1
|
Yi C, Liu Q, Huang Y, Liu C, Guo X, Fan C, Zhang K, Liu Y, Han F. Non-B-form DNA is associated with centromere stability in newly-formed polyploid wheat. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1479-1488. [PMID: 38639838 DOI: 10.1007/s11427-023-2513-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/18/2023] [Indexed: 04/20/2024]
Abstract
Non-B-form DNA differs from the classic B-DNA double helix structure and plays a crucial regulatory role in replication and transcription. However, the role of non-B-form DNA in centromeres, especially in polyploid wheat, remains elusive. Here, we systematically analyzed seven non-B-form DNA motif profiles (A-phased DNA repeat, direct repeat, G-quadruplex, inverted repeat, mirror repeat, short tandem repeat, and Z-DNA) in hexaploid wheat. We found that three of these non-B-form DNA motifs were enriched at centromeric regions, especially at the CENH3-binding sites, suggesting that non-B-form DNA may create a favorable loading environment for the CENH3 nucleosome. To investigate the dynamics of centromeric non-B form DNA during the alloploidization process, we analyzed DNA secondary structure using CENH3 ChIP-seq data from newly formed allotetraploid wheat and its two diploid ancestors. We found that newly formed allotetraploid wheat formed more non-B-form DNA in centromeric regions compared with their parents, suggesting that non-B-form DNA is related to the localization of the centromeric regions in newly formed wheat. Furthermore, non-B-form DNA enriched in the centromeric regions was found to preferentially form on young LTR retrotransposons, explaining CENH3's tendency to bind to younger LTR. Collectively, our study describes the landscape of non-B-form DNA in the wheat genome, and sheds light on its potential role in the evolution of polyploid centromeres.
Collapse
Affiliation(s)
- Congyang Yi
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qian Liu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuhong Huang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chang Liu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xianrui Guo
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chaolan Fan
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kaibiao Zhang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Liu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Fangpu Han
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
2
|
Raimer Young HM, Hou PC, Bartosik AR, Atkin ND, Wang L, Wang Z, Ratan A, Zang C, Wang YH. DNA fragility at topologically associated domain boundaries is promoted by alternative DNA secondary structure and topoisomerase II activity. Nucleic Acids Res 2024; 52:3837-3855. [PMID: 38452213 DOI: 10.1093/nar/gkae164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 02/03/2024] [Accepted: 02/23/2024] [Indexed: 03/09/2024] Open
Abstract
CCCTC-binding factor (CTCF) binding sites are hotspots of genome instability. Although many factors have been associated with CTCF binding site fragility, no study has integrated all fragility-related factors to understand the mechanism(s) of how they work together. Using an unbiased, genome-wide approach, we found that DNA double-strand breaks (DSBs) are enriched at strong, but not weak, CTCF binding sites in five human cell types. Energetically favorable alternative DNA secondary structures underlie strong CTCF binding sites. These structures coincided with the location of topoisomerase II (TOP2) cleavage complex, suggesting that DNA secondary structure acts as a recognition sequence for TOP2 binding and cleavage at CTCF binding sites. Furthermore, CTCF knockdown significantly increased DSBs at strong CTCF binding sites and at CTCF sites that are located at topologically associated domain (TAD) boundaries. TAD boundary-associated CTCF sites that lost CTCF upon knockdown displayed increased DSBs when compared to the gained sites, and those lost sites are overrepresented with G-quadruplexes, suggesting that the structures act as boundary insulators in the absence of CTCF, and contribute to increased DSBs. These results model how alternative DNA secondary structures facilitate recruitment of TOP2 to CTCF binding sites, providing mechanistic insight into DNA fragility at CTCF binding sites.
Collapse
Affiliation(s)
- Heather M Raimer Young
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908-0733, USA
| | - Pei-Chi Hou
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908-0733, USA
| | - Anna R Bartosik
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908-0733, USA
| | - Naomi D Atkin
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908-0733, USA
| | - Lixin Wang
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Zhenjia Wang
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA 22908-0717, USA
| | - Aakrosh Ratan
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908-0733, USA
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA 22908-0717, USA
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
- University of Virginia Comprehensive Cancer Center, Charlottesville, VA 22908, USA
| | - Chongzhi Zang
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908-0733, USA
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA 22908-0717, USA
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
- University of Virginia Comprehensive Cancer Center, Charlottesville, VA 22908, USA
| | - Yuh-Hwa Wang
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908-0733, USA
- University of Virginia Comprehensive Cancer Center, Charlottesville, VA 22908, USA
| |
Collapse
|
3
|
Scelfo A, Angrisani A, Grillo M, Barnes BM, Muyas F, Sauer CM, Leung CWB, Dumont M, Grison M, Mazaud D, Garnier M, Guintini L, Nelson L, Esashi F, Cortés-Ciriano I, Taylor SS, Déjardin J, Wilhelm T, Fachinetti D. Specialized replication mechanisms maintain genome stability at human centromeres. Mol Cell 2024; 84:1003-1020.e10. [PMID: 38359824 DOI: 10.1016/j.molcel.2024.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 12/12/2023] [Accepted: 01/19/2024] [Indexed: 02/17/2024]
Abstract
The high incidence of whole-arm chromosome aneuploidy and translocations in tumors suggests instability of centromeres, unique loci built on repetitive sequences and essential for chromosome separation. The causes behind this fragility and the mechanisms preserving centromere integrity remain elusive. We show that replication stress, hallmark of pre-cancerous lesions, promotes centromeric breakage in mitosis, due to spindle forces and endonuclease activities. Mechanistically, we unveil unique dynamics of the centromeric replisome distinct from the rest of the genome. Locus-specific proteomics identifies specialized DNA replication and repair proteins at centromeres, highlighting them as difficult-to-replicate regions. The translesion synthesis pathway, along with other factors, acts to sustain centromere replication and integrity. Prolonged stress causes centromeric alterations like ruptures and translocations, as observed in ovarian cancer models experiencing replication stress. This study provides unprecedented insights into centromere replication and integrity, proposing mechanistic insights into the origins of centromere alterations leading to abnormal cancerous karyotypes.
Collapse
Affiliation(s)
- Andrea Scelfo
- Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR144, 26 rue d'Ulm, Paris 75005, France
| | - Annapaola Angrisani
- Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR144, 26 rue d'Ulm, Paris 75005, France
| | - Marco Grillo
- Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR144, 26 rue d'Ulm, Paris 75005, France
| | - Bethany M Barnes
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4GJ, UK
| | - Francesc Muyas
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridge CB10 1SD, UK
| | - Carolin M Sauer
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridge CB10 1SD, UK
| | | | - Marie Dumont
- Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR144, 26 rue d'Ulm, Paris 75005, France
| | - Marine Grison
- Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR144, 26 rue d'Ulm, Paris 75005, France
| | - David Mazaud
- Plateforme Imagerie PICT-IBiSA, Institut Curie, PSL Research University, Paris 75005, France; Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR3664, 26 rue d'Ulm, Paris 75005, France
| | - Mickaël Garnier
- Plateforme Imagerie PICT-IBiSA, Institut Curie, PSL Research University, Paris 75005, France; Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR3664, 26 rue d'Ulm, Paris 75005, France
| | - Laetitia Guintini
- Institute of Human Genetics, CNRS-Université de Montpellier, Montpellier 34396, France
| | - Louisa Nelson
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4GJ, UK
| | - Fumiko Esashi
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Isidro Cortés-Ciriano
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridge CB10 1SD, UK
| | - Stephen S Taylor
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4GJ, UK
| | - Jérôme Déjardin
- Institute of Human Genetics, CNRS-Université de Montpellier, Montpellier 34396, France
| | - Therese Wilhelm
- Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR144, 26 rue d'Ulm, Paris 75005, France; Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR3664, 26 rue d'Ulm, Paris 75005, France.
| | - Daniele Fachinetti
- Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR144, 26 rue d'Ulm, Paris 75005, France; Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR3664, 26 rue d'Ulm, Paris 75005, France.
| |
Collapse
|
4
|
Graham E, Esashi F. DNA strand breaks at centromeres: Friend or foe? Semin Cell Dev Biol 2024; 156:141-151. [PMID: 37872040 DOI: 10.1016/j.semcdb.2023.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/22/2023] [Accepted: 10/11/2023] [Indexed: 10/25/2023]
Abstract
Centromeres are large structural regions in the genomic DNA, which are essential for accurately transmitting a complete set of chromosomes to daughter cells during cell division. In humans, centromeres consist of highly repetitive α-satellite DNA sequences and unique epigenetic components, forming large proteinaceous structures required for chromosome segregation. Despite their biological importance, there is a growing body of evidence for centromere breakage across the cell cycle, including periods of quiescence. In this review, we provide an up-to-date examination of the distinct centromere environments at different stages of the cell cycle, highlighting their plausible contribution to centromere breakage. Additionally, we explore the implications of these breaks on centromere function, both in terms of negative consequences and potential positive effects.
Collapse
Affiliation(s)
- Emily Graham
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Fumiko Esashi
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
| |
Collapse
|
5
|
Sen Gupta A, Seidel C, Tsuchiya D, McKinney S, Yu Z, Smith SE, Unruh JR, Gerton JL. Defining a core configuration for human centromeres during mitosis. Nat Commun 2023; 14:7947. [PMID: 38040722 PMCID: PMC10692335 DOI: 10.1038/s41467-023-42980-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 10/25/2023] [Indexed: 12/03/2023] Open
Abstract
The centromere components cohesin, CENP-A, and centromeric DNA are essential for biorientation of sister chromatids on the mitotic spindle and accurate sister chromatid segregation. Insight into the 3D organization of centromere components would help resolve how centromeres function on the mitotic spindle. We use ChIP-seq and super-resolution microscopy with single particle averaging to examine the geometry of essential centromeric components on human chromosomes. Both modalities suggest cohesin is enriched at pericentromeric DNA. CENP-A localizes to a subset of the α-satellite DNA, with clusters separated by ~562 nm and a perpendicular intervening ~190 nM wide axis of cohesin in metaphase chromosomes. Differently sized α-satellite arrays achieve a similar core structure. Here we present a working model for a common core configuration of essential centromeric components that includes CENP-A nucleosomes, α-satellite DNA and pericentromeric cohesion. This configuration helps reconcile how centromeres function and serves as a foundation to add components of the chromosome segregation machinery.
Collapse
Affiliation(s)
| | - Chris Seidel
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Dai Tsuchiya
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Sean McKinney
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Zulin Yu
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Sarah E Smith
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Jay R Unruh
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Jennifer L Gerton
- Stowers Institute for Medical Research, Kansas City, MO, USA.
- Department of Biochemistry and Molecular Biology, University of Kansas, Kansas City, KS, USA.
| |
Collapse
|
6
|
Nassar R, Thompson L, Fouquerel E. Molecular mechanisms protecting centromeres from self-sabotage and implications for cancer therapy. NAR Cancer 2023; 5:zcad019. [PMID: 37180029 PMCID: PMC10167631 DOI: 10.1093/narcan/zcad019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/27/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Centromeres play a crucial role in DNA segregation by mediating the cohesion and separation of sister chromatids during cell division. Centromere dysfunction, breakage or compromised centromeric integrity can generate aneuploidies and chromosomal instability, which are cellular features associated with cancer initiation and progression. Maintaining centromere integrity is thus essential for genome stability. However, the centromere itself is prone to DNA breaks, likely due to its intrinsically fragile nature. Centromeres are complex genomic loci that are composed of highly repetitive DNA sequences and secondary structures and require the recruitment and homeostasis of a centromere-associated protein network. The molecular mechanisms engaged to preserve centromere inherent structure and respond to centromeric damage are not fully understood and remain a subject of ongoing research. In this article, we provide a review of the currently known factors that contribute to centromeric dysfunction and the molecular mechanisms that mitigate the impact of centromere damage on genome stability. Finally, we discuss the potential therapeutic strategies that could arise from a deeper understanding of the mechanisms preserving centromere integrity.
Collapse
Affiliation(s)
- Rim Nassar
- UPMC Hillman Cancer Center, Department of Pharmacology and Chemical Biology, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15232, USA
| | - Lily Thompson
- UPMC Hillman Cancer Center, Department of Pharmacology and Chemical Biology, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15232, USA
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Elise Fouquerel
- UPMC Hillman Cancer Center, Department of Pharmacology and Chemical Biology, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15232, USA
| |
Collapse
|
7
|
Sen Gupta A, Seidel C, Tsuchiya D, McKinney S, Yu Z, Smith S, Unruh J, Gerton JL. Defining a core configuration for human centromeres during mitosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.10.539634. [PMID: 37214893 PMCID: PMC10197669 DOI: 10.1101/2023.05.10.539634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The biorientation of sister chromatids on the mitotic spindle, essential for accurate sister chromatid segregation, relies on critical centromere components including cohesin, the centromere-specific H3 variant CENP-A, and centromeric DNA. Centromeric DNA is highly variable between chromosomes yet must accomplish a similar function. Moreover, how the 50 nm cohesin ring, proposed to encircle sister chromatids, accommodates inter-sister centromeric distances of hundreds of nanometers on the metaphase spindle is a conundrum. Insight into the 3D organization of centromere components would help resolve how centromeres function on the mitotic spindle. We used ChIP-seq and super-resolution microscopy to examine the geometry of essential centromeric components on human chromosomes. ChIP-seq demonstrates that cohesin subunits are depleted in α-satellite arrays where CENP-A nucleosomes and kinetochores assemble. Cohesin is instead enriched at pericentromeric DNA. Structured illumination microscopy of sister centromeres is consistent, revealing a non-overlapping pattern of CENP-A and cohesin. We used single particle averaging of hundreds of mitotic sister chromatids to develop an average centromere model. CENP-A clusters on sister chromatids, connected by α-satellite, are separated by ~562 nm with a perpendicular intervening ~190 nM wide axis of cohesin. Two differently sized α-satellite arrays on chromosome 7 display similar inter-sister CENP-A cluster distance, demonstrating different sized arrays can achieve a common spacing. Our data suggest a working model for a common core configuration of essential centromeric components that includes CENP-A nucleosomes at the outer edge of extensible α-satellite DNA and pericentromeric cohesion. This configuration helps reconcile how centromeres function and serves as a foundation for future studies of additional components required for centromere function.
Collapse
Affiliation(s)
| | - Chris Seidel
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Dai Tsuchiya
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Sean McKinney
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Zulin Yu
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Sarah Smith
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Jay Unruh
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Jennifer L. Gerton
- Stowers Institute for Medical Research, Kansas City, MO, USA
- University of Kansas Department of Biochemistry and Molecular Biology, Kansas City, KS, USA
| |
Collapse
|
8
|
Non-B-form DNA tends to form in centromeric regions and has undergone changes in polyploid oat subgenomes. Proc Natl Acad Sci U S A 2023; 120:e2211683120. [PMID: 36574697 PMCID: PMC9910436 DOI: 10.1073/pnas.2211683120] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Centromeres are the specialized regions of the chromosomes that direct faithful chromosome segregation during cell division. Despite their functional conservation, centromeres display features of rapidly evolving DNA and wide evolutionary diversity in size and organization. Previous work found that the noncanonical B-form DNA structures are abundant in the centromeres of several eukaryotic species with a possible implication for centromere specification. Thus far, systematic studies into the organization and function of non-B-form DNA in plants remain scarce. Here, we applied the oat system to investigate the role of non-B-form DNA in centromeres. We conducted chromatin immunoprecipitation sequencing using an antibody to the centromere-specific histone H3 variant (CENH3); this accurately positioned oat centromeres with different ploidy levels and identified a series of centromere-specific sequences including minisatellites and retrotransposons. To define genetic characteristics of oat centromeres, we surveyed the repeat sequences and found that dyad symmetries were abundant in oat centromeres and were predicted to form non-B-DNA structures in vivo. These structures including bent DNA, slipped DNA, Z-DNA, G-quadruplexes, and R-loops were prone to form within CENH3-binding regions. Dynamic conformational changes of predicted non-B-DNA occurred during the evolution from diploid to tetraploid to hexaploid oat. Furthermore, we applied the single-molecule technique of AFM and DNA:RNA immunoprecipitation with deep sequencing to validate R-loop enrichment in oat centromeres. Centromeric retrotransposons exhibited strong associations with R-loop formation. Taken together, our study elucidates the fundamental character of non-B-form DNA in the oat genome and reveals its potential role in centromeres.
Collapse
|
9
|
McQuaid K, Pipier A, Cardin C, Monchaud D. Interactions of small molecules with DNA junctions. Nucleic Acids Res 2022; 50:12636-12656. [PMID: 36382400 PMCID: PMC9825177 DOI: 10.1093/nar/gkac1043] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/13/2022] [Accepted: 10/23/2022] [Indexed: 11/17/2022] Open
Abstract
The four natural DNA bases (A, T, G and C) associate in base pairs (A=T and G≡C), allowing the attached DNA strands to assemble into the canonical double helix of DNA (or duplex-DNA, also known as B-DNA). The intrinsic supramolecular properties of nucleobases make other associations possible (such as base triplets or quartets), which thus translates into a diversity of DNA structures beyond B-DNA. To date, the alphabet of DNA structures is ripe with approximately 20 letters (from A- to Z-DNA); however, only a few of them are being considered as key players in cell biology and, by extension, valuable targets for chemical biology intervention. In the present review, we summarise what is known about alternative DNA structures (what are they? When, where and how do they fold?) and proceed to discuss further about those considered nowadays as valuable therapeutic targets. We discuss in more detail the molecular tools (ligands) that have been recently developed to target these structures, particularly the three- and four-way DNA junctions, in order to intervene in the biological processes where they are involved. This new and stimulating chemical biology playground allows for devising innovative strategies to fight against genetic diseases.
Collapse
Affiliation(s)
- Kane T McQuaid
- Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, UK
| | - Angélique Pipier
- Institut de Chimie Moléculaire de l’Université de Bourgogne (ICMUB), CNRS UMR 6302, UBFC Dijon, 21078 Dijon, France
| | - Christine J Cardin
- Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, UK
| | - David Monchaud
- Institut de Chimie Moléculaire de l’Université de Bourgogne (ICMUB), CNRS UMR 6302, UBFC Dijon, 21078 Dijon, France
| |
Collapse
|
10
|
Patchigolla VS, Mellone BG. Enrichment of Non-B-Form DNA at D. melanogaster Centromeres. Genome Biol Evol 2022; 14:evac054. [PMID: 35441684 PMCID: PMC9070824 DOI: 10.1093/gbe/evac054] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2022] [Indexed: 11/17/2022] Open
Abstract
Centromeres are essential chromosomal regions that mediate the accurate inheritance of genetic information during eukaryotic cell division. Despite their conserved function, centromeres do not contain conserved DNA sequences and are instead epigenetically marked by the presence of the centromere-specific histone H3 variant centromeric protein A. The functional contribution of centromeric DNA sequences to centromere identity remains elusive. Previous work found that dyad symmetries with a propensity to adopt noncanonical secondary DNA structures are enriched at the centromeres of several species. These findings lead to the proposal that noncanonical DNA structures may contribute to centromere specification. Here, we analyze the predicted secondary structures of the recently identified centromere DNA sequences of Drosophila melanogaster. Although dyad symmetries are only enriched on the Y centromere, we find that other types of noncanonical DNA structures, including melted DNA and G-quadruplexes, are common features of all D. melanogaster centromeres. Our work is consistent with previous models suggesting that noncanonical DNA secondary structures may be conserved features of centromeres with possible implications for centromere specification.
Collapse
Affiliation(s)
| | - Barbara G. Mellone
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
11
|
Chardon F, Japaridze A, Witt H, Velikovsky L, Chakraborty C, Wilhelm T, Dumont M, Yang W, Kikuti C, Gangnard S, Mace AS, Wuite G, Dekker C, Fachinetti D. CENP-B-mediated DNA loops regulate activity and stability of human centromeres. Mol Cell 2022; 82:1751-1767.e8. [PMID: 35320753 DOI: 10.1016/j.molcel.2022.02.032] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 12/25/2022]
Abstract
Chromosome inheritance depends on centromeres, epigenetically specified regions of chromosomes. While conventional human centromeres are known to be built of long tandem DNA repeats, much of their architecture remains unknown. Using single-molecule techniques such as AFM, nanopores, and optical tweezers, we find that human centromeric DNA exhibits complex DNA folds such as local hairpins. Upon binding to a specific sequence within centromeric regions, the DNA-binding protein CENP-B compacts centromeres by forming pronounced DNA loops between the repeats, which favor inter-chromosomal centromere compaction and clustering. This DNA-loop-mediated organization of centromeric chromatin participates in maintaining centromere position and integrity upon microtubule pulling during mitosis. Our findings emphasize the importance of DNA topology in centromeric regulation and stability.
Collapse
Affiliation(s)
- Florian Chardon
- Institut Curie, PSL Research University, CNRS, UMR 144, 26 rue d'Ulm, 75005 Paris, France
| | - Aleksandre Japaridze
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - Hannes Witt
- Department of Physics and Astronomy, LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, the Netherlands
| | - Leonid Velikovsky
- Institut Curie, PSL Research University, CNRS, UMR 144, 26 rue d'Ulm, 75005 Paris, France
| | - Camellia Chakraborty
- Institut Curie, PSL Research University, CNRS, UMR 144, 26 rue d'Ulm, 75005 Paris, France
| | - Therese Wilhelm
- Institut Curie, PSL Research University, CNRS, UMR 144, 26 rue d'Ulm, 75005 Paris, France
| | - Marie Dumont
- Institut Curie, PSL Research University, CNRS, UMR 144, 26 rue d'Ulm, 75005 Paris, France
| | - Wayne Yang
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - Carlos Kikuti
- Institut Curie, PSL Research University, CNRS, UMR 144, 26 rue d'Ulm, 75005 Paris, France
| | - Stephane Gangnard
- Institut Curie, PSL Research University, CNRS, UMR 144, 26 rue d'Ulm, 75005 Paris, France
| | - Anne-Sophie Mace
- Institut Curie, PSL Research University, CNRS, UMR 144, 26 rue d'Ulm, 75005 Paris, France
| | - Gijs Wuite
- Department of Physics and Astronomy, LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, the Netherlands
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - Daniele Fachinetti
- Institut Curie, PSL Research University, CNRS, UMR 144, 26 rue d'Ulm, 75005 Paris, France.
| |
Collapse
|
12
|
Zell J, Duskova K, Chouh L, Bossaert M, Chéron N, Granzhan A, Britton S, Monchaud D. Dual targeting of higher-order DNA structures by azacryptands induces DNA junction-mediated DNA damage in cancer cells. Nucleic Acids Res 2021; 49:10275-10288. [PMID: 34551430 PMCID: PMC8501980 DOI: 10.1093/nar/gkab796] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/16/2021] [Accepted: 09/01/2021] [Indexed: 12/11/2022] Open
Abstract
DNA is intrinsically dynamic and folds transiently into alternative higher-order structures such as G-quadruplexes (G4s) and three-way DNA junctions (TWJs). G4s and TWJs can be stabilised by small molecules (ligands) that have high chemotherapeutic potential, either as standalone DNA damaging agents or combined in synthetic lethality strategies. While previous approaches have claimed to use ligands that specifically target either G4s or TWJs, we report here on a new approach in which ligands targeting both TWJs and G4s in vitro demonstrate cellular effects distinct from that of G4 ligands, and attributable to TWJ targeting. The DNA binding modes of these new, dual TWJ-/G4-ligands were studied by a panel of in vitro methods and theoretical simulations, and their cellular properties by extensive cell-based assays. We show here that cytotoxic activity of TWJ-/G4-ligands is mitigated by the DNA damage response (DDR) and DNA topoisomerase 2 (TOP2), making them different from typical G4-ligands, and implying a pivotal role of TWJs in cells. We designed and used a clickable ligand, TrisNP-α, to provide unique insights into the TWJ landscape in cells and its modulation upon co-treatments. This wealth of data was exploited to design an efficient synthetic lethality strategy combining dual ligands with clinically relevant DDR inhibitors.
Collapse
Affiliation(s)
- Joanna Zell
- Institut de Chimie Moléculaire de l’Université de Bourgogne (ICMUB), CNRS UMR 6302, UBFC Dijon, 21078 Dijon, France
| | - Katerina Duskova
- Institut de Chimie Moléculaire de l’Université de Bourgogne (ICMUB), CNRS UMR 6302, UBFC Dijon, 21078 Dijon, France
| | - Leïla Chouh
- Institut Curie, CNRS UMR 9187, INSERM U1196, PSL Research University, 91405 Orsay, France
- Université Paris Saclay, CNRS UMR 9187, INSERM U1196, 91405 Orsay, France
| | - Madeleine Bossaert
- Institut de Pharmacologie et de Biologie Structurale (IPBS), CNRS UMR 5089, Université de Toulouse, UPS, Équipe labellisée la Ligue Contre le Cancer, 31077 Toulouse, France
| | - Nicolas Chéron
- Pasteur, Département de chimie, École Normale Supérieure (ENS), CNRS UMR8640, PSL Research University, Sorbonne Université, 75005 Paris, France
| | - Anton Granzhan
- Institut Curie, CNRS UMR 9187, INSERM U1196, PSL Research University, 91405 Orsay, France
- Université Paris Saclay, CNRS UMR 9187, INSERM U1196, 91405 Orsay, France
| | - Sébastien Britton
- Institut de Pharmacologie et de Biologie Structurale (IPBS), CNRS UMR 5089, Université de Toulouse, UPS, Équipe labellisée la Ligue Contre le Cancer, 31077 Toulouse, France
| | - David Monchaud
- Institut de Chimie Moléculaire de l’Université de Bourgogne (ICMUB), CNRS UMR 6302, UBFC Dijon, 21078 Dijon, France
| |
Collapse
|
13
|
Bossaert M, Pipier A, Riou JF, Noirot C, Nguyên LT, Serre RF, Bouchez O, Defrancq E, Calsou P, Britton S, Gomez D. Transcription-associated topoisomerase 2α (TOP2A) activity is a major effector of cytotoxicity induced by G-quadruplex ligands. eLife 2021; 10:65184. [PMID: 34180392 PMCID: PMC8279764 DOI: 10.7554/elife.65184] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 06/16/2021] [Indexed: 12/11/2022] Open
Abstract
G-quadruplexes (G4) are non-canonical DNA structures found in the genome of most species including human. Small molecules stabilizing these structures, called G4 ligands, have been identified and, for some of them, shown to induce cytotoxic DNA double-strand breaks. Through the use of an unbiased genetic approach, we identify here topoisomerase 2α (TOP2A) as a major effector of cytotoxicity induced by two clastogenic G4 ligands, pyridostatin and CX-5461, the latter molecule currently undergoing phase I/II clinical trials in oncology. We show that both TOP2 activity and transcription account for DNA break production following G4 ligand treatments. In contrast, clastogenic activity of these G4 ligands is countered by topoisomerase 1 (TOP1), which limits co-transcriptional G4 formation, and by factors promoting transcriptional elongation. Altogether our results support that clastogenic G4 ligands act as DNA structure-driven TOP2 poisons at transcribed regions bearing G4 structures.
Collapse
Affiliation(s)
- Madeleine Bossaert
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France.,Equipe Labellisée Ligue Contre le Cancer 2018, Toulouse, France
| | - Angélique Pipier
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France.,Equipe Labellisée Ligue Contre le Cancer 2018, Toulouse, France
| | - Jean-Francois Riou
- Structure et Instabilité des Génomes, Muséum National d'Histoire Naturelle, CNRS, INSERM, Paris, France
| | - Céline Noirot
- INRAE, UR 875, Unité de Mathématique et Informatique Appliquées, Genotoul Bioinfo, Castanet-Tolosan, France
| | - Linh-Trang Nguyên
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | | | - Olivier Bouchez
- INRAE, US 1426, GeT-PlaGe, Genotoul, Castanet-Tolosan, France
| | - Eric Defrancq
- Département de Chimie Moléculaire, UMR CNRS 5250, Université Grenoble Alpes, Grenoble, France
| | - Patrick Calsou
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France.,Equipe Labellisée Ligue Contre le Cancer 2018, Toulouse, France
| | - Sébastien Britton
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France.,Equipe Labellisée Ligue Contre le Cancer 2018, Toulouse, France
| | - Dennis Gomez
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France.,Equipe Labellisée Ligue Contre le Cancer 2018, Toulouse, France
| |
Collapse
|
14
|
Szlachta K, Manukyan A, Raimer HM, Singh S, Salamon A, Guo W, Lobachev KS, Wang YH. Topoisomerase II contributes to DNA secondary structure-mediated double-stranded breaks. Nucleic Acids Res 2020; 48:6654-6671. [PMID: 32501506 PMCID: PMC7337936 DOI: 10.1093/nar/gkaa483] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/20/2020] [Accepted: 06/01/2020] [Indexed: 12/12/2022] Open
Abstract
DNA double-stranded breaks (DSBs) trigger human genome instability, therefore identifying what factors contribute to DSB induction is critical for our understanding of human disease etiology. Using an unbiased, genome-wide approach, we found that genomic regions with the ability to form highly stable DNA secondary structures are enriched for endogenous DSBs in human cells. Human genomic regions predicted to form non-B-form DNA induced gross chromosomal rearrangements in yeast and displayed high indel frequency in human genomes. The extent of instability in both analyses is in concordance with the structure forming ability of these regions. We also observed an enrichment of DNA secondary structure-prone sites overlapping transcription start sites (TSSs) and CCCTC-binding factor (CTCF) binding sites, and uncovered an increase in DSBs at highly stable DNA secondary structure regions, in response to etoposide, an inhibitor of topoisomerase II (TOP2) re-ligation activity. Importantly, we found that TOP2 deficiency in both yeast and human leads to a significant reduction in DSBs at structure-prone loci, and that sites of TOP2 cleavage have a greater ability to form highly stable DNA secondary structures. This study reveals a direct role for TOP2 in generating secondary structure-mediated DNA fragility, advancing our understanding of mechanisms underlying human genome instability.
Collapse
Affiliation(s)
- Karol Szlachta
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908-0733, USA
| | - Arkadi Manukyan
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908-0733, USA
| | - Heather M Raimer
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908-0733, USA
| | - Sandeep Singh
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908-0733, USA
| | - Anita Salamon
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908-0733, USA
| | - Wenying Guo
- School of Biological Sciences and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Kirill S Lobachev
- School of Biological Sciences and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Yuh-Hwa Wang
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908-0733, USA
| |
Collapse
|
15
|
Balzano E, Giunta S. Centromeres under Pressure: Evolutionary Innovation in Conflict with Conserved Function. Genes (Basel) 2020; 11:E912. [PMID: 32784998 PMCID: PMC7463522 DOI: 10.3390/genes11080912] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/04/2020] [Accepted: 08/04/2020] [Indexed: 12/22/2022] Open
Abstract
Centromeres are essential genetic elements that enable spindle microtubule attachment for chromosome segregation during mitosis and meiosis. While this function is preserved across species, centromeres display an array of dynamic features, including: (1) rapidly evolving DNA; (2) wide evolutionary diversity in size, shape and organization; (3) evidence of mutational processes to generate homogenized repetitive arrays that characterize centromeres in several species; (4) tolerance to changes in position, as in the case of neocentromeres; and (5) intrinsic fragility derived by sequence composition and secondary DNA structures. Centromere drive underlies rapid centromere DNA evolution due to the "selfish" pursuit to bias meiotic transmission and promote the propagation of stronger centromeres. Yet, the origins of other dynamic features of centromeres remain unclear. Here, we review our current understanding of centromere evolution and plasticity. We also detail the mutagenic processes proposed to shape the divergent genetic nature of centromeres. Changes to centromeres are not simply evolutionary relics, but ongoing shifts that on one side promote centromere flexibility, but on the other can undermine centromere integrity and function with potential pathological implications such as genome instability.
Collapse
Affiliation(s)
- Elisa Balzano
- Dipartimento di Biologia e Biotecnologie “Charles Darwin”, Sapienza Università di Roma, 00185 Roma, Italy;
| | - Simona Giunta
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| |
Collapse
|
16
|
Talbert PB, Henikoff S. What makes a centromere? Exp Cell Res 2020; 389:111895. [PMID: 32035948 DOI: 10.1016/j.yexcr.2020.111895] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 01/18/2020] [Accepted: 02/05/2020] [Indexed: 12/26/2022]
Abstract
Centromeres are the eukaryotic chromosomal sites at which the kinetochore forms and attaches to spindle microtubules to orchestrate chromosomal segregation in mitosis and meiosis. Although centromeres are essential for cell division, their sequences are not conserved and evolve rapidly. Centromeres vary dramatically in size and organization. Here we categorize their diversity and explore the evolutionary forces shaping them. Nearly all centromeres favor AT-rich DNA that is gene-free and transcribed at a very low level. Repair of frequent centromere-proximal breaks probably contributes to their rapid sequence evolution. Point centromeres are only ~125 bp and are specified by common protein-binding motifs, whereas short regional centromeres are 1-5 kb, typically have unique sequences, and may have pericentromeric repeats adapted to facilitate centromere clustering. Transposon-rich centromeres are often ~100-300 kb and are favored by RNAi machinery that silences transposons, by suppression of meiotic crossovers at centromeres, and by the ability of some transposons to target centromeres. Megabase-length satellite centromeres arise in plants and animals with asymmetric female meiosis that creates centromere competition, and favors satellite monomers one or two nucleosomes in length that position and stabilize centromeric nucleosomes. Holocentromeres encompass the length of a chromosome and may differ dramatically between mitosis and meiosis. We propose a model in which low level transcription of centromeres facilitates the formation of non-B DNA that specifies centromeres and promotes loading of centromeric nucleosomes.
Collapse
Affiliation(s)
- Paul B Talbert
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA
| | - Steven Henikoff
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA.
| |
Collapse
|
17
|
Singh S, Szlachta K, Manukyan A, Raimer HM, Dinda M, Bekiranov S, Wang YH. Pausing sites of RNA polymerase II on actively transcribed genes are enriched in DNA double-stranded breaks. J Biol Chem 2020; 295:3990-4000. [PMID: 32029477 DOI: 10.1074/jbc.ra119.011665] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 02/05/2020] [Indexed: 12/16/2022] Open
Abstract
DNA double-stranded breaks (DSBs) are strongly associated with active transcription, and promoter-proximal pausing of RNA polymerase II (Pol II) is a critical step in transcriptional regulation. Mapping the distribution of DSBs along actively expressed genes and identifying the location of DSBs relative to pausing sites can provide mechanistic insights into transcriptional regulation. Using genome-wide DNA break mapping/sequencing techniques at single-nucleotide resolution in human cells, we found that DSBs are preferentially located around transcription start sites of highly transcribed and paused genes and that Pol II promoter-proximal pausing sites are enriched in DSBs. We observed that DSB frequency at pausing sites increases as the strength of pausing increases, regardless of whether the pausing sites are near or far from annotated transcription start sites. Inhibition of topoisomerase I and II by camptothecin and etoposide treatment, respectively, increased DSBs at the pausing sites as the concentrations of drugs increased, demonstrating the involvement of topoisomerases in DSB generation at the pausing sites. DNA breaks generated by topoisomerases are short-lived because of the religation activity of these enzymes, which these drugs inhibit; therefore, the observation of increased DSBs with increasing drug doses at pausing sites indicated active recruitment of topoisomerases to these sites. Furthermore, the enrichment and locations of DSBs at pausing sites were shared among different cell types, suggesting that Pol II promoter-proximal pausing is a common regulatory mechanism. Our findings support a model in which topoisomerases participate in Pol II promoter-proximal pausing and indicated that DSBs at pausing sites contribute to transcriptional activation.
Collapse
Affiliation(s)
- Sandeep Singh
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia 22908
| | - Karol Szlachta
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia 22908
| | - Arkadi Manukyan
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia 22908
| | - Heather M Raimer
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia 22908
| | - Manikarna Dinda
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia 22908
| | - Stefan Bekiranov
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia 22908
| | - Yuh-Hwa Wang
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia 22908
| |
Collapse
|
18
|
Meng Y, Liu C, Shen L, Zhou M, Liu W, Kowolik C, Campbell JL, Zheng L, Shen B. TRAF6 mediates human DNA2 polyubiquitination and nuclear localization to maintain nuclear genome integrity. Nucleic Acids Res 2019; 47:7564-7579. [PMID: 31216032 PMCID: PMC6698806 DOI: 10.1093/nar/gkz537] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/29/2019] [Accepted: 06/07/2019] [Indexed: 12/14/2022] Open
Abstract
The multifunctional human DNA2 (hDNA2) nuclease/helicase is required to process DNA ends for homology-directed recombination repair (HDR) and to counteract replication stress. To participate in these processes, hDNA2 must localize to the nucleus and be recruited to the replication or repair sites. However, because hDNA2 lacks the nuclear localization signal that is found in its yeast homolog, it is unclear how its migration into the nucleus is regulated during replication or in response to DNA damage. Here, we report that the E3 ligase TRAF6 binds to and mediates the K63-linked polyubiquitination of hDNA2, increasing the stability of hDNA2 and promoting its nuclear localization. Inhibiting TRAF6-mediated polyubiquitination abolishes the nuclear localization of hDNA2, consequently impairing DNA end resection and HDR. Thus, the current study reveals a mechanism for the regulation of hDNA2 localization and establishes that TRAF6-mediated hDNA2 ubiquitination activates DNA repair pathways to maintain nuclear genome integrity.
Collapse
Affiliation(s)
- Yuan Meng
- Colleges of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310027, China.,Department of Cancer Genetics and Epigenetics, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Changwei Liu
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Lei Shen
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Mian Zhou
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Wenpeng Liu
- Colleges of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310027, China.,Department of Cancer Genetics and Epigenetics, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Claudia Kowolik
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Judith L Campbell
- Division of Chemistry and Chemical Engineering, Braun Laboratories, California Institute of Technology, Pasadena, CA 91125, USA
| | - Li Zheng
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Binghui Shen
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| |
Collapse
|
19
|
Atkin ND, Raimer HM, Wang YH. Broken by the Cut: A Journey into the Role of Topoisomerase II in DNA Fragility. Genes (Basel) 2019; 10:E791. [PMID: 31614754 PMCID: PMC6826763 DOI: 10.3390/genes10100791] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 10/05/2019] [Accepted: 10/10/2019] [Indexed: 02/07/2023] Open
Abstract
DNA topoisomerase II (TOP2) plays a critical role in many processes such as replication and transcription, where it resolves DNA structures and relieves torsional stress. Recent evidence demonstrated the association of TOP2 with topologically associated domains (TAD) boundaries and CCCTC-binding factor (CTCF) binding sites. At these sites, TOP2 promotes interactions between enhancers and gene promoters, and relieves torsional stress that accumulates at these physical barriers. Interestingly, in executing its enzymatic function, TOP2 contributes to DNA fragility through re-ligation failure, which results in persistent DNA breaks when unrepaired or illegitimately repaired. Here, we discuss the biological processes for which TOP2 is required and the steps at which it can introduce DNA breaks. We describe the repair processes that follow removal of TOP2 adducts and the resultant broken DNA ends, and present how these processes can contribute to disease-associated mutations. Furthermore, we examine the involvement of TOP2-induced breaks in the formation of oncogenic translocations of leukemia and papillary thyroid cancer, as well as the role of TOP2 and proteins which repair TOP2 adducts in other diseases. The participation of TOP2 in generating persistent DNA breaks and leading to diseases such as cancer, could have an impact on disease treatment and prevention.
Collapse
Affiliation(s)
- Naomi D Atkin
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA.
| | - Heather M Raimer
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Yuh-Hwa Wang
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
20
|
Sharma AB, Dimitrov S, Hamiche A, Van Dyck E. Centromeric and ectopic assembly of CENP-A chromatin in health and cancer: old marks and new tracks. Nucleic Acids Res 2019; 47:1051-1069. [PMID: 30590707 PMCID: PMC6379705 DOI: 10.1093/nar/gky1298] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 12/13/2018] [Accepted: 12/18/2018] [Indexed: 12/20/2022] Open
Abstract
The histone H3 variant CENP-A confers epigenetic identity to the centromere and plays crucial roles in the assembly and function of the kinetochore, thus ensuring proper segregation of our chromosomes. CENP-A containing nucleosomes exhibit unique structural specificities and lack the complex profile of gene expression-associated histone posttranslational modifications found in canonical histone H3 and the H3.3 variant. CENP-A mislocalization into noncentromeric regions resulting from its overexpression leads to chromosomal segregation aberrations and genome instability. Overexpression of CENP-A is a feature of many cancers and is associated with malignant progression and poor outcome. The recent years have seen impressive progress in our understanding of the mechanisms that orchestrate CENP-A deposition at native centromeres and ectopic loci. They have witnessed the description of novel, heterotypic CENP-A/H3.3 nucleosome particles and the exploration of the phenotypes associated with the deregulation of CENP-A and its chaperones in tumor cells. Here, we review the structural specificities of CENP-A nucleosomes, the epigenetic features that characterize the centrochromatin and the mechanisms and factors that orchestrate CENP-A deposition at centromeres. We then review our knowledge of CENP-A ectopic distribution, highlighting experimental strategies that have enabled key discoveries. Finally, we discuss the implications of deregulated CENP-A in cancer.
Collapse
Affiliation(s)
- Abhishek Bharadwaj Sharma
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health (LIH), 84 Val Fleuri, L-1526 Luxembourg, Luxembourg
| | - Stefan Dimitrov
- Université Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Institute for Advanced Biosciences (IAB), Site Santé-Allée des Alpes, 38700 La Tronche, France.,Izmir Biomedicine and Genome Center, İzmir, Turkey
| | - Ali Hamiche
- Département de Génomique Fonctionnelle et Cancer, Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, CNRS, INSERM, 67404 Illkirch Cedex, France
| | - Eric Van Dyck
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health (LIH), 84 Val Fleuri, L-1526 Luxembourg, Luxembourg
| |
Collapse
|
21
|
Abstract
Animal and plant centromeres are embedded in repetitive "satellite" DNA, but are thought to be epigenetically specified. To define genetic characteristics of centromeres, we surveyed satellite DNA from diverse eukaryotes and identified variation in <10-bp dyad symmetries predicted to adopt non-B-form conformations. Organisms lacking centromeric dyad symmetries had binding sites for sequence-specific DNA-binding proteins with DNA-bending activity. For example, human and mouse centromeres are depleted for dyad symmetries, but are enriched for non-B-form DNA and are associated with binding sites for the conserved DNA-binding protein CENP-B, which is required for artificial centromere function but is paradoxically nonessential. We also detected dyad symmetries and predicted non-B-form DNA structures at neocentromeres, which form at ectopic loci. We propose that centromeres form at non-B-form DNA because of dyad symmetries or are strengthened by sequence-specific DNA binding proteins. This may resolve the CENP-B paradox and provide a general basis for centromere specification.
Collapse
Affiliation(s)
- Sivakanthan Kasinathan
- Medical Scientist Training Program, University of Washington School of Medicine, Seattle, WA.,Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Steven Henikoff
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA.,Howard Hughes Medical Institute, Seattle, WA
| |
Collapse
|
22
|
Smurova K, De Wulf P. Centromere and Pericentromere Transcription: Roles and Regulation … in Sickness and in Health. Front Genet 2018; 9:674. [PMID: 30627137 PMCID: PMC6309819 DOI: 10.3389/fgene.2018.00674] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 12/04/2018] [Indexed: 12/26/2022] Open
Abstract
The chromosomal loci known as centromeres (CEN) mediate the equal distribution of the duplicated genome between both daughter cells. Specifically, centromeres recruit a protein complex named the kinetochore, that bi-orients the replicated chromosome pairs to the mitotic or meiotic spindle structure. The paired chromosomes are then separated, and the individual chromosomes segregate in opposite direction along the regressing spindle into each daughter cell. Erroneous kinetochore assembly or activity produces aneuploid cells that contain an abnormal number of chromosomes. Aneuploidy may incite cell death, developmental defects (including genetic syndromes), and cancer (>90% of all cancer cells are aneuploid). While kinetochores and their activities have been preserved through evolution, the CEN DNA sequences have not. Hence, to be recognized as sites for kinetochore assembly, CEN display conserved structural themes. In addition, CEN nucleosomes enclose a CEN-exclusive variant of histone H3, named CENP-A, and carry distinct epigenetic labels on CENP-A and the other CEN histone proteins. Through the cell cycle, CEN are transcribed into non-coding RNAs. After subsequent processing, they become key components of the CEN chromatin by marking the CEN locus and by stably anchoring the CEN-binding kinetochore proteins. CEN transcription is tightly regulated, of low intensity, and essential for differentiation and development. Under- or overexpression of CEN transcripts, as documented for myriad cancers, provoke chromosome missegregation and aneuploidy. CEN are genetically stable and fully competent only when they are insulated from the surrounding, pericentromeric chromatin, which must be silenced. We will review CEN transcription and its contribution to faithful kinetochore function. We will further discuss how pericentromeric chromatin is silenced by RNA processing and transcriptionally repressive chromatin marks. We will report on the transcriptional misregulation of (peri)centromeres during stress, natural aging, and disease and reflect on whether their transcripts can serve as future diagnostic tools and anti-cancer targets in the clinic.
Collapse
Affiliation(s)
- Ksenia Smurova
- Centre for Integrative Biology, University of Trento, Trento, Italy
| | - Peter De Wulf
- Centre for Integrative Biology, University of Trento, Trento, Italy
| |
Collapse
|
23
|
Black EM, Giunta S. Repetitive Fragile Sites: Centromere Satellite DNA As a Source of Genome Instability in Human Diseases. Genes (Basel) 2018; 9:E615. [PMID: 30544645 PMCID: PMC6315641 DOI: 10.3390/genes9120615] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/03/2018] [Accepted: 12/03/2018] [Indexed: 12/31/2022] Open
Abstract
Maintenance of an intact genome is essential for cellular and organismal homeostasis. The centromere is a specialized chromosomal locus required for faithful genome inheritance at each round of cell division. Human centromeres are composed of large tandem arrays of repetitive alpha-satellite DNA, which are often sites of aberrant rearrangements that may lead to chromosome fusions and genetic abnormalities. While the centromere has an essential role in chromosome segregation during mitosis, the long and repetitive nature of the highly identical repeats has greatly hindered in-depth genetic studies, and complete annotation of all human centromeres is still lacking. Here, we review our current understanding of human centromere genetics and epigenetics as well as recent investigations into the role of centromere DNA in disease, with a special focus on cancer, aging, and human immunodeficiency⁻centromeric instability⁻facial anomalies (ICF) syndrome. We also highlight the causes and consequences of genomic instability at these large repetitive arrays and describe the possible sources of centromere fragility. The novel connection between alpha-satellite DNA instability and human pathological conditions emphasizes the importance of obtaining a truly complete human genome assembly and accelerating our understanding of centromere repeats' role in physiology and beyond.
Collapse
Affiliation(s)
- Elizabeth M Black
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| | - Simona Giunta
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
24
|
Barra V, Fachinetti D. The dark side of centromeres: types, causes and consequences of structural abnormalities implicating centromeric DNA. Nat Commun 2018; 9:4340. [PMID: 30337534 PMCID: PMC6194107 DOI: 10.1038/s41467-018-06545-y] [Citation(s) in RCA: 175] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 09/06/2018] [Indexed: 12/18/2022] Open
Abstract
Centromeres are the chromosomal domains required to ensure faithful transmission of the genome during cell division. They have a central role in preventing aneuploidy, by orchestrating the assembly of several components required for chromosome separation. However, centromeres also adopt a complex structure that makes them susceptible to being sites of chromosome rearrangements. Therefore, preservation of centromere integrity is a difficult, but important task for the cell. In this review, we discuss how centromeres could potentially be a source of genome instability and how centromere aberrations and rearrangements are linked with human diseases such as cancer.
Collapse
Affiliation(s)
- V Barra
- Institut Curie, PSL Research University, CNRS, UMR 144, 26 rue d'Ulm, F-75005, Paris, France
| | - D Fachinetti
- Institut Curie, PSL Research University, CNRS, UMR 144, 26 rue d'Ulm, F-75005, Paris, France.
| |
Collapse
|
25
|
Talbert PB, Henikoff S. Transcribing Centromeres: Noncoding RNAs and Kinetochore Assembly. Trends Genet 2018; 34:587-599. [DOI: 10.1016/j.tig.2018.05.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/08/2018] [Accepted: 05/09/2018] [Indexed: 12/20/2022]
|
26
|
Mills WE, Spence JM, Fukagawa T, Farr CJ. Site-Specific Cleavage by Topoisomerase 2: A Mark of the Core Centromere. Int J Mol Sci 2018; 19:E534. [PMID: 29439406 PMCID: PMC5855756 DOI: 10.3390/ijms19020534] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/06/2018] [Accepted: 02/07/2018] [Indexed: 12/12/2022] Open
Abstract
In addition to its roles in transcription and replication, topoisomerase 2 (topo 2) is crucial in shaping mitotic chromosomes and in ensuring the orderly separation of sister chromatids. As well as its recruitment throughout the length of the mitotic chromosome, topo 2 accumulates at the primary constriction. Here, following cohesin release, the enzymatic activity of topo 2 acts to remove residual sister catenations. Intriguingly, topo 2 does not bind and cleave all sites in the genome equally; one preferred site of cleavage is within the core centromere. Discrete topo 2-centromeric cleavage sites have been identified in α-satellite DNA arrays of active human centromeres and in the centromere regions of some protozoans. In this study, we show that topo 2 cleavage sites are also a feature of the centromere in Schizosaccharomyces pombe, the metazoan Drosophila melanogaster and in another vertebrate species, Gallus gallus (chicken). In vertebrates, we show that this site-specific cleavage is diminished by depletion of CENP-I, an essential constitutive centromere protein. The presence, within the core centromere of a wide range of eukaryotes, of precise sites hypersensitive to topo 2 cleavage suggests that these mark a fundamental and conserved aspect of this functional domain, such as a non-canonical secondary structure.
Collapse
Affiliation(s)
- Walter E Mills
- Department of Genetics, University of Cambridge, Downing St, Cambridge CB2 3EH, UK.
| | - Jennifer M Spence
- Department of Genetics, University of Cambridge, Downing St, Cambridge CB2 3EH, UK.
| | - Tatsuo Fukagawa
- Laboratory of Chromosome Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan.
| | - Christine J Farr
- Department of Genetics, University of Cambridge, Downing St, Cambridge CB2 3EH, UK.
| |
Collapse
|
27
|
Nonhomologous End-Joining with Minimal Sequence Loss Is Promoted by the Mre11-Rad50-Nbs1-Ctp1 Complex in Schizosaccharomyces pombe. Genetics 2017; 206:481-496. [PMID: 28292918 DOI: 10.1534/genetics.117.200972] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 02/24/2017] [Indexed: 11/18/2022] Open
Abstract
While the Mre11-Rad50-Nbs1 (MRN) complex has known roles in repair processes like homologous recombination and microhomology-mediated end-joining, its role in nonhomologous end-joining (NHEJ) is unclear as Saccharomyces cerevisiae, Schizosaccharomyces pombe, and mammals have different requirements for repairing cut DNA ends. Most double-strand breaks (DSBs) require nucleolytic processing prior to DNA ligation. Therefore, we studied repair using the Hermes transposon, whose excision leaves a DSB capped by hairpin ends similar to structures generated by palindromes and trinucleotide repeats. We generated single Hermes insertions using a novel S. pombe transient transfection system, and used Hermes excision to show a requirement for MRN in the NHEJ of nonligatable ends. NHEJ repair was indicated by the >1000-fold decrease in excision in cells lacking Ku or DNA ligase 4. Most repaired excision sites had <5 bp of sequence loss or mutation, characteristic for NHEJ and similar excision events in metazoans, and in contrast to the more extensive loss seen in S. cerevisiaeS. pombe NHEJ was reduced >1000-fold in cells lacking each MRN subunit, and loss of MRN-associated Ctp1 caused a 30-fold reduction. An Mre11 dimer is thought to hold DNA ends together for repair, and Mre11 dimerization domain mutations reduced repair 300-fold. In contrast, a mre11 mutant defective in endonucleolytic activity, the same mutant lacking Ctp1, or the triple mutant also lacking the putative hairpin nuclease Pso2 showed wild-type levels of repair. Thus, MRN may act to recruit the hairpin opening activity that allows subsequent repair.
Collapse
|
28
|
Bloom K, Costanzo V. Centromere Structure and Function. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2017; 56:515-539. [PMID: 28840251 DOI: 10.1007/978-3-319-58592-5_21] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The centromere is the genetic locus that specifies the site of kinetochore assembly, where the chromosome will attach to the kinetochore microtubule. The pericentromere is the physical region responsible for the geometry of bi-oriented sister kinetochores in metaphase. In budding yeast the 125 bp point centromere is sufficient to specify kinetochore assembly. The flanking region is enriched (3X) in cohesin and condensin relative to the remaining chromosome arms. The enrichment spans about 30-50 kb around each centromere. We refer to the flanking chromatin as the pericentromere in yeast. In mammals, a 5-10 Mb region dictates where the kinetochore is built. The kinetochore interacts with a very small fraction of DNA on the surface of the centromeric region. The remainder of the centromere lies between the sister kinetochores. This is typically called centromere chromatin. The chromatin sites that directly interface to microtubules cannot be identified due to the repeated sequence within the mammalian centromere. However in both yeast and mammals, the total amount of DNA between the sites of microtubule attachment in metaphase is highly conserved. In yeast the 16 chromosomes are clustered into a 250 nm diameter region, and 800 kb (16 × 50 kb) or ~1 Mb of DNA lies between sister kinetochores. In mammals, 5-10 Mb lies between sister kinetochores. In both organisms the sister kinetochores are separated by about 1 μm. Thus, centromeres of different organisms differ in how they specify kinetochore assembly, but there may be important centromere chromatin functions that are conserved throughout phylogeny. Recently, centromeric chromatin has been reconstituted in vitro using alpha satellite DNA revealing unexpected features of centromeric DNA organization, replication, and response to stress. We will focus on the conserved features of centromere in this review.
Collapse
Affiliation(s)
- Kerry Bloom
- Department of Biology, University of North Carolina at Chapel Hill, 623 Fordham Hall CB#3280, Chapel Hill, NC, 27599-3280, USA.
| | - Vincenzo Costanzo
- DNA Metabolism Laboratory, IFOM, The FIRC Institute of Molecular Oncology, Vai Adamello 16, 21139, Milan, Italy
| |
Collapse
|
29
|
Centromeric DNA replication reconstitution reveals DNA loops and ATR checkpoint suppression. Nat Cell Biol 2016; 18:684-91. [PMID: 27111843 PMCID: PMC4939857 DOI: 10.1038/ncb3344] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 03/18/2016] [Indexed: 12/18/2022]
Abstract
Half of the human genome is made up of repetitive DNA. However, mechanisms underlying replication of chromosome regions containing repetitive DNA are poorly understood. We reconstituted replication of defined human chromosome segments using bacterial artificial chromosomes in Xenopus laevis egg extract. Using this approach we characterized the chromatin assembly and replication dynamics of centromeric alpha-satellite DNA. Proteomic analysis of centromeric chromatin revealed replication-dependent enrichment of a network of DNA repair factors including the MSH2-6 complex, which was required for efficient centromeric DNA replication. However, contrary to expectations, the ATR-dependent checkpoint monitoring DNA replication fork arrest could not be activated on highly repetitive DNA due to the inability of the single-stranded DNA binding protein RPA to accumulate on chromatin. Electron microscopy of centromeric DNA and supercoil mapping revealed the presence of topoisomerase I-dependent DNA loops embedded in a protein matrix enriched for SMC2-4 proteins. This arrangement suppressed ATR signalling by preventing RPA hyper-loading, facilitating replication of centromeric DNA. These findings have important implications for our understanding of repetitive DNA metabolism and centromere organization under normal and stressful conditions.
Collapse
|
30
|
Thys RG, Lehman CE, Pierce LCT, Wang YH. Environmental and chemotherapeutic agents induce breakage at genes involved in leukemia-causing gene rearrangements in human hematopoietic stem/progenitor cells. Mutat Res 2015; 779:86-95. [PMID: 26163765 PMCID: PMC4808301 DOI: 10.1016/j.mrfmmm.2015.06.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 05/27/2015] [Accepted: 06/23/2015] [Indexed: 01/27/2023]
Abstract
Hematopoietic stem and progenitor cells (HSPCs) give rise to all of the cells that make up the hematopoietic system in the human body, making their stability and resilience especially important. Damage to these cells can severely impact cell development and has the potential to cause diseases, such as leukemia. Leukemia-causing chromosomal rearrangements have largely been studied in the context of radiation exposure and are formed by a multi-step process, including an initial DNA breakage and fusion of the free DNA ends. However, the mechanism for DNA breakage in patients without previous radiation exposure is unclear. Here, we investigate the role of non-cytotoxic levels of environmental factors, benzene, and diethylnitrosamine (DEN), and chemotherapeutic agents, etoposide, and doxorubicin, in generating DNA breakage at the patient breakpoint hotspots of the MLL and CBFB genes in human HSPCs. These conditions represent exposure to chemicals encountered daily or residual doses from chemotherapeutic drugs. Exposure of HSPCs to non-cytotoxic levels of environmental chemicals or chemotherapeutic agents causes DNA breakage at preferential sites in the human genome, including the leukemia-related genes MLL and CBFB. Though benzene, etoposide, and doxorubicin have previously been linked to leukemia formation, this is the first study to demonstrate a role for DEN in the generation of DNA breakage at leukemia-specific sites. These chemical-induced DNA breakpoints coincide with sites of predicted topoisomerase II cleavage. The distribution of breakpoints by exposure to non-cytotoxic levels of chemicals showed a similar pattern to fusion breakpoints in leukemia patients. Our findings demonstrate that HSPCs exposed to non-cytotoxic levels of environmental chemicals and chemotherapeutic agents are prone to topoisomerase II-mediated DNA damage at the leukemia-associated genes MLL and CBFB. These data suggest a role for long-term environmental chemical or residual chemotherapeutic drug exposure in generation of DNA breakage at sites with a propensity to form leukemia-causing gene rearrangements.
Collapse
Affiliation(s)
- Ryan G Thys
- Department of Cancer Biology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1016, USA.
| | - Christine E Lehman
- Department of Cancer Biology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1016, USA.
| | | | - Yuh-Hwa Wang
- Department of Biochemistry and Molecular Genetics, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA 22908-0733, USA.
| |
Collapse
|
31
|
Thys RG, Lehman CE, Pierce LCT, Wang YH. DNA secondary structure at chromosomal fragile sites in human disease. Curr Genomics 2015; 16:60-70. [PMID: 25937814 PMCID: PMC4412965 DOI: 10.2174/1389202916666150114223205] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 01/09/2015] [Accepted: 01/14/2015] [Indexed: 11/22/2022] Open
Abstract
DNA has the ability to form a variety of secondary structures that can interfere with normal cellular processes, and many of these structures have been associated with neurological diseases and cancer. Secondary structure-forming sequences are often found at chromosomal fragile sites, which are hotspots for sister chromatid exchange, chromosomal translocations, and deletions. Structures formed at fragile sites can lead to instability by disrupting normal cellular processes such as DNA replication and transcription. The instability caused by disruption of replication and transcription can lead to DNA breakage, resulting in gene rearrangements and deletions that cause disease. In this review, we discuss the role of DNA secondary structure at fragile sites in human disease.
Collapse
Affiliation(s)
- Ryan G Thys
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, USA
| | - Christine E Lehman
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, USA
| | | | - Yuh-Hwa Wang
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| |
Collapse
|
32
|
Gómez R, Viera A, Berenguer I, Llano E, Pendás AM, Barbero JL, Kikuchi A, Suja JA. Cohesin removal precedes topoisomerase IIα-dependent decatenation at centromeres in male mammalian meiosis II. Chromosoma 2014; 123:129-46. [PMID: 24013524 DOI: 10.1007/s00412-013-0434-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 07/11/2013] [Accepted: 08/13/2013] [Indexed: 12/26/2022]
Abstract
Sister chromatid cohesion is regulated by cohesin complexes and topoisomerase IIα. Although relevant studies have shed some light on the relationship between these two mechanisms of cohesion during mammalian mitosis, their interplay during mammalian meiosis remains unknown. In the present study, we have studied the dynamics of topoisomerase IIα in relation to that of the cohesin subunits RAD21 and REC8, the shugoshin-like 2 (Schizosaccharomyces pombe) (SGOL2) and the polo-like kinase 1-interacting checkpoint helicase (PICH), during both male mouse meiotic divisions. Our results strikingly show that topoisomerase IIα appears at stretched strands connecting the sister kinetochores of segregating early anaphase II chromatids, once the cohesin complexes have been removed from the centromeres. Moreover, the number and length of these topoisomerase IIα-connecting strands increase between lagging chromatids at anaphase II after the chemical inhibition of the enzymatic activity of topoisomerase IIα by etoposide. Our results also show that the etoposide-induced inhibition of topoisomerase IIα is not able to rescue the loss of centromere cohesion promoted by the absence of the shugoshin SGOL2 during anaphase I. Taking into account our results, we propose a two-step model for the sequential release of centromeric cohesion during male mammalian meiosis II. We suggest that the cohesin removal is a prerequisite for the posterior topoisomerase IIα-mediated resolution of persisting catenations between segregating chromatids during anaphase II.
Collapse
Affiliation(s)
- Rocío Gómez
- Unidad de Biología Celular, Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Dillon LW, Pierce LCT, Lehman CE, Nikiforov YE, Wang YH. DNA topoisomerases participate in fragility of the oncogene RET. PLoS One 2013; 8:e75741. [PMID: 24040417 PMCID: PMC3770543 DOI: 10.1371/journal.pone.0075741] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 08/19/2013] [Indexed: 11/19/2022] Open
Abstract
Fragile site breakage was previously shown to result in rearrangement of the RET oncogene, resembling the rearrangements found in thyroid cancer. Common fragile sites are specific regions of the genome with a high susceptibility to DNA breakage under conditions that partially inhibit DNA replication, and often coincide with genes deleted, amplified, or rearranged in cancer. While a substantial amount of work has been performed investigating DNA repair and cell cycle checkpoint proteins vital for maintaining stability at fragile sites, little is known about the initial events leading to DNA breakage at these sites. The purpose of this study was to investigate these initial events through the detection of aphidicolin (APH)-induced DNA breakage within the RET oncogene, in which 144 APH-induced DNA breakpoints were mapped on the nucleotide level in human thyroid cells within intron 11 of RET, the breakpoint cluster region found in patients. These breakpoints were located at or near DNA topoisomerase I and/or II predicted cleavage sites, as well as at DNA secondary structural features recognized and preferentially cleaved by DNA topoisomerases I and II. Co-treatment of thyroid cells with APH and the topoisomerase catalytic inhibitors, betulinic acid and merbarone, significantly decreased APH-induced fragile site breakage within RET intron 11 and within the common fragile site FRA3B. These data demonstrate that DNA topoisomerases I and II are involved in initiating APH-induced common fragile site breakage at RET, and may engage the recognition of DNA secondary structures formed during perturbed DNA replication.
Collapse
Affiliation(s)
- Laura W. Dillon
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Levi C. T. Pierce
- Department of Chemistry and Biochemistry, University of California-San Diego, La Jolla, California, United States of America
| | - Christine E. Lehman
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Yuri E. Nikiforov
- Department of Pathology and Laboratory Medicine, University of Pittsburgh, Pennsylvania, United States of America
| | - Yuh-Hwa Wang
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
34
|
p16 is superior to ProEx C in identifying high-grade squamous intraepithelial lesions (HSIL) of the anal canal. Am J Surg Pathol 2013; 37:659-68. [PMID: 23552383 DOI: 10.1097/pas.0b013e31828706c0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Although the incidence of human papillomavirus (HPV)-associated anal neoplasia is increasing, interobserver and intraobserver reproducibility in the grading of biopsy specimens from this area remains unacceptably low. Attempts to produce a more reproducible grading scheme have led to the use of biomarkers for the detection of high-risk HPV (HR-HPV). We evaluated the performance of standard morphology and biomarkers p16, ProEx C, and Ki-67 in a set of 75 lesions [17 nondysplastic lesions, 23 low-grade squamous intraepithelial lesions (LSIL)/condyloma, 20 high-grade squamous intraepithelial lesions (HSIL), 15 invasive squamous cell carcinomas] from the anal and perianal region in 65 patients and correlated these findings with HPV subtype on the basis of a type-specific multiplex real-time polymerase chain reaction assay designed to detect HR-HPV. A subset of cases with amplifiable HPV DNA was also sequenced. HSIL was typically flat (15/20), and only a minority (4/20) had koilocytes. In contrast, only 1 LSIL was flat (1/23), and the remainder were exophytic. The majority of LSIL had areas of koilocytic change (20/23). HR-HPV DNA was detected in the majority (89%) of invasive carcinomas and HSIL biopsies, 86% and 97% of which were accurately labeled by strong and diffuse block-positive p16 and ProEx C, respectively. LSIL cases, however, only infrequently harbored HR-HPV (13%); most harbored low-risk HPV (LR-HPV) types 6 and 11. Within the LSIL group, p16 outperformed ProEx C, resulting in fewer false-positive cases (5% vs. 75%). Ki-67 was also increased in HR-HPV-positive lesions, although biopsies with increased inflammation and reactive changes also showed higher Ki-67 indices. These data suggest that strong and diffuse block-positive nuclear and cytoplasmic labeling with p16 is a highly specific biomarker for the presence of HR-HPV in anal biopsies and that this finding correlates with high-grade lesions.
Collapse
|
35
|
Vummidi BR, Alzeer J, Luedtke NW. Fluorescent Probes for G-Quadruplex Structures. Chembiochem 2013; 14:540-58. [DOI: 10.1002/cbic.201200612] [Citation(s) in RCA: 197] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Indexed: 12/19/2022]
|
36
|
Echeverry MC, Bot C, Obado SO, Taylor MC, Kelly JM. Centromere-associated repeat arrays on Trypanosoma brucei chromosomes are much more extensive than predicted. BMC Genomics 2012; 13:29. [PMID: 22257693 PMCID: PMC3292466 DOI: 10.1186/1471-2164-13-29] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 01/18/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND African trypanosomes belong to a eukaryotic lineage which displays many unusual genetic features. The mechanisms of chromosome segregation in these diploid protozoan parasites are poorly understood. Centromeres in Trypanosoma brucei have been localised to chromosomal regions that contain an array of ~147 bp AT-rich tandem repeats. Initial estimates from the genome sequencing project suggested that these arrays ranged from 2 - 8 kb. In this paper, we show that the centromeric repeat regions are much more extensive. RESULTS We used a long-range restriction endonuclease mapping approach to more accurately define the sizes of the centromeric repeat arrays on the 8 T. brucei chromosomes where unambiguous assembly data were available. The results indicate that the sizes of the arrays on different chromosomes vary from 20 to 120 kb. In addition, we found instances of length heterogeneity between chromosome homologues. For example, values of 20 and 65 kb were obtained for the arrays on chromosome 1, and 50 and 75 kb for chromosome 5. CONCLUSIONS Our results show that centromeric repeat arrays on T. brucei chromosomes are more similar in size to those of higher eukaryotes than previously suspected. This information provides a firmer framework for investigating aspects of chromosome segregation and will allow epigenetic features associated with the process to be more accurately mapped.
Collapse
Affiliation(s)
- Maria C Echeverry
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | | | | | | | | |
Collapse
|
37
|
|
38
|
Timsit Y. Local sensing of global DNA topology: from crossover geometry to type II topoisomerase processivity. Nucleic Acids Res 2011; 39:8665-76. [PMID: 21764774 PMCID: PMC3203592 DOI: 10.1093/nar/gkr556] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Type II topoisomerases are ubiquitous enzymes that control the topology and higher order structures of DNA. Type IIA enzymes have the remarkable property to sense locally the global DNA topology. Although many theoretical models have been proposed, the molecular mechanism of chiral discrimination is still unclear. While experimental studies have established that topoisomerases IIA discriminate topology on the basis of crossover geometry, a recent single-molecule experiment has shown that the enzyme has a different processivity on supercoiled DNA of opposite sign. Understanding how cross-over geometry influences enzyme processivity is, therefore, the key to elucidate the mechanism of chiral discrimination. Analysing this question from the DNA side reveals first, that the different stability of chiral DNA cross-overs provides a way to locally sense the global DNA topology. Second, it shows that these enzymes have evolved to recognize the G- and T-segments stably assembled into a right-handed cross-over. Third, it demonstrates how binding right-handed cross-overs across their large angle imposes a different topological link between the topoIIA rings and the plectonemes of opposite sign thus directly affecting the enzyme freedom of motion and processivity. In bridging geometry and kinetic data, this study brings a simple solution for type IIA topoisomerase chiral discrimination.
Collapse
Affiliation(s)
- Youri Timsit
- Information Génomique et Structurale, CNRS - UPR2589, Institut de Microbiologie de la Méditerranée, Aix-Marseille University, Parc Scientifique de Luminy, Marseille, France
| |
Collapse
|
39
|
Koumbaris G, Hatzisevastou-Loukidou H, Alexandrou A, Ioannides M, Christodoulou C, Fitzgerald T, Rajan D, Clayton S, Kitsiou-Tzeli S, Vermeesch JR, Skordis N, Antoniou P, Kurg A, Georgiou I, Carter NP, Patsalis PC. FoSTeS, MMBIR and NAHR at the human proximal Xp region and the mechanisms of human Xq isochromosome formation. Hum Mol Genet 2011; 20:1925-36. [PMID: 21349920 PMCID: PMC3428953 DOI: 10.1093/hmg/ddr074] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The recently described DNA replication-based mechanisms of fork stalling and template switching (FoSTeS) and microhomology-mediated break-induced replication (MMBIR) were previously shown to catalyze complex exonic, genic and genomic rearrangements. By analyzing a large number of isochromosomes of the long arm of chromosome X (i(Xq)), using whole-genome tiling path array comparative genomic hybridization (aCGH), ultra-high resolution targeted aCGH and sequencing, we provide evidence that the FoSTeS and MMBIR mechanisms can generate large-scale gross chromosomal rearrangements leading to the deletion and duplication of entire chromosome arms, thus suggesting an important role for DNA replication-based mechanisms in both the development of genomic disorders and cancer. Furthermore, we elucidate the mechanisms of dicentric i(Xq) (idic(Xq)) formation and show that most idic(Xq) chromosomes result from non-allelic homologous recombination between palindromic low copy repeats and highly homologous palindromic LINE elements. We also show that non-recurrent-breakpoint idic(Xq) chromosomes have microhomology-associated breakpoint junctions and are likely catalyzed by microhomology-mediated replication-dependent recombination mechanisms such as FoSTeS and MMBIR. Finally, we stress the role of the proximal Xp region as a chromosomal rearrangement hotspot.
Collapse
Affiliation(s)
- George Koumbaris
- Department of Cytogenetics and Genomics, The Cyprus Institute of Neurology and Genetics, Nicosia 2370, Cyprus
| | | | - Angelos Alexandrou
- Department of Cytogenetics and Genomics, The Cyprus Institute of Neurology and Genetics, Nicosia 2370, Cyprus
| | - Marios Ioannides
- Department of Cytogenetics and Genomics, The Cyprus Institute of Neurology and Genetics, Nicosia 2370, Cyprus
| | - Christodoulos Christodoulou
- Department of Cytogenetics and Genomics, The Cyprus Institute of Neurology and Genetics, Nicosia 2370, Cyprus
| | - Tomas Fitzgerald
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Diana Rajan
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Stephen Clayton
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Sophia Kitsiou-Tzeli
- Department of Medical Genetics, University of Athens, St Sophia Children’s Hospital, Athens 11527, Greece
| | - Joris R. Vermeesch
- Centre for Human Genetics, University Hospital, Catholic University of Leuven, 3000 Leuven, Belgium
| | - Nicos Skordis
- Pediatric Endocrine Unit, Makarios III Hospital, Nicosia 1474, Cyprus
| | - Pavlos Antoniou
- Department of Cytogenetics and Genomics, The Cyprus Institute of Neurology and Genetics, Nicosia 2370, Cyprus
| | - Ants Kurg
- Institute of Molecular and Cell Biology, University of Tartu, Tartu 51010, Estonia
| | | | - Nigel P. Carter
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Philippos C. Patsalis
- Department of Cytogenetics and Genomics, The Cyprus Institute of Neurology and Genetics, Nicosia 2370, Cyprus
| |
Collapse
|
40
|
Marracci S, Michelotti V, Guex GD, Hotz H, Uzzell T, Ragghianti M. RrS1-like sequences of water frogs from Central Europe and around the Aegean Sea: chromosomal organization, evolution, possible function. J Mol Evol 2011; 72:368-82. [PMID: 21424546 DOI: 10.1007/s00239-011-9436-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 02/15/2011] [Indexed: 12/01/2022]
Abstract
RrS1-like sequences of water frogs (genus Pelophylax) display varied genomic organization, whereas the centromeric hybridization pattern reveals species-specific differences. Using fluorescent in situ hybridization, Pelophylax cf. bedriagae, Pelophylax kurtmuelleri, and Pelophylax ridibundus showed a hybridization signal at centromeres of chromosomes 1-5, but in P. kurtmuelleri the medium-small chromosome labeled was 10 rather than 8. Pelophylax cretensis had almost 16 of 26 centromeres labeled, as did Pelophylax lessonae from Poland when its chromosomes are hybridized with a homologous probe. When StuI-digested genomic DNA was hybridized with RrS1 probe, hybridization ladders for P. ridibundus from Poland have evenly spaced steps (about 100 bp) of uniform intensity from about 200 bp upward. Steps in hybridization ladders from circum-Aegean taxa vary in intensity: larger, odd-numbered steps are often fainter. A strong double band (800/900 bp) in Anatolian P. cf. bedriagae, emphasized by a weak 700 bp band, distinguishes them from P. kurtmuelleri from the Peloponnisos, in which the 900 bp band is almost absent. The ladder in P. cretensis lacks odd-numbered steps. A and B repeats, observed originally within the RrS1 satellite of P. ridibundus, occur also in the circum-Aegean frogs and in P. lessonae, Pelophylax epeiroticus, Pelophylax saharicus, and Pelophylax shqipericus. It is plausible that AB dimers or ABB trimers rather than A or B monomers correspond to functional/evolutionary units. The presence of regions similar to yeast CDEs and mammalian CENP-B boxes suggests a role for RrS1 sequences in centromere organization.
Collapse
Affiliation(s)
- Silvia Marracci
- Laboratori di Biologia cellulare e dello sviluppo, Dipartimento di Biologia, Università di Pisa, Pisa, Italy
| | | | | | | | | | | |
Collapse
|
41
|
Hsieh CL, Lin CL, Liu H, Chang YJ, Shih CJ, Zhong CZ, Lee SC, Tan BCM. WDHD1 modulates the post-transcriptional step of the centromeric silencing pathway. Nucleic Acids Res 2011; 39:4048-62. [PMID: 21266480 PMCID: PMC3105424 DOI: 10.1093/nar/gkq1338] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The centromere is a highly specialized chromosomal element that is essential for chromosome segregation during mitosis. Centromere integrity must therefore be properly preserved and is strictly dependent upon the establishment and maintenance of surrounding chromatin structure. Here we identify WDHD1, a WD40-domain and HMG-domain containing protein, as a key regulator of centromere function. We show that WDHD1 associates with centromeres in a cell cycle-dependent manner, coinciding with mid-to-late S phase. WDHD1 down-regulation compromises HP1α localization to pericentric heterochromatin and leads to altered expression of epigenetic markers associated with this chromatin region. As a consequence, such reduced epigenetic silencing is manifested in disrupted heterochromatic state of the centromere and a defective mitosis. Moreover, we demonstrate that a possible underlying mechanism of WDHD1's involvement lies in the proper generation of the small non-coding RNAs encoded by the centromeric satellite repeats. This role is mediated at the post-transcriptional level and likely through stabilizing Dicer association with centromeric RNA. Collectively, these findings suggest that WDHD1 may be a critical component of the RNA-dependent epigenetic control mechanism that sustains centromere integrity and genomic stability.
Collapse
Affiliation(s)
- Chia-Ling Hsieh
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Obado SO, Bot C, Echeverry MC, Bayona JC, Alvarez VE, Taylor MC, Kelly JM. Centromere-associated topoisomerase activity in bloodstream form Trypanosoma brucei. Nucleic Acids Res 2010; 39:1023-33. [PMID: 20864447 PMCID: PMC3035458 DOI: 10.1093/nar/gkq839] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Topoisomerase-II accumulates at centromeres during prometaphase, where it resolves the DNA catenations that represent the last link between sister chromatids. Previously, using approaches including etoposide-mediated topoisomerase-II cleavage, we mapped centromeric domains in trypanosomes, early branching eukaryotes in which chromosome segregation is poorly understood. Here, we show that in bloodstream form Trypanosoma brucei, RNAi-mediated depletion of topoisomerase-IIα, but not topoisomerase-IIβ, results in the abolition of centromere-localized activity and is lethal. Both phenotypes can be rescued by expression of the corresponding enzyme from T. cruzi. Therefore, processes which govern centromere-specific topoisomerase-II accumulation/activation have been functionally conserved within trypanosomes, despite the long evolutionary separation of these species and differences in centromeric DNA organization. The variable carboxyl terminal region of topoisomerase-II has a major role in regulating biological function. We therefore generated T. brucei lines expressing T. cruzi topoisomerase-II truncated at the carboxyl terminus and examined activity at centromeres after the RNAi-mediated depletion of the endogenous enzyme. A region necessary for nuclear localization was delineated to six residues. In other organisms, sumoylation of topoisomerase-II has been shown to be necessary for regulated chromosome segregation. Evidence that we present here suggests that sumoylation of the T. brucei enzyme is not required for centromere-specific cleavage activity.
Collapse
Affiliation(s)
- Samson O Obado
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | | | | | | | | | | | | |
Collapse
|
43
|
Mravinac B, Plohl M. Parallelism in evolution of highly repetitive DNAs in sibling species. Mol Biol Evol 2010; 27:1857-67. [PMID: 20203289 DOI: 10.1093/molbev/msq068] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Characterization of heterochromatin in the flour beetle Tribolium audax revealed two highly repetitive DNA families, named TAUD1 and TAUD2, which together constitute almost 60% of the whole genome. Both families originated from a common ancestral approximately 110-bp repeating unit. Tandem arrangement of these elements in TAUD1 is typical for satellite DNAs, whereas TAUD2 represents a dispersed family based on 1412-bp complex higher-order repeats composed of inversely oriented approximately 110 bp units. Comparison with repetitive DNAs in the sibling species Tribolium madens showed similarities in nucleotide sequence and length of basic repeating units and also revealed structural and organizational parallelism in tandem and dispersed families assembled from these elements. In both Tribolium species, one tandem and one dispersed family build equivalent distribution patterns in the pericentromeric heterochromatin of all chromosomes including supernumeraries. Differences in the nucleotide sequence and in the complexity of higher-order structures between families of the same type suggest a scenario according to which rearranged variants of the corresponding ancestral families were formed and distributed in genomes during or after the speciation event, following the same principles independently in each descendant species. We assume that random effects of sequence dynamics should be constrained by organizational and structural features of repeating units and possible requirements for spatial distribution of particular sequence elements. An interspersed pattern of repetitive families also points to the intensive recombination events in heterochromatin. Synergy between the meiotic bouquet stage and satellite DNA sequence dynamics could make a positive feedback loop that promotes the observed genome-wide distribution. At the same time, considering the abundance of these DNAs in heterochromatin spanning the (peri)centromeric chromosomal segments, we speculate that diverged repetitive sequences might represent the DNA basis of reproductive barrier between the two sibling species.
Collapse
Affiliation(s)
- Brankica Mravinac
- Division of Molecular Biology, Ruder Bosković Institute, Zagreb, Croatia
| | | |
Collapse
|
44
|
Ugarković DI. Centromere-competent DNA: structure and evolution. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2009; 48:53-76. [PMID: 19521812 DOI: 10.1007/978-3-642-00182-6_3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Although extant data favour centromere being an epigenetic structure, it is also clear that centromere formation is based on DNA, in particular, tandemly repeated satellite DNA and its transcripts. Presence of conserved structural motifs within satellite DNAs such as periodically distributed AT tracts, protein binding sites, or promoter elements indicate that despite sequence flexibility, there are structural determinants that are prerequisite for centromere function. In addition, existence of functional centromeric DNA transcripts indicates possible importance of structural elements at the level of RNA secondary or tertiary structure. Rapid centromere evolution is explained by homologous recombination followed by extrachromosomal rolling circle replication. This could lead to amplification of different satellite sequences within a genome. However, only those satellites that have inherent centromere-competence in the form of structural requirements necessary for centromere function are after amplification fixed in a population as a new centromere.
Collapse
Affiliation(s)
- Durd Ica Ugarković
- Department of Molecular Biology, Rud er Bosković Institute, Bijenicka 54, HR-10002, Zagreb, Croatia.
| |
Collapse
|