1
|
Li Z, Ran Z, Xiao X, Yan C, Xu J, Tang M, An M. Comparative analysis of the whole mitochondrial genomes of four species in sect. Chrysantha (Camellia L.), endemic taxa in China. BMC PLANT BIOLOGY 2024; 24:955. [PMID: 39395971 PMCID: PMC11475203 DOI: 10.1186/s12870-024-05673-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/07/2024] [Indexed: 10/14/2024]
Abstract
BACKGROUND The sect. Chrysantha Chang of plants with yellow flowers of Camellia species as the "Queen of the Tea Family", most of these species are narrowly distributed endemics of China and are currently listed Grde-II in National Key Protected Wild Plant of China. They are commercially important plants with horticultural medicinal and scientific research value. However, the study of the sect. Chrysantha species genetics are still in its infancy, to date, the mitochondrial genome in sect. Chrysantha has been still unexplored. RESULTS In this study, we provide a comprehensive assembly and annotation of the mitochondrial genomes for four species within the sect. Chrysantha. The results showed that the mitochondrial genomes were composed of closed-loop DNA molecules with sizes ranging from 850,836 bp (C. nitidissima) to 1,098,121 bp (C. tianeensis) with GC content of 45.71-45.78% and contained 48-58 genes, including 28-37 protein-coding genes, 17-20 tRNA genes and 2 rRNA genes. We also examined codon usage, sequence repeats, RNA editing and selective pressure in the four species. Then, we performed a comprehensive comparison of their basic structures, GC contents, codon preferences, repetitive sequences, RNA editing sites, Ka/Ks ratios, haplotypes, and RNA editing sites. The results showed that these plants differ little in gene type and number. C. nitidissima has the greatest variety of genes, while C. tianeensis has the greatest loss of genes. The Ka/Ks values of the atp6 gene in all four plants were greater than 1, indicating positive selection. And the codons ending in A and T were highly used. In addition, the RNA editing sites differed greatly in number, type, location, and efficiency. Twelve, six, five, and twelve horizontal gene transfer (HGT) fragments were found in C. tianeensis, Camellia huana, Camellia liberofilamenta, and C. nitidissima, respectively. The phylogenetic tree clusters the four species of sect. Chrysantha plants into one group, and C. huana and C. liberofilamenta have closer affinities. CONCLUSIONS In this study, the mitochondrial genomes of four sect. Chrysantha plants were assembled and annotated, and these results contribute to the development of new genetic markers, DNA barcode databases, genetic improvement and breeding, and provide important references for scientific research, population genetics, and kinship identification of sect. Chrysantha plants.
Collapse
Affiliation(s)
- Zhi Li
- College of Forestry, Guizhou University, Guiyang, 550025, China
| | - Zhaohui Ran
- College of Forestry, Guizhou University, Guiyang, 550025, China
| | - Xu Xiao
- College of Forestry, Guizhou University, Guiyang, 550025, China
| | - Chao Yan
- College of Forestry, Guizhou University, Guiyang, 550025, China
| | - Jian Xu
- Guizhou Botanical Garden, Guiyang, 550000, China
| | - Ming Tang
- Jiangxi Provincial Key Laboratory of Improved Variety Breeding and Efficient Utilization of Native Tree Species, Jiangxi Agricultural University, Nanchang, 330045, China.
- Jiangxi Provincial Key Laboratory of Conservation Biology, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Mingtai An
- College of Forestry, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
2
|
Ahmad F, Abdullah M, Khan Z, Stępień P, Rehman SU, Akram U, Rahman MHU, Ali Z, Ahmad D, Gulzar RMA, Ali MA, Salama EAA. Genome-wide analysis and prediction of chloroplast and mitochondrial RNA editing sites of AGC gene family in cotton (Gossypium hirsutum L.) for abiotic stress tolerance. BMC PLANT BIOLOGY 2024; 24:888. [PMID: 39343888 PMCID: PMC11441078 DOI: 10.1186/s12870-024-05598-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 09/16/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Cotton is one of the topmost fiber crops throughout the globe. During the last decade, abrupt changes in the climate resulted in drought, heat, and salinity. These stresses have seriously affected cotton production and significant losses all over the textile industry. The GhAGC kinase, a subfamily of AGC group and member of serine/threonine (Ser/Thr) protein kinases group and is highly conserved among eukaryotic organisms. The AGC kinases are compulsory elements of cell development, metabolic processes, and cell death in mammalian systems. The investigation of RNA editing sites within the organelle genomes of multicellular vascular plants, such as Gossypium hirsutum holds significant importance in understanding the regulation of gene expression at the post-transcriptional level. METHODS In present work, we characterized twenty-eight GhAGC genes in cotton and constructed phylogenetic tree using nine different species from the most primitive to the most recent. RESULTS In sequence logos analyses, highly conserved amino acid residues were found in G. hirsutum, G. arboretum, G. raimondii and A. thaliana. The occurrence of cis-acting growth and stress-related elements in the promoter regions of GhAGCs highlight the significance of these factors in plant development and abiotic stress tolerance. Ka/Ks levels demonstrated that purifying selection pressure resulting from segmental events was applied to GhAGC with little functional divergence. We focused on identifying RNA editing sites in G. hirsutum organelles, specifically in the chloroplast and mitochondria, across all 28 AGC genes. CONCLUSION The positive role of GhAGCs was explored by quantifying the expression in the plant tissues under abiotic stress. These findings help in understanding the role of GhAGC genes under abiotic stresses which may further be used in cotton breeding for the development of climate smart varieties in abruptly changing climate.
Collapse
Grants
- 32130075 National Natural Science Foundation of China
- 32130075 National Natural Science Foundation of China
- 32130075 National Natural Science Foundation of China
- 2021AB008, 2020CB003 Science Technology and Achievement Transformation Project of the Xinjiang Production and Construction Corps
- 2021AB008, 2020CB003 Science Technology and Achievement Transformation Project of the Xinjiang Production and Construction Corps
- 2021AB008, 2020CB003 Science Technology and Achievement Transformation Project of the Xinjiang Production and Construction Corps
- ADP-LO21002838 Punjab, Pak ADP Funded Project entitled National Crop Genomics and Speed Breeding Center for Agri-cultural Sustainability
- ADP-LO21002838 Punjab, Pak ADP Funded Project entitled National Crop Genomics and Speed Breeding Center for Agri-cultural Sustainability
- ADP-LO21002838 Punjab, Pak ADP Funded Project entitled National Crop Genomics and Speed Breeding Center for Agri-cultural Sustainability
- ADP-LO21002838 Punjab, Pak ADP Funded Project entitled National Crop Genomics and Speed Breeding Center for Agri-cultural Sustainability
- ADP-LO21002838 Punjab, Pak ADP Funded Project entitled National Crop Genomics and Speed Breeding Center for Agri-cultural Sustainability
- RSP2024R306 King Saud University, Riyadh, Saudi Arabia
Collapse
Affiliation(s)
- Furqan Ahmad
- Sino-Pak Joint Research Laboratory, Institute of Plant Breeding and Biotechnology, MNS University of Agriculture, Multan, 60000, Punjab, Pakistan.
- Institute of Crop Science, Plant Precision Breeding Academy, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Muhammad Abdullah
- Institute of Crop Science, Plant Precision Breeding Academy, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zulqurnain Khan
- Sino-Pak Joint Research Laboratory, Institute of Plant Breeding and Biotechnology, MNS University of Agriculture, Multan, 60000, Punjab, Pakistan
| | - Piotr Stępień
- Institute of Soil Science, Plant Nutrition and Environmental Protection, Wroclaw University of Environmental and Life Sciences, ul. Grunwaldzka 53, Wroclaw, 50-357, Poland.
| | - Shoaib Ur Rehman
- Sino-Pak Joint Research Laboratory, Institute of Plant Breeding and Biotechnology, MNS University of Agriculture, Multan, 60000, Punjab, Pakistan
| | - Umar Akram
- Sino-Pak Joint Research Laboratory, Institute of Plant Breeding and Biotechnology, MNS University of Agriculture, Multan, 60000, Punjab, Pakistan
| | - Muhammad Habib Ur Rahman
- Sino-Pak Joint Research Laboratory, Institute of Plant Breeding and Biotechnology, MNS University of Agriculture, Multan, 60000, Punjab, Pakistan
| | - Zulfiqar Ali
- Sino-Pak Joint Research Laboratory, Institute of Plant Breeding and Biotechnology, MNS University of Agriculture, Multan, 60000, Punjab, Pakistan
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, 38000, Pakistan
- Programs and Projects Department, Islamic Organization for Food Security, Astana, Kazakhstan
| | - Daraz Ahmad
- Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Rana Muhammad Amir Gulzar
- Laboratory of molecular biology of plant disease resistance, institute of Biotechnology, college of agriculture and biotechnology, Zhejiang university, Hangzhou, P.R. China
| | - M Ajmal Ali
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 11451, Riyadh, Saudi Arabia
| | - Ehab A A Salama
- Agricultural Botany Department (Genetics), Faculty of Agriculture Saba Basha, Alexandria University, Alexandria, 21531, Egypt
| |
Collapse
|
3
|
Zhang Y, Zhang J, Chen Z, Huang Y, Liu J, Liu Y, Yang Y, Jin X, Yang Y, Chen Y. Comparison of organelle genomes between endangered mangrove plant Dolichandrone spathacea to terrestrial relative provides insights into its origin and adaptative evolution. FRONTIERS IN PLANT SCIENCE 2024; 15:1442178. [PMID: 39376234 PMCID: PMC11457174 DOI: 10.3389/fpls.2024.1442178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 09/02/2024] [Indexed: 10/09/2024]
Abstract
Dolichandrone spathacea is a mangrove associate with high medicinal and ecological values. However, due to the dual-pressure of climate change and human activities, D. spathacea has become endangered in China. Moreover, misidentification between D. spathacea and its terrestrial relative D. cauda-felina poses further challenges to field protection and proper medicinal usage of D. spathacea. Thus, to address these problems, we sequenced and assembled mitochondrial (mt) and chloroplast (cp) genomes for both D. spathacea and D. cauda-felina. Comparative analysis revealed apparently different size and scaffold number between the two mt genomes, but a high similarity between the cp genomes. Eight regions with high sequence divergence were identified between the two cp genomes, which might be used for developing candidate DNA markers for distinguishing the two species. The splitting between D. spathacea and D. cauda-felina was inferred to occur at ~6.8 - 7.7 million years ago (Mya), which may be driven by the environment fluctuations in late Miocene. In the cp genome, 12 genes related to the expression of photosynthesis-associated proteins were detected with signatures of positive selection, which may contribute to the origin and evolutionary adaptation of Dolichandrone mangrove species. These new findings do not only enrich organelle genomic resources of Dolichandrone species, but also provide important genetic clues for improving the conservation and proper usage of endangered mangrove associate D. spathacea.
Collapse
Affiliation(s)
- Ying Zhang
- Hainan Academy of Forestry, Hainan Mangrove Research Institute, Haikou, China
- Mangrove Rare and Endangered Species Protection and Utilization Engineering Technology Research Center, Zhanjiang Key Laboratory of Mangrove Ecosystem Protection and Restoration, Lingnan Normal University, Zhanjiang, China
| | - Jingwen Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, China
| | - Zewei Chen
- Mangrove Rare and Endangered Species Protection and Utilization Engineering Technology Research Center, Zhanjiang Key Laboratory of Mangrove Ecosystem Protection and Restoration, Lingnan Normal University, Zhanjiang, China
| | - Yanni Huang
- Mangrove Rare and Endangered Species Protection and Utilization Engineering Technology Research Center, Zhanjiang Key Laboratory of Mangrove Ecosystem Protection and Restoration, Lingnan Normal University, Zhanjiang, China
| | - Jiaxuan Liu
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, China
| | - Yuqi Liu
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, China
| | - Yong Yang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, China
| | - Xiang Jin
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, China
| | - Yuchen Yang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, China
| | - Yiqing Chen
- Hainan Academy of Forestry, Hainan Mangrove Research Institute, Haikou, China
| |
Collapse
|
4
|
Dalla Costa TP, Silva MC, de Santana Lopes A, Pacheco TG, da Silva GM, de Oliveira JD, de Baura VA, Balsanelli E, de Souza EM, de Oliveira Pedrosa F, Rogalski M. The plastomes of Lepismium cruciforme (Vell.) Miq and Schlumbergera truncata (Haw.) Moran reveal tribe-specific rearrangements and the first loss of the trnT-GGU gene in Cactaceae. Mol Biol Rep 2024; 51:957. [PMID: 39230768 DOI: 10.1007/s11033-024-09871-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/19/2024] [Indexed: 09/05/2024]
Abstract
BACKGROUND Recent studies have revealed atypical features in the plastomes of the family Cactaceae, the largest lineage of succulent species adapted to arid and semi-arid regions. Most plastomes sequenced to date are from short-globose and cylindrical cacti, while little is known about plastomes of epiphytic cacti. Published cactus plastomes reveal reduction and complete loss of IRs, loss of genes, pseudogenization, and even degeneration of tRNA structures. Aiming to contribute with new insights into the plastid evolution of Cactaceae, particularly within the tribe Rhipsalideae, we de novo assembled and analyzed the plastomes of Lepismium cruciforme and Schlumbergera truncata, two South American epiphytic cacti. METHODS AND RESULTS Our data reveal many gene losses in both plastomes and the first loss of functionality of the trnT-GGU gene in Cactaceae. The trnT-GGU is a pseudogene in L. cruciforme plastome and appears to be degenerating in the tribe Rhipsalideae. Although the plastome structure is conserved among the species of the tribe Rhipsalideae, with tribe-specific rearrangements, we mapped around 200 simple sequence repeats and identified nine nucleotide polymorphism hotspots, useful to improve the phylogenetic resolutions of the Rhipsalideae. Furthermore, our analysis indicated high gene divergence and rapid evolution of RNA editing sites in plastid protein-coding genes in Cactaceae. CONCLUSIONS Our findings show that some characteristics of the Rhipsalideae tribe are conserved, such as plastome structure with IRs containing only the ycf2 and two tRNA genes, structural degeneration of the trnT-GGU gene and ndh complex, and lastly, pseudogenization of rpl33 and rpl23 genes, both plastid translation-related genes.
Collapse
Affiliation(s)
- Tanara P Dalla Costa
- Laboratório de Fisiologia Molecular de Plantas, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brasil
| | - Maria C Silva
- Laboratório de Fisiologia Molecular de Plantas, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brasil
| | - Amanda de Santana Lopes
- Laboratório de Fisiologia Molecular de Plantas, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brasil
| | - Túlio Gomes Pacheco
- Laboratório de Fisiologia Molecular de Plantas, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brasil
| | - Gleyson Morais da Silva
- Laboratório de Fisiologia Molecular de Plantas, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brasil
| | - José D de Oliveira
- Laboratório de Fisiologia Molecular de Plantas, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brasil
| | - Valter A de Baura
- Núcleo de Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, PR, Brasil
| | - Eduardo Balsanelli
- Núcleo de Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, PR, Brasil
| | - Emanuel Maltempi de Souza
- Núcleo de Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, PR, Brasil
| | - Fábio de Oliveira Pedrosa
- Núcleo de Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, PR, Brasil
| | - Marcelo Rogalski
- Laboratório de Fisiologia Molecular de Plantas, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brasil.
| |
Collapse
|
5
|
Qu K, Liu D, Sun L, Li M, Xia T, Sun W, Xia Y. De novo assembly and comprehensive analysis of the mitochondrial genome of Taxus wallichiana reveals different repeats mediate recombination to generate multiple conformations. Genomics 2024; 116:110900. [PMID: 39067796 DOI: 10.1016/j.ygeno.2024.110900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/09/2024] [Accepted: 07/20/2024] [Indexed: 07/30/2024]
Abstract
Taxus plants are the exclusive source of paclitaxel, an anticancer drug with significant medicinal and economic value. Interspecies hybridization and gene introgression during evolution have obscured distinctions among Taxus species, complicating their phylogenetic classification. While the chloroplast genome of Taxus wallichiana, a widely distributed species in China, has been sequenced, its mitochondrial genome (mitogenome) remains uncharacterized.We sequenced and assembled the T. wallichiana mitogenome using BGI short reads and Nanopore long reads, facilitating comparisons with other gymnosperm mitogenomes. The T. wallichiana mitogenome spanning 469,949 bp, predominantly forms a circular configuration with a GC content of 50.51%, supplemented by 3 minor configurations mediated by one pair of LRs and two pairs of IntRs. It includes 32 protein-coding genes, 7 tRNA genes, and 3 rRNA genes, several of which exist in multiple copies.We detailed the mitogenome's structure, codon usage, RNA editing, and sequence migration between organelles, constructing a phylogenetic tree to elucidate evolutionary relationships. Unlike typical gymnosperm mitochondria, T. wallichiana shows no evidence of mitochondrial-plastid DNA transfer (MTPT), highlighting its unique genomic architecture. Synteny analysis indicated extensive genomic rearrangements in T. wallichiana, likely driven by recombination among abundant repetitive sequences. This study offers a high-quality T. wallichiana mitogenome, enhancing our understanding of gymnosperm mitochondrial evolution and supporting further cultivation and utilization of Taxus species.
Collapse
Affiliation(s)
- Kai Qu
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan 250102, China; National Engineering Laboratory of Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Dan Liu
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan 250102, China; National Engineering Laboratory of Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Limin Sun
- Forestry College of Shandong Agricultural University, Taian 271018, China
| | - Meng Li
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan 250102, China
| | - Tiantian Xia
- Shandong Jianzhu University, Jinan 250101, China
| | - Weixia Sun
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan 250102, China
| | - Yufei Xia
- National Engineering Laboratory of Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
6
|
Dai W, Ju X, Shi G, He T. Assembly and Comparative Analysis of the Complete Mitochondrial Genome of Saussurea inversa (Asteraceae). Genes (Basel) 2024; 15:1074. [PMID: 39202433 PMCID: PMC11353396 DOI: 10.3390/genes15081074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
Saussurea inversa is a perennial herb used in traditional Chinese medicine and is effective against rheumatoid arthritis. In this study, we sequenced the complete mitochondrial (mt) genome of S. inversa (GenBank accession number: ON584565.1). The circular mt genome of S. inversa was 335,372 bp in length, containing 62 genes, including 33 mRNAs, 22 tRNAs, 6 rRNAs, and 1 pseudogene, along with 1626 open reading frames. The GC content was 45.14%. Predictive analysis revealed substantial RNA editing, with ccmFn being the most abundantly edited gene, showing 36 sites. Gene migration between the mt and chloroplast (cp) genomes of S. inversa was observed through the detection of homologous gene fragments. Phylogenetic analysis revealed that S. inversa was clustered with Arctium tomentosum (Asteraceae). Our findings provide extensive information regarding the mt genome of S. inversa and help lay the foundation for future studies on its genetic variations, phylogeny, and breeding via the analysis of the mt genome.
Collapse
Affiliation(s)
- Wubin Dai
- School of Ecological Tourism, Sichuan University of Arts and Sciences, Dazhou 635000, China;
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
| | - Xiuting Ju
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
- The Key Laboratory of Landscape Plants of Qinghai Province, Xining 810016, China
| | - Guomin Shi
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
- The Key Laboratory of Landscape Plants of Qinghai Province, Xining 810016, China
| | - Tao He
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
- School of Eco-Environmental Engineering, Qinghai University, Xining 810016, China
| |
Collapse
|
7
|
Wang L, Huo Z, Xu W, Zhou P, Nan W, Guo H, Zhang Q, Yang P, Alolga RN, Yin X, Li P, Lu X. Comparative plastomes of eight subgenus Chamaesyce plants and system authentication of Euphorbiae Humifusae Herba. Food Chem 2024; 447:139039. [PMID: 38518619 DOI: 10.1016/j.foodchem.2024.139039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/22/2024] [Accepted: 03/12/2024] [Indexed: 03/24/2024]
Abstract
Euphorbiae Humifusae Herba (EHH) was provided with medicinal and edible uses, but frequently was adulterated with its closely related species. Hence, this study sought to identify EHH via an integrated approach comprising data from its morphological evaluation, HPLC analysis, comparative plastomes analysis and allele-specific PCR identification. First, the morphological characteristics of 8 subgenus Chamaesyce plants were summarized. Then, HPLC analysis showed that 18 batches of EHH were adulterated or unqualified. Furthermore, the plastomes of the 8 subg. Chamaesyce species were analyzed. Phylogenetic analysis revealed a sister relationship among the 8 subg. Chamaesyce species. The allele-specific PCR authentication was developed by the nucleotide polymorphisms (SNPs) and insertions or deletions (InDels) analysis. The results of allele-specific PCR showed that 27 batches of EHH were adulterated, indicating that the superior sensitivity of molecular authentication over the other methods used. This study provided a reference for rational use and phylogenetic research of EHH.
Collapse
Affiliation(s)
- Long Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, Jiangsu, China
| | - Ziting Huo
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, Jiangsu, China
| | - Wenbo Xu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, Jiangsu, China
| | - Peina Zhou
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, Jiangsu, China
| | - Wenxiang Nan
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, Jiangsu, China
| | - Huijun Guo
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, Jiangsu, China
| | - Qianwen Zhang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, Jiangsu, China
| | - Peng Yang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, Jiangsu, China
| | - Raphael N Alolga
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, Jiangsu, China
| | - Xiaojian Yin
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China.
| | - Ping Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, Jiangsu, China.
| | - Xu Lu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, Jiangsu, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing 100700, PR China; Medical Botanical Garden, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
8
|
Javaid N, Ramzan M, Jabeen S, Du Y, Anwar M, Xiqiang S. The chloroplast genome of Chrozophora sabulosa Kar. & Kir. and its exploration in the evolutionary position uncertainty of genus Chrozophora. BMC Genomics 2024; 25:597. [PMID: 38877411 PMCID: PMC11177538 DOI: 10.1186/s12864-024-10366-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 04/29/2024] [Indexed: 06/16/2024] Open
Abstract
Chrozophora sabulosa Kar. & Kir. is a biennial herbaceous plant that belongs to the Euphorbiaceae family and has medicinal properties. This research aimed to identify the genetic characteristics and phylogenetic position of the Chrozophora genus within the Euphorbiaceae family. The evolutionary position of the Chrozophora genus was previously unknown due to insufficient research. Therefore, to determine the evolutionary link between C. sabulosa and other related species, we conducted a study using the NGS Illumina platform to sequence the C. sabulosa chloroplast (cp.) genome. The study results showed that the genome was 156,488 bp in length. It had a quadripartite structure consisting of two inverted repeats (IRb and IRa) of 24,649-bp, separated by an 87,696-bp LSC region and a 19,494-bp SSC region. The CP genome contained 113 unique genes, including four rRNA genes, 30 tRNA genes, and 79 CDS genes. In the second copy of the inverted repeat, there were 18 duplicated genes. The C. sabulosa lacks the petD, petB, rpl2, and rps16 intron. The analysis of simple sequence repeats (SSRs) revealed 93 SSR loci of 22 types and 78 oligonucleotide repeats of four kinds. The phylogenetic investigation showed that the Chrozophora genus evolved paraphyletically from other members of the Euphorbiaceae family. To support the phylogenetic findings, we selected species from the Euphorbiaceae and Phyllanthaceae families to compare with C. sabulosa for Ks and Ka substitution rates, InDels investigation, IR contraction and expansion, and SNPs analysis. The results of these comparative studies align with the phylogenetic findings. We identified six highly polymorphic regions shared by both families, which could be used as molecular identifiers for the Chrozophora genus (rpl33-rps18, rps18-rpl20, rps15-ycf1, ndhG-ndhI, psaI-ycf4, petA-psbJ). The cp. genome sequence of C. sabulosa reveals the evolution of plastid sequences in Chrozophora species. This is the first time the cp. genome of a Chrozophora genus has been sequenced, serving as a foundation for future sequencing of other species within the Chrozophoreae tribe and facilitating in-depth taxonomic research. The results of this research will also aid in identifying new Chrozophora species.
Collapse
Affiliation(s)
- Nida Javaid
- The Islamia University, Bahawalpur, Pakistan
| | | | | | - Yanjun Du
- School of Tropical Agriculture and Forestry (School of Agriculture and Rural Affairs,School of Rural Revitalization), Hainan University, Haikou, P.R. China
| | - Muhammad Anwar
- School of Tropical Agriculture and Forestry (School of Agriculture and Rural Affairs,School of Rural Revitalization), Hainan University, Haikou, P.R. China.
- Key Laboratory of Genetic and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, Hainan University, Haikou, P.R. China.
- , Haikou, P.R. China.
| | - Song Xiqiang
- Key Laboratory of Genetic and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, Hainan University, Haikou, P.R. China.
| |
Collapse
|
9
|
Zhang J, Liu G, Wei J. Assembly and comparative analysis of the first complete mitochondrial genome of Setaria italica. PLANTA 2024; 260:23. [PMID: 38850310 DOI: 10.1007/s00425-024-04386-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/10/2024] [Indexed: 06/10/2024]
Abstract
MAIN CONCLUSION In this study, we assembled the first complete mitochondrial genome of Setaria italica and confirmed the multi-branched architecture. The foxtail millet (Setaria italica) holds significant agricultural importance, particularly in arid and semi-arid regions. It plays a pivotal role in diversifying dietary patterns and shaping planting strategies. Although the chloroplast genome of S. italica has been elucidated in recent studies, the complete mitochondrial genome remains largely unexplored. In this study, we employed PacBio HiFi sequencing platforms to sequence and assemble the complete mitochondrial genome. The mitochondrial genome spans a total length of 446,614 base pairs and harbors a comprehensive set of genetic elements, including 33 unique protein-coding genes (PCGs), encompassing 24 unique mitochondrial core genes and 9 variable genes, along with 20 transfer RNA (tRNA) genes and 3 ribosomal RNA (rRNA) genes. Our analysis of mitochondrial PCGs revealed a pronounced codon usage preference. For instance, the termination codon exhibits a marked preference for UAA, while alanine (Ala) exhibits a preference for GCU, and glutamine (Gln) favors CAA. Notably, the maximum Relative Synonymous Codon Usage (RSCU) values for cysteine (Cys) and phenylalanine (Phe) are both below 1.2, indicating a lack of strong codon usage preference for these amino acids. Phylogenetic analyses consistently place S. italica in close evolutionary proximity to Chrysopogon zizanioides, relative to other Panicoideae plants. Collinearity analysis showed that a total of 39 fragments were identified to display homology with both the mitochondrial and chloroplast genomes. A total of 417 potential RNA-editing sites were discovered across the 33 mitochondrial PCGs. Notably, all these editing events involved the conversion of cytosine (C) to uracil (U). Through the employment of PCR validation coupled with Sanger sequencing for the anticipated editing sites of these codons, RNA-editing events were conclusively identified at two specific loci: nad4L-2 and atp6-1030. The results of this study provide a pivotal foundation for advanced genomic breeding research in foxtail millet. Furthermore, they impart essential insights that will be instrumental for forthcoming investigations into the evolutionary and molecular dynamics of Panicoideae species.
Collapse
Affiliation(s)
- Jiewei Zhang
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| | - Guiming Liu
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| | - Jianhua Wei
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| |
Collapse
|
10
|
Chen S, Xu R, Tong W, Wang J, Qian K, Bo W, Liu Y. The Complete Chloroplast Genome Sequence of Staphylea holocarpa (Staphyleaceae). Mol Biotechnol 2024; 66:1458-1463. [PMID: 37300800 DOI: 10.1007/s12033-023-00780-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023]
Abstract
Staphylea holocarpa (Hemsley 1895) is an ornamental deciduous shrub or tree in the family Staphyleaceae. As the shortage of the wild resources, S. holocarpa is also a rare plant. The revelation of the species origin and evolution progress and the relation. Therefore, the S. holocarpa complete chloroplast genome sequence was completed and characterized by de novo assembly. The cp genome length of S. holocarpa was 160,461 bp and it has a typical quadripartite structure, consisted of an 89,760 bp large single-copy region and a 18,639 bp small single-copy region, which were divided by two inverted repeat regions of 26,031 bp. After genome annotation, it comes to 130 genes that were predicted, which includes 85, 8, and 37 encoded proteins, rRNA, and tRNA, respectively. A phylogenetic analysis has shown that the S. holocarpa cp genome is related to the Staphylea trifolia. This work will be useful for further population genomic and phylogenetic studies of S. holocarpa.
Collapse
Affiliation(s)
- Sihui Chen
- Department of Ecological Environmental Engineering, Yangling Vocational and Technical College, Yangling, 712100, Shaanxi, People's Republic of China
| | - Ruiting Xu
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Wentao Tong
- Infrastructure Construction Office, Taibai Mountain National Nature Reserve Administration, Yangling, 712100, Shanxi, People's Republic of China
| | - Jing Wang
- Ordos Forestry and Grassland Development Center, Ordos, 017000, Inner Mongolia, People's Republic of China
| | - Kun Qian
- International Office, Yangling Vocational and Technical College, Yangling, 712100, Shaanxi, People's Republic of China
| | - Wei Bo
- Civil Engineering Department, Yangling Vocational and Technical College, Yangling, 712100, Shaanxi, People's Republic of China
| | - Yulin Liu
- College of Forestry, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
| |
Collapse
|
11
|
Qu K, Chen Y, Liu D, Guo H, Xu T, Jing Q, Ge L, Shu X, Xin X, Xie X, Tong B. Comprehensive analysis of the complete mitochondrial genome of Lilium tsingtauense reveals a novel multichromosome structure. PLANT CELL REPORTS 2024; 43:150. [PMID: 38789593 DOI: 10.1007/s00299-024-03232-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024]
Abstract
KEY MESSAGE Lilium tsingtauense mitogenome comprises 27 independent chromosome molecules, it undergoes frequent genomic recombination, and the rate of recombination and mutation between different repetitive sequences affects the formation of multichromosomal structures. Given the extremely large genome of Lily, which likely harbors additional genetic resources, it serves as an ideal material for studying the phylogenetic evolution of organisms. Although the Lilium chloroplast genome has been documented, the sequence of its mitochondrial genome (mitogenome) remains uncharted. Using BGI short reads and Nanopore long reads, we sequenced, assembled, and annotated the mitogenome of Lilium tsingtauense. This effort culminated in the characterization of Lilium's first complete mitogenome. Comparative analysis with other angiosperms revealed the unique multichromosomal structure of the L. tsingtauense mitogenome, spanning 1,125,108 bp and comprising 27 independent circular chromosomes. It contains 36 protein-coding genes, 12 tRNA genes, and 3 rRNA genes, with a GC content of 44.90%. Notably, three chromosomes in the L. tsingtauense mitogenome lack identifiable genes, hinting at the potential existence of novel genes and noncoding elements. The high degree of observed genome fragmentation implies frequent reorganization, with recombination and mutation rates among diverse repetitive sequences likely driving the formation of multichromosomal structures. Our comprehensive analysis, covering genome size, coding genes, structure, RNA editing, repetitive sequences, and sequence migration, sheds light on the evolutionary and molecular biology of multichromosomal mitochondria in Lilium. This high-quality mitogenome of L. tsingtauense not only enriches our understanding of multichromosomal mitogenomes but also establishes a solid foundation for future genome breeding and germplasm innovation in Lilium.
Collapse
Affiliation(s)
- Kai Qu
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan, 250102, China
- National Engineering Laboratory of Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Ying Chen
- Forestry Protection and Development Service Center of Shandong Province, Jinan, 250109, China
| | - Dan Liu
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan, 250102, China.
- National Engineering Laboratory of Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.
| | - Haili Guo
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan, 250102, China
| | - Ting Xu
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan, 250102, China
| | - Qi Jing
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan, 250102, China
| | - Lei Ge
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan, 250102, China
| | - Xiuge Shu
- Shandong Academy of Forestry, Jinan, 250014, China
| | - Xiaowei Xin
- Shandong Drug and Food Vocational College, Weihai, 264210, China
| | - Xiaoman Xie
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan, 250102, China.
| | - Boqiang Tong
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan, 250102, China.
| |
Collapse
|
12
|
Xu C, Li J, Song LY, Guo ZJ, Song SW, Zhang LD, Zheng HL. PlantC2U: deep learning of cross-species sequence landscapes predicts plastid C-to-U RNA editing in plants. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2266-2279. [PMID: 38190348 DOI: 10.1093/jxb/erae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 01/07/2024] [Indexed: 01/10/2024]
Abstract
In plants, C-to-U RNA editing mainly occurs in plastid and mitochondrial transcripts, which contributes to a complex transcriptional regulatory network. More evidence reveals that RNA editing plays critical roles in plant growth and development. However, accurate detection of RNA editing sites using transcriptome sequencing data alone is still challenging. In the present study, we develop PlantC2U, which is a convolutional neural network, to predict plastid C-to-U RNA editing based on the genomic sequence. PlantC2U achieves >95% sensitivity and 99% specificity, which outperforms the PREPACT tool, random forests, and support vector machines. PlantC2U not only further checks RNA editing sites from transcriptome data to reduce possible false positives, but also assesses the effect of different mutations on C-to-U RNA editing based on the flanking sequences. Moreover, we found the patterns of tissue-specific RNA editing in the mangrove plant Kandelia obovata, and observed reduced C-to-U RNA editing rates in the cold stress response of K. obovata, suggesting their potential regulatory roles in plant stress adaptation. In addition, we present RNAeditDB, available online at https://jasonxu.shinyapps.io/RNAeditDB/. Together, PlantC2U and RNAeditDB will help researchers explore the RNA editing events in plants and thus will be of broad utility for the plant research community.
Collapse
Affiliation(s)
- Chaoqun Xu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Jing Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Ling-Yu Song
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Ze-Jun Guo
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Shi-Wei Song
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Lu-Dan Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Hai-Lei Zheng
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| |
Collapse
|
13
|
Feng G, Jiao Y, Ma H, Bian H, Nie G, Huang L, Xie Z, Ran Q, Fan W, He W, Zhang X. The first two whole mitochondrial genomes for the genus Dactylis species: assembly and comparative genomics analysis. BMC Genomics 2024; 25:235. [PMID: 38438835 PMCID: PMC10910808 DOI: 10.1186/s12864-024-10145-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 02/19/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND Orchardgrass (Dactylis glomerata L.), a perennial forage, has the advantages of rich leaves, high yield, and good quality and is one of the most significant forage for grassland animal husbandry and ecological management in southwest China. Mitochondrial (mt) genome is one of the major genetic systems in plants. Studying the mt genome of the genus Dactylis could provide more genetic information in addition to the nuclear genome project of the genus. RESULTS In this study, we sequenced and assembled two mitochondrial genomes of Dactylis species of D. glomerata (597, 281 bp) and D. aschersoniana (613, 769 bp), based on a combination of PacBio and Illumina. The gene content in the mitochondrial genome of D. aschersoniana is almost identical to the mitochondrial genome of D. glomerata, which contains 22-23 protein-coding genes (PCGs), 8 ribosomal RNAs (rRNAs) and 30 transfer RNAs (tRNAs), while D. glomerata lacks the gene encoding the Ribosomal protein (rps1) and D. aschersoniana contains one pseudo gene (atp8). Twenty-three introns were found among eight of the 30 protein-coding genes, and introns of three genes (nad 1, nad2, and nad5) were trans-spliced in Dactylis aschersoniana. Further, our mitochondrial genome characteristics investigation of the genus Dactylis included codon usage, sequences repeats, RNA editing and selective pressure. The results showed that a large number of short repetitive sequences existed in the mitochondrial genome of D. aschersoniana, the size variation of two mitochondrial genomes is due largely to the presence of a large number of short repetitive sequences. We also identified 52-53 large fragments that were transferred from the chloroplast genome to the mitochondrial genome, and found that the similarity was more than 70%. ML and BI methods used in phylogenetic analysis revealed that the evolutionary status of the genus Dactylis. CONCLUSIONS Thus, this study reveals the significant rearrangements in the mt genomes of Pooideae species. The sequenced Dactylis mt genome can provide more genetic information and improve our evolutionary understanding of the mt genomes of gramineous plants.
Collapse
Affiliation(s)
- Guangyan Feng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yongjuan Jiao
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Huizhen Ma
- Grassland Research Institute, Chongqing Academy of Animal Science, Chongqing, 402460, China
| | - Haoyang Bian
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Gang Nie
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Linkai Huang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zheni Xie
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qifan Ran
- Grassland Research Institute, Chongqing Academy of Animal Science, Chongqing, 402460, China
| | - Wenwen Fan
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wei He
- Grassland Research Institute, Chongqing Academy of Animal Science, Chongqing, 402460, China.
| | - Xinquan Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
14
|
Li G, Zhang H, Lin Z, Li H, Xu G, Xu Y, Ji R, Luo W, Qiu Y, Qiu S, Tang H. Comparative analysis of chloroplast and mitochondrial genomes of sweet potato provides evidence of gene transfer. Sci Rep 2024; 14:4547. [PMID: 38402284 PMCID: PMC10894244 DOI: 10.1038/s41598-024-55150-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 02/20/2024] [Indexed: 02/26/2024] Open
Abstract
The increasing number of plant mitochondrial DNA genomes (mtDNA) sequenced reveals the extent of transfer from both chloroplast DNA genomes (cpDNA) and nuclear DNA genomes (nDNA). This study created a library and assembled the chloroplast and mitochondrial genomes of the leafy sweet potato better to understand the extent of mitochondrial and chloroplast gene transfer. The full-length chloroplast genome of the leafy sweet potato (OM808940) is 161,387 bp, with 132 genes annotated, including 87 protein-coding genes, 8 rRNA genes, and 37 tRNA genes. The mitochondrial genome (OM808941) was 269,578 bp in length and contained 69 functional genes, including 39 protein-coding genes, 6 rRNA genes, and 24 tRNA genes. 68 SSR loci were found in the leafy sweet potato organelle genome, including 54 in the chloroplast genome and 14 in the mitochondria genome. In the sweet potato mitochondrial genome, most genes have RNA editing sites, and the conversion ratio from hydrophilic amino acids to hydrophobic amino acids is the highest, reaching 47.12%. Horizontal transfer occurs in the sweet potato organelle genome and nuclear genome. 40 mitochondrial genome segments share high homology with 14 chloroplast genome segments, 33 of which may be derived from chloroplast genome horizontal transfer. 171 mitochondrial genome sequences come from the horizontal transfer of nuclear genome. The phylogenetic analysis of organelle genes revealed that the leafy sweet potato was closely related to the tetraploid wild species Ipomoea tabascana and the wild diploid species Ipomoea trifida.
Collapse
Affiliation(s)
- GuoLiang Li
- Institute of Crop Sciences, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| | - Hong Zhang
- Institute of Crop Sciences, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| | - Zhaomiao Lin
- Institute of Crop Sciences, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| | - Huawei Li
- Institute of Crop Sciences, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| | - Guochun Xu
- Institute of Crop Sciences, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| | - Yongqing Xu
- Institute of Crop Sciences, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| | - Rongchang Ji
- Institute of Crop Sciences, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| | - Wenbin Luo
- Institute of Crop Sciences, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| | - Yongxiang Qiu
- Institute of Crop Sciences, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| | - Sixin Qiu
- Institute of Crop Sciences, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China.
| | - Hao Tang
- Institute of Crop Sciences, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| |
Collapse
|
15
|
Guo S, Li Z, Li C, Liu Y, Liang X, Qin Y. Assembly and characterization of the complete mitochondrial genome of Ventilago leiocarpa. PLANT CELL REPORTS 2024; 43:77. [PMID: 38386216 DOI: 10.1007/s00299-023-03126-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/04/2023] [Indexed: 02/23/2024]
Abstract
KEY MESSAGE We reported the mitochondrial genome of Ventilago leiocarpa for the first time. Two and one sites lead to the generation of stop and stat codon through editing were verified. Ventilago leiocarpa, a member of the Rhamnaceae family, is frequently utilized in traditional medicine due to the medicinal properties of its roots. In this study, we successfully assembled the mitogenome of V. leiocarpa using both BGI short reads and Nanopore long reads. This mitogenome has a total length of 331,839 bp. The annotated results showed 36 unique protein-coding, 16 tRNA and 3 rRNA genes in this mitogenome. Furthermore, we confirmed the presence of a branched structure through the utilization of long reads mapping, PCR amplification, and Sanger sequencing. Specifically, the ctg1 can form a single circular molecule or combine with ctg4 to form a linear molecule. Likewise, ctg2 can form a single circular molecule or can be connected to ctg4 to form a linear molecule. Subsequently, through a comparative analysis of the mitogenome and cpgenome sequences, we identified ten mitochondrial plastid sequences (MTPTs), including two complete protein-coding genes and five complete tRNA genes. The existence of MTPTs was verified by long reads. Colinear analysis showed that the mitogenomes of Rosales were highly divergent in structure. Finally, we identified 545 RNA editing sites involving 36 protein-coding genes by Deepred-mt. To validate our findings, we conducted PCR amplification and Sanger sequencing, which confirmed the generation of stop codons in atp9-223 and rps10-391, as well as the generation of a start codon in nad4L-2. This project reported the complex structure and RNA editing event of the V. Leiocarpa mitogenome, which will provide valuable information for the study of mitochondrial gene expression.
Collapse
Affiliation(s)
- Song Guo
- College of Food and Biochemical Engineering, Guangxi Science and Technology Normal University, Guangxi Laibin, 546199, People's Republic of China
- Key Laboratory for Zhuang and Yao Pharmaceutical Quality Biology, Guangxi Science and Technology Normal University, Laibin, 546199, People's Republic of China
| | - Zeyang Li
- College of Food and Biochemical Engineering, Guangxi Science and Technology Normal University, Guangxi Laibin, 546199, People's Republic of China
- Key Laboratory for Zhuang and Yao Pharmaceutical Quality Biology, Guangxi Science and Technology Normal University, Laibin, 546199, People's Republic of China
| | - Chunlian Li
- College of Food and Biochemical Engineering, Guangxi Science and Technology Normal University, Guangxi Laibin, 546199, People's Republic of China
- Key Laboratory for Zhuang and Yao Pharmaceutical Quality Biology, Guangxi Science and Technology Normal University, Laibin, 546199, People's Republic of China
| | - Yu Liu
- Guangxi Botanical Garden of Medicinal Plants, Nanning, 530010, People's Republic of China
| | - Xianglan Liang
- College of Food and Biochemical Engineering, Guangxi Science and Technology Normal University, Guangxi Laibin, 546199, People's Republic of China
| | - Yiming Qin
- College of Food and Biochemical Engineering, Guangxi Science and Technology Normal University, Guangxi Laibin, 546199, People's Republic of China.
- Key Laboratory for Zhuang and Yao Pharmaceutical Quality Biology, Guangxi Science and Technology Normal University, Laibin, 546199, People's Republic of China.
| |
Collapse
|
16
|
Li C, Liu H, Qin M, Tan YJ, Ou XL, Chen XY, Wei Y, Zhang ZJ, Lei M. RNA editing events and expression profiles of mitochondrial protein-coding genes in the endemic and endangered medicinal plant, Corydalis saxicola. FRONTIERS IN PLANT SCIENCE 2024; 15:1332460. [PMID: 38379941 PMCID: PMC10876856 DOI: 10.3389/fpls.2024.1332460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/23/2024] [Indexed: 02/22/2024]
Abstract
Corydalis saxicola, an endangered medicinal plant endemic to karst habitats, is widely used in Traditional Chinese Medicine to treat hepatitis, abdominal pain, bleeding hemorrhoids and other conditions. However, to date, the mitochondrial (mt) genome of C. saxicola has not been reported, which limits our understanding of the genetic and biological mechanisms of C. saxicola. Here, the mt genome of C. saxicola was assembled by combining the Nanopore and Illumina reads. The mt genome of C. saxicola is represented by a circular chromosome which is 587,939 bp in length, with an overall GC content of 46.50%. 40 unique protein-coding genes (PCGs), 22 tRNA genes and three rRNA genes were identified. Codon usage of the PCGs was investigated and 167 simple sequence repeats were identified. Twelve homologous fragments were identified between the mt and ct genomes of C. saxicola, accounting for 1.04% of the entire mt genome. Phylogenetic examination of the mt genomes of C. saxicola and 30 other taxa provided an understanding of their evolutionary relationships. We also predicted 779 RNA editing sites in 40 C. saxicola mt PCGs and successfully validated 506 (65%) of these using PCR amplification and Sanger sequencing. In addition, we transcriptionally profiled 24 core mt PCGs in C. saxicola roots treated with different concentrations of CaCl2, as well as in other organs. These investigations will be useful for effective utilization and molecular breeding, and will also provide a reference for further studies of the genus Corydalis.
Collapse
Affiliation(s)
- Cui Li
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Engineering Research Center of Traditional Chinese Medicine (TCM) Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Han Liu
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Engineering Research Center of Traditional Chinese Medicine (TCM) Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Mei Qin
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Engineering Research Center of Traditional Chinese Medicine (TCM) Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Yao-jing Tan
- School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
| | - Xia-lian Ou
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Engineering Research Center of Traditional Chinese Medicine (TCM) Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Xiao-ying Chen
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Engineering Research Center of Traditional Chinese Medicine (TCM) Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Ying Wei
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Key Laboratory for High-Quality Formation and Utilization of Dao-di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Zhan-jiang Zhang
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Key Laboratory for High-Quality Formation and Utilization of Dao-di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Ming Lei
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Engineering Research Center of Traditional Chinese Medicine (TCM) Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| |
Collapse
|
17
|
Liu X, You Q, Liu M, Bo C, Zhu Y, Duan Y, Xue J, Wang D, Xue T. Assembly and comparative analysis of the complete mitochondrial genome of Pinellia ternata. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23256. [PMID: 38316513 DOI: 10.1071/fp23256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/12/2024] [Indexed: 02/07/2024]
Abstract
Pinellia ternata is an important natural medicinal herb in China. However, it is susceptible to withering when exposed to high temperatures during growth, which limits its tuber production. Mitochondria usually function in stress response. The P . ternata mitochondrial (mt) genome has yet to be explored. Therefore, we integrated PacBio and Illumina sequencing reads to assemble and annotate the mt genome of P . ternata . The circular mt genome of P . ternata is 876 608bp in length and contains 38 protein-coding genes (PCGs), 20 tRNA genes and three rRNA genes. Codon usage, sequence repeats, RNA editing and gene migration from chloroplast (cp) to mt were also examined. Phylogenetic analysis based on the mt genomes of P . ternata and 36 other taxa revealed the taxonomic and evolutionary status of P . ternata . Furthermore, we investigated the mt genome size and GC content by comparing P . ternata with the other 35 species. An evaluation of non-synonymous substitutions and synonymous substitutions indicated that most PCGs in the mt genome underwent negative selection. Our results provide comprehensive information on the P . ternata mt genome, which may facilitate future research on the high-temperature response of P . ternata and provide new molecular insights on the Araceae family.
Collapse
Affiliation(s)
- Xiao Liu
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, China
| | - Qian You
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, China
| | - Mengmeng Liu
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, China
| | - Chen Bo
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, China
| | - Yanfang Zhu
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, China
| | - Yongbo Duan
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, China
| | - Jianping Xue
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, China
| | - Dexin Wang
- College of Agriculture and Engineering, Heze University, Heze, Shandong, China
| | - Tao Xue
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, China
| |
Collapse
|
18
|
Peng Y, Wang Z, Li M, Wang T, Su Y. Characterization and analysis of multi-organ full-length transcriptomes in Sphaeropteris brunoniana and Alsophila latebrosa highlight secondary metabolism and chloroplast RNA editing pattern of tree ferns. BMC PLANT BIOLOGY 2024; 24:73. [PMID: 38273309 PMCID: PMC10811885 DOI: 10.1186/s12870-024-04746-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/11/2024] [Indexed: 01/27/2024]
Abstract
BACKGROUND Sphaeropteris brunoniana and Alsophila latebrosa are both old relict and rare tree ferns, which have experienced the constant changes of climate and environment. However, little is known about their high-quality genetic information and related research on environmental adaptation mechanisms of them. In this study, combined with PacBio and Illumina platforms, transcriptomic analysis was conducted on the roots, rachis, and pinna of S. brunoniana and A. latebrosa to identify genes and pathways involved in environmental adaptation. Additionally, based on the transcriptomic data of tree ferns, chloroplast genes were mined to analyze their gene expression levels and RNA editing events. RESULTS In the study, we obtained 11,625, 14,391 and 10,099 unigenes of S. brunoniana root, rachis, and pinna, respectively. Similarly, a total of 13,028, 11,431 and 12,144 unigenes were obtained of A. latebrosa root, rachis, and pinna, respectively. According to the enrichment results of differentially expressed genes, a large number of differentially expressed genes were enriched in photosynthesis and secondary metabolic pathways of S. brunoniana and A. latebrosa. Based on gene annotation results and phenylpropanoid synthesis pathways, two lignin synthesis pathways (H-lignin and G-lignin) were characterized of S. brunoniana. Among secondary metabolic pathways of A. latebrosa, three types of WRKY transcription factors were identified. Additionally, based on transcriptome data obtained in this study, reported transcriptome data, and laboratory available transcriptome data, positive selection sites were identified from 18 chloroplast protein-coding genes of four tree ferns. Among them, RNA editing was found in positive selection sites of four tree ferns. RNA editing affected the protein secondary structure of the rbcL gene. Furthermore, the expression level of chloroplast genes indicated high expression of genes related to the chloroplast photosynthetic system in all four species. CONCLUSIONS Overall, this work provides a comprehensive transcriptome resource of S. brunoniana and A. latebrosa, laying the foundation for future tree fern research.
Collapse
Affiliation(s)
- Yang Peng
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Zhen Wang
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Minghui Li
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Ting Wang
- Research Institute of Sun Yat-Sen University in Shenzhen, Shenzhen, 518057, China.
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.
| | - Yingjuan Su
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
- Research Institute of Sun Yat-Sen University in Shenzhen, Shenzhen, 518057, China.
| |
Collapse
|
19
|
Alzahrani DA, Abba A, Yaradua SS, Albokhari EJ. An insight on the complete chloroplast genome of Gomphocarpus siniacus and Duvalia velutina, Asclepiadoideae (Apocynaceae). BRAZ J BIOL 2024; 84:e257145. [DOI: 10.1590/1519-6984.257145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 07/20/2022] [Indexed: 12/23/2022] Open
Abstract
Abstract We studied the complete chloroplast genome of Gomphocarpus siniacus and Duvalia velutina from Asclepiadoideae subfamily; due to their medicinal importance and distribution worldwide their interest became high. In this study we analyzed the complete chloroplast genomes of G. siniacus and D. velutina using Illumina sequencing technology. The sequences were compared with the other species from Apocynaceae family. The complete genome of G. siniacus is 162,570 bp while D. velutina has154, 478 bp in length. Both genomes consist of 119 genes; encode 31 tRNA genes, and eight rRNA genes. Comparative studies of the two genomes showed variations in SSR markers in which G. siniacus possesses 223 while D. velutina has 186. This could be used for barcoding in order to aid in easy identification of the species. Phylogenetic analysis on the other hand reaffirms the tribal position of G. siniacus in Asclepiadeae and D. velutina in Ceropegieae. These findings could be used in subsequent research studies of angiosperms identification, genetic engineering, herb genomics and phylogenomic studies of Apocynaceae family.
Collapse
Affiliation(s)
| | - A. Abba
- King Abdulaziz University, Saudi Arabia; Federal University Lokoja, Nigeria
| | - S. S. Yaradua
- King Abdulaziz University, Saudi Arabia; Umaru Musa Yaradua University, Nigeria
| | - E. J. Albokhari
- King Abdulaziz University, Saudi Arabia; Umm Al-Qura University, Saudi Arabia
| |
Collapse
|
20
|
Wu J, Zhang J, Guo X, Yu N, Peng D, Xing S. Comprehensive analysis of complete chloroplast genome sequence of Plantago asiatica L. (Plantaginaceae). PLANT SIGNALING & BEHAVIOR 2023; 18:2163345. [PMID: 36592637 PMCID: PMC9809945 DOI: 10.1080/15592324.2022.2163345] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Plantago asiatica L. is a representative individual species of Plantaginaceae, whose high reputation is owed to its edible and medicinal values. However, the phylogeny and genes of the P. asiatica chloroplast have not yet been well described. Here we report the findings of a comprehensive analysis of the P. asiatica chloroplast genome. The P. asiatica chloroplast genome is 164,992 bp, circular, and has a GC content of 37.98%. The circular genome contains 141 genes, including 8 rRNAs, 38 tRNAs, and 95 protein-coding genes. Seventy-two simple sequence repeats are detected. Comparative chloroplast genome analysis of six related species suggests that a higher similarity exists in the coding region than the non-coding region, and differences in the degree of preservation is smaller between P. asiatica and Plantago depressa than among others. Our phylogenetic analysis illustrates P. asiatica has a relatively close relationship with P. depressa, which was also divided into different clades with Plantago ovata and Plantago lagopus in the genus Plantago. This analysis of the P. asiatica chloroplast genome contributes to an improved deeply understanding of the evolutionary relationships among Plantaginaceae.
Collapse
Affiliation(s)
- Jing Wu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Jing Zhang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Xiaohu Guo
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Nianjun Yu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, China
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, China
| | - Daiyin Peng
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, China
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, China
| | - Shihai Xing
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, China
| |
Collapse
|
21
|
Yang Q, Xin C, Xiao QS, Lin YT, Li L, Zhao JL. Codon usage bias in chloroplast genes implicate adaptive evolution of four ginger species. FRONTIERS IN PLANT SCIENCE 2023; 14:1304264. [PMID: 38169692 PMCID: PMC10758403 DOI: 10.3389/fpls.2023.1304264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024]
Abstract
Codon usage bias (CUB) refers to different codons exhibiting varying frequencies of usage in the genome. Studying CUB is crucial for understanding genome structure, function, and evolutionary processes. Herein, we investigated the codon usage patterns and influencing factors of protein-coding genes in the chloroplast genomes of four sister genera (monophyletic Roscoea and Cautleya, and monophyletic Pommereschea and Rhynchanthus) from the Zingiberaceae family with contrasting habitats in southwestern China. These genera exhibit distinct habitats, providing a unique opportunity to explore the adaptive evolution of codon usage. We conducted a comprehensive analysis of nucleotide composition and codon usage on protein-coding genes in the chloroplast genomes. The study focused on understanding the relationship between codon usage and environmental adaptation, with a particular emphasis on genes associated with photosynthesis. Nucleotide composition analysis revealed that the overall G/C content of the coding genes was ˂ 48%, indicating an enrichment of A/T bases. Additionally, synonymous and optimal codons were biased toward ending with A/U bases. Natural selection is the primary factor influencing CUB characteristics, particularly photosynthesis-associated genes. We observed differential gene expressions related to light adaptation among sister genera inhabiting different environments. Certain codons were favored under specific conditions, possibly contributing to gene expression regulation in particular environments. This study provides insights into the adaptive evolution of these sister genera by analyzing CUB and offers theoretical assistance for understanding gene expression and regulation. In addition, the data support the relationship between RNA editing and CUB, and the findings shed light on potential research directions for investigating adaptive evolution.
Collapse
Affiliation(s)
- Qian Yang
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Centre for Invasion Biology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, China
| | - Cheng Xin
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Qing-Song Xiao
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Centre for Invasion Biology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, China
| | - Ya-Ting Lin
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Centre for Invasion Biology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, China
| | - Li Li
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Centre for Invasion Biology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, China
| | - Jian-Li Zhao
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Centre for Invasion Biology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, China
| |
Collapse
|
22
|
He Y, Liu W, Wang J. Assembly and comparative analysis of the complete mitochondrial genome of Trigonella foenum-graecum L. BMC Genomics 2023; 24:756. [PMID: 38066419 PMCID: PMC10704837 DOI: 10.1186/s12864-023-09865-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Trigonella foenum-graecum L. is a Leguminosae plant, and the stems, leaves, and seeds of this plant are rich in chemical components that are of high research value. The chloroplast (cp) genome of T. foenum-graecum has been reported, but the mitochondrial (mt) genome remains unexplored. RESULTS In this study, we used second- and third-generation sequencing methods, which have the dual advantage of combining high accuracy and longer read length. The results showed that the mt genome of T. foenum-graecum was 345,604 bp in length and 45.28% in GC content. There were 59 genes, including: 33 protein-coding genes (PCGs), 21 tRNA genes, 4 rRNA genes and 1 pseudo gene. Among them, 11 genes contained introns. The mt genome codons of T. foenum-graecum had a significant A/T preference. A total of 202 dispersed repetitive sequences, 96 simple repetitive sequences (SSRs) and 19 tandem repetitive sequences were detected. Nucleotide diversity (Pi) analysis counted the variation in each gene, with atp6 being the most notable. Both synteny and phylogenetic analyses showed close genetic relationship among Trifolium pratense, Trifolium meduseum, Trifolium grandiflorum, Trifolium aureum, Medicago truncatula and T. foenum-graecum. Notably, in the phylogenetic tree, Medicago truncatula demonstrated the highest level of genetic relatedness to T. foenum-graecum, with a strong support value of 100%. The interspecies non-synonymous substitutions (Ka)/synonymous substitutions (Ks) results showed that 23 PCGs had Ka/Ks < 1, indicating that these genes would continue to evolve under purifying selection pressure. In addition, setting the similarity at 70%, 23 homologous sequences were found in the mt genome of T. foenum-graecum. CONCLUSIONS This study explores the mt genome sequence information of T. foenum-graecum and complements our knowledge of the phylogenetic diversity of Leguminosae plants.
Collapse
Affiliation(s)
- Yanfeng He
- College of Pharmacy, Qinghai Minzu University, Xining, 810007, Qinghai, China
| | - Wenya Liu
- College of Pharmacy, Qinghai Minzu University, Xining, 810007, Qinghai, China
| | - Jiuli Wang
- The College of Ecological Environment and Resources, Qinghai Minzu University, Xining, 810007, Qinghai, China.
| |
Collapse
|
23
|
Ji J, Luo Y, Pei L, Li M, Xiao J, Li W, Wu H, Luo Y, He J, Cheng J, Xie L. Complete Plastid Genomes of Nine Species of Ranunculeae (Ranunculaceae) and Their Phylogenetic Inferences. Genes (Basel) 2023; 14:2140. [PMID: 38136961 PMCID: PMC10742492 DOI: 10.3390/genes14122140] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
The tribe Ranunculeae, Ranunculaceae, comprising 19 genera widely distributed all over the world. Although a large number of Sanger sequencing-based molecular phylogenetic studies have been published, very few studies have been performed on using genomic data to infer phylogenetic relationships within Ranunculeae. In this study, the complete plastid genomes of nine species (eleven samples) from Ceratocephala, Halerpestes, and Ranunculus were de novo assembled using a next-generation sequencing method. Previously published plastomes of Oxygraphis and other related genera of the family were downloaded from GenBank for comparative analysis. The complete plastome of each Ranunculeae species has 112 genes in total, including 78 protein-coding genes, 30 transfer RNA genes, and four ribosomal RNA genes. The plastome structure of Ranunculeae samples is conserved in gene order and arrangement. There are no inverted repeat (IR) region expansions and only one IR contraction was found in the tested samples. This study also compared plastome sequences across all the samples in gene collinearity, codon usage, RNA editing sites, nucleotide variability, simple sequence repeats, and positive selection sites. Phylogeny of the available Ranunculeae species was inferred by the plastome data using maximum-likelihood and Bayesian inference methods, and data partitioning strategies were tested. The phylogenetic relationships were better resolved compared to previous studies based on Sanger sequencing methods, showing the potential value of the plastome data in inferring the phylogeny of the tribe.
Collapse
Affiliation(s)
- Jiaxin Ji
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China; (J.J.); (Y.L.); (J.X.); (W.L.); (H.W.); (Y.L.); (J.H.)
| | - Yike Luo
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China; (J.J.); (Y.L.); (J.X.); (W.L.); (H.W.); (Y.L.); (J.H.)
| | - Linying Pei
- College of Agriculture and Forestry, Longdong University, Qingyang 745000, China;
| | - Mingyang Li
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (M.L.); (J.C.)
| | - Jiamin Xiao
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China; (J.J.); (Y.L.); (J.X.); (W.L.); (H.W.); (Y.L.); (J.H.)
| | - Wenhe Li
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China; (J.J.); (Y.L.); (J.X.); (W.L.); (H.W.); (Y.L.); (J.H.)
| | - Huanyu Wu
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China; (J.J.); (Y.L.); (J.X.); (W.L.); (H.W.); (Y.L.); (J.H.)
| | - Yuexin Luo
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China; (J.J.); (Y.L.); (J.X.); (W.L.); (H.W.); (Y.L.); (J.H.)
| | - Jian He
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China; (J.J.); (Y.L.); (J.X.); (W.L.); (H.W.); (Y.L.); (J.H.)
| | - Jin Cheng
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (M.L.); (J.C.)
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Lei Xie
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China; (J.J.); (Y.L.); (J.X.); (W.L.); (H.W.); (Y.L.); (J.H.)
| |
Collapse
|
24
|
Wang M, Yu W, Yang J, Hou Z, Li C, Niu Z, Zhang B, Xue Q, Liu W, Ding X. Mitochondrial genome comparison and phylogenetic analysis of Dendrobium (Orchidaceae) based on whole mitogenomes. BMC PLANT BIOLOGY 2023; 23:586. [PMID: 37993773 PMCID: PMC10666434 DOI: 10.1186/s12870-023-04618-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 11/17/2023] [Indexed: 11/24/2023]
Abstract
BACKGROUND Mitochondrial genomes are essential for deciphering the unique evolutionary history of seed plants. However, the rules of their extreme variation in genomic size, multi-chromosomal structure, and foreign sequences remain unresolved in most plant lineages, which further hindered the application of mitogenomes in phylogenetic analyses. RESULTS Here, we took Dendrobium (Orchidaceae) which shows the great divergence of morphology and difficulty in species taxonomy as the study focus. We first de novo assembled two complete mitogenomes of Dendrobium wilsonii and Dendrobium henanense that were 763,005 bp and 807,551 bp long with multichromosomal structures. To understand the evolution of Dendrobium mitogenomes, we compared them with those of four other orchid species. The results showed great variations of repetitive and chloroplast-derived sequences in Dendrobium mitogenomes. Moreover, the intergenic content of Dendrobium mitogenomes has undergone expansion during evolution. We also newly sequenced mitogenomes of 26 Dendrobium species and reconstructed phylogenetic relationships of Dendrobium based on genomic mitochondrial and plastid data. The results indicated that the existence of chloroplast-derived sequences made the mitochondrial phylogeny display partial characteristics of the plastid phylogeny. Additionally, the mitochondrial phylogeny provided new insights into the phylogenetic relationships of Dendrobium species. CONCLUSIONS Our study revealed the evolution of Dendrobium mitogenomes and the potential of mitogenomes in deciphering phylogenetic relationships at low taxonomic levels.
Collapse
Grants
- 32070353 National Natural Science Foundation of China
- 32070353 National Natural Science Foundation of China
- 32070353 National Natural Science Foundation of China
- 32070353 National Natural Science Foundation of China
- 32070353 National Natural Science Foundation of China
- 32070353 National Natural Science Foundation of China
- 32070353 National Natural Science Foundation of China
- 32070353 National Natural Science Foundation of China
- 32070353 National Natural Science Foundation of China
- 32070353 National Natural Science Foundation of China
- LYKJ[2021]12 Forestry independent innovation project of Jiangsu Province, China
- LYKJ[2021]12 Forestry independent innovation project of Jiangsu Province, China
- LYKJ[2021]12 Forestry independent innovation project of Jiangsu Province, China
- LYKJ[2021]12 Forestry independent innovation project of Jiangsu Province, China
- LYKJ[2021]12 Forestry independent innovation project of Jiangsu Province, China
- LYKJ[2021]12 Forestry independent innovation project of Jiangsu Province, China
- LYKJ[2021]12 Forestry independent innovation project of Jiangsu Province, China
- LYKJ[2021]12 Forestry independent innovation project of Jiangsu Province, China
- LYKJ[2021]12 Forestry independent innovation project of Jiangsu Province, China
- LYKJ[2021]12 Forestry independent innovation project of Jiangsu Province, China
- CX (22) 3147 Agricultural independent innovation project of Jiangsu Province, China
- CX (22) 3147 Agricultural independent innovation project of Jiangsu Province, China
- CX (22) 3147 Agricultural independent innovation project of Jiangsu Province, China
- CX (22) 3147 Agricultural independent innovation project of Jiangsu Province, China
- CX (22) 3147 Agricultural independent innovation project of Jiangsu Province, China
- CX (22) 3147 Agricultural independent innovation project of Jiangsu Province, China
- CX (22) 3147 Agricultural independent innovation project of Jiangsu Province, China
- CX (22) 3147 Agricultural independent innovation project of Jiangsu Province, China
- CX (22) 3147 Agricultural independent innovation project of Jiangsu Province, China
- CX (22) 3147 Agricultural independent innovation project of Jiangsu Province, China
Collapse
Affiliation(s)
- Mengting Wang
- College of Life Sciences, Nanjing Normal University, Nanjing, China
- Ningbo Key Laboratory of Agricultural Germplasm Resources Mining and Environmental Regulation, College of Science and Technology, Ningbo University, Cixi, China
| | - Wenhui Yu
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jiapeng Yang
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Zhenyu Hou
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Chao Li
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Zhitao Niu
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Benhou Zhang
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Qingyun Xue
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Wei Liu
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xiaoyu Ding
- College of Life Sciences, Nanjing Normal University, Nanjing, China.
| |
Collapse
|
25
|
Francisconi AF, Marroquín JAM, Cauz-Santos LA, van den Berg C, Martins KKM, Costa MF, Picanço-Rodrigues D, de Alencar LD, Zanello CA, Colombo CA, Hernández BGD, Amaral DT, Lopes MTG, Veasey EA, Zucchi MI. Complete chloroplast genomes of six neotropical palm species, structural comparison, and evolutionary dynamic patterns. Sci Rep 2023; 13:20635. [PMID: 37996522 PMCID: PMC10667357 DOI: 10.1038/s41598-023-44631-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 10/10/2023] [Indexed: 11/25/2023] Open
Abstract
The Arecaceae family has a worldwide distribution, especially in tropical and subtropical regions. We sequenced the chloroplast genomes of Acrocomia intumescens and A. totai, widely used in the food and energy industries; Bactris gasipaes, important for palm heart; Copernicia alba and C. prunifera, worldwide known for wax utilization; and Syagrus romanzoffiana, of great ornamental potential. Copernicia spp. showed the largest chloroplast genomes (C. prunifera: 157,323 bp and C. alba: 157,192 bp), while S. romanzoffiana and B. gasipaes var. gasipaes presented the smallest (155,078 bp and 155,604 bp). Structurally, great synteny was detected among palms. Conservation was also observed in the distribution of single sequence repeats (SSR). Copernicia spp. presented less dispersed repeats, without occurrence in the small single copy (SSC). All RNA editing sites were C (cytidine) to U (uridine) conversions. Overall, closely phylogenetically related species shared more sites. Almost all nodes of the phylogenetic analysis showed a posterior probability (PP) of 1.0, reaffirming the close relationship between Acrocomia species. These results elucidate the conservation among palm chloroplast genomes, but point to subtle structural changes, providing support for the evolutionary dynamics of the Arecaceae family.
Collapse
Affiliation(s)
- Ana Flávia Francisconi
- Programa de Pós-Gradução em Genética e Biologia Molecular, Universidade Estadual de Campinas, R. Monteiro Lobato, 255-Barão Geraldo, Campinas, São Paulo, CEP 13083-862, Brazil
| | - Jonathan Andre Morales Marroquín
- Programa de Pós-Gradução em Genética e Biologia Molecular, Universidade Estadual de Campinas, R. Monteiro Lobato, 255-Barão Geraldo, Campinas, São Paulo, CEP 13083-862, Brazil
| | - Luiz Augusto Cauz-Santos
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030, Wien, Austria
| | - Cássio van den Berg
- Departamento de Ciências Biológicas, Universidade Estadual de Feira de Santana, Av. Transnordestina S/N-Novo Horizonte, Feira de SantanaFeira de Santana, Bahia, CEP 44036-900, Brazil
| | - Kauanne Karolline Moreno Martins
- Programa de Pós-Gradução em Genética e Biologia Molecular, Universidade Estadual de Campinas, R. Monteiro Lobato, 255-Barão Geraldo, Campinas, São Paulo, CEP 13083-862, Brazil
| | - Marcones Ferreira Costa
- Programa de Pós-Gradução em Genética e Biologia Molecular, Universidade Estadual de Campinas, R. Monteiro Lobato, 255-Barão Geraldo, Campinas, São Paulo, CEP 13083-862, Brazil
- Universidade Federal do Piauí, BR-343 Km 3.5, Floriano, Piauí, CEP 64808-605, Brazil
| | - Doriane Picanço-Rodrigues
- Departamento de Biologia, Universidade Federal do Amazonas, Avenida Gen. Rodrigo Octávio Jordão Ramos, 3000-Coroado I-Campus Universitário-Senador Arthur Virgílio Filho-Setor Sul, Bloco H, Manaus, Amazonas, CEP 69077-000, Brazil
| | - Luciano Delmodes de Alencar
- Programa de Pós-Gradução em Genética e Biologia Molecular, Universidade Estadual de Campinas, R. Monteiro Lobato, 255-Barão Geraldo, Campinas, São Paulo, CEP 13083-862, Brazil
| | - Cesar Augusto Zanello
- Programa de Pós-Gradução em Genética e Biologia Molecular, Universidade Estadual de Campinas, R. Monteiro Lobato, 255-Barão Geraldo, Campinas, São Paulo, CEP 13083-862, Brazil
| | - Carlos Augusto Colombo
- Instituto Agronômico, Av. Theodureto de Almeida Camargo, 1500, Campinas, São Paulo, CEP 13075-630, Brazil
| | | | - Danilo Trabuco Amaral
- Departamento de Biologia, Centro de Ciências Humanas e Biológicas, Universidade Federal do ABC, Avenida dos Estados, 5001, Santo André, São Paulo, CEP 09040-040, Brazil
| | - Maria Teresa Gomes Lopes
- Faculdade de Ciências Agrárias, Universidade Federal do Amazonas, Avenida Rodrigo Otávio Ramos, 3000-Bairro Coroado, Manaus, Amazonas, CEP 69077-000, Brazil
| | - Elizabeth Ann Veasey
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Avenida Pádua Dias, 11-Bairro São Dimas, Piracicaba, São Paulo, CEP 13418-900, Brazil
| | - Maria Imaculada Zucchi
- Agência Paulista de Tecnologia dos Agronegócios (APTA), Polo Centro Sul, Rodovia SP 127 Km 30, CP 28, Piracicaba, São Paulo, CEP 13400-970, Brazil.
| |
Collapse
|
26
|
Zhang Y, Yang Y, He M, Wei Z, Qin X, Wu Y, Jiang Q, Xiao Y, Yang Y, Wang W, Jin X. Comparative chloroplast genome analyses provide insights into evolutionary history of Rhizophoraceae mangroves. PeerJ 2023; 11:e16400. [PMID: 38025714 PMCID: PMC10658886 DOI: 10.7717/peerj.16400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 10/12/2023] [Indexed: 12/01/2023] Open
Abstract
Background The Rhizophoraceae family comprises crucial mangrove plants that inhabit intertidal environments. In China, eight Rhizophoraceae mangrove species exist. Although complete chloroplast (Cp) genomes of four Rhizophoraceae mangrove plants have been reported, the Cp genomes of the remaining four species remain unclear, impeding a comprehensive understanding of the evolutionary history of this family. Methods Illumina high-throughput sequencing was employed to obtain the DNA sequences of Rhizophoraceae species. Cp genomes were assembled by NOVOPlasty and annotated using CpGAVAS software. Phylogenetic and divergence time analyses were conducted using MEGA and BEAST 2 software. Results Four novel Cp genomes of Rhizophoraceae mangrove species (Bruguiera sexangula, Bruguiera gymnorrhiza, Bruguiera × rhynchopetala and Rhizophora apiculata) were successfully assembled. The four Cp genomes ranged in length from 163,310 to 164,560 bp, with gene numbers varying from 124 to 128. The average nucleotide diversity (Pi) value of the eight Rhizophoraceae Cp genomes was 0.00596. Phylogenetic trees constructed based on the complete Cp genomes supported the monophyletic origin of Rhizophoraceae. Divergence time estimation based on the Cp genomes of representative species from Malpighiales showed that the origin of Rhizophoraceae occurred at approximately 58.54-50.02 million years ago (Mya). The divergence time within the genus Rhizophora (∼4.51 Mya) was much earlier than the divergence time within the genus Bruguiera (∼1.41 Mya), suggesting recent speciation processes in these genera. Our data provides new insights into phylogenetic relationship and evolutionary history of Rhizophoraceae mangrove plants.
Collapse
Affiliation(s)
- Ying Zhang
- Hainan Academy of Forestry, Hainan Mangrove Research Institute, Haikou, Hainan, China
- Qiongtai Normal University, Research Center for Wild Animal and Plant Resource Protection and Utilization, Haikou, Hainan, China
- Lingnan Normal University, Life Science and Technology School, Zhanjiang, Guangdong, China
| | - Yuchen Yang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Meng He
- Hainan Normal University, Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Haikou, Hainan, China
| | - Ziqi Wei
- Hainan Normal University, Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Haikou, Hainan, China
| | - Xi Qin
- Hainan Normal University, Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Haikou, Hainan, China
| | - Yuanhao Wu
- Hainan Normal University, Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Haikou, Hainan, China
| | - Qingxing Jiang
- Hainan Normal University, Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Haikou, Hainan, China
| | - Yufeng Xiao
- Hainan Normal University, Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Haikou, Hainan, China
| | - Yong Yang
- Hainan Normal University, Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Haikou, Hainan, China
| | - Wei Wang
- Qiongtai Normal University, Research Center for Wild Animal and Plant Resource Protection and Utilization, Haikou, Hainan, China
| | - Xiang Jin
- Qiongtai Normal University, Research Center for Wild Animal and Plant Resource Protection and Utilization, Haikou, Hainan, China
- Hainan Normal University, Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Haikou, Hainan, China
| |
Collapse
|
27
|
Jiang M, Ni Y, Zhang J, Li J, Liu C. Complete mitochondrial genome of Mentha spicata L. reveals multiple chromosomal configurations and RNA editing events. Int J Biol Macromol 2023; 251:126257. [PMID: 37573900 DOI: 10.1016/j.ijbiomac.2023.126257] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/15/2023]
Abstract
Mentha spicata L. is a valuable plant that yields spearmint oil, widely utilized in the pharmaceutical, chemical, and cosmetic industries. The mitochondrial genome (mitogenome) is an essential material for molecular breeding and evolution studies. Here, the mitogenome of M. spicata was assembled by combining Nanopore and Illumina reads. It consisted of a linear chromosome (Ch1) and two circular chromosomes (Ch2 and Ch3). Furthermore, we showed two pairs of repeats (R1 and R2) mediated recombinations resulting in multiple chromosomal configurations. The R1-mediated-recombination generated a large molecule formed by joining Ch2 and Ch1. Similarly, the R2-mediated-recombination generated a large molecule formed by joining Ch3 and Ch1. Then, we identified 17 mitochondrial plastid DNAs (MTPTs) by comparing the mitogenome and cpgenome. The MTPT14 was conserved in multiple species, which has undergone the same evolutionary process as the two organellar genomes among M. spicata, Hesperelaea palmeri and Castilleja paramensis. Based on the RNA-seq reads, 246 RNA editing sites were predicted, resulting in the conversion of cytosine to uracil bases. Furthermore, we successfully validated 40 out of 43 predicted sites. This project reported a complex structure of the M. spicata mitogenome resulting from repeat-mediated recombinations, which will provide valuable information for gene function study and the breeding of different varieties.
Collapse
Affiliation(s)
- Mei Jiang
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China
| | - Yang Ni
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine from Ministry of Education, Engineering Research Center of Chinese Medicine Resources from Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, PR China
| | - Jianjie Zhang
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China
| | - Jingling Li
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine from Ministry of Education, Engineering Research Center of Chinese Medicine Resources from Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, PR China
| | - Chang Liu
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine from Ministry of Education, Engineering Research Center of Chinese Medicine Resources from Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, PR China.
| |
Collapse
|
28
|
Guo H, Liu Q, Chen Y, Niu H, Zhao Q, Song H, Pang R, Huang X, Zhang J, Zhao Z, Liu D, Zhu J. Comprehensive assembly and comparative examination of the full mitochondrial genome in Castanea mollissima Blume. Genomics 2023; 115:110740. [PMID: 37923179 DOI: 10.1016/j.ygeno.2023.110740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/23/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023]
Abstract
The Chinese chestnut, Castanea mollissima Blume, a nut-bearing tree native to China and North Korea, belongs to the Fagaceae family. As an important genetic resource, C. mollissima is vital in enhancing edible chestnut varieties and offers significant insights into the origin and evolution of chestnut species. While the chloroplast genome of C. mollissima has been sequenced, its mitochondrial genome (mitogenome) remains largely uncharted. In this study, we have characterized the C. mollissima mitogenome, assembling it utilizing reads from both BGI and Nanopore sequencing platforms, and conducted a comparative analysis with the mitochondrial genomes of closely related species. The mitogenome of C. mollissima manifests a polycyclic structure consisting of two circular molecules measuring 363,232 bp and 24,806 bp, respectively. This genome encompasses 35 unique protein-coding genes, 19 tRNA genes, and three rRNA genes. A total of 139 SSRs were identified throughout the entire C. mollissima mitogenome. Furthermore, the combined length of homologous fragments between the chloroplast and mitochondrial genomes was 5766 bp, constituting 1.49% of the mitogenome. We also predicted 484 RNA editing sites in C. mollissima, demonstrating C-to-U RNA editing. Phylogenetic analysis of related species' mitogenomes showed that C. mollissima was closely related to Lithocarpus litseifolius (Hance) Chun and Quercus acutissima Carruth. Interestingly, the mitogenome sequences of C. mollissima, L. litseifolius, Q. acutissima, Fagus sylvatica L., and Juglans mandshurica Maxim did not show conservation in their alignments, indicating frequent genome reorganization. This report marks the inaugural study of the C. mollissima mitogenome, serving as a benchmark genome for economically significant plants within the Castanea genus. Moreover, it supplies invaluable information that can guide future molecular breeding efforts and contribute to the broader understanding of chestnut genomics.
Collapse
Affiliation(s)
- Haili Guo
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan 250102, China
| | - Qiong Liu
- Shandong Refining and Chemical Energy Group Co., Ltd., Jinan 250199, China
| | - Ying Chen
- Shandong Provincial Forestry Protection and Development Service Center, Jinan 250109, China
| | - Hongyun Niu
- Shandong Provincial Center of Aviation Emergency and Rescue, Jinan 250014, China
| | | | - Hui Song
- Shandong Institute of Land Spatial Data and Remote Sensing Technology, Jinan 250002, China
| | - Ruidong Pang
- Shandong Provincial Archives of Natural Resources, Jinan 250013, China
| | - Xiaolu Huang
- Guangxi Forestry Research Institute, Nanning 530002, China
| | - Jingzheng Zhang
- Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| | - Zhiheng Zhao
- Guangxi Forestry Research Institute, Nanning 530002, China; Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China.
| | - Dan Liu
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan 250102, China.
| | - Jingle Zhu
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China.
| |
Collapse
|
29
|
Yan M, Dong S, Gong Q, Xu Q, Ge Y. Comparative chloroplast genome analysis of four Polygonatum species insights into DNA barcoding, evolution, and phylogeny. Sci Rep 2023; 13:16495. [PMID: 37779129 PMCID: PMC10543443 DOI: 10.1038/s41598-023-43638-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 09/26/2023] [Indexed: 10/03/2023] Open
Abstract
The Polygonatum genus represents a perennial herb with the Liliaceae family, boasting substantial economic and medicinal significance. The majority of Polygonatum plants exhibit notable similarity while lacking distinctive identifying characteristics, thus resulting in the proliferation of adulterated medicinal materials within the market. Within this study, we conducted an in-depth analysis of the complete chloroplast (cp) genomes of four Polygonatum plants and compared them with four closely akin species. The primary objectives were to unveil structural variations, species divergence, and the phylogenetic interrelations among taxa. The cp genomes of the four Polygonatum species were typified by a conventional quadripartite structure, incorporating a large single copy region (LSC), a small single copy region (SSC), and a pair of inverted repeat regions. In total, we annotated a range of 131 to 133 genes, encompassing 84 to 86 protein-coding genes, 38 transfer RNA (tRNA) genes, 8 ribosomal RNA (rRNA) genes, and 0 to 2 pseudogenes (ycf1, infA). Our comparative analyses unequivocally revealed a remarkable consistency in gene order and GC content within the Polygonatum genus. Furthermore, we predicted a potential 59 to 64 RNA editing sites distributed across 22 protein-coding genes, with the ndhB gene exhibiting the most prominent propensity for RNA editing sites, boasting a tally of 15 sites. Notably, six regions of substantial potential variability were ascertained, characterized by elevated Pi values. Noteworthy, molecular markers for species identification, population genetic scrutiny, and phylogenetic investigations within the genus were identified in the form of the psaJ-rpl33 and trnS + trnT-psaD barcodes. The resultant phylogenetic tree unequivocally depicted the formation of a monophyletic clade comprising species within the evolutionary framework of Liliaceae, demonstrating closer evolutionary affinities with Maianthemum, Dracaeneae, and Asparageae. This comprehensive compendium of findings collectively contributes to the advancement of molecular species identification, elucidation of phylogenetic interrelationships, and the establishment of DNA barcodes tailored to the Polygonatum species.
Collapse
Affiliation(s)
- Meixiu Yan
- The First Affiliated Hospital of Zhejiang Chinese Medical University, 54 Youdian Road, Hangzhou, Zhejiang Province, People's Republic of China
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Shujie Dong
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Qiuyi Gong
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Qin Xu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Yuqing Ge
- The First Affiliated Hospital of Zhejiang Chinese Medical University, 54 Youdian Road, Hangzhou, Zhejiang Province, People's Republic of China.
| |
Collapse
|
30
|
Kurt S, Kaymaz Y, Ateş D, Tanyolaç MB. Complete chloroplast genome of Lens lamottei reveals intraspecies variation among with Lens culinaris. Sci Rep 2023; 13:14959. [PMID: 37696838 PMCID: PMC10495401 DOI: 10.1038/s41598-023-41287-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/24/2023] [Indexed: 09/13/2023] Open
Abstract
Lens lamottei is a member of the Fabaceae family and the second gene pool of the genus Lens. The environmental factors that drove the divergence among wild and cultivated species have been studied extensively. Recent research has focused on genomic signatures associated with various phenotypes with the acceleration of next-generation techniques in molecular profiling. Therefore, in this study, we provide the complete sequence of the chloroplast genome sequence in the wild Lens species L. lamottei with a deep coverage of 713 × next-generation sequencing (NGS) data for the first time. Compared to the cultivated species, Lens culinaris, we identified synonymous, and nonsynonymous changes in the protein-coding regions of the genes ndhB, ndhF, ndhH, petA, rpoA, rpoC2, rps3, and ycf2 in L. lamottei. Phylogenetic analysis of chloroplast genomes of various plants under Leguminosae revealed that L. lamottei and L. culinaris are closest to one another than to other species. The complete chloroplast genome of L. lamottei also allowed us to reanalyze previously published transcriptomic data, which showed high levels of gene expression for ATP-synthase, rubisco, and photosystem genes. Overall, this study provides a deeper insight into the diversity of Lens species and the agricultural importance of these plants through their chloroplast genomes.
Collapse
Affiliation(s)
- Selda Kurt
- Faculty of Engineering, Department of Bioengineering, Ege University, Izmir, Turkey
| | - Yasin Kaymaz
- Faculty of Engineering, Department of Bioengineering, Ege University, Izmir, Turkey
| | - Duygu Ateş
- Faculty of Engineering, Department of Bioengineering, Ege University, Izmir, Turkey
| | | |
Collapse
|
31
|
Cai H, Ren Y, Du J, Liu L, Long L, Yang M. Analysis of the RNA Editing Sites and Orthologous Gene Function of Transcriptome and Chloroplast Genomes in the Evolution of Five Deutzia Species. Int J Mol Sci 2023; 24:12954. [PMID: 37629135 PMCID: PMC10454583 DOI: 10.3390/ijms241612954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
In this study, the chloroplast genomes and transcriptomes of five Deutzia genus species were sequenced, characterized, combined, and analyzed. A phylogenetic tree was constructed, including 32 other chloroplast genome sequences of Hydrangeoideae species. The results showed that the five Deutzia chloroplast genomes were typical circular genomes 156,860-157,025 bp in length, with 37.58-37.6% GC content. Repeat analysis showed that the Deutzia species had 41-45 scattered repeats and 199-201 simple sequence repeats. Comparative genomic and pi analyses indicated that the genomes are conservative and that the gene structures are stable. According to the phylogenetic tree, Deutzia species appear to be closely related to Kirengeshoma palmata and Philadelphus. By combining chloroplast genomic and transcriptomic analyses, 29-31 RNA editing events and 163-194 orthologous genes were identified. The ndh, rpo, rps, and atp genes had the most editing sites, and all RNA editing events were of the C-to-U type. Most of the orthologous genes were annotated to the chloroplast, mitochondria, and nucleus, with functions including energy production and conversion, translation, and protein transport. Genes related to the biosynthesis of monoterpenoids and flavonoids were also identified from the transcriptome of Deutzia spp. Our results will contribute to further studies of the genomic information and potential uses of the Deutzia spp.
Collapse
Affiliation(s)
- Hongyu Cai
- Forestry College, Hebei Agricultural University, Baoding 071000, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding 071055, China
| | - Yachao Ren
- Forestry College, Hebei Agricultural University, Baoding 071000, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding 071055, China
| | - Juan Du
- Forestry College, Hebei Agricultural University, Baoding 071000, China
- Shijiazhuang Botanical Garden, Shijiazhuang 050299, China
| | - Lingyun Liu
- Forestry College, Hebei Agricultural University, Baoding 071000, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding 071055, China
| | - Lianxiang Long
- Forestry College, Hebei Agricultural University, Baoding 071000, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding 071055, China
| | - Minsheng Yang
- Forestry College, Hebei Agricultural University, Baoding 071000, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding 071055, China
| |
Collapse
|
32
|
Li J, Chen Y, Liu Y, Wang C, Li L, Chao Y. Complete mitochondrial genome of Agrostis stolonifera: insights into structure, Codon usage, repeats, and RNA editing. BMC Genomics 2023; 24:466. [PMID: 37596544 PMCID: PMC10439588 DOI: 10.1186/s12864-023-09573-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/10/2023] [Indexed: 08/20/2023] Open
Abstract
BACKGROUND Plants possess mitochondrial genomes that are large and complex compared to animals. Despite their size, plant mitochondrial genomes do not contain significantly more genes than their animal counterparts. Studies into the sequence and structure of plant mitochondrial genomes heavily imply that the main mechanism driving replication of plant mtDNA, and offer valuable insights into plant evolution, energy production, and environmental adaptation. RESULTS This study presents the first comprehensive analysis of Agrostis stolonifera's mitochondrial genome, characterized by a branched structure comprising three contiguous chromosomes, totaling 560,800 bp with a GC content of 44.07%. Annotations reveal 33 unique protein-coding genes (PCGs), 19 tRNA genes, and 3 rRNA genes. The predominant codons for alanine and glutamine are GCU and CAA, respectively, while cysteine and phenylalanine exhibit weaker codon usage biases. The mitogenome contains 73, 34, and 23 simple sequence repeats (SSRs) on chromosomes 1, 2, and 3, respectively. Chromosome 1 exhibits the most frequent A-repeat monomeric SSR, whereas chromosome 2 displays the most common U-repeat monomeric SSR. DNA transformation analysis identifies 48 homologous fragments between the mitogenome and chloroplast genome, representing 3.41% of the mitogenome's total length. The PREP suite detects 460 C-U RNA editing events across 33 mitochondrial PCGs, with the highest count in the ccmFn gene and the lowest in the rps7 gene. Phylogenetic analysis confirms A. stolonifera's placement within the Pooideae subfamily, showing a close relationship to Lolium perenne, consistent with the APG IV classification system. Numerous homologous co-linear blocks are observed in A. stolonifera's mitogenomes and those of related species, while certain regions lack homology. CONCLUSIONS The unique features and complexities of the A. stolonifera mitochondrial genome, along with its similarities and differences to related species, provide valuable insights into plant evolution, energy production, and environmental adaptation. The findings from this study significantly contribute to the growing body of knowledge on plant mitochondrial genomes and their role in plant biology.
Collapse
Affiliation(s)
- Jiaxing Li
- School of Grassland Science, Beijing Forestry University, Beijing, 100083, China
| | - Yinglong Chen
- UWA School of Agriculture and Environment, The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6001, Australia
| | - Yaling Liu
- Inner Mongolia M-Grass Ecology And Environment (Group) Co., Ltd, Hohhot, 010010, China
| | - Chen Wang
- Mentougou District Bureau of Ecological and Environment of Beijing Municipality, Beijing, 102300, China
| | - Ling Li
- Mentougou District Bureau of Ecological and Environment of Beijing Municipality, Beijing, 102300, China
| | - Yuehui Chao
- School of Grassland Science, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
33
|
Xu S, Teng K, Zhang H, Wu J, Duan L, Zhang H, Wen H, Teng W, Yue Y, Fan X. The first complete mitochondrial genome of Carex (C. breviculmis): a significantly expanded genome with highly structural variations. PLANTA 2023; 258:43. [PMID: 37450262 DOI: 10.1007/s00425-023-04169-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/27/2023] [Indexed: 07/18/2023]
Abstract
MAIN CONCLUSION The first complete mitochondrial genome of Carex (C. breviculmis) was sequenced and assembled, and its genomic signature was analyzed and the possible conformations of its mitochondrial genome were validated. Carex breviculmis is a very adaptable grass that is highly resistant to environmental stresses such as drought and low light. It is also admired as a landscape plant with high development prospects and scientific research value. In this study, the mitochondrial genome of C. breviculmis was assembled using Pacbio and Illumina sequencing data. We detected 267 pairs of repeats and found that three pairs of repeats could mediate the recombination of its mitochondrial genome and formed four possible conformations, of which we verified the two conformations mediated by the shortest pair of repeats using PCR amplification and Sanger sequencing. The major conformation of the C. breviculmis mitochondrial genome is a 1,414,795 bp long circular molecule with 33 annotated protein-coding genes, 15 tRNA genes, and three rRNA genes. We detected a total of 25 homologous sequences between the chloroplast and mitochondrial genomes, corresponding to 0.40% of the mitochondrial genome. Combined with the low GC content (41.24%), we conclude that the reduction in RNA editing sites in the C. breviculmis mitochondrial genome may be due to an accumulation of point mutations in C-to-T or retroprocessing events within the genome. The relatively low number of RNA editing sites in its mitochondrial genome could serve as important material for subsequent studies on the selection pressure of RNA editing in angiosperms. A maximum likelihood analysis based on 23 conserved mitochondrial genes from 28 species reflects an accurate evolutionary and taxonomic position of C. breviculmis. This research provided us with a comprehensive understanding of the mitochondrial genome of Carex and also provided important information for its molecular breeding.
Collapse
Affiliation(s)
- Shenjian Xu
- Institute of Grassland, Flowers, and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Ke Teng
- Institute of Grassland, Flowers, and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Hui Zhang
- Institute of Grassland, Flowers, and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Juying Wu
- Institute of Grassland, Flowers, and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Liusheng Duan
- College of Plants and Technology, Beijing University of Agriculture, Beijing, China
| | - Hongyu Zhang
- Institute of Grassland, Flowers, and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Haifeng Wen
- Institute of Grassland, Flowers, and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Wenjun Teng
- Institute of Grassland, Flowers, and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yuesen Yue
- Institute of Grassland, Flowers, and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China.
| | - Xifeng Fan
- Institute of Grassland, Flowers, and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China.
| |
Collapse
|
34
|
Tan F, Li W, Feng H, Huang Y, Banerjee AK. Interspecific variation and phylogenetic relationship between mangrove and non-mangrove species of a same family (Meliaceae)-insights from comparative analysis of complete chloroplast genome. PeerJ 2023; 11:e15527. [PMID: 37397021 PMCID: PMC10309054 DOI: 10.7717/peerj.15527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 05/19/2023] [Indexed: 07/04/2023] Open
Abstract
The mahogany family, Meliaceae, contains 58 genera with only one mangrove genus: Xylocarpus. Two of the three species of the genus Xylocarpus are true mangroves (X. granatum and X. moluccensis), and one is a non-mangrove (X. rumphii). In order to resolve the phylogenetic relationship between the mangrove and non-mangrove species, we sequenced chloroplast genomes of these Xylocarpus species along with two non-mangrove species of the Meliaceae family (Carapa guianensis and Swietenia macrophylla) and compared the genome features and variations across the five species. The five Meliaceae species shared 130 genes (85 protein-coding genes, 37 tRNA, and eight rRNA) with identical direction and order, with a few variations in genes and intergenic spacers. The repetitive sequences identified in the rpl22 gene region only occurred in Xylocarpus, while the repetitive sequences in accD were found in X. moluccensis and X. rumphii. The TrnH-GUG and rpl32 gene regions and four non-coding gene regions showed high variabilities between X. granatum and the two non-mangrove species (S. macrophylla and C. guianensis). In addition, among the Xylocarpus species, only two genes (accD and clpP) showed positive selection. Carapa guianensis and S. macrophylla owned unique RNA editing sites. The above genes played an important role in acclimation to different stress factors like heat, low temperature, high UV light, and high salinity. Phylogenetic analysis with 22 species in the order Sapindales supported previous studies, which revealed that the non-mangrove species X. rumphii is closer to X. moluccensis than X. granatum. Overall, our results provided important insights into the variation of genetic structure and adaptation mechanism at interspecific (three Xylocarpus species) and intergeneric (mangrove and non-mangrove genera) levels.
Collapse
Affiliation(s)
- Fengxiao Tan
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong, China
| | - Weixi Li
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Hui Feng
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yelin Huang
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | | |
Collapse
|
35
|
Kim HB, Lee DG, Kim SC. Plastomes of Sonchus (Asteraceae) endemic to the Atlantic Madeira archipelago: Genome structure, comparative analysis, and phylogenetic relationships. PLoS One 2023; 18:e0287523. [PMID: 37347743 PMCID: PMC10286973 DOI: 10.1371/journal.pone.0287523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 06/07/2023] [Indexed: 06/24/2023] Open
Abstract
The woody Sonchus alliance, a spectacular example of adaptive radiation with six genera and approximately 31 species, is found exclusively on three Macaronesian Islands (Madeira, Canaries, and Cape Verdes) in the Atlantic Ocean. Four of the Sonchus taxa are restricted to Madeira, including shrubs and small trees at higher elevations (S. fruticosus and S. pinnatus), and caudex perennials in the lower coastal areas (S. ustulatus subsp. maderensis and S. ustulatus subsp. ustulatus). The Madeiran Sonchus stemmed from a single colonization event that originated from the Canaries < 3 million years ago. However, the plastome evolution and species relationships remains insufficiently explored. We therefore assembled and characterized the plastomes of four Sonchus taxa from Madeira and conducted a phylogenomic analysis. We found highly conserved plastome sequences among the taxa, further supporting a single and recent origin. We also found highly conserved plastomes among the cosmopolitan weedy Sonchus, Macaronesian Sonchus in the Atlantic, and Juan Fernández Islands Dendroseris in the Pacific. Furthermore, we identified four mutation hotspot regions (trnK-rps16, petN-psbM, ndhF-Ψycf1, and ycf1) and simple sequence repeat motifs. This study strongly supports the monophyly of Madeiran Sonchus. However, its relationship with the remaining woody Sonchus alliance from the Canary Islands requires further investigation.
Collapse
Affiliation(s)
- Hye-Been Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Republic of Korea
- R&I Center, COSMAX BTI, Pangyo Inno Valley E255, Seongnam, Republic of Korea
| | - Dong-Geol Lee
- R&I Center, COSMAX BTI, Pangyo Inno Valley E255, Seongnam, Republic of Korea
| | - Seung-Chul Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
36
|
Edera AA, Howell KA, Nevill PG, Small I, Sanchez-Puerta MV. Evolution of cox2 introns in angiosperm mitochondria and efficient splicing of an elongated cox2i691 intron. Gene 2023; 869:147393. [PMID: 36966978 DOI: 10.1016/j.gene.2023.147393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/08/2023] [Accepted: 03/21/2023] [Indexed: 04/03/2023]
Abstract
In angiosperms, the mitochondrial cox2 gene harbors up to two introns, commonly referred to as cox2i373 and cox2i691. We studied the cox2 from 222 fully-sequenced mitogenomes from 30 angiosperm orders and analyzed the evolution of their introns. Unlike cox2i373, cox2i691 shows a distribution among plants that is shaped by frequent intron loss events driven by localized retroprocessing. In addition, cox2i691 exhibits sporadic elongations, frequently in domain IV of introns. Such elongations are poorly related to repeat content and two of them showed the presence of LINE transposons, suggesting that increasing intron size is very likely due to nuclear intracelular DNA transfer followed by incorporation into the mitochondrial DNA. Surprisingly, we found that cox2i691 is erroneously annotated as absent in 30 mitogenomes deposited in public databases. Although each of the cox2 introns is ∼1.5 kb in length, a cox2i691 of 4.2 kb has been reported in Acacia ligulata (Fabaceae). It is still unclear whether its unusual length is due to a trans-splicing arrangement or the loss of functionality of the interrupted cox2. Through analyzing short-read RNA sequencing of Acacia with a multi-step computational strategy, we found that the Acacia cox2 is functional and its long intron is spliced in cis in a very efficient manner despite its length.
Collapse
Affiliation(s)
- Alejandro A Edera
- Research Institute for Signals, Systems and Computational Intelligence, sinc(i), FICH-UNL, CONICET, Ciudad Universitaria UNL, 3000 Santa Fe, Argentina.
| | - Katharine A Howell
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, Western Australia, Australia
| | - Paul G Nevill
- Botanic Gardens and Parks Authority, Kings Park and Botanic Garden, Fraser Avenue, Kings Park, Western Australia, Australia; School of Plant Biology, The University of Western Australia, Crawley, Western Australia, Australia
| | - Ian Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, Western Australia, Australia; Centre of Excellence in Computational Systems Biology, The University of Western Australia, Crawley, Western Australia, Australia
| | - M Virginia Sanchez-Puerta
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, M5528AHB Chacras de Coria, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, 5500 Mendoza, Argentina
| |
Collapse
|
37
|
Zoclanclounon YAB, Thamilarasan SK, Mo Y, Ahn BO, Kim JG, Lee K. Insights into chloroplast genome structure and phylogenetic relationships within the Sesamum species complex (Pedaliaceae). Front Genet 2023; 14:1207306. [PMID: 37323670 PMCID: PMC10267711 DOI: 10.3389/fgene.2023.1207306] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 05/15/2023] [Indexed: 06/17/2023] Open
Abstract
Background: In the Sesamum species complex, the lack of wild species genomic resources hinders the evolutionary comprehension of phylogenetic relationships. Results: In the present study, we generated complete chloroplast genomes of six wild relatives (Sesamum alatum, Sesamum angolense, Sesamum pedaloides, Ceratotheca sesamoides (syn. Sesamum sesamoides), Ceratotheca triloba (syn. Sesamum trilobum), and Sesamum radiatum) and a Korean cultivar, Sesamum indicum cv. Goenbaek. A typical quadripartite chloroplast structure, including two inverted repeats (IR), a large single copy (LSC), and a small single copy (SSC), was observed. A total of 114 unique genes encompassing 80 coding genes, four ribosomal RNAs, and 30 transfer RNAs were counted. The chloroplast genomes (152, 863-153, 338 bp) exhibited the IR contraction/expansion phenomenon and were quite conserved in both coding and non-coding regions. However, high values of the nucleotide diversity index were found in several genes, including ndhA, ndhE, ndhF, ycf1, and psaC-ndhD. Concordant tree topologies suggest ndhF as a useful marker for taxon discrimination. The phylogenetic inference and time divergence dating indicate that S. radiatum (2n = 64) occurred concomitantly with the sister species C. sesamoides (2n = 32) approximately 0.05 million years ago (Mya). In addition, S. alatum was clearly discriminated by forming a single clade, showing its long genetic distance and potential early speciation event in regards to the others. Conclusion: Altogether, we propose to rename C. sesamoides and C. triloba as S. sesamoides and S. trilobum, respectively, as suggested previously based on the morphological description. This study provides the first insight into the phylogenetic relationships among the cultivated and wild African native relatives. The chloroplast genome data lay a foundation for speciation genomics in the Sesamum species complex.
Collapse
Affiliation(s)
- Yedomon Ange Bovys Zoclanclounon
- Genomics Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, Republic of Korea
- Department of Crop Science and Biotechnology, Jeonbuk National University, Jeonju, Republic of Korea
| | - Senthil Kumar Thamilarasan
- Genomics Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, Republic of Korea
| | - Youngjun Mo
- Department of Crop Science and Biotechnology, Jeonbuk National University, Jeonju, Republic of Korea
| | - Byoung-Ohg Ahn
- Genomics Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, Republic of Korea
| | - Jeong-Gu Kim
- Genomics Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, Republic of Korea
| | - Keunpyo Lee
- Genomics Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, Republic of Korea
| |
Collapse
|
38
|
Qu XJ, Zou D, Zhang RY, Stull GW, Yi TS. Progress, challenge and prospect of plant plastome annotation. FRONTIERS IN PLANT SCIENCE 2023; 14:1166140. [PMID: 37324662 PMCID: PMC10266425 DOI: 10.3389/fpls.2023.1166140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/02/2023] [Indexed: 06/17/2023]
Abstract
The plastome (plastid genome) represents an indispensable molecular data source for studying phylogeny and evolution in plants. Although the plastome size is much smaller than that of nuclear genome, and multiple plastome annotation tools have been specifically developed, accurate annotation of plastomes is still a challenging task. Different plastome annotation tools apply different principles and workflows, and annotation errors frequently occur in published plastomes and those issued in GenBank. It is therefore timely to compare available annotation tools and establish standards for plastome annotation. In this review, we review the basic characteristics of plastomes, trends in the publication of new plastomes, the annotation principles and application of major plastome annotation tools, and common errors in plastome annotation. We propose possible methods to judge pseudogenes and RNA-editing genes, jointly consider sequence similarity, customed algorithms, conserved domain or protein structure. We also propose the necessity of establishing a database of reference plastomes with standardized annotations, and put forward a set of quantitative standards for evaluating plastome annotation quality for the scientific community. In addition, we discuss how to generate standardized GenBank annotation flatfiles for submission and downstream analysis. Finally, we prospect future technologies for plastome annotation integrating plastome annotation approaches with diverse evidences and algorithms of nuclear genome annotation tools. This review will help researchers more efficiently use available tools to achieve high-quality plastome annotation, and promote the process of standardized annotation of the plastome.
Collapse
Affiliation(s)
- Xiao-Jian Qu
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Ji’nan, Shandong, China
| | - Dan Zou
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Ji’nan, Shandong, China
| | - Rui-Yu Zhang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Ji’nan, Shandong, China
| | - Gregory W. Stull
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ting-Shuang Yi
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
39
|
Moghaddam M, Wojciechowski MF, Kazempour-Osaloo S. Characterization and comparative analysis of the complete plastid genomes of four Astragalus species. PLoS One 2023; 18:e0286083. [PMID: 37220139 DOI: 10.1371/journal.pone.0286083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/08/2023] [Indexed: 05/25/2023] Open
Abstract
Astragalus is the largest flowering plant genus. We assembled the plastid genomes of four Astragalus species (Astragalus iranicus, A. macropelmatus, A. mesoleios, A. odoratus) using next-generation sequencing and analyzed their plastomes including genome organization, codon usage, nucleotide diversity, prediction of RNA editing and etc. The total length of the newly sequenced Astragalus plastomes ranged from 121,050 bp to 123,622 bp, with 110 genes comprising 76 protein-coding genes, 30 transfer RNA (tRNA) genes and four ribosome RNA (rRNA) genes. Comparative analysis of the chloroplast genomes of Astragalus revealed several hypervariable regions comprising three non-coding sites (trnQ(UUG)-accD, rps7 -trnV(GAC) and trnR(ACG)-trnN(GUU)) and four protein-coding genes (ycf1, ycf2, accD and clpP), which have potential as molecular markers. Positive selection signatures were found in five genes in Astragalus species including rps11, rps15, accD, clpP and ycf1. The newly sequenced species, A. macropelmatus, has an approximately 13-kb inversion in IR region. Phylogenetic analysis based on 75 protein-coding gene sequences confirmed that Astragalus form a monophyletic clade within the tribe Galegeae and Oxytropis is sister group to the Coluteoid clade. The results of this study may helpful in elucidating the chloroplast genome structure, understanding the evolutionary dynamics at genus Astragalus and IRLC levels and investigating the phylogenetic relationships. Moreover, the newly plastid genomes sequenced have been increased the plastome data resources on Astragalus that can be useful in further phylogenomic studies.
Collapse
Affiliation(s)
- Mahtab Moghaddam
- Department of Plant Biology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Martin F Wojciechowski
- School of Life Science, Arizona State University, Tempe, Arizona, United States of America
| | - Shahrokh Kazempour-Osaloo
- Department of Plant Biology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
40
|
Darshetkar AM, Pable AA, Nadaf AB, Barvkar VT. Understanding parasitism in Loranthaceae: Insights from plastome and mitogenome of Helicanthes elastica. Gene 2023; 861:147238. [PMID: 36736502 DOI: 10.1016/j.gene.2023.147238] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/13/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023]
Abstract
Loranthaceae is the largest family of the order Santalales and includes root and stem hemiparasites. The parasites are known to exhibit reductions in the genomic features as well as relaxed or intensified selection shifts. In this study, we report plastome and mitogenome sequence of Helicanthes elastica (subtribe Amyeminae, tribe Lorantheae), an endemic, monotypic genus of Western Ghats, India growing on remarkably diverse host range. The length of plastome sequence was 1,28,805 bp while that of mitogenome was 1,65,273 bp. This is the smallest mitogenome from Loranthaceae reported till date. The plastome of Helicanthes exhibited loss of ndh genes (ψndhB), ψinfA, rps15, rps16, rpl32, trnK-UUU, trnG-UCC, trnV-UAC and trnA-UGC while mitogenome exhibited pseudogenized cox2, nad1 and nad4 genes. The comparative study of Loranthaceae plastomes revealed that the pseudogenization or loss of genes was not specific to any genus or tribe and variation was noted in the number of introns of clpP gene in the family. Several photosynthetic genes have undergone relaxed selection supporting lower photosynthetic rates in parasitic plants while some respiratory genes exhibited intensified selection supporting the idea of host-parasite arm race in Loranthaceae. The plastome gene content was found conserved in root hemiparasites compared to stem hemiparasites. The atp1 gene of mitogenome was chimeric and part of it exhibited similarities with Lamiales members. The phylogenetic analysis based on plastid genes placed Helicanthes sister to the members of subtribe Dendrophthoinae.
Collapse
Affiliation(s)
| | - Anupama A Pable
- Department of Microbiology, Savitribai Phule Pune University, Pune 411007, India.
| | | | - Vitthal T Barvkar
- Department of Botany, Savitribai Phule Pune University, Pune 411007, India.
| |
Collapse
|
41
|
Peng C, Guo XL, Zhou SD, He XJ. Backbone phylogeny and adaptive evolution of Pleurospermum s. l.: New insights from phylogenomic analyses of complete plastome data. FRONTIERS IN PLANT SCIENCE 2023; 14:1148303. [PMID: 37063181 PMCID: PMC10101341 DOI: 10.3389/fpls.2023.1148303] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
Pleurospermum is a taxonomically challenging taxon of Apiaceae, as its circumscription and composition remain controversial for morphological similarities with several related genera, leading to a dispute between Pleurospermum in the broad sense and strict sense. While evidence from previous molecular studies recognized plural branching lineages within the Pleurospermum s. l., it did not support the latest delimitation of Pleurospermum s. str. by only two closely related northern species. So far, no proper delimitation for Pleurospermum has come up, and many of the plural taxa in Pleurospermum s. l. remain unresolved, which may be due to poor phylogenetic resolution yielded barely from ITS sequences. Herein, we newly assembled 40 complete plastomes from 36 species of Pleurospermum s. l. and related genera, 34 of which were first reported and generated a well-resolved backbone phylogeny in a framework of the subfamily Apioideae. From the phylogeny with greatly improved resolution, a total of six well-supported monophyletic lineages within Pleurospermum s. l. were recognized falling in different major clades of Apioideae. Combining morphological characteristics with phylogenetic inference, we suggested to re-delimit the Pleurospermum s. str. by introducing nine species mainly from the Himalayan regions and proposed its boundary features; the remaining species were suggested to be excluded from Pleurospermum to incorporate into their more related taxa being revealed. On this basis, the plastome comparison revealed not only the high conservatism but also the mild differences among lineages in plastome structure and gene evolution. Overall, our study provided a backbone phylogeny essential for further studies of the taxonomically difficult taxa within Pleurospermum s. l.
Collapse
Affiliation(s)
| | | | | | - Xing-Jin He
- *Correspondence: Xing-Jin He, ; Song-Dong Zhou,
| |
Collapse
|
42
|
Sheng W, Deng J, Wang C, Kuang Q. The garden asparagus ( Asparagus officinalis L.) mitochondrial genome revealed rich sequence variation throughout whole sequencing data. FRONTIERS IN PLANT SCIENCE 2023; 14:1140043. [PMID: 37051082 PMCID: PMC10084930 DOI: 10.3389/fpls.2023.1140043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 03/08/2023] [Indexed: 06/19/2023]
Abstract
Garden asparagus (Asparagus officinalis L.) is a horticultural crop with high nutritional and medical value, considered an ideal plant for sex determination research among many dioecious plants, whose genomic information can support genetic analysis and breeding programs. In this research, the entire mitochondrial genome of A. officinalis was sequenced, annotated and assembled using a mixed Illumina and PacBio data. The garden asparagus circular mitochondrial genome measures 492,062 bp with a GC value of 45.9%. Thirty-six protein-coding genes, 17 tRNA and 6 rRNA genes were annotated, among which 8 protein-coding genes contained 16 introns. In addition, 254 SSRs with 10 complete tandem repeats and 293 non-tandem repeats were identified. It was found that the codons of edited sites located in the amino acids showed a leucine-formation trend, and RNA editing sites mainly caused the mutual transformation of amino acids with the same properties. Furthermore, 72 sequence fragments accounting for 20,240 bp, presentating 4.11% of the whole mitochondrial genome, were observed to migrate from chloroplast to mitochondrial genome of A. officinalis. The phylogenetic analysis showed that the closest genetic relationship between A. officinalis with onion (Allium cepa) inside the Liliaceae family. Our results demonstrated that high percentage of protein-coding genes had evolutionary conservative properties, with Ka/Ks values less than 1. Therefore, this study provides a high-quality garden asparagus mitochondrial genome, useful to promote better understanding of gene exchange between organelle genomes.
Collapse
Affiliation(s)
- Wentao Sheng
- Department of Biological Technology, Nanchang Normal University, Nanchang, Jiangxi, China
| | - Jianlan Deng
- School of Foreign Language, Nanchang Normal University, Nanchang, Jiangxi, China
| | - Chao Wang
- Department of Biological Technology, Nanchang Normal University, Nanchang, Jiangxi, China
| | - Quan Kuang
- Department of Biological Technology, Nanchang Normal University, Nanchang, Jiangxi, China
| |
Collapse
|
43
|
Du S, Hu X, Guo Y, Wang S, Yang X, Wu Z, Huang Y. A comparative plastomic analysis of Ziziphus jujuba var. spinosa (Bunge) Hu ex H. F. Chow and implication of the origin of Chinese jujube. AOB PLANTS 2023; 15:plad006. [PMID: 37025103 PMCID: PMC10071050 DOI: 10.1093/aobpla/plad006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 02/17/2023] [Indexed: 06/19/2023]
Abstract
Comparative plastomics can be used to explicitly dissect various types of plastome variation. In the present study, the plastome variation pattern of Ziziphus jujuba var. spinosa (also called sour jujube) and its phylogenomic relationship with Chinese jujube were investigated. Plastomes of 21 sour jujube individuals were sequenced and assembled. The length of the sour jujube plastomes ranged between 159399 and 161279 bp. The plastomes exhibited collinearity of structure, gene order and content. The most divergent regions were located in the intergenic spacers, such as trnR-UCU-atpA and psbZ-trnG-UCC. Sliding window analysis demonstrated that the sequence variation among the sour jujube plastomes was relatively low. Sixty-two to 76 SSRs with 4 motif types were identified in the sour jujube plastomes with a predominant motif type of A/T. Three protein-coding genes exhibited higher nonsynonymous/synonymous substitution ratios, indicating that these genes may undergo positive selection. A total of 80 SNPs were detected and 1266 potential RNA editing sites of 23 protein-coding genes were predicted. In the phylogenomic tree constructed, sour jujube has a sister relationship to Chinese jujube, which indicates that Chinese jujube may have originated or been domesticated from sour jujube. The present study explicitly investigated the individual-level plastome variation of sour jujube and provides potential valuable molecular markers for future genetic-related study of this lineage.
Collapse
Affiliation(s)
- Shuhui Du
- College of Forestry, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Xiaoyan Hu
- College of Food Science and Technology, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Yuanting Guo
- College of Forestry, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Shengji Wang
- College of Forestry, Shanxi Agricultural University, Taigu, Shanxi, China
| | | | - Zhenzhen Wu
- Taian Dushihuaxiang Agricultural Technology Co., Ltd, Taian, Shandong, China
| | - Yuyin Huang
- Shandong Huinongtianxia Science and Technology Information Consulting Co., Ltd, Taian, Shandong, China
| |
Collapse
|
44
|
Wanichthanarak K, Nookaew I, Pasookhush P, Wongsurawat T, Jenjaroenpun P, Leeratsuwan N, Wattanachaisaereekul S, Visessanguan W, Sirivatanauksorn Y, Nuntasaen N, Kuhakarn C, Reutrakul V, Ajawatanawong P, Khoomrung S. Revisiting chloroplast genomic landscape and annotation towards comparative chloroplast genomes of Rhamnaceae. BMC PLANT BIOLOGY 2023; 23:59. [PMID: 36707785 PMCID: PMC9883906 DOI: 10.1186/s12870-023-04074-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Massive parallel sequencing technologies have enabled the elucidation of plant phylogenetic relationships from chloroplast genomes at a high pace. These include members of the family Rhamnaceae. The current Rhamnaceae phylogenetic tree is from 13 out of 24 Rhamnaceae chloroplast genomes, and only one chloroplast genome of the genus Ventilago is available. Hence, the phylogenetic relationships in Rhamnaceae remain incomplete, and more representative species are needed. RESULTS The complete chloroplast genome of Ventilago harmandiana Pierre was outlined using a hybrid assembly of long- and short-read technologies. The accuracy and validity of the final genome were confirmed with PCR amplifications and investigation of coverage depth. Sanger sequencing was used to correct for differences in lengths and nucleotide bases between inverted repeats because of the homopolymers. The phylogenetic trees reconstructed using prevalent methods for phylogenetic inference were topologically similar. The clustering based on codon usage was congruent with the molecular phylogenetic tree. The groups of genera in each tribe were in accordance with tribal classification based on molecular markers. We resolved the phylogenetic relationships among six Hovenia species, three Rhamnus species, and two Ventilago species. Our reconstructed tree provides the most complete and reliable low-level taxonomy to date for the family Rhamnaceae. Similar to other higher plants, the RNA editing mostly resulted in converting serine to leucine. Besides, most genes were subjected to purifying selection. Annotation anomalies, including indel calling errors, unaligned open reading frames of the same gene, inconsistent prediction of intergenic regions, and misannotated genes, were identified in the published chloroplast genomes used in this study. These could be a result of the usual imperfections in computational tools, and/or existing errors in reference genomes. Importantly, these are points of concern with regards to utilizing published chloroplast genomes for comparative genomic analysis. CONCLUSIONS In summary, we successfully demonstrated the use of comprehensive genomic data, including DNA and amino acid sequences, to build a reliable and high-resolution phylogenetic tree for the family Rhamnaceae. Additionally, our study indicates that the revision of genome annotation before comparative genomic analyses is necessary to prevent the propagation of errors and complications in downstream analysis and interpretation.
Collapse
Affiliation(s)
- Kwanjeera Wanichthanarak
- Metabolomics and Systems Biology, Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Intawat Nookaew
- Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Phongthana Pasookhush
- Division of Bioinformatics and Data Management for Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Thidathip Wongsurawat
- Division of Bioinformatics and Data Management for Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Piroon Jenjaroenpun
- Division of Bioinformatics and Data Management for Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Namkhang Leeratsuwan
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | | | - Wonnop Visessanguan
- Functional Ingredients and Food Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC), Phathumthani, 12120, Thailand
| | - Yongyut Sirivatanauksorn
- Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Narong Nuntasaen
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Department of National Parks, Wildlife and Plant Conservation, Ministry of Natural Resources and Environment, Bangkok, 10900, Thailand
| | - Chutima Kuhakarn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Vichai Reutrakul
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Pravech Ajawatanawong
- Division of Bioinformatics and Data Management for Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.
| | - Sakda Khoomrung
- Metabolomics and Systems Biology, Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.
- Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
45
|
Liu D, Qu K, Yuan Y, Zhao Z, Chen Y, Han B, Li W, El-Kassaby YA, Yin Y, Xie X, Tong B, Liu H. Complete sequence and comparative analysis of the mitochondrial genome of the rare and endangered Clematis acerifolia, the first clematis mitogenome to provide new insights into the phylogenetic evolutionary status of the genus. Front Genet 2023; 13:1050040. [PMID: 36761694 PMCID: PMC9907779 DOI: 10.3389/fgene.2022.1050040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/05/2022] [Indexed: 01/05/2023] Open
Abstract
Clematis is one of the large worldwide genera of the Ranunculaceae Juss. Family, with high ornamental and medicinal value. China is the modern distribution centre of Clematis with abundant natural populations. Due to the complexity and high morphological diversity of Clematis, the genus is difficult to classify systematically, and in particular, the phylogenetic position of the endangered Clematis acerifolia is highly controversial. The use of the mitochondrial complete genome is a powerful molecular method that is frequently used for inferring plants phylogenies. However, studies on Clematis mitogenome are rare, thus limiting our full understanding of its phylogeny and genome evolution. Here, we sequenced and annotated the C. acerifolia mt genome using Illumina short- and Nanopore long-reads, characterized the species first complete mitogenome, and performed a comparative phylogenetic analysis with its close relatives. The total length of the C. acerifolia mitogenome is 698,247 bp and the main structure is multi-branched (linear molecule 1 and circular molecule 2). We annotated 55 genes, including 35 protein-coding, 17 tRNA, and 3 rRNA genes. The C. acerifolia mitogenome has extremely unconserved structurally, with extensive sequence transfer between the chloroplast and mitochondrial organelles, sequence repeats, and RNA editing. The phylogenetic position of C. acerifolia was determined by constructing the species mitogenome with 24 angiosperms. Further, our C. acerifolia mitogenome characteristics investigation included GC contents, codon usage, repeats and synteny analysis. Overall, our results are expected to provide fundamental information for C. acerifolia mitogenome evolution and confirm the validity of mitochondrial analysis in determining the phylogenetic positioning of Clematis plants.
Collapse
Affiliation(s)
- Dan Liu
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan, China,State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Kai Qu
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yangchen Yuan
- College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding, China,Hebei Hongya Mountain State-Owned Forest Farm, Baoding, China
| | - Zhiheng Zhao
- Guangxi Forestry Research Institute, Guangxi Key Laboratory of Special Non-wood Forest Cultivation &; Utilization, Nanning, China
| | - Ying Chen
- Forestry Protection and Development Service Center of Shandong Province, Jinan, China
| | - Biao Han
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan, China
| | - Wei Li
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yousry A. El-Kassaby
- Department of Forest and Conservation Sciences, The University of British Columbia, Vancouver, BC, Canada
| | | | - Xiaoman Xie
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan, China,*Correspondence: Xiaoman Xie, ; Boqiang Tong, ; Hongshan Liu,
| | - Boqiang Tong
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan, China,*Correspondence: Xiaoman Xie, ; Boqiang Tong, ; Hongshan Liu,
| | - Hongshan Liu
- Hebei Hongya Mountain State-Owned Forest Farm, Baoding, China,*Correspondence: Xiaoman Xie, ; Boqiang Tong, ; Hongshan Liu,
| |
Collapse
|
46
|
Wang Z, Cao L, Liu J, He X. Comparative analysis of the complete plastomes of nine Pimpinella species (Apiaceae) from China. PeerJ 2023; 11:e14773. [PMID: 36874977 PMCID: PMC9983424 DOI: 10.7717/peerj.14773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 01/03/2023] [Indexed: 03/06/2023] Open
Abstract
Pimpinella L. is one of the large genera in the Apiaceae family. In a previous study, the molecular phylogenies of Pimpinella were explored using nuclear ribosomal DNA internal transcribed spacers (ITS) and several chloroplast DNA segments. There have been few studies conducted on chloroplast genomes in Pimpinella, which has limited systematic understanding of this genus. We assembled the complete chloroplast genomes of nine Pimpinella species from China using data generated from next generation sequencing (NGS). The chloroplast (cp) DNA used were standard double-stranded molecules, ranging from 146,432 base pairs (bp) (P. valleculosa) to 165,666 bp (P. purpurea) in length. The circular DNA contained a large single-copy (LSC) region, small single-copy (SSC) region, and pair of inverted repeats (IRs). The cp DNA of the nine species contained 82-93 protein-coding genes, 36-37 transfer RNA (tRNA) genes, and eight ribosomal RNA (rRNA) genes, respectively. Four species (P. smithii, P. valleculosa, P. rhomboidea, and P. purpurea) exhibited striking distinctions in genome size, gene number, IR boundary, and sequence identity. We confirmed the non-monophyly of the Pimpinella species on the basis of the nine newly identified plastomes. The distant relationship between the above-mentioned four Pimpinella species and Pimpinelleae was indicated with high support values. Our study provides a foundation for future in-depth phylogenetic and taxonomic studies of genus Pimpinella.
Collapse
Affiliation(s)
- Zhixin Wang
- Hunan Key Laboratory for Conservation and Utilization of Biological Resources in the Nanyue Mountainous Region, College of Life Sciences and Environment, Hengyang Normal University, Hengyang, Hunan, China
| | - Limin Cao
- Hunan Key Laboratory for Conservation and Utilization of Biological Resources in the Nanyue Mountainous Region, College of Life Sciences and Environment, Hengyang Normal University, Hengyang, Hunan, China
| | - Jianhui Liu
- Hunan Key Laboratory for Conservation and Utilization of Biological Resources in the Nanyue Mountainous Region, College of Life Sciences and Environment, Hengyang Normal University, Hengyang, Hunan, China
| | - Xingjin He
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
47
|
Zhou X, Sheng S, Xu Q, Lu R, Chen C, Peng H, Feng C. Structure and features of the complete chloroplast genome of Salix triandroides (Salicaceae). BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2021.2023326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Xiaoxing Zhou
- Academy of Agricultural Planning and Engineering, Ministry of Agriculture and Rural Affairs, Beijing, PR China
- Forestry Institute of Yueyang City, Yueyang,PR China
| | - Shihong Sheng
- Forestry Institute of Yueyang City, Yueyang,PR China
| | - Qi Xu
- Forestry Institute of Yueyang City, Yueyang,PR China
| | - Rihui Lu
- Forestry Institute of Yueyang City, Yueyang,PR China
- College of Forestry, Central South University of Forestry and Technology, Changsha, PR China
| | - Chuan Chen
- Forestry Institute of Yueyang City, Yueyang,PR China
- College of Forestry, Central South University of Forestry and Technology, Changsha, PR China
| | - Huiming Peng
- Academy of Agricultural Planning and Engineering, Ministry of Agriculture and Rural Affairs, Beijing, PR China
| | - Chen Feng
- Academy of Agricultural Planning and Engineering, Ministry of Agriculture and Rural Affairs, Beijing, PR China
- Conservation Genetics Group, Lushan Botanical Garden, Chinese Academy of Science, Jiujiang, PR China
| |
Collapse
|
48
|
You C, Cui T, Zhang C, Zang S, Su Y, Que Y. Assembly of the Complete Mitochondrial Genome of Gelsemium elegans Revealed the Existence of Homologous Conformations Generated by a Repeat Mediated Recombination. Int J Mol Sci 2022; 24:ijms24010527. [PMID: 36613970 PMCID: PMC9820418 DOI: 10.3390/ijms24010527] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/21/2022] [Accepted: 12/21/2022] [Indexed: 12/30/2022] Open
Abstract
Gelsemium elegans (G. elegans) is a Chinese medicinal plant with substantial economic and feeding values. There is a lack of detailed studies on the mitochondrial genome of G. elegans. In this study, the mitochondrial genome of G. elegans was sequenced and assembled, and its substructure was investigated. The mitochondrial genome of G. elegans is represented by two circular chromosomes of 406,009 bp in length with 33 annotated protein-coding genes, 15 tRNA genes, and three rRNA genes. We detected 145 pairs of repeats and found that four pairs of repeats could mediate the homologous recombination into one major conformation and five minor conformations, and the presence of conformations was verified by PCR amplification and Sanger sequencing. A total of 124 SSRs were identified in the G. elegans mitochondrial genome. The homologous segments between the chloroplast and mitochondrial genomes accounted for 5.85% of the mitochondrial genome. We also predicted 477 RNA potential editing sites and found that the nad4 gene was edited 38 times, which was the most frequent occurrence. Taken together, the mitochondrial genome of G. elegans was assembled and annotated. We gained a more comprehensive understanding on the genome of this medicinal plant, which is vital for its effective utilization and genetic improvement, especially for cytoplasmic male sterility breeding and evolution analysis in G. elegans.
Collapse
Affiliation(s)
- Chuihuai You
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Tianzhen Cui
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chang Zhang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shoujian Zang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yachun Su
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence: (Y.S.); (Y.Q.); Tel.: +86-591-8385-2547 (Y.S. & Y.Q.)
| | - Youxiong Que
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence: (Y.S.); (Y.Q.); Tel.: +86-591-8385-2547 (Y.S. & Y.Q.)
| |
Collapse
|
49
|
Liu C, Deng J, Zhou R, Song B, Zhou S, He X. Plastid Phylogenomics Provide Evidence to Accept Two New Members of Ligusticopsis (Apiaceae, Angiosperms). Int J Mol Sci 2022; 24:ijms24010382. [PMID: 36613825 PMCID: PMC9820081 DOI: 10.3390/ijms24010382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Peucedanum nanum and P. violaceum are recognized as members of the genus Peucedanum because of their dorsally compressed mericarps with slightly prominent dorsal ribs and narrowly winged lateral ribs. However, these species are not similar to other Peucedanum taxa but resemble Ligusticopsis in overall morphology. To check the taxonomic positions of P. nanum and P. violaceum, we sequenced their complete plastid genome (plastome) sequences and, together with eleven previously published Ligusticopsis plastomes, performed comprehensively comparative analyses. The thirteen plastomes were highly conserved and similar in structure, size, GC content, gene content and order, IR borders, and the patterns of codon bias, RNA editing, and simple sequence repeats (SSRs). Nevertheless, twelve mutation hotspots (matK, ndhC, rps15, rps8, ycf2, ccsA-ndhD, petN-psbM, psbA-trnK, rps2-rpoC2, rps4-trnT, trnH-psbA, and ycf2-trnL) were selected. Moreover, both the phylogenetic analyses based on plastomes and on nuclear ribosomal DNA internal transcribed spacer (ITS) sequences robustly supported that P. nanum and P. violaceum nested in Ligusticopsis, and this was further confirmed by the morphological evidence. Hence, transferring P. nanum and P. violaceum into Ligusticopsis genus is reasonable and convincing, and two new combinations are presented.
Collapse
Affiliation(s)
| | | | | | | | - Songdong Zhou
- Correspondence: (S.Z.); (X.H.); Tel.: +028-85415006 (X.H.)
| | - Xingjin He
- Correspondence: (S.Z.); (X.H.); Tel.: +028-85415006 (X.H.)
| |
Collapse
|
50
|
Song B, Liu C, Xie D, Xiao Y, Tian R, Li Z, Zhou S, He X. Plastid Phylogenomic Analyses Reveal the Taxonomic Position of Peucedanum franchetii. PLANTS (BASEL, SWITZERLAND) 2022; 12:97. [PMID: 36616226 PMCID: PMC9824613 DOI: 10.3390/plants12010097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Peucedanum franchetii is a famous folk medicinal plant in China. However, the taxonomy of the P. franchetii has not been sufficiently resolved. Due to similar morphological features between P. franchetii and Ligusticopsis members, the World Flora Online (WFO) Plant List suggested that this species transformed into the genus Ligusticopsis and merged with Ligusticopsis likiangensis. However, both species are obviously diverse in leaf shape, bracts, and bracteoles. To check the taxonomic position of P. franchetii, we newly sequenced and assembled the plastome of P. franchetii and compared it with nine other plastomes of the genus Ligusticopsis. Ten plastomes were highly conserved and similar in gene order, codon bias, RNA editing sites, IR borders, and SSRs. Nevertheless, 10 mutation hotspot regions (infA, rps8, matK, ndhF, rps15, psbA-trnH, rps2-rpoC2, psbA-trnK, ycf2-trnL, and ccsA-ndhD) were still detected. In addition, both phylogenetic analyses based on plastome data and ITS sequences robustly supported that P. franchetii was not clustered with members of Peucedanum but nested in Ligusticopsis. P. franchetii was sister to L. likiangensis in the ITS topology but clustered with L. capillacea in the plastome tree. These findings implied that P. franchetii should be transferred to genus Ligusticopsis and not merged with L. likiangensis, but as an independent species, which was further verified by morphological evidences. Therefore, transferring P. franchetii under the genus Ligusticopsis as an independent species was reasonable, and a new combination was presented.
Collapse
|