1
|
Yuan W, Zhang Q, Zhao Y, Xia W, Yin S, Liang X, Chen T, Li G, Liu Y, Liu Z, Huang J. BAP1 regulates HSF1 activity and cancer immunity in pancreatic cancer. J Exp Clin Cancer Res 2024; 43:275. [PMID: 39350280 PMCID: PMC11441124 DOI: 10.1186/s13046-024-03196-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 09/19/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND The vast majority of pancreatic cancers have been shown to be insensitive to single-agent immunotherapy. Exploring the mechanisms of immune resistance and implementing combination therapeutic strategies are crucial for PDAC patients to derive benefits from immunotherapy. Deletion of BAP1 occurs in approximately 27% of PDAC patients and is significantly correlated with poor prognosis, but the mechanism how BAP1-deletion compromises survival of patients with PDAC remain a puzzle. METHODS Bap1 knock-out KPC (KrasG12D/+; LSLTrp53R172H/+; Pdx-1-Cre) mice and control KPC mice, syngeneic xenograft models were applied to analysis the correlation between BAP1 and immune therapy response in PDAC. Immunoprecipitation, RT-qPCR, luciferase and transcriptome analysis were combined to revealing potential mechanisms. Syngeneic xenograft models and flow cytometry were constructed to examine the efficacy of the inhibitor of SIRT1 and its synergistic effect with anti-PD-1 therapy. RESULT The deletion of BAP1 contributes to the resistance to immunotherapy in PDAC, which is attributable to BAP1's suppression of the transcriptional activity of HSF1. Specifically, BAP1 competes with SIRT1 for binding to the K80 acetylated HSF1. The BAP1-HSF1 interaction preserves the acetylation of HSF1-K80 and promotes HSF1-HSP70 interaction, facilitating HSF1 oligomerization and detachment from the chromatin. Furthermore, we demonstrate that the targeted inhibition of SIRT1 reverses the immune insensitivity in BAP1 deficient PDAC mouse model. CONCLUSION Our study elucidates an unrevealed mechanism by which BAP1 regulates immune therapy response in PDAC via HSF1 inhibition, and providing promising therapeutic strategies to address immune insensitivity in BAP1-deficient PDAC.
Collapse
Affiliation(s)
- Weiwei Yuan
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qiyue Zhang
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yuhan Zhao
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wentao Xia
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shilin Yin
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xueyi Liang
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Taoyu Chen
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Gaofeng Li
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Yanshen Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Zhiqiang Liu
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Jinxi Huang
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China.
| |
Collapse
|
2
|
Karakostis K, Padariya M, Thermou A, Fåhraeus R, Kalathiya U, Vollrath F. Thermal stress, p53 structures and learning from elephants. Cell Death Discov 2024; 10:353. [PMID: 39107279 PMCID: PMC11303390 DOI: 10.1038/s41420-024-02109-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 08/09/2024] Open
Abstract
As species adapt to climatic changes, temperature-dependent functions of p53 in development, metabolism and cancer will adapt as well. Structural analyses of p53 epitopes interacting in response to environmental stressors, such as heat, may uncover physiologically relevant functions of p53 in cell regulation and genomic adaptations. Here we explore the multiple p53 elephant paradigm with an experimentally validated in silico model showing that under heat stress some p53 copies escape negative regulation by the MDM2 E3 ubiquitin ligase. Multiple p53 isoforms have evolved naturally in the elephant thus presenting a unique experimental system to study the scope of p53 functions and the contribution of environmental stressors to DNA damage. We assert that fundamental insights derived from studies of a historically heat-challenged mammal will provide important insights directly relevant to human biology in the light of climate change when 'heat' may introduce novel challenges to our bodies and health.
Collapse
Affiliation(s)
- Konstantinos Karakostis
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain.
- Inserm UMRS1131, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St. Louis, Paris, France.
| | - Monikaben Padariya
- International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24, Gdansk, Poland.
| | - Aikaterini Thermou
- Inserm UMRS1131, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St. Louis, Paris, France
| | - Robin Fåhraeus
- Inserm UMRS1131, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St. Louis, Paris, France
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czech Republic
- Department of Medical Biosciences, Umeå University, Umeå, Sweden
| | - Umesh Kalathiya
- International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24, Gdansk, Poland
| | - Fritz Vollrath
- Department of Biology, University of Oxford, Oxford, UK.
- Save the Elephants Marula Manor, Karen, P.O. Box 54667, Nairobi, Kenya.
| |
Collapse
|
3
|
Majumder S, Chattopadhyay A, Wright JM, Guan P, Buja LM, Kwartler CS, Milewicz DM. Pericentrin deficiency in smooth muscle cells augments atherosclerosis through HSF1-driven cholesterol biosynthesis and PERK activation. JCI Insight 2023; 8:e173247. [PMID: 37937642 PMCID: PMC10721278 DOI: 10.1172/jci.insight.173247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/27/2023] [Indexed: 11/09/2023] Open
Abstract
Microcephalic osteodysplastic primordial dwarfism type II (MOPDII) is caused by biallelic loss-of-function variants in pericentrin (PCNT), and premature coronary artery disease (CAD) is a complication of the syndrome. Histopathology of coronary arteries from patients with MOPDII who died of CAD in their 20s showed extensive atherosclerosis. Hyperlipidemic mice with smooth muscle cell-specific (SMC-specific) Pcnt deficiency (PcntSMC-/-) exhibited significantly greater atherosclerotic plaque burden compared with similarly treated littermate controls despite similar serum lipid levels. Loss of PCNT in SMCs induced activation of heat shock factor 1 (HSF1) and consequently upregulated the expression and activity of HMG-CoA reductase (HMGCR), the rate-limiting enzyme in cholesterol biosynthesis. The increased cholesterol biosynthesis in PcntSMC-/- SMCs augmented PERK signaling and phenotypic modulation compared with control SMCs. Treatment with the HMGCR inhibitor, pravastatin, blocked the augmented SMC modulation and reduced plaque burden in hyperlipidemic PcntSMC-/- mice to that of control mice. These data support the notion that Pcnt deficiency activates cellular stress to increase SMC modulation and plaque burden, and targeting this pathway with statins in patients with MOPDII has the potential to reduce CAD in these individuals. The molecular mechanism uncovered further emphasizes SMC cytosolic stress and HSF1 activation as a pathway driving atherosclerotic plaque formation independently of cholesterol levels.
Collapse
Affiliation(s)
- Suravi Majumder
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, and
| | - Abhijnan Chattopadhyay
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, and
| | - Jamie M. Wright
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, and
| | - Pujun Guan
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, and
| | - L. Maximilian Buja
- Department of Pathology and Laboratory Medicine, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Callie S. Kwartler
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, and
| | - Dianna M. Milewicz
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, and
| |
Collapse
|
4
|
Zhang Y, Liang R, Chen Y, Wang Y, Li X, Wang S, Jin H, Liu L, Tang Z. HSF1 protects cells from cadmium toxicity by governing proteome integrity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115571. [PMID: 37837696 DOI: 10.1016/j.ecoenv.2023.115571] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/30/2023] [Accepted: 10/09/2023] [Indexed: 10/16/2023]
Abstract
BACKGROUND Cadmium toxicity has been associated with disruption of protein homeostasis by interfering with protein folding processes. Heat shock factor 1 (HSF1) coordinates the rapid and extensive cellular response to maintain proteomic balance facing the challenges from many environmental stressors. Thus, we suspect that HSF1 may shield cells from cadmium toxicity by conserving proteome integrity. RESULTS Here, we demonstrate that cadmium, a highly poisonous metal, induces aggregation of cytosolic proteins in human cells, which disrupts protein homeostasis and activates HSF1. Cadmium exposure increases HSF1's phosphorylation, nuclear translocation and DNA bindings. Aside from this, HSF1 goes through liquid-liquid phase separation to form small nuclear condensates upon cadmium exposure. A specific regulatory domain of HSF1 is critical for HSF1's phase separation capability. Most importantly, human cells with impaired HSF1 are sensitized to cadmium, however, cells with overexpressed HSF1 are protected from cadmium toxicity. Overexpression of HSF1 in human cells reduces protein aggregates, amyloid fibrils and DNA damages to antagonize cadmium toxicity. CONCLUSIONS HSF1 protects cells from cadmium toxicity by governing the integrity of both proteome and genome. Similar mechanisms may enable HSF1 to alleviate cellular toxicity caused by other heavy metals. HSF1's role in cadmium exposure may provide important insights into the toxic effects of heavy metals on human cells and body organs, allowing us to better manage heavy metal poisoning.
Collapse
Affiliation(s)
- Yuchun Zhang
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Rong Liang
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yingxiao Chen
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yaling Wang
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Xue Li
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Shang Wang
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Honglin Jin
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Lusha Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| | - Zijian Tang
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| |
Collapse
|
5
|
Psatha K, Kollipara L, Drakos E, Deligianni E, Brintakis K, Patsouris E, Sickmann A, Rassidakis GZ, Aivaliotis M. Interruption of p53-MDM2 Interaction by Nutlin-3a in Human Lymphoma Cell Models Initiates a Cell-Dependent Global Effect on Transcriptome and Proteome Level. Cancers (Basel) 2023; 15:3903. [PMID: 37568720 PMCID: PMC10417430 DOI: 10.3390/cancers15153903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/22/2023] [Accepted: 06/28/2023] [Indexed: 08/13/2023] Open
Abstract
In most lymphomas, p53 signaling pathway is inactivated by various mechanisms independent to p53 gene mutations or deletions. In many cases, p53 function is largely regulated by alterations in the protein abundance levels by the action of E3 ubiquitin-protein ligase MDM2, targeting p53 to proteasome-mediated degradation. In the present study, an integrating transcriptomics and proteomics analysis was employed to investigate the effect of p53 activation by a small-molecule MDM2-antagonist, nutlin-3a, on three lymphoma cell models following p53 activation. Our analysis revealed a system-wide nutlin-3a-associated effect in all examined lymphoma types, identifying in total of 4037 differentially affected proteins involved in a plethora of pathways, with significant heterogeneity among lymphomas. Our findings include known p53-targets and novel p53 activation effects, involving transcription, translation, or degradation of protein components of pathways, such as a decrease in key members of PI3K/mTOR pathway, heat-shock response, and glycolysis, and an increase in key members of oxidative phoshosphorylation, autophagy and mitochondrial translation. Combined inhibition of HSP90 or PI3K/mTOR pathway with nutlin-3a-mediated p53-activation enhanced the apoptotic effects suggesting a promising strategy against human lymphomas. Integrated omic profiling after p53 activation offered novel insights on the regulatory role specific proteins and pathways may have in lymphomagenesis.
Collapse
Affiliation(s)
- Konstantina Psatha
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology, 70013 Heraklion, Greece; (K.P.); (E.D.)
- Department of Pathology, Medical School, University of Crete, 70013 Heraklion, Greece;
- First Department of Pathology, National and Kapodistrian University of Athens, 15772 Athens, Greece;
- Functional Proteomics and Systems Biology (FunPATh), Center for Interdisciplinary Research and Innovation (CIRI-AUTH), 54124 Thessaloniki, Greece
| | - Laxmikanth Kollipara
- Leibniz-Institut für Analytische Wissenschaften–ISAS–e.V., 44139 Dortmund, Germany; (L.K.); (A.S.)
| | - Elias Drakos
- Department of Pathology, Medical School, University of Crete, 70013 Heraklion, Greece;
| | - Elena Deligianni
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology, 70013 Heraklion, Greece; (K.P.); (E.D.)
| | - Konstantinos Brintakis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology—Hellas, 71110 Heraklion, Greece;
| | - Eustratios Patsouris
- First Department of Pathology, National and Kapodistrian University of Athens, 15772 Athens, Greece;
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften–ISAS–e.V., 44139 Dortmund, Germany; (L.K.); (A.S.)
- Department of Chemistry, College of Physical Sciences, University of Aberdeen, Aberdeen AB24 3FX, UK
- Medizinische Fakultät, Medizinische Proteom-Center (MPC), Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - George Z. Rassidakis
- Department of Oncology-Pathology, Karolinska Institute, 17164 Stockholm, Sweden;
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
- Department of Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital, Solna, 17176 Stockholm, Sweden
| | - Michalis Aivaliotis
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology, 70013 Heraklion, Greece; (K.P.); (E.D.)
- Functional Proteomics and Systems Biology (FunPATh), Center for Interdisciplinary Research and Innovation (CIRI-AUTH), 54124 Thessaloniki, Greece
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Laboratory of Biological Chemistry, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
6
|
Mansky RH, Greguske EA, Yu D, Zarate N, Intihar TA, Tsai W, Brown TG, Thayer MN, Kumar K, Gomez-Pastor R. Tumor suppressor p53 regulates heat shock factor 1 protein degradation in Huntington's disease. Cell Rep 2023; 42:112198. [PMID: 36867535 PMCID: PMC10128052 DOI: 10.1016/j.celrep.2023.112198] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 11/08/2022] [Accepted: 02/15/2023] [Indexed: 03/04/2023] Open
Abstract
p53 and HSF1 are two major transcription factors involved in cell proliferation and apoptosis, whose dysregulation contributes to cancer and neurodegeneration. Contrary to most cancers, p53 is increased in Huntington's disease (HD) and other neurodegenerative diseases, while HSF1 is decreased. p53 and HSF1 reciprocal regulation has been shown in different contexts, but their connection in neurodegeneration remains understudied. Using cellular and animal models of HD, we show that mutant HTT stabilized p53 by abrogating the interaction between p53 and E3 ligase MDM2. Stabilized p53 promotes protein kinase CK2 alpha prime and E3 ligase FBXW7 transcription, both of which are responsible for HSF1 degradation. Consequently, p53 deletion in striatal neurons of zQ175 HD mice restores HSF1 abundance and decrease HTT aggregation and striatal pathology. Our work shows the mechanism connecting p53 stabilization with HSF1 degradation and pathophysiology in HD and sheds light on the broader molecular differences and commonalities between cancer and neurodegeneration.
Collapse
Affiliation(s)
- Rachel H Mansky
- Department of Neuroscience, Medical School, University of Minnesota, Minneapolis, MN 55455, USA
| | - Erin A Greguske
- Department of Neuroscience, Medical School, University of Minnesota, Minneapolis, MN 55455, USA
| | - Dahyun Yu
- Department of Neuroscience, Medical School, University of Minnesota, Minneapolis, MN 55455, USA
| | - Nicole Zarate
- Department of Neuroscience, Medical School, University of Minnesota, Minneapolis, MN 55455, USA
| | - Taylor A Intihar
- Department of Neuroscience, Medical School, University of Minnesota, Minneapolis, MN 55455, USA
| | - Wei Tsai
- Department of Neuroscience, Medical School, University of Minnesota, Minneapolis, MN 55455, USA
| | - Taylor G Brown
- Department of Neuroscience, Medical School, University of Minnesota, Minneapolis, MN 55455, USA
| | - Mackenzie N Thayer
- Department of Neuroscience, Medical School, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kompal Kumar
- Department of Neuroscience, Medical School, University of Minnesota, Minneapolis, MN 55455, USA
| | - Rocio Gomez-Pastor
- Department of Neuroscience, Medical School, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
7
|
Kim H, Gomez-Pastor R. HSF1 and Its Role in Huntington's Disease Pathology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1410:35-95. [PMID: 36396925 DOI: 10.1007/5584_2022_742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
PURPOSE OF REVIEW Heat shock factor 1 (HSF1) is the master transcriptional regulator of the heat shock response (HSR) in mammalian cells and is a critical element in maintaining protein homeostasis. HSF1 functions at the center of many physiological processes like embryogenesis, metabolism, immune response, aging, cancer, and neurodegeneration. However, the mechanisms that allow HSF1 to control these different biological and pathophysiological processes are not fully understood. This review focuses on Huntington's disease (HD), a neurodegenerative disease characterized by severe protein aggregation of the huntingtin (HTT) protein. The aggregation of HTT, in turn, leads to a halt in the function of HSF1. Understanding the pathways that regulate HSF1 in different contexts like HD may hold the key to understanding the pathomechanisms underlying other proteinopathies. We provide the most current information on HSF1 structure, function, and regulation, emphasizing HD, and discussing its potential as a biological target for therapy. DATA SOURCES We performed PubMed search to find established and recent reports in HSF1, heat shock proteins (Hsp), HD, Hsp inhibitors, HSF1 activators, and HSF1 in aging, inflammation, cancer, brain development, mitochondria, synaptic plasticity, polyglutamine (polyQ) diseases, and HD. STUDY SELECTIONS Research and review articles that described the mechanisms of action of HSF1 were selected based on terms used in PubMed search. RESULTS HSF1 plays a crucial role in the progression of HD and other protein-misfolding related neurodegenerative diseases. Different animal models of HD, as well as postmortem brains of patients with HD, reveal a connection between the levels of HSF1 and HSF1 dysfunction to mutant HTT (mHTT)-induced toxicity and protein aggregation, dysregulation of the ubiquitin-proteasome system (UPS), oxidative stress, mitochondrial dysfunction, and disruption of the structural and functional integrity of synaptic connections, which eventually leads to neuronal loss. These features are shared with other neurodegenerative diseases (NDs). Currently, several inhibitors against negative regulators of HSF1, as well as HSF1 activators, are developed and hold promise to prevent neurodegeneration in HD and other NDs. CONCLUSION Understanding the role of HSF1 during protein aggregation and neurodegeneration in HD may help to develop therapeutic strategies that could be effective across different NDs.
Collapse
Affiliation(s)
- Hyuck Kim
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Rocio Gomez-Pastor
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
8
|
Kanugovi Vijayavittal A, Kumar P, Sugunan S, Joseph C, Devaki B, Paithankar K, Amere Subbarao S. Heat shock transcription factor HSF2 modulates the autophagy response through the BTG2-SOD2 axis. Biochem Biophys Res Commun 2022; 600:44-50. [PMID: 35182974 DOI: 10.1016/j.bbrc.2022.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/06/2022] [Indexed: 11/02/2022]
Abstract
The heat shock transcription factor HSF1 regulates the inducible Hsp gene transcription, whereas HSF2 is involved in the constitutive transcription. HSFs can work for the non-heat shock genes transcription in a case-specific manner to facilitate normal cellular functions. Here, we demonstrate that HSF2 acts as an upstream regulator of heat shock-induced autophagy response in a rat histiocytoma. The heat-induced HSF2 transactivates the B-cell translocation gene-2 (BTG2) transcription, and the latter acts as a transcriptional coactivator for superoxide dismutase (SOD2). The altered HSF2 promoter occupancy on the BTG2 promoter enhances BTG2 transcription. Since SOD2 regulation is linked to mitochondrial redox sensing, HSF2 appears to act as a redox sensor in deciding the cell fate. The HSF2 shRNA or NFE2L2/BTG2 siRNA treatments have interfered with the autophagy response. We demonstrate that HSF2 is an upstream activator of autophagy response, and the HSF2-BTG2-SOD2 axis acts as a switch between the non-selective (micro/macro) and selective (chaperone-mediated) autophagy.
Collapse
Affiliation(s)
| | - Pankaj Kumar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007, Telangana, India
| | - Sreedevi Sugunan
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007, Telangana, India
| | - Chitra Joseph
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007, Telangana, India
| | - Bharath Devaki
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007, Telangana, India
| | - Khanderao Paithankar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007, Telangana, India
| | - Sreedhar Amere Subbarao
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007, Telangana, India.
| |
Collapse
|
9
|
Liu J, Li B, Li W, Pan T, Diao Y, Wang F. 6-Shogaol Inhibits Oxidative Stress-Induced Rat Vascular Smooth Muscle Cell Apoptosis by Regulating OXR1-p53 Axis. Front Mol Biosci 2022; 9:808162. [PMID: 35174215 PMCID: PMC8841977 DOI: 10.3389/fmolb.2022.808162] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/04/2022] [Indexed: 11/22/2022] Open
Abstract
Apoptosis of vascular smooth muscle cells (VSMCs) is closely related to the pathogenesis of cardiovascular diseases, and oxidative stress is an important cause of VSMCs' death. Inhibiting VSMCs apoptosis is an effective preventive strategy in slowing down the development of cardiovascular disease, especially for atherosclerosis. In this study, we found that oxidation resistance protein 1 (OXR1), a crucial participator for responding to oxidative stress, could modulate the expression of p53, the key regulator of cell apoptosis. Our results revealed that oxidative stress promoted VSMCs apoptosis by overexpression of the OXR1-p53 axis, and 6-shogaol (6S), a major biologically active compound in ginger, could effectively attenuate cell death by preventing the upregulated expression of the OXR1-p53 axis. Quantitative proteomics analysis revealed that the degradation of p53 mediated by OXR1 might be related to the enhanced assembly of SCF ubiquitin ligase complexes, which is reported to closely relate to the modification of ubiquitination or neddylation and subsequent degradation of p53.
Collapse
Affiliation(s)
- Jing Liu
- College of Pharmacy, College of Integrative Medicine, Dalian Medical University, Dalian, China
- Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- Dalian Anti-Infective Traditional Chinese Medicine Development Engineering Technology Research Center, Dalian, China
| | - Bin Li
- College of Pharmacy, College of Integrative Medicine, Dalian Medical University, Dalian, China
- Dalian Anti-Infective Traditional Chinese Medicine Development Engineering Technology Research Center, Dalian, China
| | - Wenlian Li
- College of Pharmacy, College of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Taowen Pan
- College of Pharmacy, College of Integrative Medicine, Dalian Medical University, Dalian, China
- Dalian Anti-Infective Traditional Chinese Medicine Development Engineering Technology Research Center, Dalian, China
| | - Yunpeng Diao
- College of Pharmacy, College of Integrative Medicine, Dalian Medical University, Dalian, China
- Dalian Anti-Infective Traditional Chinese Medicine Development Engineering Technology Research Center, Dalian, China
| | - Fangjun Wang
- Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| |
Collapse
|
10
|
Tokunaga Y, Otsuyama KI, Hayashida N. Cell Cycle Regulation by Heat Shock Transcription Factors. Cells 2022; 11:cells11020203. [PMID: 35053319 PMCID: PMC8773920 DOI: 10.3390/cells11020203] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/01/2022] [Accepted: 01/04/2022] [Indexed: 12/18/2022] Open
Abstract
Cell division and cell cycle mechanism has been studied for 70 years. This research has revealed that the cell cycle is regulated by many factors, including cyclins and cyclin-dependent kinases (CDKs). Heat shock transcription factors (HSFs) have been noted as critical proteins for cell survival against various stresses; however, recent studies suggest that HSFs also have important roles in cell cycle regulation-independent cell-protective functions. During cell cycle progression, HSF1, and HSF2 bind to condensed chromatin to provide immediate precise gene expression after cell division. This review focuses on the function of these HSFs in cell cycle progression, cell cycle arrest, gene bookmarking, mitosis and meiosis.
Collapse
Affiliation(s)
- Yasuko Tokunaga
- Division of Molecular Gerontology and Anti-Ageing Medicine, Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Yamaguchi University, Ube 7558505, Japan;
| | - Ken-Ichiro Otsuyama
- Department of Laboratory Science, Graduate School of Medicine, Yamaguchi University, Ube 7558505, Japan;
| | - Naoki Hayashida
- Division of Molecular Gerontology and Anti-Ageing Medicine, Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Yamaguchi University, Ube 7558505, Japan;
- Correspondence: ; Tel.: +81-836-22-2359
| |
Collapse
|
11
|
Zhang B, Fan Y, Cao P, Tan K. Multifaceted roles of HSF1 in cell death: A state-of-the-art review. Biochim Biophys Acta Rev Cancer 2021; 1876:188591. [PMID: 34273469 DOI: 10.1016/j.bbcan.2021.188591] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/24/2021] [Accepted: 07/11/2021] [Indexed: 02/08/2023]
Abstract
Cell death is a common and active process that is involved in various biological processes, including organ development, morphogenesis, maintaining tissue homeostasis and eliminating potentially harmful cells. Abnormal regulation of cell death significantly contributes to tumor development, progression and chemoresistance. The mechanisms of cell death are complex and involve not only apoptosis and necrosis but also their cross-talk with other types of cell death, such as autophagy and the newly identified ferroptosis. Cancer cells are chronically exposed to various stresses, such as lack of oxygen and nutrients, immune responses, dysregulated metabolism and genomic instability, all of which lead to activation of heat shock factor 1 (HSF1). In response to heat shock, oxidative stress and proteotoxic stresses, HSF1 upregulates transcription of heat shock proteins (HSPs), which act as molecular chaperones to protect normal cells from stresses and various diseases. Accumulating evidence suggests that HSF1 regulates multiple types of cell death through different signaling pathways as well as expression of distinct target genes in cancer cells. Here, we review the current understanding of the potential roles and molecular mechanism of HSF1 in regulating apoptosis, autophagy and ferroptosis. Deciphering HSF1-regulated signaling pathways and target genes may help in the development of new targeted anti-cancer therapeutic strategies.
Collapse
Affiliation(s)
- Bingwei Zhang
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Yumei Fan
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Pengxiu Cao
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Ke Tan
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China.
| |
Collapse
|
12
|
PB01 suppresses radio-resistance by regulating ATR signaling in human non-small-cell lung cancer cells. Sci Rep 2021; 11:12093. [PMID: 34103635 PMCID: PMC8187425 DOI: 10.1038/s41598-021-91716-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 05/31/2021] [Indexed: 12/30/2022] Open
Abstract
Despite the common usage of radiotherapy for the treatment of human non-small-cell lung cancer (NSCLC), cancer therapeutic efficacy and outcome with ionizing radiation remains a challenge. Here, we report the antitumor effects and mechanism of a novel benzothiazole derivative PB01 (4-methoxy-cyclohexane carboxylic acid [2-(3,5-dimethyl-isoxazole-4-yl) sulpanil-benzothiazole-6-yl]-amide) in radiation-resistant human NSCLC cells. PB01 treatment is cytotoxic because it induces reactive oxygen species, ER stress, Bax, cytochrome c expression, the ATR-p53-GADD45ɑ axis, and cleavage of caspase-3 and -9. Additionally, we found that radio-resistant A549 and H460 subclones, named A549R and H460R, respectively, show enhanced epithelial-to-mesenchymal transition (EMT), whereas PB01 treatment inhibits EMT and mediates cell death through ER stress and the ATR axis under radiation exposure in radio-resistant A549R and H460R cells. Together, these results suggest that PB01 treatment can overcome radio-resistance during radiotherapy of NSCLC.
Collapse
|
13
|
Gong L, Zhang Q, Pan X, Chen S, Yang L, Liu B, Yang W, Yu L, Xiao ZX, Feng XH, Wang H, Yuan ZM, Peng J, Tan WQ, Chen J. p53 Protects Cells from Death at the Heatstroke Threshold Temperature. Cell Rep 2020; 29:3693-3707.e5. [PMID: 31825845 DOI: 10.1016/j.celrep.2019.11.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/12/2019] [Accepted: 11/07/2019] [Indexed: 01/28/2023] Open
Abstract
When the core body temperature is higher than 40°C, life is threatened due to heatstroke. Tumor repressor p53 is required for heat-induced apoptosis at hyperthermia conditions (>41°C). However, its role in sub-heatstroke conditions (≤40°C) remains unclear. Here, we reveal that both zebrafish and human p53 promote survival at 40°C, the heatstroke threshold temperature, by preventing a hyperreactive heat shock response (HSR). At 40°C, both Hsf1 and Hsp90 are activated. Hsf1 upregulates the expression of Hsc70 to trigger Hsc70-mediated protein degradation, whereas Hsp90 stabilizes p53 to repress the expression of Hsf1 and Hsc70, which prevents excessive HSR to maintain cell homeostasis. Under hyperthermia conditions, ATM is activated to phosphorylate p53 at S37, which increases BAX expression to induce apoptosis. Furthermore, growth of p53-deficient tumor xenografts, but not that of their p53+/+ counterparts, was inhibited by 40°C treatment. Our findings may provide a strategy for individualized therapy for p53-deficient cancers.
Collapse
Affiliation(s)
- Lu Gong
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| | - Qinghe Zhang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiao Pan
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shuming Chen
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lina Yang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bin Liu
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, 74 Second Zhonshan Road, Guangzhou 510080, China
| | - Weijun Yang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Luyang Yu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhi-Xiong Xiao
- Center of Growth, Metabolism and Aging, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Xin-Hua Feng
- Life Sciences Institute and Innovation Center for Signaling Network, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou 310058, China
| | - Haihe Wang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, 74 Second Zhonshan Road, Guangzhou 510080, China
| | - Zhi-Min Yuan
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| | - Jinrong Peng
- College of Animal Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou 310058, China
| | - Wei-Qiang Tan
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun Road East, Hangzhou 310016, China.
| | - Jun Chen
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
14
|
Prince TL, Lang BJ, Guerrero-Gimenez ME, Fernandez-Muñoz JM, Ackerman A, Calderwood SK. HSF1: Primary Factor in Molecular Chaperone Expression and a Major Contributor to Cancer Morbidity. Cells 2020; 9:E1046. [PMID: 32331382 PMCID: PMC7226471 DOI: 10.3390/cells9041046] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/17/2020] [Accepted: 04/19/2020] [Indexed: 02/07/2023] Open
Abstract
Heat shock factor 1 (HSF1) is the primary component for initiation of the powerful heat shock response (HSR) in eukaryotes. The HSR is an evolutionarily conserved mechanism for responding to proteotoxic stress and involves the rapid expression of heat shock protein (HSP) molecular chaperones that promote cell viability by facilitating proteostasis. HSF1 activity is amplified in many tumor contexts in a manner that resembles a chronic state of stress, characterized by high levels of HSP gene expression as well as HSF1-mediated non-HSP gene regulation. HSF1 and its gene targets are essential for tumorigenesis across several experimental tumor models, and facilitate metastatic and resistant properties within cancer cells. Recent studies have suggested the significant potential of HSF1 as a therapeutic target and have motivated research efforts to understand the mechanisms of HSF1 regulation and develop methods for pharmacological intervention. We review what is currently known regarding the contribution of HSF1 activity to cancer pathology, its regulation and expression across human cancers, and strategies to target HSF1 for cancer therapy.
Collapse
Affiliation(s)
- Thomas L. Prince
- Department of Molecular Functional Genomics, Geisinger Clinic, Danville, PA 17821, USA
| | - Benjamin J. Lang
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Martin E. Guerrero-Gimenez
- Laboratory of Oncology, Institute of Medicine and Experimental Biology of Cuyo (IMBECU), National Scientific and Technical Research Council (CONICET), Buenos Aires B1657, Argentina
| | - Juan Manuel Fernandez-Muñoz
- Laboratory of Oncology, Institute of Medicine and Experimental Biology of Cuyo (IMBECU), National Scientific and Technical Research Council (CONICET), Buenos Aires B1657, Argentina
| | - Andrew Ackerman
- Department of Molecular Functional Genomics, Geisinger Clinic, Danville, PA 17821, USA
| | - Stuart K. Calderwood
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
15
|
Jentsch M, Snyder P, Sheng C, Cristiano E, Loewer A. p53 dynamics in single cells are temperature-sensitive. Sci Rep 2020; 10:1481. [PMID: 32001771 PMCID: PMC6992775 DOI: 10.1038/s41598-020-58267-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 01/13/2020] [Indexed: 12/13/2022] Open
Abstract
Cells need to preserve genome integrity despite varying cellular and physical states. p53, the guardian of the genome, plays a crucial role in the cellular response to DNA damage by triggering cell cycle arrest, apoptosis or senescence. Mutations in p53 or alterations in its regulatory network are major driving forces in tumorigenesis. As multiple studies indicate beneficial effects for hyperthermic treatments during radiation- or chemotherapy of human cancers, we aimed to understand how p53 dynamics after genotoxic stress are modulated by changes in temperature across a physiological relevant range. To this end, we employed a combination of time-resolved live-cell microscopy and computational analysis techniques to characterise the p53 response in thousands of individual cells. Our results demonstrate that p53 dynamics upon ionizing radiation are temperature dependent. In the range of 33 °C to 39 °C, pulsatile p53 dynamics are modulated in their frequency. Above 40 °C, which corresponds to mild hyperthermia in a clinical setting, we observed a reversible phase transition towards sustained hyperaccumulation of p53 disrupting its canonical response to DNA double strand breaks. Moreover, we provide evidence that mild hyperthermia alone is sufficient to induce a p53 response in the absence of genotoxic stress. These insights highlight how the p53-mediated DNA damage response is affected by alterations in the physical state of a cell and how this can be exploited by appropriate timing of combination therapies to increase the efficiency of cancer treatments.
Collapse
Affiliation(s)
- Marcel Jentsch
- Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Petra Snyder
- Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Caibin Sheng
- Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
- Novartis Institutes for Biomedical Research, Oncology Disease Area, Basel, Switzerland
| | - Elena Cristiano
- Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Alexander Loewer
- Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany.
| |
Collapse
|
16
|
Kovács D, Sigmond T, Hotzi B, Bohár B, Fazekas D, Deák V, Vellai T, Barna J. HSF1Base: A Comprehensive Database of HSF1 (Heat Shock Factor 1) Target Genes. Int J Mol Sci 2019; 20:ijms20225815. [PMID: 31752429 PMCID: PMC6888953 DOI: 10.3390/ijms20225815] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/11/2019] [Accepted: 11/15/2019] [Indexed: 12/28/2022] Open
Abstract
HSF1 (heat shock factor 1) is an evolutionarily conserved master transcriptional regulator of the heat shock response (HSR) in eukaryotic cells. In response to high temperatures, HSF1 upregulates genes encoding molecular chaperones, also called heat shock proteins, which assist the refolding or degradation of damaged intracellular proteins. Accumulating evidence reveals however that HSF1 participates in several other physiological and pathological processes such as differentiation, immune response, and multidrug resistance, as well as in ageing, neurodegenerative demise, and cancer. To address how HSF1 controls these processes one should systematically analyze its target genes. Here we present a novel database called HSF1Base (hsf1base.org) that contains a nearly comprehensive list of HSF1 target genes identified so far. The list was obtained by manually curating publications on individual HSF1 targets and analyzing relevant high throughput transcriptomic and chromatin immunoprecipitation data derived from the literature and the Yeastract database. To support the biological relevance of HSF1 targets identified by high throughput methods, we performed an enrichment analysis of (potential) HSF1 targets across different tissues/cell types and organisms. We found that general HSF1 functions (targets are expressed in all tissues/cell types) are mostly related to cellular proteostasis. Furthermore, HSF1 targets that are conserved across various animal taxa operate mostly in cellular stress pathways (e.g., autophagy), chromatin remodeling, ribosome biogenesis, and ageing. Together, these data highlight diverse roles for HSF1, expanding far beyond the HSR.
Collapse
Affiliation(s)
- Dániel Kovács
- Department of Genetics, Institute of Biology, Eötvös Loránd University, Pázmány Péter stny. 1/C, H-1117 Budapest, Hungary; (D.K.); (T.S.); (B.H.); (B.B.); (D.F.)
| | - Tímea Sigmond
- Department of Genetics, Institute of Biology, Eötvös Loránd University, Pázmány Péter stny. 1/C, H-1117 Budapest, Hungary; (D.K.); (T.S.); (B.H.); (B.B.); (D.F.)
| | - Bernadette Hotzi
- Department of Genetics, Institute of Biology, Eötvös Loránd University, Pázmány Péter stny. 1/C, H-1117 Budapest, Hungary; (D.K.); (T.S.); (B.H.); (B.B.); (D.F.)
| | - Balázs Bohár
- Department of Genetics, Institute of Biology, Eötvös Loránd University, Pázmány Péter stny. 1/C, H-1117 Budapest, Hungary; (D.K.); (T.S.); (B.H.); (B.B.); (D.F.)
- Earlham Institute, Norwich NR4 7UZ, UK
- Quadram Institute, Norwich NR4 7UA, UK
| | - Dávid Fazekas
- Department of Genetics, Institute of Biology, Eötvös Loránd University, Pázmány Péter stny. 1/C, H-1117 Budapest, Hungary; (D.K.); (T.S.); (B.H.); (B.B.); (D.F.)
- Earlham Institute, Norwich NR4 7UZ, UK
- Quadram Institute, Norwich NR4 7UA, UK
| | - Veronika Deák
- Department of Applied Biotechnology and Food Science, Laboratory of Biochemistry and Molecular Biology, University of Technology, H-1111 Budapest, Hungary;
| | - Tibor Vellai
- Department of Genetics, Institute of Biology, Eötvös Loránd University, Pázmány Péter stny. 1/C, H-1117 Budapest, Hungary; (D.K.); (T.S.); (B.H.); (B.B.); (D.F.)
- MTA-ELTE Genetics Research Group, Eötvös Loránd University, H-1117 Budapest, Hungary
- Correspondence: (T.V.); (J.B.); Tel.: +36-1-372-2500 (ext. 8684) (T.V.); +36-1-372-2500 (ext. 8349) (J.B.); Fax: +36-1-372-2641 (T.V.)
| | - János Barna
- Department of Genetics, Institute of Biology, Eötvös Loránd University, Pázmány Péter stny. 1/C, H-1117 Budapest, Hungary; (D.K.); (T.S.); (B.H.); (B.B.); (D.F.)
- MTA-ELTE Genetics Research Group, Eötvös Loránd University, H-1117 Budapest, Hungary
- Correspondence: (T.V.); (J.B.); Tel.: +36-1-372-2500 (ext. 8684) (T.V.); +36-1-372-2500 (ext. 8349) (J.B.); Fax: +36-1-372-2641 (T.V.)
| |
Collapse
|
17
|
Dong B, Jaeger AM, Thiele DJ. Inhibiting Heat Shock Factor 1 in Cancer: A Unique Therapeutic Opportunity. Trends Pharmacol Sci 2019; 40:986-1005. [PMID: 31727393 DOI: 10.1016/j.tips.2019.10.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 12/31/2022]
Abstract
The ability of cancer cells to cope with stressful conditions is critical for their survival, proliferation, and metastasis. The heat shock transcription factor 1 (HSF1) protects cells from stresses such as chemicals, radiation, and temperature. These properties of HSF1 are exploited by a broad spectrum of cancers, which exhibit high levels of nuclear, active HSF1. Functions for HSF1 in malignancy extend well beyond its central role in protein quality control. While HSF1 has been validated as a powerful target in cancers by genetic knockdown studies, HSF1 inhibitors reported to date have lacked sufficient specificity and potency for clinical evaluation. We review the roles of HSF1 in cancer, its potential as a prognostic indicator for cancer treatment, evaluate current HSF1 inhibitors and provide guidelines for the identification of selective HSF1 inhibitors as chemical probes and for clinical development.
Collapse
Affiliation(s)
- Bushu Dong
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
| | - Alex M Jaeger
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Dennis J Thiele
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA; Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA; Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
18
|
Toma-Jonik A, Vydra N, Janus P, Widłak W. Interplay between HSF1 and p53 signaling pathways in cancer initiation and progression: non-oncogene and oncogene addiction. Cell Oncol (Dordr) 2019; 42:579-589. [DOI: 10.1007/s13402-019-00452-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2019] [Indexed: 02/07/2023] Open
|
19
|
Chatterjee M, Dass J. FP, Sengupta S. Nuclear stress bodies: Interaction of its components in oncogenic regulation. J Cell Biochem 2019; 120:14700-14710. [DOI: 10.1002/jcb.28731] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/14/2019] [Accepted: 03/22/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Manjima Chatterjee
- School of Bio Sciences and Technology, Vellore Institute of Technology Vellore India
| | - Febin Prabhu Dass J.
- School of Bio Sciences and Technology, Vellore Institute of Technology Vellore India
| | - Sonali Sengupta
- School of Bio Sciences and Technology, Vellore Institute of Technology Vellore India
| |
Collapse
|
20
|
Intihar TA, Martinez EA, Gomez-Pastor R. Mitochondrial Dysfunction in Huntington's Disease; Interplay Between HSF1, p53 and PGC-1α Transcription Factors. Front Cell Neurosci 2019; 13:103. [PMID: 30941017 PMCID: PMC6433789 DOI: 10.3389/fncel.2019.00103] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 02/28/2019] [Indexed: 12/20/2022] Open
Abstract
Huntington’s disease (HD) is a neurodegenerative disease caused by an expanded CAG repeat in the huntingtin (HTT) gene, causing the protein to misfold and aggregate. HD progression is characterized by motor impairment and cognitive decline associated with the preferential loss of striatal medium spiny neurons (MSNs). The mechanisms that determine increased susceptibility of MSNs to mutant HTT (mHTT) are not fully understood, although there is abundant evidence demonstrating the importance of mHTT mediated mitochondrial dysfunction in MSNs death. Two main transcription factors, p53 and peroxisome proliferator co-activator PGC-1α, have been widely studied in HD for their roles in regulating mitochondrial function and apoptosis. The action of these two proteins seems to be interconnected. However, it is still open to discussion whether p53 and PGC-1α dependent responses directly influence each other or if they are connected via a third mechanism. Recently, the stress responsive transcription factor HSF1, known for its role in protein homeostasis, has been implicated in mitochondrial function and in the regulation of PGC-1α and p53 levels in different contexts. Based on previous reports and our own research, we discuss in this review the potential role of HSF1 in mediating mitochondrial dysfunction in HD and propose a unifying mechanism that integrates the responses mediated by p53 and PGC-1α in HD via HSF1.
Collapse
Affiliation(s)
- Taylor A Intihar
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Elisa A Martinez
- Department of Biochemistry and Molecular Biology, Dickinson College, Carlisle, PA, United States
| | - Rocio Gomez-Pastor
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
21
|
Weisman NY. Genetic and Epigenetic Pathways of lethal (2) giant larvae Tumor Suppressor in Drosophila melanogaster. RUSS J GENET+ 2019. [DOI: 10.1134/s1022795419020145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Kawamura G, Hattori M, Takamatsu K, Tsukada T, Ninomiya Y, Benjamin I, Sassone-Corsi P, Ozawa T, Tamaru T. Cooperative interaction among BMAL1, HSF1, and p53 protects mammalian cells from UV stress. Commun Biol 2018; 1:204. [PMID: 30480104 PMCID: PMC6250677 DOI: 10.1038/s42003-018-0209-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 10/29/2018] [Indexed: 12/12/2022] Open
Abstract
The circadian clock allows physiological systems to adapt to their changing environment by synchronizing their timings in response to external stimuli. Previously, we reported clock-controlled adaptive responses to heat-shock and oxidative stress and showed how the circadian clock interacts with BMAL1 and HSF1. Here, we present a similar clock-controlled adaptation to UV damage. In response to UV irradiation, HSF1 and tumor suppressor p53 regulate the expression of the clock gene Per2 in a time-dependent manner. UV irradiation first activates the HSF1 pathway, which subsequently activates the p53 pathway. Importantly, BMAL1 regulates both HSF1 and p53 through the BMAL1-HSF1 interaction to synchronize the cellular clock. Based on these findings and transcriptome analysis, we propose that the circadian clock protects cells against the UV stress through sequential and hierarchical interactions between the circadian clock, the heat shock response, and a tumor suppressive mechanism.
Collapse
Affiliation(s)
- Genki Kawamura
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 133-0033, Japan
| | - Mitsuru Hattori
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 133-0033, Japan
| | - Ken Takamatsu
- Department of Physiology & Advanced Research Center for Medical Science, Toho University School of Medicine, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan
| | - Teruyo Tsukada
- Nishina Center for Accelerator-Based Science, Riken, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Yasuharu Ninomiya
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba, 263-8555, Japan
| | - Ivor Benjamin
- Department of Medicine, Froedtert & Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI, 53226, USA
| | - Paolo Sassone-Corsi
- Center for Epigenetics and Metabolism, School of Medicine, University of California Irvine, California, 92697, USA
| | - Takeaki Ozawa
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 133-0033, Japan.
| | - Teruya Tamaru
- Department of Physiology & Advanced Research Center for Medical Science, Toho University School of Medicine, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan.
| |
Collapse
|
23
|
Abreu PL, Cunha-Oliveira T, Ferreira LMR, Urbano AM. Hexavalent chromium, a lung carcinogen, confers resistance to thermal stress and interferes with heat shock protein expression in human bronchial epithelial cells. Biometals 2018; 31:477-487. [DOI: 10.1007/s10534-018-0093-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 03/13/2018] [Indexed: 12/12/2022]
|
24
|
Logan IR, McClurg UL, Jones DL, O'Neill DJ, Shaheen FS, Lunec J, Gaughan L, Robson CN. Nutlin-3 inhibits androgen receptor-driven c-FLIP expression, resulting in apoptosis of prostate cancer cells. Oncotarget 2018; 7:74724-74733. [PMID: 27729622 PMCID: PMC5342697 DOI: 10.18632/oncotarget.12542] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 09/26/2016] [Indexed: 01/10/2023] Open
Abstract
Inhibition of androgen receptor (AR) signalling represents the conventional medical management of prostate cancer. Ultimately this treatment fails because tumors develop an incurable, castrate resistant phenotype, resulting in an unmet need for new treatments in prostate cancer. The AR remains a viable therapeutic target in castrate resistant disease, such that novel ways of downregulating AR activities are attractive as potential treatments. Here we describe a mechanism by which the AR can be downregulated by the MDM2 antagonist Nutlin-3, resulting in loss of pro-survival c-FLIP gene expression and apoptosis. We additionally show that loss of c-FLIP sensitises prostate cancer cells to Nutlin-3. Finally, we demonstrate that the unrelated MDM2 antagonist Mi-63 also impinges upon AR signalling, supporting the concept of future treatment of prostate cancer with MDM2 antagonists.
Collapse
Affiliation(s)
- Ian R Logan
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, Tyne and Wear, United Kingdom
| | - Urszula L McClurg
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, Tyne and Wear, United Kingdom
| | - Dominic L Jones
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, Tyne and Wear, United Kingdom
| | - Daniel J O'Neill
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, Tyne and Wear, United Kingdom
| | - Fadhel S Shaheen
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, Tyne and Wear, United Kingdom
| | - John Lunec
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, Tyne and Wear, United Kingdom
| | - Luke Gaughan
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, Tyne and Wear, United Kingdom
| | - Craig N Robson
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, Tyne and Wear, United Kingdom
| |
Collapse
|
25
|
Olotu FA, Soliman MES. From mutational inactivation to aberrant gain-of-function: Unraveling the structural basis of mutant p53 oncogenic transition. J Cell Biochem 2017; 119:2646-2652. [PMID: 29058783 DOI: 10.1002/jcb.26430] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 10/18/2017] [Indexed: 01/15/2023]
Abstract
Various evidence has revealed that mutations in p53 exert activities that go beyond simply inactivation of wildtype functions but rather elicits downstream interactions that promote malignancy described as mutant p53 gain-of-function (GOF). Here we report the first account of the dynamics of mutation-induced structural transition of native p53 to an aberrant gain-of-function state, studying the wildtype (WT) and high incidence contact (R273C) and structural (R175H) mutant p53 (mutp53) through molecular dynamics simulation. Result analysis revealed that both mutants exhibited structural distortion and reduced flexibility, indicative of rigidity and kinetic stability. In addition, surface analysis revealed an increase in the accessible surface area in the p53 mutants. This suggests that the GOF transition involves protein unfolding and exposure of buried hydrophobic surface essential for interaction with HSF-1 oncogenic partner and wildtype p63, and p73 homologs. Further validation revealed binding cavities, similar in the mutants but dissimilar to the WT. Taken together, this study complements experimental findings and reveals the interplay between mutation-induced structural distortion, loss of flexibility, rigidity, enhanced stability, protein unfolding and ultimately, exposure of binding surfaces as conformational attributes that characterize mutP53 structure-GOF activities. This insight is, therefore, of great importance as it opens up a novel therapeutic approach toward the structure based targeting of mutP53 oncogenic involvement beyond wildtype inactivation. Furthermore, "exposed" binding site information obtained from this study can be explored for structure-based design of substances best described as "destabilizers" to disrupt the GOF interaction of mutp53.
Collapse
Affiliation(s)
- Fisayo A Olotu
- Molecular Modeling and Drug Design Research Group, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, South Africa
| | - Mahmoud E S Soliman
- Molecular Modeling and Drug Design Research Group, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, South Africa.,College of Pharmacy and Pharmaceutical Sciences, Florida Agricultural and Mechanical University, FAMU, Tallahassee, Florida.,Faculty of Pharmacy, Department of Pharmaceutical Organic Chemistry, Zagazig University, Zagazig, Egypt
| |
Collapse
|
26
|
Ueda T, Kohama Y, Kuge A, Kido E, Sakurai H. GADD45 family proteins suppress JNK signaling by targeting MKK7. Arch Biochem Biophys 2017; 635:1-7. [PMID: 29037961 DOI: 10.1016/j.abb.2017.10.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/01/2017] [Accepted: 10/11/2017] [Indexed: 01/22/2023]
Abstract
Growth arrest and DNA damage-inducible 45 (GADD45) family genes encode related proteins, including GADD45α, GADD45β, and GADD45γ. In HeLa cells, expression of GADD45 members is differentially regulated under a variety of environmental conditions, but thermal and genotoxic stresses induce the expression of all genes. The heat shock response of GADD45β is mediated by the heat shock transcription factor 1 (HSF1), and GADD45β is necessary for heat stress survival. Heat and genotoxic stress-induced activation of c-Jun N-terminal kinase (JNK) is suppressed by the expression of GADD45 proteins. GADD45 proteins bind the JNK kinase mitogen-activated protein kinase kinase 7 (MKK7) and inhibit its activity, even under normal physiological conditions. Our findings indicate that GADD45 essentially suppresses the MKK7-JNK pathway and suggest that differentially expressed GADD45 family members fine-tune stress-inducible JNK activity.
Collapse
Affiliation(s)
- Takumi Ueda
- Division of Health Sciences, Graduate School of Medical Science, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan
| | - Yuri Kohama
- Division of Health Sciences, Graduate School of Medical Science, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan
| | - Ayana Kuge
- Division of Health Sciences, Graduate School of Medical Science, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan
| | - Eriko Kido
- Division of Health Sciences, Graduate School of Medical Science, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan
| | - Hiroshi Sakurai
- Division of Health Sciences, Graduate School of Medical Science, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan.
| |
Collapse
|
27
|
Rahman KMZ, Mamada H, Takagi M, Kose S, Imamoto N. Hikeshi modulates the proteotoxic stress response in human cells: Implication for the importance of the nuclear function of HSP70s. Genes Cells 2017; 22:968-976. [PMID: 28980748 DOI: 10.1111/gtc.12536] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 08/27/2017] [Indexed: 01/19/2023]
Abstract
Hikeshi mediates the heat stress-induced nuclear import of heat-shock protein 70 (HSP70s: HSP70/HSC70). Dysfunction of Hikeshi causes some serious effects in humans; however, the cellular function of Hikeshi is largely unknown. Here, we investigated the effects of Hikeshi depletion on the survival of human cells after proteotoxic stress and found opposite effects in HeLa and hTERT-RPE1 (RPE) cells; depletion of Hikeshi reduced the survival of HeLa cells, but increased the survival of RPE cells in response to proteotoxic stress. Hikeshi depletion sustained heat-shock transcription factor 1 (HSF1) activation in HeLa cells after recovery from stress, but introduction of a nuclear localization signal-tagged HSC70 in Hikeshi-depleted HeLa cells down-regulated HSF1 activity. In RPE cells, the HSF1 was efficiently activated, but the activated HSF1 was not sustained after recovery from stress, as in HeLa cells. Additionally, we found that p53 and subsequent up-regulation of p21 were higher in the Hikeshi-depleted RPE cells than in the wild-type cells. Our results indicate that depletion of Hikeshi renders HeLa cells proteotoxic stress-sensitive through the abrogation of the nuclear function of HSP70s required for HSF1 regulation. Moreover, Hikeshi depletion up-regulates p21 in RPE cells, which could be a cause of its proteotoxic stress resistant.
Collapse
Affiliation(s)
- Khondoker Md Zulfiker Rahman
- Cellular Dynamics Laboratory, RIKEN, Wako, Japan.,Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | | | | | - Shingo Kose
- Cellular Dynamics Laboratory, RIKEN, Wako, Japan
| | | |
Collapse
|
28
|
Vilaboa N, Boré A, Martin-Saavedra F, Bayford M, Winfield N, Firth-Clark S, Kirton SB, Voellmy R. New inhibitor targeting human transcription factor HSF1: effects on the heat shock response and tumor cell survival. Nucleic Acids Res 2017; 45:5797-5817. [PMID: 28369544 PMCID: PMC5449623 DOI: 10.1093/nar/gkx194] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 03/13/2017] [Indexed: 12/20/2022] Open
Abstract
Comparative modeling of the DNA-binding domain of human HSF1 facilitated the prediction of possible binding pockets for small molecules and definition of corresponding pharmacophores. In silico screening of a large library of lead-like compounds identified a set of compounds that satisfied the pharmacophoric criteria, a selection of which compounds was purchased to populate a biased sublibrary. A discriminating cell-based screening assay identified compound 001, which was subjected to systematic analysis of structure–activity relationships, resulting in the development of compound 115 (IHSF115). IHSF115 bound to an isolated HSF1 DNA-binding domain fragment. The compound did not affect heat-induced oligomerization, nuclear localization and specific DNA binding but inhibited the transcriptional activity of human HSF1, interfering with the assembly of ATF1-containing transcription complexes. IHSF115 was employed to probe the human heat shock response at the transcriptome level. In contrast to earlier studies of differential regulation in HSF1-naïve and -depleted cells, our results suggest that a large majority of heat-induced genes is positively regulated by HSF1. That IHSF115 effectively countermanded repression in a significant fraction of heat-repressed genes suggests that repression of these genes is mediated by transcriptionally active HSF1. IHSF115 is cytotoxic for a variety of human cancer cell lines, multiple myeloma lines consistently exhibiting high sensitivity.
Collapse
Affiliation(s)
- Nuria Vilaboa
- Hospital Universitario La Paz-IdiPAZ, 28046 Madrid, Spain.,CIBER de Bioingenieria, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
| | - Alba Boré
- Hospital Universitario La Paz-IdiPAZ, 28046 Madrid, Spain.,CIBER de Bioingenieria, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
| | - Francisco Martin-Saavedra
- Hospital Universitario La Paz-IdiPAZ, 28046 Madrid, Spain.,CIBER de Bioingenieria, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
| | - Melanie Bayford
- Domainex Ltd, Chesterford Research Park, Little Chesterford, Saffron Walden, Essex CB10 1XL, UK
| | - Natalie Winfield
- Domainex Ltd, Chesterford Research Park, Little Chesterford, Saffron Walden, Essex CB10 1XL, UK
| | - Stuart Firth-Clark
- Domainex Ltd, Chesterford Research Park, Little Chesterford, Saffron Walden, Essex CB10 1XL, UK
| | - Stewart B Kirton
- University of Hertfordshire, Hatfield, Hertfordshire, AL10 9AB, UK
| | | |
Collapse
|
29
|
Schluckebier L, Aran V, De Moraes J, Paiva H, Sternberg C, Ferreira CG. XAF1 expression levels in a non-small cell lung cancer cohort and its potential association with carcinogenesis. Oncol Rep 2017; 38:402-410. [PMID: 28560416 DOI: 10.3892/or.2017.5680] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/26/2017] [Indexed: 11/06/2022] Open
Abstract
The process of lung carcinogenesis is still not well understood and involves different levels of regulation of several genes. The search for molecular biomarkers, which can be applicable to clinical practice, has been the focus of various studies. XIAP-associated factor 1 (XAF1) was previously shown to be downregulated in many types of tumors, including squamous cell lung cancer. XAF1 is a pro-apoptotic protein and its restoration was found to sensitize cancer cells to apoptotic stimuli; however, the precise mechanism involved in the downregulation of XAF1 in tumors is unknown and promoter hypermethylation or heat-shock transcription factor 1 (HSF1) may be involved. Therefore, the aim of the present study was to evaluate the expression of XAF1 in tumors and adjacent non-tumor specimens from non-small cell lung cancer (NSCLC) patients, and its potential association with various factors including clinicopathological characteristics and other genes involved in NSCLC. Our results indicated that XAF1 expression was markedly altered in NSCLC tumor samples when compared to that found in normal lung tissues. Predominantly, XAF1 was downregulated in the tumors, except in never-smoker patients. In addition, XAF1 may also be important in the whole cell stress mechanism where the p53 status is crucial.
Collapse
Affiliation(s)
- Luciene Schluckebier
- Clinical Research Division, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - Veronica Aran
- Clinical Research Division, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - Joyce De Moraes
- Clinical Research Division, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - Heitor Paiva
- Pathology Division, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - Cinthya Sternberg
- Clinical Research Division, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - Carlos Gil Ferreira
- Clinical Research Division, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil
| |
Collapse
|
30
|
Zhang B, He P, Lu Y, Bian X, Yang X, Fu X, Wu Y, Li D. HSF1 Relieves Amyloid-β-Induced Cardiomyocytes Apoptosis. Cell Biochem Biophys 2017; 72:579-87. [PMID: 25631374 DOI: 10.1007/s12013-014-0505-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Accumulation of amyloid-β in organs results in a series of diseases. Heat shock transcription factor 1 (HSF1) is the master regulator of genes encoding molecular chaperones and attenuates apoptosis induced by multiple factors. However, the role of HSF1 on amyloid-β-induced apoptosis is still unknown. The present study was aimed to explore the function of HSF1 in amyloid-β-induced cardiomyocytes apoptosis. TUNEL assay and flow cytometry analysis were used to detect cell apoptosis. Phalloidin staining was used to detect cytoskeleton injury. Changes in expression levels of proteins involved in apoptosis and endoplasmic reticulum stress were measured by Western blot. In our study, amyloid-β was found to promote apoptosis, impair cytoskeleton, and induce endoplasmic reticulum stress in isolated cardiomyocytes. However, these damaging effects of amyloid-β can be relieved by over-expression of HSF1, and the protective role of HSF1 might be associated with the regulation of HSPs expressions. Results of our study suggest that over-expression of HSF1 might become a promising gene therapeutic for the treatment of heart diseases associated with amyloid-β accumulation.
Collapse
Affiliation(s)
- Beiru Zhang
- Department of Nephrology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, 110004, Liaoning, China.
| | - Ping He
- Department of Nephrology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, 110004, Liaoning, China
| | - Yonghao Lu
- Department of Neurosurgery, Affiliated Central Hospital of Shenyang Medical College, Shenyang, 110024, Liaoning, China
| | - Xiaohui Bian
- Department of Nephrology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, 110004, Liaoning, China
| | - Xu Yang
- Department of Nephrology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, 110004, Liaoning, China
| | - Xiaoying Fu
- Department of Pathology, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Yan Wu
- Department of Nephrology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, 110004, Liaoning, China
| | - Detian Li
- Department of Nephrology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, 110004, Liaoning, China
| |
Collapse
|
31
|
Shuttleworth VG, Gaughan L, Nawafa L, Mooney CA, Cobb SL, Sheerin NS, Logan IR. The methyltransferase SET9 regulates TGF B-1 activation of renal fibroblasts via interaction with SMAD3. J Cell Sci 2017; 131:jcs.207761. [DOI: 10.1242/jcs.207761] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Accepted: 11/27/2017] [Indexed: 12/29/2022] Open
Abstract
Chronic kidney disease (CKD) is a global socioeconomic problem. It is characterised by the presence of differentiated myofibroblasts that, in response to TGF B-1, produce tissue fibrosis, leading to renal failure. Here we define a novel interaction between the SET9 lysine methyltransferase and SMAD3, the principle mediator of TGF B-1 signalling in myofibroblasts. We show that SET9 deficient fibroblasts exhibit globally altered gene expression profiles in response to TGF B-1, whilst overexpression of SET9 enhances SMAD3 transcriptional activity. We also show that SET9 facilitates SMAD3 nuclear import and controls SMAD3 protein degradation, in a manner involving ubiquitination. On a cellular level, we demonstrate that SET9 is broadly required for TGF B-1 effects in diseased primary renal fibroblasts; SET9 promotes fibroblast migration into wounds, expression of extracellular matrix proteins, collagen contractility and myofibroblast differentiation. Finally, we demonstrate that SET9 is recruited to the α-smooth muscle actin gene in response to TGF B-1, providing a mechanism by which SET9 regulates myofibroblast contractility and differentiation. Together with previous studies, we make the case for SET9 inhibition in the treatment of progressive CKD.
Collapse
Affiliation(s)
- Victoria G. Shuttleworth
- Institute of Cellular Medicine, The Medical School, Framlington Place, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Luke Gaughan
- Northern Institute for Cancer Research, Paul O'Gorman Building, Framlington Place, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Lotfia Nawafa
- Institute of Cellular Medicine, The Medical School, Framlington Place, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Caitlin A. Mooney
- Dept of Chemistry, Biophysical Sciences Institute, Durham University, South Road, Durham, DH1 3LE, UK
| | - Steven L. Cobb
- Dept of Chemistry, Biophysical Sciences Institute, Durham University, South Road, Durham, DH1 3LE, UK
| | - Neil S. Sheerin
- Institute of Cellular Medicine, The Medical School, Framlington Place, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Ian R. Logan
- Institute of Cellular Medicine, The Medical School, Framlington Place, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| |
Collapse
|
32
|
Tamaru T, Ikeda M. Circadian adaptation to cell injury stresses: a crucial interplay of BMAL1 and HSF1. J Physiol Sci 2016; 66:303-6. [PMID: 26910317 PMCID: PMC10717996 DOI: 10.1007/s12576-016-0436-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 02/02/2016] [Indexed: 10/22/2022]
Abstract
The circadian clock system confers daily anticipatory physiological processes with the ability to be reset by environmental cues. This "circadian adaptation system" (CAS), driven by cell-autonomous molecular clocks, orchestrates various rhythmic physiological processes in the entire body. Hence, the dysfunction of these clocks exacerbates various diseases, which may partially be due to the impairment of protective pathways. If this is the case, how does the CAS respond to cell injury stresses that are critical in maintaining health and life by evoking protective pathways? To address this question, here we review and discuss recent evidence revealing life-protective (pro-survival) molecular networks between clock (e.g., BMAL1, CLOCK, and PER2) and adaptation (e.g., HSF1, Nrf2, NF-κB, and p53) pathways, which are evoked by various cell injury stresses (e.g., heat, reactive oxygen species, and UV). The CK2 protein kinase-integrated interplay of the BMAL1 (clock) and HSF1 (heat-shock response) pathways is one of the crucial events in CAS.
Collapse
Affiliation(s)
- Teruya Tamaru
- Department of Physiology and Advanced Research Center for Medical Science, Toho University School of Medicine, 5-21-16 Ohmori-nishi Ohta-ku, Tokyo, 143-8540, Japan.
| | - Masaaki Ikeda
- Department of Physiology, Faculty of Medicine, Saitama Medical University, 38 Morohongo Moroyama-machi, Iruma-gun, Saitama, 350-0495, Japan
- Molecular Clock Project, Project Research Division, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka, Saitama, 350-1241, Japan
| |
Collapse
|
33
|
Huang M, Li D, Huang Y, Cui X, Liao S, Wang J, Liu F, Li C, Gao M, Chen J, Tang Z, Li DWC, Liu M. HSF4 promotes G1/S arrest in human lens epithelial cells by stabilizing p53. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:1808-17. [DOI: 10.1016/j.bbamcr.2015.04.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 04/24/2015] [Accepted: 04/26/2015] [Indexed: 10/23/2022]
|
34
|
Vydra N, Toma A, Widlak W. Pleiotropic role of HSF1 in neoplastic transformation. Curr Cancer Drug Targets 2015; 14:144-55. [PMID: 24467529 PMCID: PMC4435066 DOI: 10.2174/1568009614666140122155942] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 01/06/2014] [Accepted: 01/22/2014] [Indexed: 01/13/2023]
Abstract
HSF1 (Heat Shock transcription Factor 1) is the main transcription factor activated in response to proteotoxic stress. Once activated, it induces an expression of heat shock proteins (HSPs) which enables cells to survive in suboptimal conditions. HSF1 could be also activated by altered kinase signaling characteristic for cancer cells, which is a probable reason for its high activity found in a broad range of tumors. There is rapidly growing evidence that HSF1 supports tumor initiation and growth, as well as metastasis and angiogenesis. It also modulates the sensitivity of cancer cells to therapy. Functions of HSF1 in cancer are connected with HSPs’ activity, which generally protects cells from apoptosis, but also are independent of its classical targets. HSF1-dependent regulation of non-HSPs genes plays a role in cell cycle
progression, glucose metabolism, autophagy and drug efflux. HSF1 affects the key cell-survival and regulatory pathways, including p53, RAS/MAPK, cAMP/PKA, mTOR and insulin signaling. Although the exact mechanism of HSF1 action is still somewhat obscure, HSF1 is becoming an attractive target in anticancer therapies, whose inhibition could enhance the effects of other treatments.
Collapse
Affiliation(s)
| | | | - Wieslawa Widlak
- Cancer Center and Institute of Oncology, Gliwice Branch, Wybrzeze Armii Krajowej 15, 44-101 Gliwice, Poland.
| |
Collapse
|
35
|
Vydra N, Toma A, Glowala-Kosinska M, Gogler-Piglowska A, Widlak W. Overexpression of Heat Shock Transcription Factor 1 enhances the resistance of melanoma cells to doxorubicin and paclitaxel. BMC Cancer 2013; 13:504. [PMID: 24165036 PMCID: PMC4231344 DOI: 10.1186/1471-2407-13-504] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 10/23/2013] [Indexed: 11/25/2022] Open
Abstract
Background Heat Shock Transcription Factor 1 (HSF1) is activated under stress conditions. In turn, it induces expression of Heat Shock Proteins (HSPs), which are well-known regulators of protein homeostasis. Elevated levels of HSF1 and HSPs were observed in many types of tumors. The aim of the present study was to determine whether HSF1 could have an effect on the survival of cancer cells treated with chemotherapeutic cytotoxic agents. Methods We constructed mouse (B16F10) and human (1205Lu, WM793B) melanoma cells overexpressing full or mutant form of human HSF1: a constitutively active one with a deletion in regulatory domain or a dominant negative one with a deletion in the activation domain. The impact of different forms of HSF1 on the expression of HSP and ABC genes was studied by RT-PCR and Western blotting. Cell cultures were treated with increasing amounts of doxorubicin, paclitaxel, cisplatin, vinblastine or bortezomib. Cell viability was determined by MTT, and IC50 was calculated. Cellular accumulation of fluorescent dyes and side population cells were studied using flow cytometry. Results Cells overexpressing HSF1 and characterized by increased HSPs accumulation were more resistant to doxorubicin or paclitaxel, but not to cisplatin, vinblastine or bortezomib. This resistance correlated with the enhanced efflux of fluorescent dyes and the increased number of side population cells. The expression of constitutively active mutant HSF1, also resulting in HSPs overproduction, did not reduce the sensitivity of melanoma cells to drugs, unlike in the case of dominant negative form expression. Cells overexpressing a full or dominant negative form of HSF1, but not a constitutively active one, had higher transcription levels of ABC genes when compared to control cells. Conclusions HSF1 overexpression facilitates the survival of melanoma cells treated with doxorubicin or paclitaxel. However, HSF1-mediated chemoresistance is not dependent on HSPs accumulation but on an increased potential for drug efflux by ABC transporters. Direct transcriptional activity of HSF1 is not necessary for increased expression of ABC genes, which is probably mediated by HSF1 regulatory domain.
Collapse
Affiliation(s)
- Natalia Vydra
- Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, Gliwice, Poland.
| | | | | | | | | |
Collapse
|
36
|
Chen YF, Dong Z, Xia Y, Tang J, Peng L, Wang S, Lai D. Nucleoside analog inhibits microRNA-214 through targeting heat-shock factor 1 in human epithelial ovarian cancer. Cancer Sci 2013; 104:1683-9. [PMID: 24033540 DOI: 10.1111/cas.12277] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 08/29/2013] [Accepted: 08/30/2013] [Indexed: 01/06/2023] Open
Abstract
The important functions of heat shock factor 1 (HSF1) in certain malignant cancers have granted it to be an appealing target for developing novel strategy for cancer therapy. Here, we report that higher HSF1 expression is associated with more aggressive malignization in epithelial ovarian tumors, indicating that targeting HSF1 is also a promising strategy against ovarian cancer. We found that a nucleoside analog (Ly101-4B) elicits efficient inhibition on HSF1 expression and potent anticancer activity on epithelial ovarian cancer both in vitro and in vivo. Moreover, by targeting HSF1, Ly101-4B inhibits the biogenesis of microRNA-214, which has been revealed to be overexpressed and to promote cell survival in human ovarian epithelial tumors. These findings demonstrate that Ly101-4B is a promising candidate for ovarian cancer therapy, and expand our understanding of HSF1, by revealing that it can regulate microRNA biogenesis in addition to its canonical function of regulating protein-coding RNAs.
Collapse
Affiliation(s)
- Yi-Fei Chen
- The International Peace Maternity and Child Health Hospital, Shanghai Jiaotong University, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
37
|
Kumar S, Tomar MS, Acharya A. HSF1-mediated regulation of tumor cell apoptosis: a novel target for cancer therapeutics. Future Oncol 2013; 9:1573-86. [DOI: 10.2217/fon.13.106] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Programmed cell death/apoptosis is a genetically conserved phenomenon involved in many biological processes including reconstruction of multicellular organisms and elimination of old or damaged cells. It is regulated by the activation/deactivation of PKC in response to exogenous and endogenous stimuli. PKC is activated under stress by a series of downstream signaling cascades, which ultimately induce HSF1 activation, which results in overexpression of heat shock proteins. Overexpression of heat shock proteins interferes in the apoptotic pathway, while their blocking results in apoptosis. Therefore, HSF1 could be a novel therapeutic target against a variety of tumors. Several pharmacological inhibitors of PKC have been demonstrated to exert inhibitory effects on the activation of HSF1 and, therefore, induce apoptosis in tumor cells. However, studies regarding the role of pharmacological inhibitors in the regulation of apoptosis and possible anti-tumor therapeutic intervention are still unknown or in their infancy. Therefore, an attempt has been made to delineate the precise role of HSF1 in the regulation of apoptosis and its prospects in cancer therapeutics.
Collapse
Affiliation(s)
- Sanjay Kumar
- Centre of Advance Study in Zoology, Faculty of Science, Banaras Hindu University, Varanasi–221 005, U.P., India
| | - Munendra Singh Tomar
- Centre of Advance Study in Zoology, Faculty of Science, Banaras Hindu University, Varanasi–221 005, U.P., India
| | - Arbind Acharya
- Centre of Advance Study in Zoology, Faculty of Science, Banaras Hindu University, Varanasi–221 005, U.P., India
| |
Collapse
|
38
|
Burska UL, Harle VJ, Coffey K, Darby S, Ramsey H, O'Neill D, Logan IR, Gaughan L, Robson CN. Deubiquitinating enzyme Usp12 is a novel co-activator of the androgen receptor. J Biol Chem 2013; 288:32641-32650. [PMID: 24056413 DOI: 10.1074/jbc.m113.485912] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The androgen receptor (AR), a member of the nuclear receptor family, is a transcription factor involved in prostate cell growth, homeostasis, and transformation. AR is a key protein in growth and development of both normal and malignant prostate, making it a common therapeutic target in prostate cancer. AR is regulated by an interplay of multiple post-translational modifications including ubiquitination. We and others have shown that the AR is ubiquitinated by a number of E3 ubiquitin ligases, including MDM2, CHIP, and NEDD4, which can result in its proteosomal degradation or enhanced transcriptional activity. As ubiquitination of AR causes a change in AR activity or stability and impacts both survival and growth of prostate cancer cells, deubiquitination of these sites has an equally important role. Hence, deubiquitinating enzymes could offer novel therapeutic targets. We performed an siRNA screen to identify deubiquitinating enzymes that regulate AR; in that screen ubiquitin-specific protease 12 (Usp12) was identified as a novel positive regulator of AR. Usp12 is a poorly characterized protein with few known functions and requires the interaction with two cofactors, Uaf-1 and WDR20, for its enzymatic activity. In this report we demonstrate that Usp12, in complex with Uaf-1 and WDR20, deubiquitinates the AR to enhance receptor stability and transcriptional activity. Our data show that Usp12 acts in a pro-proliferative manner by stabilizing AR and enhancing its cellular function.
Collapse
Affiliation(s)
- Urszula L Burska
- From the Solid Tumour Target Discovery Laboratory, Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Victoria J Harle
- From the Solid Tumour Target Discovery Laboratory, Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Kelly Coffey
- From the Solid Tumour Target Discovery Laboratory, Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Steven Darby
- From the Solid Tumour Target Discovery Laboratory, Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Hollie Ramsey
- From the Solid Tumour Target Discovery Laboratory, Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Daniel O'Neill
- From the Solid Tumour Target Discovery Laboratory, Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Ian R Logan
- From the Solid Tumour Target Discovery Laboratory, Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Luke Gaughan
- From the Solid Tumour Target Discovery Laboratory, Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Craig N Robson
- From the Solid Tumour Target Discovery Laboratory, Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom.
| |
Collapse
|
39
|
Heat-shock factor 1 both positively and negatively affects cellular clonogenic growth depending on p53 status. Biochem J 2013; 452:321-9. [PMID: 23510323 DOI: 10.1042/bj20130098] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
HSF1 (heat-shock factor 1) is the master regulator of the heat-shock response; however, it is also activated by cancer-associated stresses and supports cellular transformation and cancer progression. We examined the role of HSF1 in relation to cancer cell clonogenicity, an important attribute of cancer cells. Ectopic expression or HSF1 knockdown demonstrated that HSF1 positively regulated cancer cell clonogenic growth. Furthermore, knockdown of mutant p53 indicated that HSF1 actions were mediated via a mutant p53-dependent mechanism. To examine this relationship more specifically, we ectopically co-expressed mutant p53(R273H) and HSF1 in the human mammary epithelial cell line MCF10A. Surprisingly, within this cellular context, HSF1 inhibited clonogenicity. However, upon specific knockdown of endogenous wild-type p53, leaving mutant p53(R273H) expression intact, HSF1 was observed to greatly enhance clonogenic growth of the cells, indicating that HSF1 suppressed clonogenicity via wild-type p53. To confirm this we ectopically expressed HSF1 in non-transformed and H-Ras(V12)-transformed MCF10A cells. As expected, HSF1 significantly reduced clonogenicity, altering wild-type p53 target gene expression levels consistent with a role of HSF1 increasing wild-type p53 activity. In support of this finding, knockdown of wild-type p53 negated the inhibitory effects of HSF1 expression. We thus show that HSF1 can affect clonogenic growth in a p53 context-dependent manner, and can act via both mutant and wild-type p53 to bring about divergent effects upon clonogenicity. These findings have important implications for our understanding of HSF1's divergent roles in cancer cell growth and survival as well as its disparate effect on mutant and wild-type p53.
Collapse
|
40
|
Weisman NY, Evgen’ev MB, Golubovskii MD. Parallelism and paradoxes on viability and the life span of two loss-of-function mutations: Heat shock protein transcriptional regulator hsf 1 and l(2)gl tumor suppressor in Drosophila melanogaster. BIOL BULL+ 2012. [DOI: 10.1134/s1062359012010128] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
41
|
Borrás C, Gómez-Cabrera MC, Viña J. The dual role of p53: DNA protection and antioxidant. Free Radic Res 2011; 45:643-52. [PMID: 21452930 DOI: 10.3109/10715762.2011.571685] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The classical functions of p53 protein are those related to its role on DNA damage, cell growth arrest, senescence and apoptosis. For this reason it is called 'the guardian of the genome' and is considered one of the most important players in the development of cancer. However, more recently it has been show that p53 is not only involved in cancer, but also in ageing. p53 is stimulated by stress, which in turn results in the activation of a wide range of transcriptional targets. Low-intensity stress will activate p53 in a manner which results in antioxidant response, thus protecting against ageing because of its antioxidant function. On the contrary, high-intensity activation of p53 will result in an increase of oxidative stress by activation of p53-mediated pro-oxidant targets, thus increasing the rate of ageing, but protecting against cancer.
Collapse
Affiliation(s)
- Consuelo Borrás
- Department of Physiology, Faculty of Medicine, University of Valencia, Av. Blasco Ibáñez, 15 46010 Valencia, Spain.
| | | | | |
Collapse
|
42
|
Induction of cardiomyocyte apoptosis by anti-cardiac myosin heavy chain antibodies in patients with acute myocardial infarction. ACTA ACUST UNITED AC 2010; 30:582-8. [DOI: 10.1007/s11596-010-0546-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Indexed: 12/13/2022]
|
43
|
Hooper PL, Hooper PL, Tytell M, Vígh L. Xenohormesis: health benefits from an eon of plant stress response evolution. Cell Stress Chaperones 2010; 15:761-70. [PMID: 20524162 PMCID: PMC3024065 DOI: 10.1007/s12192-010-0206-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 05/17/2010] [Accepted: 05/18/2010] [Indexed: 02/07/2023] Open
Abstract
Xenohormesis is a biological principle that explains how environmentally stressed plants produce bioactive compounds that can confer stress resistance and survival benefits to animals that consume them. Animals can piggyback off products of plants' sophisticated stress response which has evolved as a result of their stationary lifestyle. Factors eliciting the plant stress response can judiciously be employed to maximize yield of health-promoting plant compounds. The xenohormetic plant compounds can, when ingested, improve longevity and fitness by activating the animal's cellular stress response and can be applied in drug discovery, drug production, and nutritional enhancement of diet.
Collapse
Affiliation(s)
- Philip L. Hooper
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Denver, School of Medicine, Aurora, CO USA
- P.O. Box 245, Glen Haven, CO 80532 USA
| | - Paul L. Hooper
- Department of Anthropology and Program in Interdisciplinary Biological and Biomedical Sciences, University of New Mexico, Albuquerque, NM USA
| | - Michael Tytell
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Winston-Salem, NC USA
| | - Lászlo Vígh
- Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, Szeged, Hungary
| |
Collapse
|
44
|
Sharma A, Meena AS, Bhat MK. Hyperthermia-associated carboplatin resistance: differential role of p53, HSF1 and Hsp70 in hepatoma cells. Cancer Sci 2010; 101:1186-93. [PMID: 20180806 PMCID: PMC11159963 DOI: 10.1111/j.1349-7006.2010.01516.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Due to substantial technical improvements, clinical application of heat as a co-adjuvant in cancer treatment is acquiring new interest. The effect of hyperthermia on hepatoma cell lines Hep3B (p53 defective) and HepG2 (p53 wild type) when investigated led to an interesting observation that Hep3B cells are more susceptible to heat stress than HepG2 cells. In addition, heat-induced carboplatin resistance was observed in HepG2 cells only. To investigate the reasons, heat shock response was explored and it was observed that heat stress augmented heat shock protein 70 (Hsp70) expression levels in HepG2 and not in Hep3B cells. Furthermore, in HepG2 cells, induced Hsp70 is regulated by both p53 and heat shock transcription factor 1 (HSF1) wherein HSF1 levels are modulated by p53. The data implies that Hep3B are more susceptible to death upon heat stress than HepG2 cells because of non-induction of Hsp70. In addition, it was observed that inhibition of heat-induced p53/HSF1 diminishes Hsp70 levels, thereby restoring the sensitivity of heat-stressed HepG2 cells to carboplatin-triggered cell death. Collectively, the present study establishes interplay of p53, HSF1, and Hsp70 upon heat stress in HepG2 cells and also defines novel strategies to overcome constraints of utility of hyperthermia in cancer therapy through p53/HSF1-targeted therapeutic intervention.
Collapse
|