [Accepted: 09/02/2016] [Indexed: 12/16/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) replication is a highly regulated process requiring the recruitment of viral and cellular components to the plasma membrane for assembly into infectious particles. This review highlights the recent process of understanding the selection of the genomic RNA (gRNA) by the viral Pr55Gag precursor polyprotein, and the processes leading to its incorporation into viral particles.
Collapse
|
10
|
Racine PJ, Chamontin C, de Rocquigny H, Bernacchi S, Paillart JC, Mougel M. Requirements for nucleocapsid-mediated regulation of reverse transcription during the late steps of HIV-1 assembly. Sci Rep 2016; 6:27536. [PMID: 27273064 PMCID: PMC4895152 DOI: 10.1038/srep27536] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 05/13/2016] [Indexed: 12/19/2022] Open
Abstract
HIV-1 is a retrovirus replicating within cells by reverse transcribing its genomic RNA (gRNA) into DNA. Within cells, virus assembly requires the structural Gag proteins with few accessory proteins, notably the viral infectivity factor (Vif) and two copies of gRNA as well as cellular factors to converge to the plasma membrane. In this process, the nucleocapsid (NC) domain of Gag binds to the packaging signal of gRNA which consists of a series of stem-loops (SL1-SL3) ensuring gRNA selection and packaging into virions. Interestingly, mutating NC activates a late-occurring reverse transcription (RT) step in producer cells, leading to the release of DNA-containing HIV-1 particles. In order to decipher the molecular mechanism regulating this late RT, we explored the role of several key partners of NC, such as Vif, gRNA and the cellular cytidine deaminase APOBEC3G that restricts HIV-1 infection by targeting the RT. By studying combinations of deletions of these putative players, we revealed that NC, SL1-SL3 and in lesser extent Vif, but not APOBEC3G, interplay regulates the late RT.
Collapse
Affiliation(s)
- Pierre-Jean Racine
- Centre d'études d’agents pathogènes et biotechnologies pour la santé, CPBS-CNRS, Université de Montpellier, 1919 Route de Mende, 34293 Montpellier, France
| | - Célia Chamontin
- Centre d'études d’agents pathogènes et biotechnologies pour la santé, CPBS-CNRS, Université de Montpellier, 1919 Route de Mende, 34293 Montpellier, France
| | - Hugues de Rocquigny
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74 Route du Rhin, 67401, Illkirch Cedex, France
| | - Serena Bernacchi
- Architecture et Réactivité de l’ARN, Université de Strasbourg, CNRS, IBMC, 15 rue René Descartes, 67084, Strasbourg, France
| | - Jean-Christophe Paillart
- Architecture et Réactivité de l’ARN, Université de Strasbourg, CNRS, IBMC, 15 rue René Descartes, 67084, Strasbourg, France
| | - Marylène Mougel
- Centre d'études d’agents pathogènes et biotechnologies pour la santé, CPBS-CNRS, Université de Montpellier, 1919 Route de Mende, 34293 Montpellier, France
| |
Collapse
|
11
|
Mori M, Kovalenko L, Lyonnais S, Antaki D, Torbett BE, Botta M, Mirambeau G, Mély Y. Nucleocapsid Protein: A Desirable Target for Future Therapies Against HIV-1. Curr Top Microbiol Immunol 2015; 389:53-92. [PMID: 25749978 PMCID: PMC7122173 DOI: 10.1007/82_2015_433] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The currently available anti-HIV-1 therapeutics is highly beneficial to infected patients. However, clinical failures occur as a result of the ability of HIV-1 to rapidly mutate. One approach to overcome drug resistance is to target HIV-1 proteins that are highly conserved among phylogenetically distant viral strains and currently not targeted by available therapies. In this respect, the nucleocapsid (NC) protein, a zinc finger protein, is particularly attractive, as it is highly conserved and plays a central role in virus replication, mainly by interacting with nucleic acids. The compelling rationale for considering NC as a viable drug target is illustrated by the fact that point mutants of this protein lead to noninfectious viruses and by the inability to select viruses resistant to a first generation of anti-NC drugs. In our review, we discuss the most relevant properties and functions of NC, as well as recent developments of small molecules targeting NC. Zinc ejectors show strong antiviral activity, but are endowed with a low therapeutic index due to their lack of specificity, which has resulted in toxicity. Currently, they are mainly being investigated for use as topical microbicides. Greater specificity may be achieved by using non-covalent NC inhibitors (NCIs) targeting the hydrophobic platform at the top of the zinc fingers or key nucleic acid partners of NC. Within the last few years, innovative methodologies have been developed to identify NCIs. Though the antiviral activity of the identified NCIs needs still to be improved, these compounds strongly support the druggability of NC and pave the way for future structure-based design and optimization of efficient NCIs.
Collapse
Affiliation(s)
- Mattia Mori
- Dipartimento di Biotecnologie Chimica e Farmacia, Università degli Studi di Siena, via A. Moro 2, 53100, Siena, Italy
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Chamontin C, Rassam P, Ferrer M, Racine PJ, Neyret A, Lainé S, Milhiet PE, Mougel M. HIV-1 nucleocapsid and ESCRT-component Tsg101 interplay prevents HIV from turning into a DNA-containing virus. Nucleic Acids Res 2014; 43:336-47. [PMID: 25488808 PMCID: PMC4288153 DOI: 10.1093/nar/gku1232] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
HIV-1, the agent of the AIDS pandemic, is an RNA virus that reverse transcribes its RNA genome (gRNA) into DNA, shortly after its entry into cells. Within cells, retroviral assembly requires thousands of structural Gag proteins and two copies of gRNA as well as cellular factors, which converge to the plasma membrane in a finely regulated timeline. In this process, the nucleocapsid domain of Gag (GagNC) ensures gRNA selection and packaging into virions. Subsequent budding and virus release require the recruitment of the cellular ESCRT machinery. Interestingly, mutating GagNC results into the release of DNA-containing viruses, by promo-ting reverse transcription (RTion) prior to virus release, through an unknown mechanism. Therefore, we explored the biogenesis of these DNA-containing particles, combining live-cell total internal-reflection fluorescent microscopy, electron microscopy, trans-complementation assays and biochemical characterization of viral particles. Our results reveal that DNA virus production is the consequence of budding defects associated with Gag aggregation at the plasma membrane and deficiency in the recruitment of Tsg101, a key ESCRT-I component. Indeed, targeting Tsg101 to virus assembly sites restores budding, restricts RTion and favors RNA packaging into viruses. Altogether, our results highlight the role of GagNC in the spatiotemporal control of RTion, via an ESCRT-I-dependent mechanism.
Collapse
Affiliation(s)
- Célia Chamontin
- CPBS, UMR5236 CNRS, University of Montpellier, 34293 Montpellier, France
| | - Patrice Rassam
- Centre de Biochimie Structurale, UMR5048 CNRS, University of Montpellier, 34090 Montpellier, France
| | - Mireia Ferrer
- CPBS, UMR5236 CNRS, University of Montpellier, 34293 Montpellier, France
| | - Pierre-Jean Racine
- CPBS, UMR5236 CNRS, University of Montpellier, 34293 Montpellier, France
| | - Aymeric Neyret
- CPBS, UMR5236 CNRS, University of Montpellier, 34293 Montpellier, France
| | - Sébastien Lainé
- CPBS, UMR5236 CNRS, University of Montpellier, 34293 Montpellier, France
| | - Pierre-Emmanuel Milhiet
- Centre de Biochimie Structurale, UMR5048 CNRS, University of Montpellier, 34090 Montpellier, France U1054 INSERM, 30090 Montpellier, France
| | - Marylène Mougel
- CPBS, UMR5236 CNRS, University of Montpellier, 34293 Montpellier, France
| |
Collapse
|
13
|
Human APOBEC3F incorporation into human immunodeficiency virus type 1 particles. Virus Res 2014; 191:30-8. [PMID: 25038404 DOI: 10.1016/j.virusres.2014.07.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Revised: 07/07/2014] [Accepted: 07/07/2014] [Indexed: 11/21/2022]
Abstract
APOBEC3 proteins are a family of cytidine deaminases that exhibit broad antiretroviral activity. Among APOBEC3 proteins, APOBEC3G (hA3G) and APOBEC3F (hA3F) exhibit the most potent anti-HIV-1 activities. Although the incorporation of hA3F into virions is a prerequisite for exerting its antiviral function, the detail mechanism underlying remains incompletely understood. In this work, we present data showing that the nucleocapsid (NC) domain of HIV-1 Gag and a linker sequence between the two cytidine deaminase domains within hA3F, i.e., 104-156 amino acids, are required for viral packaging of hA3F. A detailed mapping study reveals that the cluster of basic residues surrounding the N-terminal zinc finger (ZF) and the linker region between the ZFs of HIV-1 NC play an important role in A3F incorporation, in addition, at least one of two ZFs is required. A hA3F fragment is able to compete with both hA3G and hA3F for viral incorporation, suggesting a common mechanism underlying virion encapsidation of hA3G and hA3F. Taken together, these results shed a light on the detail mechanism underlying viral incorporation of hA3F.
Collapse
|
14
|
Wu H, Mitra M, McCauley MJ, Thomas JA, Rouzina I, Musier-Forsyth K, Williams MC, Gorelick RJ. Aromatic residue mutations reveal direct correlation between HIV-1 nucleocapsid protein's nucleic acid chaperone activity and retroviral replication. Virus Res 2013; 171:263-77. [PMID: 22814429 PMCID: PMC3745225 DOI: 10.1016/j.virusres.2012.07.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 07/02/2012] [Accepted: 07/07/2012] [Indexed: 10/28/2022]
Abstract
The human immunodeficiency virus type 1 (HIV-1) nucleocapsid (NC) protein plays an essential role in several stages of HIV-1 replication. One important function of HIV-1 NC is to act as a nucleic acid chaperone, in which the protein facilitates nucleic acid rearrangements important for reverse transcription and recombination. NC contains only 55 amino acids, with 15 basic residues and two zinc fingers, each having a single aromatic residue (Phe16 and Trp37). Despite its simple structure, HIV-1 NC appears to have optimal chaperone activity, including the ability to strongly aggregate nucleic acids, destabilize nucleic acid secondary structure, and facilitate rapid nucleic acid annealing. Here we combine single molecule DNA stretching experiments with ensemble solution studies of protein-nucleic acid binding affinity, oligonucleotide annealing, and nucleic acid aggregation to measure the characteristics of wild-type (WT) and aromatic residue mutants of HIV-1 NC that are important for nucleic acid chaperone activity. These in vitro results are compared to in vivo HIV-1 replication for viruses containing the same mutations. This work allows us to directly relate HIV-1 NC structure with its function as a nucleic acid chaperone in vitro and in vivo. We show that replacement of either aromatic residue with another aromatic residue results in a protein that strongly resembles WT NC. In contrast, single amino acid substitutions of either Phe16Ala or Trp37Ala significantly slow down NC's DNA interaction kinetics, while retaining some helix-destabilization capability. A double Phe16Ala/Trp37Ala substitution further reduces the latter activity. Surprisingly, the ensemble nucleic acid binding, annealing, and aggregation properties are not significantly altered for any mutant except the double aromatic substitution with Ala. Thus, elimination of a single aromatic residue from either zinc finger strongly reduces NC's chaperone activity as determined by single molecule DNA stretching experiments without significantly altering its ensemble-averaged biochemical properties. Importantly, the substitution of aromatic residues with Ala progressively decreases NC's nucleic acid chaperone activity while also progressively inhibiting viral replication. Taken together, these data support the critical role of HIV-1 NC's aromatic residues, and establish a direct and statistically significant correlation between nucleic acid chaperone activity and viral replication.
Collapse
Affiliation(s)
- Hao Wu
- Northeastern University, Department of Physics, Boston, MA 02115, USA
| | - Mithun Mitra
- The Ohio State University, Department of Chemistry and Biochemistry, Center for Retrovirus Research, Center for RNA Biology, Columbus, OH 43210, USA
| | - Micah J. McCauley
- Northeastern University, Department of Physics, Boston, MA 02115, USA
| | - James A. Thomas
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Ioulia Rouzina
- University of Minnesota, Department of Biochemistry, Molecular Biology, and Biophysics, Minneapolis, MN 55455, USA
| | - Karin Musier-Forsyth
- The Ohio State University, Department of Chemistry and Biochemistry, Center for Retrovirus Research, Center for RNA Biology, Columbus, OH 43210, USA
| | - Mark C. Williams
- Northeastern University, Department of Physics, Boston, MA 02115, USA
| | - Robert J. Gorelick
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| |
Collapse
|
15
|
Lyonnais S, Gorelick RJ, Heniche-Boukhalfa F, Bouaziz S, Parissi V, Mouscadet JF, Restle T, Gatell JM, Le Cam E, Mirambeau G. A protein ballet around the viral genome orchestrated by HIV-1 reverse transcriptase leads to an architectural switch: from nucleocapsid-condensed RNA to Vpr-bridged DNA. Virus Res 2013; 171:287-303. [PMID: 23017337 PMCID: PMC3552025 DOI: 10.1016/j.virusres.2012.09.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Revised: 09/13/2012] [Accepted: 09/14/2012] [Indexed: 12/15/2022]
Abstract
HIV-1 reverse transcription is achieved in the newly infected cell before viral DNA (vDNA) nuclear import. Reverse transcriptase (RT) has previously been shown to function as a molecular motor, dismantling the nucleocapsid complex that binds the viral genome as soon as plus-strand DNA synthesis initiates. We first propose a detailed model of this dismantling in close relationship with the sequential conversion from RNA to double-stranded (ds) DNA, focusing on the nucleocapsid protein (NCp7). The HIV-1 DNA-containing pre-integration complex (PIC) resulting from completion of reverse transcription is translocated through the nuclear pore. The PIC nucleoprotein architecture is poorly understood but contains at least two HIV-1 proteins initially from the virion core, namely integrase (IN) and the viral protein r (Vpr). We next present a set of electron micrographs supporting that Vpr behaves as a DNA architectural protein, initiating multiple DNA bridges over more than 500 base pairs (bp). These complexes are shown to interact with NCp7 bound to single-stranded nucleic acid regions that are thought to maintain IN binding during dsDNA synthesis, concurrently with nucleocapsid complex dismantling. This unexpected binding of Vpr conveniently leads to a compacted but filamentous folding of the vDNA that should favor its nuclear import. Finally, nucleocapsid-like aggregates engaged in dsDNA synthesis appear to efficiently bind to F-actin filaments, a property that may be involved in targeting complexes to the nuclear envelope. More generally, this article highlights unique possibilities offered by in vitro reconstitution approaches combined with macromolecular imaging to gain insights into the mechanisms that alter the nucleoprotein architecture of the HIV-1 genome, ultimately enabling its insertion into the nuclear chromatin.
Collapse
MESH Headings
- DNA Packaging
- DNA, Viral/chemistry
- DNA, Viral/genetics
- DNA, Viral/metabolism
- Genome, Viral
- HIV Integrase/genetics
- HIV Integrase/metabolism
- HIV Reverse Transcriptase/genetics
- HIV Reverse Transcriptase/metabolism
- HIV-1/chemistry
- HIV-1/enzymology
- HIV-1/genetics
- HIV-1/metabolism
- Humans
- RNA, Viral/chemistry
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Reverse Transcription
- gag Gene Products, Human Immunodeficiency Virus/genetics
- gag Gene Products, Human Immunodeficiency Virus/metabolism
- vpr Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
| | - Robert J. Gorelick
- AIDS and Cancer Virus Program; SAIC-Frederick, Inc.; Frederick National Laboratory for Cancer Research; Frederick, MD USA
| | - Fatima Heniche-Boukhalfa
- Maintenance des génomes, Microscopies Moléculaire et Bionanosciences; UMR 8126 CNRS-Université Paris Sud, Villejuif, F-94805, France
| | - Serge Bouaziz
- Laboratoire de Cristallographie et RMN biologiques; UMR 8015 CNRS-Université Paris Descartes; Paris, F-75006, France
| | - Vincent Parissi
- Laboratoire de Microbiologie Fondamentale et Pathogénicité, UMR5234 CNRS-Université Bordeaux Segalen, France
| | | | - Tobias Restle
- Institute of Molecular Medicine, University of Lübeck, Center for Structural and Cell Biology in Medicine (CSCM), D-23538 Lübeck, Germany
| | | | - Eric Le Cam
- Maintenance des génomes, Microscopies Moléculaire et Bionanosciences; UMR 8126 CNRS-Université Paris Sud, Villejuif, F-94805, France
| | - Gilles Mirambeau
- AIDS Research Group; IDIBAPS; E-08036 Barcelona, Spain
- Faculté de Biologie; UPMC Sorbonne Universités; Paris, F-75005, France
| |
Collapse
|
16
|
Prototype foamy virus protease activity is essential for intraparticle reverse transcription initiation but not absolutely required for uncoating upon host cell entry. J Virol 2013; 87:3163-76. [PMID: 23283957 DOI: 10.1128/jvi.02323-12] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Foamy viruses (FVs) are unique among retroviruses in performing genome reverse transcription (RTr) late in replication, resulting in an infectious DNA genome, and also in their unusual Pol biosynthesis and encapsidation strategy. In addition, FVs display only very limited Gag and Pol processing by the viral protease (PR) during particle morphogenesis and disassembly, both thought to be crucial for viral infectivity. Here, we report the generation of functional prototype FV (PFV) particles from mature or partially processed viral capsid and enzymatic proteins with infectivity levels of up to 20% of the wild type. Analysis of protein and nucleic acid composition, as well as infectivity, of virions generated from different Gag and Pol combinations (including both expression-optimized and authentic PFV open reading frames [ORFs]) revealed that precursor processing of Gag, but not Pol, during particle assembly is essential for production of infectious virions. Surprisingly, when processed Gag (instead of Gag precursor) was provided together with PR-deficient Pol precursor during virus production, infectious, viral DNA-containing particles were obtained, even when different vector or proviral expression systems were used. Although virion infectivity was reduced to 0.5 to 2% relative to that of the respective parental constructs, this finding overturns the current dogma in the FV literature that viral PR activity is absolutely essential at some point during target cell entry. Furthermore, it demonstrates that viral PR-mediated Gag precursor processing during particle assembly initiates intraparticle RTr. Finally, it shows that reverse transcriptase (RT) and integrase are enzymatically active in the Pol precursor within the viral capsid, thus enabling productive host cell infection.
Collapse
|
17
|
Chamontin C, Yu B, Racine PJ, Darlix JL, Mougel M. MoMuLV and HIV-1 nucleocapsid proteins have a common role in genomic RNA packaging but different in late reverse transcription. PLoS One 2012; 7:e51534. [PMID: 23236513 PMCID: PMC3517543 DOI: 10.1371/journal.pone.0051534] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 11/05/2012] [Indexed: 11/25/2022] Open
Abstract
Retroviral nucleocapsid proteins harbor nucleic acid chaperoning activities that mostly rely on the N-terminal basic residues and the CCHC zinc finger motif. Such chaperoning is essential for virus replication, notably for genomic RNA selection and packaging in virions, and for reverse transcription of genomic RNA into DNA. Recent data revealed that HIV-1 nucleocapsid restricts reverse transcription during virus assembly--a process called late reverse transcription--suggesting a regulation between RNA packaging and late reverse transcription. Indeed, mutating the HIV-1 nucleocapsid basic residues or the two zinc fingers caused a reduction in RNA incorporated and an increase in newly made viral DNA in the mutant virions. MoMuLV nucleocapsid has an N-terminal basic region similar to HIV-1 nucleocapsid but a unique zinc finger. This prompted us to investigate whether the N-terminal basic residues and the zinc finger of MoMuLV and HIV-1 nucleocapsids play a similar role in genomic RNA packaging and late reverse transcription. To this end, we analyzed the genomic RNA and viral DNA contents of virions produced by cells transfected with MoMuLV molecular clones where the zinc finger was mutated or completely deleted or with a deletion of the N-terminal basic residues of nucleocapsid. All mutant virions showed a strong defect in genomic RNA content indicating that the basic residues and zinc finger are important for genomic RNA packaging. In contrast to HIV-1 nucleocapsid-mutants, the level of viral DNA in mutant MoMuLV virions was only slightly increased. These results confirm that the N-terminal basic residues and zinc finger of MoMuLV nucleocapsid are critical for genomic RNA packaging but, in contrast to HIV-1 nucleocapsid, they most probably do not play a role in the control of late reverse transcription. In addition, these results suggest that virus formation and late reverse transcription proceed according to distinct mechanisms for MuLV and HIV-1.
Collapse
Affiliation(s)
| | - Bing Yu
- UMR5236 CNRS, UM1,UM2, CPBS, Montpellier, France
| | | | - Jena-Luc Darlix
- UMR 7213 CNRS, Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, Illkirch, France
| | | |
Collapse
|
18
|
Batisse J, Guerrero S, Bernacchi S, Sleiman D, Gabus C, Darlix JL, Marquet R, Tisné C, Paillart JC. The role of Vif oligomerization and RNA chaperone activity in HIV-1 replication. Virus Res 2012; 169:361-76. [PMID: 22728817 DOI: 10.1016/j.virusres.2012.06.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Revised: 06/04/2012] [Accepted: 06/12/2012] [Indexed: 11/28/2022]
Abstract
The viral infectivity factor (Vif) is essential for the productive infection and dissemination of HIV-1 in non-permissive cells that involve most natural HIV-1 target cells. Vif counteracts the packaging of two cellular cytidine deaminases named APOBEC3G (A3G) and A3F by diverse mechanisms including the recruitment of an E3 ubiquitin ligase complex and the proteasomal degradation of A3G/A3F, the inhibition of A3G mRNA translation or by a direct competition mechanism. In addition, Vif appears to be an active partner of the late steps of viral replication by participating in virus assembly and Gag processing, thus regulating the final stage of virion formation notably genomic RNA dimerization and by inhibiting the initiation of reverse transcription. Vif is a small pleiotropic protein with multiple domains, and recent studies highlighted the importance of Vif conformation and flexibility in counteracting A3G and in binding RNA. In this review, we will focus on the oligomerization and RNA chaperone properties of Vif and show that the intrinsic disordered nature of some Vif domains could play an important role in virus assembly and replication. Experimental evidence demonstrating the RNA chaperone activity of Vif will be presented.
Collapse
Affiliation(s)
- Julien Batisse
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, Institut de Biologie Moléculaire et Cellulaire, 15 rue René Descartes, 67084 Strasbourg, France
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Nucleocapsid protein annealing of a primer-template enhances (+)-strand DNA synthesis and fidelity by HIV-1 reverse transcriptase. J Mol Biol 2011; 415:866-80. [PMID: 22210155 DOI: 10.1016/j.jmb.2011.12.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 12/09/2011] [Accepted: 12/16/2011] [Indexed: 11/22/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) requires reverse transcriptase (RT) and HIV-1 nucleocapsid protein (NCp7) for proper viral replication. HIV-1 NCp7 has been shown to enhance various steps in reverse transcription including tRNA initiation and strand transfer, which may be mediated through interactions with RT as well as RNA and DNA oligonucleotides. With the use of DNA oligonucleotides, we have examined the interaction of NCp7 with RT and the kinetics of reverse transcription during (+)-strand synthesis with an NCp7-facilitated annealed primer-template. Through the use of a pre-steady-state kinetics approach, the NCp7-annealed primer-template has a substantial increase (3- to 7-fold) in the rate of incorporation (k(pol)) by RT as compared to heat-annealed primer-template with single-nucleotide incorporation. There was also a 2-fold increase in the binding affinity constant (K(d)) of the nucleotide. These differences in k(pol) and K(d) were not through direct interactions between HIV-1 RT and NCp7. When extension by RT was examined, the data suggest that the NCp7-annealed primer-template facilitates the formation of a longer product more quickly compared to the heat-annealed primer-template. This enhancement in rate is mediated through interactions with NCp7's zinc fingers and N-terminal domain and nucleic acids. The NCp7-annealed primer-template also enhances the fidelity of RT (3-fold) by slowing the rate of incorporation of an incorrect nucleotide. Taken together, this study elucidates a new role of NCp7 by facilitating DNA-directed DNA synthesis during reverse transcription by HIV-1 RT that may translate into enhanced viral fitness and offers an avenue to exploit for targeted therapeutic intervention against HIV.
Collapse
|
20
|
Didierlaurent L, Racine PJ, Houzet L, Chamontin C, Berkhout B, Mougel M. Role of HIV-1 RNA and protein determinants for the selective packaging of spliced and unspliced viral RNA and host U6 and 7SL RNA in virus particles. Nucleic Acids Res 2011; 39:8915-27. [PMID: 21791531 PMCID: PMC3203606 DOI: 10.1093/nar/gkr577] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 06/27/2011] [Accepted: 06/28/2011] [Indexed: 01/22/2023] Open
Abstract
HIV-1 particles contain RNA species other than the unspliced viral RNA genome. For instance, viral spliced RNAs and host 7SL and U6 RNAs are natural components that are non-randomly incorporated. To understand the mechanism of packaging selectivity, we analyzed the content of a large panel of HIV-1 variants mutated either in the 5'UTR structures of the viral RNA or in the Gag-nucleocapsid protein (GagNC). In parallel, we determined whether the selection of host 7SL and U6 RNAs is dependent or not on viral RNA and/or GagNC. Our results reveal that the polyA hairpin in the 5'UTR is a major packaging determinant for both spliced and unspliced viral RNAs. In contrast, 5'UTR RNA structures have little influence on the U6 and 7SL RNAs, indicating that packaging of these host RNAs is independent of viral RNA packaging. Experiments with GagNC mutants indicated that the two zinc-fingers and N-terminal basic residues restrict the incorporation of the spliced RNAs, while favoring unspliced RNA packaging. GagNC through the zinc-finger motifs also restricts the packaging of 7SL and U6 RNAs. Thus, GagNC is a major contributor to the packaging selectivity. Altogether our results provide new molecular insight on how HIV selects distinct RNA species for incorporation into particles.
Collapse
Affiliation(s)
- L. Didierlaurent
- UMR5236 CNRS, UMI&II, CPBS, 1919 Rte de Mende, Montpellier, France, LMM, NIAID, NIH Bethesda, MD, USA and Laboratory of Experimental Virology, Department of Medical Microbiology (CINIMA), Amsterdam, The Netherlands
| | - P. J. Racine
- UMR5236 CNRS, UMI&II, CPBS, 1919 Rte de Mende, Montpellier, France, LMM, NIAID, NIH Bethesda, MD, USA and Laboratory of Experimental Virology, Department of Medical Microbiology (CINIMA), Amsterdam, The Netherlands
| | - L. Houzet
- UMR5236 CNRS, UMI&II, CPBS, 1919 Rte de Mende, Montpellier, France, LMM, NIAID, NIH Bethesda, MD, USA and Laboratory of Experimental Virology, Department of Medical Microbiology (CINIMA), Amsterdam, The Netherlands
| | - C. Chamontin
- UMR5236 CNRS, UMI&II, CPBS, 1919 Rte de Mende, Montpellier, France, LMM, NIAID, NIH Bethesda, MD, USA and Laboratory of Experimental Virology, Department of Medical Microbiology (CINIMA), Amsterdam, The Netherlands
| | - B. Berkhout
- UMR5236 CNRS, UMI&II, CPBS, 1919 Rte de Mende, Montpellier, France, LMM, NIAID, NIH Bethesda, MD, USA and Laboratory of Experimental Virology, Department of Medical Microbiology (CINIMA), Amsterdam, The Netherlands
| | - M. Mougel
- UMR5236 CNRS, UMI&II, CPBS, 1919 Rte de Mende, Montpellier, France, LMM, NIAID, NIH Bethesda, MD, USA and Laboratory of Experimental Virology, Department of Medical Microbiology (CINIMA), Amsterdam, The Netherlands
| |
Collapse
|
21
|
Jouvenet N, Lainé S, Pessel-Vivares L, Mougel M. Cell biology of retroviral RNA packaging. RNA Biol 2011; 8:572-80. [PMID: 21691151 DOI: 10.4161/rna.8.4.16030] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Generation of infectious retroviral particles rely on the targeting of all structural components to the correct cellular sites at the correct time. Gag, the main structural protein, orchestrates the assembly process and the mechanisms that trigger its targeting to assembly sites are well described. Gag is also responsible for the packaging of the viral genome and the molecular details of the Gag/RNA interaction are well characterized. Until recently, much less was understood about the cell biology of retrovirus RNA packaging. However, novel biochemical and live-cell microscopic approaches have identified where in the cell the initial events of genome recognition by Gag occur. These recent developments have shed light on the role played by the viral genome during virion assembly. Other central issues of the cell biology of RNA packaging, such as how the Gag-RNA complex traffics through the cytoplasm towards assembly sites, await characterization.
Collapse
|
22
|
Thomas JA, Shatzer TL, Gorelick RJ. Blocking premature reverse transcription fails to rescue the HIV-1 nucleocapsid-mutant replication defect. Retrovirology 2011; 8:46. [PMID: 21682883 PMCID: PMC3141651 DOI: 10.1186/1742-4690-8-46] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 06/17/2011] [Indexed: 02/06/2023] Open
Abstract
Background The nucleocapsid (NC) protein of HIV-1 is critical for viral replication. Mutational analyses have demonstrated its involvement in viral assembly, genome packaging, budding, maturation, reverse transcription, and integration. We previously reported that two conservative NC mutations, His23Cys and His44Cys, cause premature reverse transcription such that mutant virions contain approximately 1,000-fold more DNA than wild-type virus, and are replication defective. In addition, both mutants show a specific defect in integration after infection. Results In the present study we investigated whether blocking premature reverse transcription would relieve the infectivity defects, which we successfully performed by transfecting proviral plasmids into cells cultured in the presence of high levels of reverse transcriptase inhibitors. After subsequent removal of the inhibitors, the resulting viruses showed no significant difference in single-round infective titer compared to viruses where premature reverse transcription did occur; there was no rescue of the infectivity defects in the NC mutants upon reverse transcriptase inhibitor treatment. Surprisingly, time-course endogenous reverse transcription assays demonstrated that the kinetics for both the NC mutants were essentially identical to wild-type when premature reverse transcription was blocked. In contrast, after infection of CD4+ HeLa cells, it was observed that while the prevention of premature reverse transcription in the NC mutants resulted in lower quantities of initial reverse transcripts, the kinetics of reverse transcription were not restored to that of untreated wild-type HIV-1. Conclusions Premature reverse transcription is not the cause of the replication defect but is an independent side-effect of the NC mutations.
Collapse
Affiliation(s)
- James A Thomas
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc,, NCI at Frederick, Frederick, MD 21702, USA
| | | | | |
Collapse
|
23
|
Godet J, Ramalanjaona N, Sharma KK, Richert L, de Rocquigny H, Darlix JL, Duportail G, Mély Y. Specific implications of the HIV-1 nucleocapsid zinc fingers in the annealing of the primer binding site complementary sequences during the obligatory plus strand transfer. Nucleic Acids Res 2011; 39:6633-45. [PMID: 21543454 PMCID: PMC3159456 DOI: 10.1093/nar/gkr274] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Synthesis of the HIV-1 viral DNA by reverse transcriptase involves two obligatory strand transfer reactions. The second strand transfer corresponds to the annealing of the (−) and (+) DNA copies of the primer binding site (PBS) sequence which is chaperoned by the nucleocapsid protein (NCp7). NCp7 modifies the (+)/(−)PBS annealing mechanism by activating a loop–loop kissing pathway that is negligible without NCp7. To characterize in depth the dynamics of the loop in the NCp7/PBS nucleoprotein complexes, we investigated the time-resolved fluorescence parameters of a (−)PBS derivative containing the fluorescent nucleoside analogue 2-aminopurine at positions 6, 8 or 10. The NCp7-directed switch of (+)/(−)PBS annealing towards the loop pathway was associated to a drastic restriction of the local DNA dynamics, indicating that NCp7 can ‘freeze’ PBS conformations competent for annealing via the loops. Moreover, the modifications of the PBS loop structure and dynamics that govern the annealing reaction were found strictly dependent on the integrity of the zinc finger hydrophobic platform. Our data suggest that the two NCp7 zinc fingers are required to ensure the specificity and fidelity of the second strand transfer, further underlining the pivotal role played by NCp7 to control the faithful synthesis of viral HIV-1 DNA.
Collapse
Affiliation(s)
- Julien Godet
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Novel functions of prototype foamy virus Gag glycine- arginine-rich boxes in reverse transcription and particle morphogenesis. J Virol 2010; 85:1452-63. [PMID: 21106749 DOI: 10.1128/jvi.01731-10] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Prototype foamy virus (PFV) Gag lacks the characteristic orthoretroviral Cys-His motifs that are essential for various steps of the orthoretroviral replication cycle, such as RNA packaging, reverse transcription, infectivity, integration, and viral assembly. Instead, it contains three glycine-arginine-rich boxes (GR boxes) in its C terminus that putatively represent a functional equivalent. We used a four-plasmid replication-deficient PFV vector system, with uncoupled RNA genome packaging and structural protein translation, to analyze the effects of deletion and various substitution mutations within each GR box on particle release, particle-associated protein composition, RNA packaging, DNA content, infectivity, particle morphology, and intracellular localization. The degree of viral particle release by all mutants was similar to that of the wild type. Only minimal effects on Pol encapsidation, exogenous reverse transcriptase (RT) activity, and genomic viral RNA packaging were observed. In contrast, particle-associated DNA content and infectivity were drastically reduced for all deletion mutants and were undetectable for all alanine substitution mutants. Furthermore, GR box I mutants had significant changes in particle morphology, and GR box II mutants lacked the typical nuclear localization pattern of PFV Gag. Finally, it could be shown that GR boxes I and III, but not GR box II, can functionally complement each other. It therefore appears that, similar to the orthoretroviral Cys-His motifs, the PFV Gag GR boxes are important for RNA encapsidation, genome reverse transcription, and virion infectivity as well as for particle morphogenesis.
Collapse
|
25
|
Mougel M, Cimarelli A, Darlix JL. Implications of the nucleocapsid and the microenvironment in retroviral reverse transcription. Viruses 2010; 2:939-960. [PMID: 21994662 PMCID: PMC3185662 DOI: 10.3390/v2040939] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Revised: 03/03/2010] [Accepted: 04/01/2010] [Indexed: 01/21/2023] Open
Abstract
This mini-review summarizes the process of reverse-transcription, an obligatory step in retrovirus replication during which the retroviral RNA/DNA-dependent DNA polymerase (RT) copies the single-stranded genomic RNA to generate the double-stranded viral DNA while degrading the genomic RNA via its associated RNase H activity. The hybridization of complementary viral sequences by the nucleocapsid protein (NC) receives a special focus, since it acts to chaperone the strand transfers obligatory for synthesis of the complete viral DNA and flanking long terminal repeats (LTR). Since the physiological microenvironment can impact on reverse-transcription, this mini-review also focuses on factors present in the intra-cellular or extra-cellular milieu that can drastically influence both the timing and the activity of reverse-transcription and hence virus infectivity.
Collapse
Affiliation(s)
- Marylène Mougel
- CPBS, UMR5236 CNRS, UMI, 4 bd Henri IV, 34965 Montpellier, France; E-Mail:
| | - Andrea Cimarelli
- LaboRetro Unité de Virologie humaine INSERM #758, IFR128, ENS Lyon, 46 Allée d’Italie, 69364 Lyon, France; E-Mail:
| | - Jean-Luc Darlix
- LaboRetro Unité de Virologie humaine INSERM #758, IFR128, ENS Lyon, 46 Allée d’Italie, 69364 Lyon, France; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +33 472728169; Fax: +33 472728137
| |
Collapse
|
26
|
Goldschmidt V, Miller Jenkins LM, de Rocquigny H, Darlix JL, Mély Y. The nucleocapsid protein of HIV-1 as a promising therapeutic target for antiviral drugs. ACTA ACUST UNITED AC 2010. [DOI: 10.2217/hiv.10.3] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The nucleocapsid protein (NCp7) is a major HIV-1 structural protein that plays key roles in viral replication, mainly through its conserved zinc fingers that direct specific interactions with the viral nucleic acids. Owing to its high degree of conservation and critical functions, NCp7 represents a target of choice for drugs that can potentially complement HAART, thus possibly impairing the circulation of drug-resistant HIV-1 strains. Zinc ejectors showing potent antiretroviral activity were developed, but early generations suffered from limited selectively and significant toxicity. Compounds with improved selectivity have been developed and are being explored as topical microbicide candidates. Several classes of molecules inhibiting the interaction of NCp7 with the viral nucleic acids have also been developed. Although small molecules would be more suited for drug development, most molecules selected by screening showed limited antiretroviral activity. Peptides and RNA aptamers appear to be more promising, but the mechanism of their antiretroviral activity remains elusive. Substantial and more concerted efforts are needed to further develop anti-HIV drugs targeting NCp7 and bring them to the clinic.
Collapse
Affiliation(s)
- Valérie Goldschmidt
- Laboratoire de Biophotonique et Pharmacologie, UMR-CNRS 7213, Faculté de Pharmacie, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch-Cedex, France
| | - Lisa M Miller Jenkins
- Laboratory of Cell Biology, NCI, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hugues de Rocquigny
- Laboratoire de Biophotonique et Pharmacologie, UMR-CNRS 7213, Faculté de Pharmacie, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch-Cedex, France
| | - Jean-Luc Darlix
- LaboRetro, Unité de Virologie Humaine INSERM 758, Ecole Normale Supérieure de Lyon, 46 allée d’Italie, 69364 Lyon, France
| | - Yves Mély
- Laboratoire de Biophotonique et Pharmacologie, UMR-CNRS 7213, Faculté de Pharmacie, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch-Cedex, France
| |
Collapse
|
27
|
Isel C, Ehresmann C, Marquet R. Initiation of HIV Reverse Transcription. Viruses 2010; 2:213-243. [PMID: 21994608 PMCID: PMC3185550 DOI: 10.3390/v2010213] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 01/08/2010] [Accepted: 01/13/2010] [Indexed: 12/01/2022] Open
Abstract
Reverse transcription of retroviral genomes into double stranded DNA is a key event for viral replication. The very first stage of HIV reverse transcription, the initiation step, involves viral and cellular partners that are selectively packaged into the viral particle, leading to an RNA/protein complex with very specific structural and functional features, some of which being, in the case of HIV-1, linked to particular isolates. Recent understanding of the tight spatio-temporal regulation of reverse transcription and its importance for viral infectivity further points toward reverse transcription and potentially its initiation step as an important drug target.
Collapse
Affiliation(s)
- Catherine Isel
- Authors to whom correspondence should be addressed; E-Mail: ; Tel.: +33-388-417-040; Fax: +33-388-602-218 (C.I.); E-Mail: ; Tel.: +33-388-417-054; Fax: +33-388-602-218 (R.M.)
| | | | - Roland Marquet
- Authors to whom correspondence should be addressed; E-Mail: ; Tel.: +33-388-417-040; Fax: +33-388-602-218 (C.I.); E-Mail: ; Tel.: +33-388-417-054; Fax: +33-388-602-218 (R.M.)
| |
Collapse
|
28
|
Yu B, Houzet L, Didierlaurent L, Chamontin C, Morichaud Z, Darlix JL, Mougel M. A new role of the HIV-1 nucleocapsid in the spatiotemporal control of the reverse transcription throughout the virus replication cycle. Retrovirology 2009. [PMCID: PMC2766995 DOI: 10.1186/1742-4690-6-s2-p14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
29
|
Mougel M, Houzet L, Darlix JL. When is it time for reverse transcription to start and go? Retrovirology 2009; 6:24. [PMID: 19261185 PMCID: PMC2656454 DOI: 10.1186/1742-4690-6-24] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Accepted: 03/04/2009] [Indexed: 11/25/2022] Open
Abstract
Upon cell infection by a retrovirus, the viral DNA polymerase, called reverse transcriptase (RT), copies the genomic RNA to generate the proviral DNA flanked by two long terminal repeats (LTR). A discovery twenty years ago demonstrated that the structural viral nucleocapsid protein (NC) encoded by Gag is an essential cofactor of reverse transcription, chaperoning RT during viral DNA synthesis. However, it is only recently that NC was found to exert a control on the timing of reverse transcription, in a spatio-temporal manner. This brief review summarizes findings on the timing of reverse transcription in wild type HIV-1 and in nucleopcapsid (NC) mutants where virions contain a large amount of newly made viral DNA. This brief review also proposes some explanations of how NC may control late reverse transcription during Gag assembly in virus producer cells.
Collapse
Affiliation(s)
- Marylène Mougel
- LaboRetro, Unité de virologie humaine INSERM U758, IFR128, ENS, 46 allée d'Italie, Lyon, France.
| | | | | |
Collapse
|