1
|
Guo J, Sun D, Li K, Dai Q, Geng S, Yang Y, Mo M, Zhu Z, Shao C, Wang W, Song J, Yang C, Zhang H. Metabolic Labeling and Digital Microfluidic Single-Cell Sequencing for Single Bacterial Genotypic-Phenotypic Analysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402177. [PMID: 39077951 DOI: 10.1002/smll.202402177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/23/2024] [Indexed: 07/31/2024]
Abstract
Accurate assessment of phenotypic and genotypic characteristics of bacteria can facilitate comprehensive cataloguing of all the resistance factors for better understanding of antibiotic resistance. However, current methods primarily focus on individual phenotypic or genotypic profiles across different colonies. Here, a Digital microfluidic-based automated assay for whole-genome sequencing of single-antibiotic-resistant bacteria is reported, enabling Genotypic and Phenotypic Analysis of antibiotic-resistant strains (Digital-GPA). Digital-GPA can efficiently isolate and sequence antibiotic-resistant bacteria illuminated by fluorescent D-amino acid (FDAA)-labeling, producing high-quality single-cell amplified genomes (SAGs). This enables identifications of both minor and major mutations, pinpointing substrains with distinctive resistance mechanisms. Digital-GPA can directly process clinical samples to detect and sequence resistant pathogens without bacterial culture, subsequently provide genetic profiles of antibiotic susceptibility, promising to expedite the analysis of hard-to-culture or slow-growing bacteria. Overall, Digital-GPA opens a new avenue for antibiotic resistance analysis by providing accurate and comprehensive molecular profiles of antibiotic resistance at single-cell resolution.
Collapse
Affiliation(s)
- Junnan Guo
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, School of Life Sciences, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, 361005, China
| | - Di Sun
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Kunjie Li
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, School of Life Sciences, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, 361005, China
| | - Qi Dai
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, School of Life Sciences, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, 361005, China
| | - Shichen Geng
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, School of Life Sciences, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, 361005, China
| | - Yuanyuan Yang
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, School of Life Sciences, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, 361005, China
| | - Mengwu Mo
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, School of Life Sciences, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, 361005, China
| | - Zhi Zhu
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, School of Life Sciences, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, 361005, China
| | - Chen Shao
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, School of Life Sciences, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, 361005, China
| | - Wei Wang
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jia Song
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Chaoyong Yang
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, School of Life Sciences, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, 361005, China
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Huimin Zhang
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, School of Life Sciences, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, 361005, China
| |
Collapse
|
2
|
Xu Q, Wang Z, Kong Q, Wang X, Huang A, Li C, Liu X. Evaluating the effects of whole genome amplification strategies for amplifying trace DNA using capillary electrophoresis and massive parallel sequencing. Forensic Sci Int Genet 2021; 56:102599. [PMID: 34656831 DOI: 10.1016/j.fsigen.2021.102599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/20/2021] [Accepted: 09/24/2021] [Indexed: 11/04/2022]
Abstract
To draw robust conclusions when trace DNA samples are detected in complex cases, it is essential to successfully recover and genotype short tandem repeats (STRs) from trace DNA. However, obtaining complete STR profiles by the conventional polymerase chain reaction-capillary electrophoresis (PCR-CE) method is generally difficult as trace DNA is often less than 100 pg. Previous studies have proven that through whole-genome amplification (WGA), the yield of DNA from trace DNA samples could be improved. In this study, we used two WGA kits, namely, REPLI-g® Single Cell kit and MALBAC® Single Cell DNA Quick-Amp Kit (hereafter referred to as REPLI and MALBAC), to amplify DNA samples with a series of dilutions (from 5.00 ng/μL to 0.391 pg/μL). Typing of STR markers in samples with and without WGA were then performed on a CE platform by the application of Goldeneye® DNA ID System 20 A kit, as well as directly calling sequences from massive parallel sequencing (MPS) for WGA samples with 1.00 ng, 125 pg and 25.0 pg as DNA inputs. Quantification results demonstrated that the yield of samples with WGA could reach the microgram level. The amplification fold was at least > 2000 and > 200 for REPLI and MALBAC, respectively. CE results showed that the number of correctly called loci was improved for trace DNA after WGA when the DNA inputs were lower than 25.0 pg for REPLI and 6.25 pg for MALBAC, respectively. WGA remarkably improved the percentage of called loci with DNA inputs lower than 50.0 pg, although poor performance in repeatability was observed. MPS results suggested that the correctly called loci calculated by MPS reads were mostly more than those calculated by CE, particularly for those of short length, implying MPS of samples after WGA is worth testing in the future. In conclusion, WGA has the potential usability for forensic trace DNA analysis at the single-cell level with good fidelity, although its repeatability requires further improvement.
Collapse
Affiliation(s)
- Qiannan Xu
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, PR China; Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Ministry of Justice, Shanghai 200063, PR China
| | - Ziwei Wang
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Ministry of Justice, Shanghai 200063, PR China; Department of Forensic Science, Medical School of Soochow University, Suzhou 215123, PR China
| | - Qianqian Kong
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Ministry of Justice, Shanghai 200063, PR China; School of Basic Medicine, Inner Mongolia Medical University, Hohhot 010030, PR China
| | - Xiaoxiao Wang
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Ministry of Justice, Shanghai 200063, PR China; School of Forensic Medicine, Shanxi Medical University, Taiyuan 030001, PR China
| | - Ao Huang
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Ministry of Justice, Shanghai 200063, PR China; Department of Forensic Science, Medical School of Soochow University, Suzhou 215123, PR China
| | - Chengtao Li
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, PR China; Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Ministry of Justice, Shanghai 200063, PR China.
| | - Xiling Liu
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Ministry of Justice, Shanghai 200063, PR China.
| |
Collapse
|
3
|
Xu T, Gong Y, Su X, Zhu P, Dai J, Xu J, Ma B. Phenome-Genome Profiling of Single Bacterial Cell by Raman-Activated Gravity-Driven Encapsulation and Sequencing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2001172. [PMID: 32519499 DOI: 10.1002/smll.202001172] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/01/2020] [Indexed: 06/11/2023]
Abstract
The small size and low DNA amount of bacterial cells have hindered establishing phenome-genome links in a precisely indexed, one-cell-per-reaction manner. Here, Raman-Activated Gravity-driven single-cell Encapsulation and Sequencing (RAGE-Seq) is presented, where individual cells are phenotypically screened via single-cell Raman spectra (SCRS) in an aquatic, vitality-preserving environment, then the cell with targeted SCRS is precisely packaged in a picoliter microdroplet and readily exported in a precisely indexed, "one-cell-one-tube" manner. Such integration of microdroplet encapsulation to Raman-activated sorting ensures high-coverage one-cell genome sequencing or cultivation that is directly linked to metabolic phenotype. For clinical Escherichia coli isolates, genome assemblies derived from precisely one cell via RAGE-Seq consistently reach >95% coverage. Moreover, directly from a urine sample of urogenital tract infection, metabolic-activity-based antimicrobial susceptibility phenotypes and genome sequence of 99.5% coverage are obtained simultaneously from precisely one cell. This single-cell global mutation map corroborates resistance phenotype and genotype, and unveils epidemiological features with high specificity and sensitivity. The ability to profile and correlate bacterial metabolic phenome and high-quality genome sequences at one-cell resolution suggests broad application of RAGE-Seq.
Collapse
Affiliation(s)
- Teng Xu
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, 266071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanhai Gong
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, 266071, China
| | - Xiaolu Su
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, 266071, China
| | - Pengfei Zhu
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, 266071, China
| | - Jing Dai
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, 266071, China
| | - Jian Xu
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, 266071, China
| | - Bo Ma
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, 266071, China
| |
Collapse
|
4
|
Riethdorf S, Hildebrandt L, Heinzerling L, Heitzer E, Fischer N, Bergmann S, Mauermann O, Waldispühl-Geigl J, Coith C, Schön G, Peine S, Schuler G, Speicher MR, Moll I, Pantel K. Detection and Characterization of Circulating Tumor Cells in Patients with Merkel Cell Carcinoma. Clin Chem 2019; 65:462-472. [PMID: 30626636 DOI: 10.1373/clinchem.2018.297028] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 11/28/2018] [Indexed: 01/23/2023]
Abstract
BACKGROUND Merkel cell carcinoma (MCC) is a rare, aggressive skin cancer with increasing incidence and high mortality rates. MCC has recently become the subject of immune checkpoint therapy, but reliable biomarkers for estimating prognosis, risk stratification, and prediction of response are missing. METHODS Circulating tumor cells (CTCs) were detected in peripheral blood from patients with MCC by use of the CellSearch® system. Moreover, CTCs of selected cases were characterized for Merkel cell polyomavirus (MCPyV), chromosomal aberrations, and programed death ligand 1 (PD-L1) production. RESULTS Fifty-one patients were tested at first blood draw (baseline), and 16 patients had 2 or 3 consecutive measurements to detect CTCs. At baseline, ≥1 CTC (range, 1-790), >1, or ≥5 CTCs/7.5 mL were detected in 21 (41%), 17 (33%), and 6 (12%) patients, respectively. After a median follow-up of 21.1 months for 50 patients, detection of CTCs correlated with overall survival (≥1, P = 0.030; >1, P < 0.020; and ≥5 CTCs/7.5 mL, P < 0.0001). In multivariate Cox regression analysis, the detection of ≥5 CTCs/7.5 mL adjusted to age and sex compared to that of <5 was associated with a reduced overall survival (P = 0.001, hazard ratio = 17.8; 95% CI, 4.0-93.0). MCPyV DNA and genomic aberrations frequently found in MCC tissues could also be detected in single CTCs. Analyzed CTCs were PD-L1 negative or only weakly positive. CONCLUSIONS The presence of CTCs is a prognostic factor of impaired clinical outcome, with the potential to monitor the progression of the disease in real time. Molecular characterization of CTCs might provide new insights into the biology of MCC.
Collapse
Affiliation(s)
- Sabine Riethdorf
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany;
| | - Lina Hildebrandt
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lucie Heinzerling
- Department of Dermatology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Ellen Heitzer
- Institute of Human Genetics, Diagnostic and Research Center for Molecular BioMedicine, University of Graz, Graz, Austria
| | - Nicole Fischer
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sonja Bergmann
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Oliver Mauermann
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julie Waldispühl-Geigl
- Institute of Human Genetics, Diagnostic and Research Center for Molecular BioMedicine, University of Graz, Graz, Austria
| | - Cornelia Coith
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gerhard Schön
- Institute of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sven Peine
- Institute of Transfusion Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gerold Schuler
- Department of Dermatology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Michael R Speicher
- Institute of Human Genetics, Diagnostic and Research Center for Molecular BioMedicine, University of Graz, Graz, Austria
| | - Ingrid Moll
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Klaus Pantel
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
5
|
Sho S, Court CM, Winograd P, Lee S, Hou S, Graeber TG, Tseng HR, Tomlinson JS. Precision oncology using a limited number of cells: optimization of whole genome amplification products for sequencing applications. BMC Cancer 2017; 17:457. [PMID: 28666423 PMCID: PMC5493892 DOI: 10.1186/s12885-017-3447-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 06/26/2017] [Indexed: 12/13/2022] Open
Abstract
Background Sequencing analysis of circulating tumor cells (CTCs) enables “liquid biopsy” to guide precision oncology strategies. However, this requires low-template whole genome amplification (WGA) that is prone to errors and biases from uneven amplifications. Currently, quality control (QC) methods for WGA products, as well as the number of CTCs needed for reliable downstream sequencing, remain poorly defined. We sought to define strategies for selecting and generating optimal WGA products from low-template input as it relates to their potential applications in precision oncology strategies. Methods Single pancreatic cancer cells (HPAF-II) were isolated using laser microdissection. WGA was performed using multiple displacement amplification (MDA), multiple annealing and looping based amplification (MALBAC) and PicoPLEX. Quality of amplified DNA products were assessed using a multiplex/RT-qPCR based method that evaluates for 8-cancer related genes and QC-scores were assigned. We utilized this scoring system to assess the impact of de novo modifications to the WGA protocol. WGA products were subjected to Sanger sequencing, array comparative genomic hybridization (aCGH) and next generation sequencing (NGS) to evaluate their performances in respective downstream analyses providing validation of the QC-score. Results Single-cell WGA products exhibited a significant sample-to-sample variability in amplified DNA quality as assessed by our 8-gene QC assay. Single-cell WGA products that passed the pre-analysis QC had lower amplification bias and improved aCGH/NGS performance metrics when compared to single-cell WGA products that failed the QC. Increasing the number of cellular input resulted in improved QC-scores overall, but a resultant WGA product that consistently passed the QC step required a starting cellular input of at least 20-cells. Our modified-WGA protocol effectively reduced this number, achieving reproducible high-quality WGA products from ≥5-cells as a starting template. A starting cellular input of 5 to 10-cells amplified using the modified-WGA achieved aCGH and NGS results that closely matched that of unamplified, batch genomic DNA. Conclusion The modified-WGA protocol coupled with the 8-gene QC serve as an effective strategy to enhance the quality of low-template WGA reactions. Furthermore, a threshold number of 5–10 cells are likely needed for a reliable WGA reaction and product with high fidelity to the original starting template. Electronic supplementary material The online version of this article (doi:10.1186/s12885-017-3447-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shonan Sho
- Department of Surgery, University of California Los Angeles, 10833 Le Conte Ave, California, Los Angeles, 90095, USA. .,Department of Surgery, Greater Los Angeles Veteran's Affairs Administration, 11301 Wilshire Blvd, California, Los Angeles, 90073, USA.
| | - Colin M Court
- Department of Surgery, University of California Los Angeles, 10833 Le Conte Ave, California, Los Angeles, 90095, USA.,Department of Surgery, Greater Los Angeles Veteran's Affairs Administration, 11301 Wilshire Blvd, California, Los Angeles, 90073, USA
| | - Paul Winograd
- Department of Surgery, University of California Los Angeles, 10833 Le Conte Ave, California, Los Angeles, 90095, USA.,Department of Surgery, Greater Los Angeles Veteran's Affairs Administration, 11301 Wilshire Blvd, California, Los Angeles, 90073, USA
| | - Sangjun Lee
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, 650 Charles E Young Dr S, California, Los Angeles, 90095, USA
| | - Shuang Hou
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, 650 Charles E Young Dr S, California, Los Angeles, 90095, USA
| | - Thomas G Graeber
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, 650 Charles E Young Dr S, California, Los Angeles, 90095, USA
| | - Hsian-Rong Tseng
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, 650 Charles E Young Dr S, California, Los Angeles, 90095, USA
| | - James S Tomlinson
- Department of Surgery, University of California Los Angeles, 10833 Le Conte Ave, California, Los Angeles, 90095, USA.,Department of Surgery, Greater Los Angeles Veteran's Affairs Administration, 11301 Wilshire Blvd, California, Los Angeles, 90073, USA.,UCLA Center for Pancreatic Diseases, University of California Los Angeles, 10833 Le Conte Ave., 72-215 CHS, California, Los Angeles, 90095, USA
| |
Collapse
|
6
|
Vermeesch JR, Voet T, Devriendt K. Prenatal and pre-implantation genetic diagnosis. Nat Rev Genet 2017; 17:643-56. [PMID: 27629932 DOI: 10.1038/nrg.2016.97] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The past decade has seen the development of technologies that have revolutionized prenatal genetic testing; that is, genetic testing from conception until birth. Genome-wide single-cell arrays and high-throughput sequencing analyses are dramatically increasing our ability to detect embryonic and fetal genetic lesions, and have substantially improved embryo selection for in vitro fertilization (IVF). Moreover, both invasive and non-invasive mutation scanning of the genome are helping to identify the genetic causes of prenatal developmental disorders. These advances are changing clinical practice and pose novel challenges for genetic counselling and prenatal care.
Collapse
Affiliation(s)
- Joris Robert Vermeesch
- Centre for Human Genetics, Department of Human Genetics, University of Leuven, 49 Herestraat, Leuven 3000, Belgium
| | - Thierry Voet
- Centre for Human Genetics, Department of Human Genetics, University of Leuven, 49 Herestraat, Leuven 3000, Belgium
| | - Koenraad Devriendt
- Centre for Human Genetics, Department of Human Genetics, University of Leuven, 49 Herestraat, Leuven 3000, Belgium
| |
Collapse
|
7
|
Hotspot Selective Preference of the Chimeric Sequences Formed in Multiple Displacement Amplification. Int J Mol Sci 2017; 18:ijms18030492. [PMID: 28245591 PMCID: PMC5372508 DOI: 10.3390/ijms18030492] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 02/16/2017] [Accepted: 02/20/2017] [Indexed: 01/01/2023] Open
Abstract
Multiple displacement amplification (MDA) is considered to be a conventional approach to comprehensive amplification from low input DNA. The chimeric reads generated in MDA lead to severe disruption in some studies, including those focusing on heterogeneity, structural variation, and genetic recombination. Meanwhile, the generation of by-products gives a new approach to gain insights into the reaction process of φ29 polymerase. Here, we analyzed 36.7 million chimeras and screened 196 billion chimeric hotspots in the human genome, as well as evaluating the hotspot selective preference of chimeras. No significant preference was captured in the distributions of chimeras and hotspots among chromosomes. Hotspots with overlaps for 12–13 nucleotides (nt) were most likely to be selected as templates in chimera generation. Meanwhile, a regularly selective preference was noticed in overlap GC content. The preferences in overlap length and GC content was shown to be pertinent to the sequence denaturation temperature, which pointed out the optimization direction for reducing chimeras. Distance preference between two segments of chimeras was 80–280 nt. The analysis is beneficial for reducing the chimeras in MDA, and the characterization of MDA chimeras is helpful in distinguishing MDA chimeras from chimeric sequences caused by disease.
Collapse
|
8
|
Normand E, Qdaisat S, Bi W, Shaw C, Van den Veyver I, Beaudet A, Breman A. Comparison of three whole genome amplification methods for detection of genomic aberrations in single cells. Prenat Diagn 2016; 36:823-30. [PMID: 27368744 DOI: 10.1002/pd.4866] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 05/31/2016] [Accepted: 06/23/2016] [Indexed: 01/22/2023]
Abstract
OBJECTIVE Detection of genomic copy number abnormalities in a single cell using array comparative genomic hybridization (CGH) offers a promising non-invasive alternative for prenatal diagnosis. Our objective was to compare three commercially available whole-genome amplification (WGA) kits for their capacity to produce high quality DNA from single cells that is suitable for both molecular genotyping and array CGH. METHODS We examined kit performance on unfixed, fixed and fixed/permeabilized lymphoblastoid cells. Molecular genotyping methods were used to evaluate the fidelity of amplified DNA for genomic profiling, while array CGH was used to assess copy number from single cells harboring trisomy 21, a DiGeorge syndrome deletion, a CMT1A duplication or a MECP2 duplication. RESULTS Molecular genotyping was achieved from single cells but performance varied between WGA kits. Furthermore, we consistently detected a dosage difference in sex chromosomes for gender mismatched hybridizations and for chromosome 21 in trisomy 21 cells. The 2.5 Mb DiGeorge syndrome deletion was also detected using all three WGA platforms, whereas the 1.3 Mb CMT1A and the 0.6 Mb MECP2 duplications were not consistently detected. CONCLUSION These data suggest that single cell molecular genotyping and copy number analysis can be accomplished when WGA conditions are optimized. © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Elizabeth Normand
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Sadeem Qdaisat
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Weimin Bi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Chad Shaw
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Ignatia Van den Veyver
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, USA
| | - Arthur Beaudet
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Amy Breman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
9
|
Heitzer E, Ulz P, Geigl JB, Speicher MR. Non-invasive detection of genome-wide somatic copy number alterations by liquid biopsies. Mol Oncol 2016; 10:494-502. [PMID: 26778171 PMCID: PMC5528970 DOI: 10.1016/j.molonc.2015.12.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 11/26/2015] [Accepted: 12/03/2015] [Indexed: 12/20/2022] Open
Abstract
Liquid biopsies, i.e. the analysis of circulating tumor cells (CTCs) or circulating tumor DNA (ctDNA), are evolving into promising clinical tools. Indeed, a plethora of liquid biopsy technologies to deduce non-invasively characteristics of the tumor genome from the peripheral blood have been developed over the last few years. For example, liquid biopsies have been used to assess the tumor burden, to monitor the evolution of tumor genomes, to unravel mechanisms of resistance, to establish the tumor heterogeneity, and for the identification of prognostic and predictive markers. In this review we focus on methods to establish genome-wide profiles of somatic copy number alterations (SCNAs) from plasma DNA and show how they provide novel insights into the biology of cancer and their impact on the management of patients.
Collapse
Affiliation(s)
- Ellen Heitzer
- Medical University of Graz, Institute of Human Genetics, Harrachgasse 21/8, A-8010 Graz, Austria.
| | - Peter Ulz
- Medical University of Graz, Institute of Human Genetics, Harrachgasse 21/8, A-8010 Graz, Austria.
| | - Jochen B Geigl
- Medical University of Graz, Institute of Human Genetics, Harrachgasse 21/8, A-8010 Graz, Austria.
| | - Michael R Speicher
- Medical University of Graz, Institute of Human Genetics, Harrachgasse 21/8, A-8010 Graz, Austria.
| |
Collapse
|
10
|
Ou J, Wang W, Feng T, Liao L, Meng Q, Zou Q, Ding J, Zheng A, Duan C, Li P, Liu Q, Lin C, Li H. Identification of small segmental translocations in patients with repeated implantation failure and recurrent miscarriage using next generation sequencing after in vitro fertilization/intracytoplasmic sperm injection. Mol Cytogenet 2015; 8:105. [PMID: 26719770 PMCID: PMC4696251 DOI: 10.1186/s13039-015-0207-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 12/18/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To develop a novel preimplantation genetic screening (PGS) test using next generation sequencing(NGS) as a alternative to current array comparative genomic hybridization (array CGH) method for detection of small segmental translocations in two patients with repeated implantation failure (RIF) and recurrent miscarriage (RM). Inconsistent results were resolved by validation with fluorescence in situ hybridization (FISH). CASE PRESENTATION One couple with normal cytogenetic and array CGH result suffered from implantation failure. Later NGS analysis showed 46,XY.ngs[GRCh37/hg19] 9p24.3-9p24.1(10,291-8,680,890×1),13q33.1-13q34(103,046,327-114,785,444×3). The other couple with normal cytogenetic and array CGH result also received NGS analysis. Due to the detected abnormal finding, which was 46,XY.ngs 4q34.3-4q35.2(179,673,982-191,016,503×3),6p25.3-6p22.3 (146,672-17,829,693×1), the couple decided against the corresponding embryo transfer. CONCLUSIONS The NGS approach is a reliable alternative to array CGH for the discovery of small segmental translocations in patients with RIF and RM.
Collapse
Affiliation(s)
- Jian Ou
- Center of reproduction and genetics Suzhou Municipal Hospital, Suzhou, Jiangsu P.R.China
| | - Wei Wang
- Center of reproduction and genetics Suzhou Municipal Hospital, Suzhou, Jiangsu P.R.China
| | - Tao Feng
- Peking Jabrehoo Med Tech., Ltd, Beijing, P.R.China
| | - Lianming Liao
- Central Laboratory, The Union Hospital of Fujian Medical University, Fuzhou, Fujian P.R.China
| | - Qingxia Meng
- Center of reproduction and genetics Suzhou Municipal Hospital, Suzhou, Jiangsu P.R.China
| | - Qinyan Zou
- Center of reproduction and genetics Suzhou Municipal Hospital, Suzhou, Jiangsu P.R.China
| | - Jie Ding
- Center of reproduction and genetics Suzhou Municipal Hospital, Suzhou, Jiangsu P.R.China
| | - Aiyan Zheng
- Center of reproduction and genetics Suzhou Municipal Hospital, Suzhou, Jiangsu P.R.China
| | - Chengying Duan
- Center of reproduction and genetics Suzhou Municipal Hospital, Suzhou, Jiangsu P.R.China
| | - Peipei Li
- Center of reproduction and genetics Suzhou Municipal Hospital, Suzhou, Jiangsu P.R.China
| | - Qiang Liu
- Center of reproduction and genetics Suzhou Municipal Hospital, Suzhou, Jiangsu P.R.China
| | - Chunhua Lin
- Center of reproduction and genetics Suzhou Municipal Hospital, Suzhou, Jiangsu P.R.China
| | - Hong Li
- Center of reproduction and genetics Suzhou Municipal Hospital, Suzhou, Jiangsu P.R.China
| |
Collapse
|
11
|
Müller C, Holtschmidt J, Auer M, Heitzer E, Lamszus K, Schulte A, Matschke J, Langer-Freitag S, Gasch C, Stoupiec M, Mauermann O, Peine S, Glatzel M, Speicher MR, Geigl JB, Westphal M, Pantel K, Riethdorf S. Hematogenous dissemination of glioblastoma multiforme. Sci Transl Med 2015; 6:247ra101. [PMID: 25080476 DOI: 10.1126/scitranslmed.3009095] [Citation(s) in RCA: 229] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Glioblastoma multiforme (GBM) is the most frequent and aggressive brain tumor in adults. The dogma that GBM spread is restricted to the brain was challenged by reports on extracranial metastases after organ transplantation from GBM donors. We identified circulating tumor cells (CTCs) in peripheral blood (PB) from 29 of 141 (20.6%) GBM patients by immunostaining of enriched mononuclear cells with antibodies directed against glial fibrillary acidic protein (GFAP). Tumor cell spread was not significantly enhanced by surgical intervention. The tumor nature of GFAP-positive cells was supported by the absence of those cells in healthy volunteers and the presence of tumor-specific aberrations such as EGFR gene amplification and gains and losses in genomic regions of chromosomes 7 and 10. Release of CTCs was associated with EGFR gene amplification, suggesting a growth potential of these cells. We demonstrate that hematogenous GBM spread is an intrinsic feature of GBM biology.
Collapse
Affiliation(s)
- Carolin Müller
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, D-201246 Hamburg, Germany
| | - Johannes Holtschmidt
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, D-201246 Hamburg, Germany. Klinik für Senologie, Kliniken Essen-Mitte, D-45136 Essen, Germany
| | - Martina Auer
- Institute of Human Genetics, Medical University of Graz, A-8010 Graz, Austria
| | - Ellen Heitzer
- Institute of Human Genetics, Medical University of Graz, A-8010 Graz, Austria
| | - Katrin Lamszus
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Alexander Schulte
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Jakob Matschke
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Sabine Langer-Freitag
- Institute of Human Genetics, Technical University of Munich, D-81675 Munich, Germany
| | - Christin Gasch
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, D-201246 Hamburg, Germany
| | - Malgorzata Stoupiec
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, D-201246 Hamburg, Germany
| | - Oliver Mauermann
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, D-201246 Hamburg, Germany
| | - Sven Peine
- Department of Transfusion Medicine, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Michael R Speicher
- Institute of Human Genetics, Medical University of Graz, A-8010 Graz, Austria
| | - Jochen B Geigl
- Institute of Human Genetics, Medical University of Graz, A-8010 Graz, Austria
| | - Manfred Westphal
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Klaus Pantel
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, D-201246 Hamburg, Germany.
| | - Sabine Riethdorf
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, D-201246 Hamburg, Germany
| |
Collapse
|
12
|
El-Heliebi A, Chen S, Kroneis T. Heat-Induced Fragmentation and Adapter-Assisted Whole Genome Amplification Using GenomePlex® Single-Cell Whole Genome Amplification Kit (WGA4). Methods Mol Biol 2015; 1347:101-9. [PMID: 26374312 DOI: 10.1007/978-1-4939-2990-0_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Whole genome amplification (WGA) is a widely used technique allowing multiplying picogram amounts of target DNA by several orders of magnitude. The technique described here is based on heat-induced random fragmentation yielding DNA strands mainly ranging from 0.1 to 1 kb in length. The fragmented DNA is then subjected to library generation by annealing of adaptor sequences to both ends of the DNA fragments. Using primers hybridizing to the adapter sequences, the DNA is amplified by thermal cycling. This amplification typically yields > 2 mg DNA from a single cell, is suited for amplifying DNA isolated from (partly) degraded samples [e.g. formalin-fixed paraffin-embedded (FFPE) material] and works well when used for array-comparative genome hybridization (array-CGH).
Collapse
Affiliation(s)
- Amin El-Heliebi
- Research Unit for Single Cell Analysis, Institute of Cell Biology, Histology & Embryology, Medical University of Graz, Harrachgasse 21, Graz, 8010, Austria
| | - Shukun Chen
- Research Unit for Single Cell Analysis, Institute of Cell Biology, Histology & Embryology, Medical University of Graz, Harrachgasse 21, Graz, 8010, Austria
| | - Thomas Kroneis
- Research Unit for Single Cell Analysis, Institute of Cell Biology, Histology & Embryology, Medical University of Graz, Harrachgasse 21, Graz, 8010, Austria. .,Sahlgrenska Cancer Center, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
13
|
Concurrent whole-genome haplotyping and copy-number profiling of single cells. Am J Hum Genet 2015; 96:894-912. [PMID: 25983246 DOI: 10.1016/j.ajhg.2015.04.011] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 04/16/2015] [Indexed: 01/08/2023] Open
Abstract
Methods for haplotyping and DNA copy-number typing of single cells are paramount for studying genomic heterogeneity and enabling genetic diagnosis. Before analyzing the DNA of a single cell by microarray or next-generation sequencing, a whole-genome amplification (WGA) process is required, but it substantially distorts the frequency and composition of the cell's alleles. As a consequence, haplotyping methods suffer from error-prone discrete SNP genotypes (AA, AB, BB) and DNA copy-number profiling remains difficult because true DNA copy-number aberrations have to be discriminated from WGA artifacts. Here, we developed a single-cell genome analysis method that reconstructs genome-wide haplotype architectures as well as the copy-number and segregational origin of those haplotypes by employing phased parental genotypes and deciphering WGA-distorted SNP B-allele fractions via a process we coin haplarithmisis. We demonstrate that the method can be applied as a generic method for preimplantation genetic diagnosis on single cells biopsied from human embryos, enabling diagnosis of disease alleles genome wide as well as numerical and structural chromosomal anomalies. Moreover, meiotic segregation errors can be distinguished from mitotic ones.
Collapse
|
14
|
Calibrating genomic and allelic coverage bias in single-cell sequencing. Nat Commun 2015; 6:6822. [PMID: 25879913 DOI: 10.1038/ncomms7822] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 03/03/2015] [Indexed: 02/07/2023] Open
Abstract
Artifacts introduced in whole-genome amplification (WGA) make it difficult to derive accurate genomic information from single-cell genomes and require different analytical strategies from bulk genome analysis. Here, we describe statistical methods to quantitatively assess the amplification bias resulting from whole-genome amplification of single-cell genomic DNA. Analysis of single-cell DNA libraries generated by different technologies revealed universal features of the genome coverage bias predominantly generated at the amplicon level (1-10 kb). The magnitude of coverage bias can be accurately calibrated from low-pass sequencing (∼0.1 × ) to predict the depth-of-coverage yield of single-cell DNA libraries sequenced at arbitrary depths. We further provide a benchmark comparison of single-cell libraries generated by multi-strand displacement amplification (MDA) and multiple annealing and looping-based amplification cycles (MALBAC). Finally, we develop statistical models to calibrate allelic bias in single-cell whole-genome amplification and demonstrate a census-based strategy for efficient and accurate variant detection from low-input biopsy samples.
Collapse
|
15
|
Abstract
Modern molecular biology relies on large amounts of high-quality genomic DNA. However, in a number of clinical or biological applications this requirement cannot be met, as starting material is either limited (e.g., preimplantation genetic diagnosis (PGD) or analysis of minimal residual cancer) or of insufficient quality (e.g., formalin-fixed paraffin-embedded tissue samples or forensics). As a consequence, in order to obtain sufficient amounts of material to analyze these demanding samples by state-of-the-art modern molecular assays, genomic DNA has to be amplified. This chapter summarizes available technologies for whole-genome amplification (WGA), bridging the last 25 years from the first developments to currently applied methods. We will especially elaborate on research application, as well as inherent advantages and limitations of various WGA technologies.
Collapse
Affiliation(s)
- Zbigniew Tadeusz Czyz
- Project Group, Personalized Tumor Therapy, Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Josef-Engert-Straße 9, 93053, Regensburg, Germany
| | - Stefan Kirsch
- Project Group, Personalized Tumor Therapy, Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Josef-Engert-Straße 9, 93053, Regensburg, Germany
| | - Bernhard Polzer
- Project Group, Personalized Tumor Therapy, Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Josef-Engert-Straße 9, 93053, Regensburg, Germany.
| |
Collapse
|
16
|
Möhlendick B, Stoecklein NH. Analysis of Copy-Number Alterations in Single Cells Using Microarray-Based Comparative Genomic Hybridization (aCGH). ACTA ACUST UNITED AC 2014; 65:22.19.1-23. [PMID: 25447076 DOI: 10.1002/0471143030.cb2219s65] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this unit, we describe a workflow that enables array comparative genomic hybridization (aCGH) of single cells. The unit first describes the isolation and preparation of single peripheral mononuclear cells from blood (PBMC) to prepare a suitable reference DNA for aCGH experiments. An alternative procedure is described for the preparation of single cells of GM14667 and GM05423 cell lines to use as reference DNA and for sex-mismatched control experiments. A guide is also provided for micromanipulation of single cells. Next, the unit describes whole-genome amplification using adapter-linker PCR (Ampli1 WGA Kit) and an alternative nonlinear WGA method (PicoPLEX WGA Kit) for single-cell amplification. A protocol is also included for reamplification of Ampli1 WGA products, which can be used for aCGH as well. Finally, the use of 4 × 180k oligonucleotide microarrays to perform aCGH with single-cell WGA products is described.
Collapse
Affiliation(s)
- Birte Möhlendick
- Department of Surgery (A), Heinrich Heine University and University Hospital Düsseldorf, Düsseldorf, Germany
| | | |
Collapse
|
17
|
Oligonucleotide arrays vs. metaphase-comparative genomic hybridisation and BAC arrays for single-cell analysis: first applications to preimplantation genetic diagnosis for Robertsonian translocation carriers. PLoS One 2014; 9:e113223. [PMID: 25415307 PMCID: PMC4240610 DOI: 10.1371/journal.pone.0113223] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 10/20/2014] [Indexed: 12/21/2022] Open
Abstract
Comprehensive chromosome analysis techniques such as metaphase-Comparative Genomic Hybridisation (CGH) and array-CGH are available for single-cell analysis. However, while metaphase-CGH and BAC array-CGH have been widely used for Preimplantation Genetic Diagnosis, oligonucleotide array-CGH has not been used in an extensive way. A comparison between oligonucleotide array-CGH and metaphase-CGH has been performed analysing 15 single fibroblasts from aneuploid cell-lines and 18 single blastomeres from human cleavage-stage embryos. Afterwards, oligonucleotide array-CGH and BAC array-CGH were also compared analysing 16 single blastomeres from human cleavage-stage embryos. All three comprehensive analysis techniques provided broadly similar cytogenetic profiles; however, non-identical profiles appeared when extensive aneuploidies were present in a cell. Both array techniques provided an optimised analysis procedure and a higher resolution than metaphase-CGH. Moreover, oligonucleotide array-CGH was able to define extra segmental imbalances in 14.7% of the blastomeres and it better determined the specific unbalanced chromosome regions due to a higher resolution of the technique (≈ 20 kb). Applicability of oligonucleotide array-CGH for Preimplantation Genetic Diagnosis has been demonstrated in two cases of Robertsonian translocation carriers 45,XY,der(13;14)(q10;q10). Transfer of euploid embryos was performed in both cases and pregnancy was achieved by one of the couples. This is the first time that an oligonucleotide array-CGH approach has been successfully applied to Preimplantation Genetic Diagnosis for balanced chromosome rearrangement carriers.
Collapse
|
18
|
Parallel single cancer cell whole genome amplification using button-valve assisted mixing in nanoliter chambers. PLoS One 2014; 9:e107958. [PMID: 25233459 PMCID: PMC4169497 DOI: 10.1371/journal.pone.0107958] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 08/16/2014] [Indexed: 12/20/2022] Open
Abstract
The heterogeneity of tumor cells and their alteration during the course of the disease urges the need for real time characterization of individual tumor cells to improve the assessment of treatment options. New generations of therapies are frequently associated with specific genetic alterations driving the need to determine the genetic makeup of tumor cells. Here, we present a microfluidic device for parallel single cell whole genome amplification (pscWGA) to obtain enough copies of a single cell genome to probe for the presence of treatment targets and the frequency of its occurrence among the tumor cells. Individual cells were first captured and loaded into eight parallel amplification units. Next, cells were lysed on a chip and their DNA amplified through successive introduction of dedicated reagents while mixing actively with the help of integrated button-valves. The reaction chamber volume for scWGA 23.85 nl, and starting from 6–7 pg DNA contained in a single cell, around 8 ng of DNA was obtained after WGA, representing over 1000-fold amplification. The amplified products from individual breast cancer cells were collected from the device to either directly investigate the amplification of specific genes by qPCR or for re-amplification of the DNA to obtain sufficient material for whole genome sequencing. Our pscWGA device provides sufficient DNA from individual cells for their genetic characterization, and will undoubtedly allow for automated sample preparation for single cancer cell genomic characterization.
Collapse
|
19
|
A novel whole genome amplification method using type IIS restriction enzymes to create overhangs with random sequences. J Biotechnol 2014; 184:1-6. [PMID: 24833422 DOI: 10.1016/j.jbiotec.2014.04.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 04/25/2014] [Accepted: 04/28/2014] [Indexed: 11/22/2022]
Abstract
Ligation-mediated polymerase chain reaction (LM-PCR) is a whole genome amplification (WGA) method, for which genomic DNA is cleaved into numerous fragments and then all of the fragments are amplified by PCR after attaching a universal end sequence. However, the self-ligation of these fragments could happen and may cause biased amplification and restriction of its application. To decrease the self-ligation probability, here we use type IIS restriction enzymes to digest genomic DNA into fragments with 4-5nt long overhangs with random sequences. After ligation to an adapter with random end sequences to above fragments, PCR is carried out and almost all present DNA sequences are amplified. In this study, whole genome of Vibrio parahaemolyticus was amplified and the amplification efficiency was evaluated by quantitative PCR. The results suggested that our approach could provide sufficient genomic DNA with good quality to meet requirements of various genetic analyses.
Collapse
|
20
|
Heidary M, Auer M, Ulz P, Heitzer E, Petru E, Gasch C, Riethdorf S, Mauermann O, Lafer I, Pristauz G, Lax S, Pantel K, Geigl JB, Speicher MR. The dynamic range of circulating tumor DNA in metastatic breast cancer. Breast Cancer Res 2014; 16:421. [PMID: 25107527 PMCID: PMC4303230 DOI: 10.1186/s13058-014-0421-y] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 07/30/2014] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION The management of metastatic breast cancer needs improvement. As clinical evaluation is not very accurate in determining the progression of disease, the analysis of circulating tumor DNA (ctDNA) has evolved to a promising noninvasive marker of disease evolution. Indeed, ctDNA was reported to represent a highly sensitive biomarker of metastatic cancer disease directly reflecting tumor burden and dynamics. However, at present little is known about the dynamic range of ctDNA in patients with metastatic breast cancer. METHODS In this study, 74 plasma DNA samples from 58 patients with metastasized breast cancer were analyzed with a microfluidic device to determine the plasma DNA size distribution and copy number changes in the plasma were identified by whole-genome sequencing (plasma-Seq). Furthermore, in an index patient we conducted whole-genome, exome, or targeted deep sequencing of the primary tumor, metastases, and circulating tumor cells (CTCs). Deep sequencing was done to accurately determine the allele fraction (AFs) of mutated DNA fragments. RESULTS Although all patients had metastatic disease, plasma analyses demonstrated highly variable AFs of mutant fragments. We analyzed an index patient with more than 100,000 CTCs in detail. We first conducted whole-genome, exome, or targeted deep sequencing of four different regions from the primary tumor and three metastatic lymph node regions, which enabled us to establish the phylogenetic relationships of these lesions, which were consistent with a genetically homogeneous cancer. Subsequent analyses of 551 CTCs confirmed the genetically homogeneous cancer in three serial blood analyses. However, the AFs of ctDNA were only 2% to 3% in each analysis, neither reflecting the tumor burden nor the dynamics of this progressive disease. These results together with high-resolution plasma DNA fragment sizing suggested that differences in phagocytosis and DNA degradation mechanisms likely explain the variable occurrence of mutated DNA fragments in the blood of patients with cancer. CONCLUSIONS The dynamic range of ctDNA varies substantially in patients with metastatic breast cancer. This has important implications for the use of ctDNA as a predictive and prognostic biomarker.
Collapse
Affiliation(s)
- Maryam Heidary
- Institute of Human Genetics, Medical University of Graz, Harrachgasse 21/8, Graz, A-8010 Austria
| | - Martina Auer
- Institute of Human Genetics, Medical University of Graz, Harrachgasse 21/8, Graz, A-8010 Austria
| | - Peter Ulz
- Institute of Human Genetics, Medical University of Graz, Harrachgasse 21/8, Graz, A-8010 Austria
| | - Ellen Heitzer
- Institute of Human Genetics, Medical University of Graz, Harrachgasse 21/8, Graz, A-8010 Austria
| | - Edgar Petru
- Department of Obstetrics and Gynecology, Medical University of Graz, Auenbruggerplatz 14, Graz, A-8036 Austria
| | - Christin Gasch
- Institute of Tumor Biology, University Medical Center Hamburg Eppendorf, Martinistrasse 52, Hamburg, D-20246 Germany
| | - Sabine Riethdorf
- Institute of Tumor Biology, University Medical Center Hamburg Eppendorf, Martinistrasse 52, Hamburg, D-20246 Germany
| | - Oliver Mauermann
- Institute of Tumor Biology, University Medical Center Hamburg Eppendorf, Martinistrasse 52, Hamburg, D-20246 Germany
| | - Ingrid Lafer
- Institute of Human Genetics, Medical University of Graz, Harrachgasse 21/8, Graz, A-8010 Austria
| | - Gunda Pristauz
- Department of Obstetrics and Gynecology, Medical University of Graz, Auenbruggerplatz 14, Graz, A-8036 Austria
| | - Sigurd Lax
- Department of Pathology, General Hospital Graz West, Goestingerstrasse 22, Graz, A-8020 Austria
| | - Klaus Pantel
- Institute of Tumor Biology, University Medical Center Hamburg Eppendorf, Martinistrasse 52, Hamburg, D-20246 Germany
| | - Jochen B Geigl
- Institute of Human Genetics, Medical University of Graz, Harrachgasse 21/8, Graz, A-8010 Austria
| | - Michael R Speicher
- Institute of Human Genetics, Medical University of Graz, Harrachgasse 21/8, Graz, A-8010 Austria
| |
Collapse
|
21
|
Abstract
MOTIVATION Single-cell DNA sequencing is necessary for examining genetic variation at the cellular level, which remains hidden in bulk sequencing experiments. But because they begin with such small amounts of starting material, the amount of information that is obtained from single-cell sequencing experiment is highly sensitive to the choice of protocol employed and variability in library preparation. In particular, the fraction of the genome represented in single-cell sequencing libraries exhibits extreme variability due to quantitative biases in amplification and loss of genetic material. RESULTS We propose a method to predict the genome coverage of a deep sequencing experiment using information from an initial shallow sequencing experiment mapped to a reference genome. The observed coverage statistics are used in a non-parametric empirical Bayes Poisson model to estimate the gain in coverage from deeper sequencing. This approach allows researchers to know statistical features of deep sequencing experiments without actually sequencing deeply, providing a basis for optimizing and comparing single-cell sequencing protocols or screening libraries. AVAILABILITY AND IMPLEMENTATION The method is available as part of the preseq software package. Source code is available at http://smithlabresearch.org/preseq. CONTACT andrewds@usc.edu SUPPLEMENTARY INFORMATION Supplementary material is available at Bioinformatics online.
Collapse
Affiliation(s)
- Timothy Daley
- Department of Mathematics and Department of Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Andrew D Smith
- Department of Mathematics and Department of Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
22
|
Single cell analysis of cancer genomes. Curr Opin Genet Dev 2014; 24:82-91. [PMID: 24531336 DOI: 10.1016/j.gde.2013.12.004] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 12/15/2013] [Indexed: 12/19/2022]
Abstract
Genomic studies have provided key insights into how cancers develop, evolve, metastasize and respond to treatment. Cancers result from an interplay between mutation, selection and clonal expansions. In solid tumours, this Darwinian competition between subclones is also influenced by topological factors. Recent advances have made it possible to study cancers at the single cell level. These methods represent important tools to dissect cancer evolution and provide the potential to considerably change both cancer research and clinical practice. Here we discuss state-of-the-art methods for the isolation of a single cell, whole-genome and whole-transcriptome amplification of the cell's nucleic acids, as well as microarray and massively parallel sequencing analysis of such amplification products. We discuss the strengths and the limitations of the techniques, and explore single-cell methodologies for future cancer research, as well as diagnosis and treatment of the disease.
Collapse
|
23
|
Abstract
Advances in whole-genome and whole-transcriptome amplification have permitted the sequencing of the minute amounts of DNA and RNA present in a single cell, offering a window into the extent and nature of genomic and transcriptomic heterogeneity which occurs in both normal development and disease. Single-cell approaches stand poised to revolutionise our capacity to understand the scale of genomic, epigenomic, and transcriptomic diversity that occurs during the lifetime of an individual organism. Here, we review the major technological and biological breakthroughs achieved, describe the remaining challenges to overcome, and provide a glimpse into the promise of recent and future developments.
Collapse
|
24
|
Reliable single cell array CGH for clinical samples. PLoS One 2014; 9:e85907. [PMID: 24465780 PMCID: PMC3897541 DOI: 10.1371/journal.pone.0085907] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 12/07/2013] [Indexed: 12/19/2022] Open
Abstract
Background Disseminated cancer cells (DCCs) and circulating tumor cells (CTCs) are extremely rare, but comprise the precursors cells of distant metastases or therapy resistant cells. The detailed molecular analysis of these cells may help to identify key events of cancer cell dissemination, metastatic colony formation and systemic therapy escape. Methodology/Principal Findings Using the Ampli1™ whole genome amplification (WGA) technology and high-resolution oligonucleotide aCGH microarrays we optimized conditions for the analysis of structural copy number changes. The protocol presented here enables reliable detection of numerical genomic alterations as small as 0.1 Mb in a single cell. Analysis of single cells from well-characterized cell lines and single normal cells confirmed the stringent quantitative nature of the amplification and hybridization protocol. Importantly, fixation and staining procedures used to detect DCCs showed no significant impact on the outcome of the analysis, proving the clinical usability of our method. In a proof-of-principle study we tracked the chromosomal changes of single DCCs over a full course of high-dose chemotherapy treatment by isolating and analyzing DCCs of an individual breast cancer patient at four different time points. Conclusions/Significance The protocol enables detailed genome analysis of DCCs and thereby assessment of the clonal evolution during the natural course of the disease and under selection pressures. The results from an exemplary patient provide evidence that DCCs surviving selective therapeutic conditions may be recruited from a pool of genomically less advanced cells, which display a stable subset of specific genomic alterations.
Collapse
|
25
|
He W, Sun X, Liu L, Li M, Jin H, Wang WH. The prevalence of chromosomal deletions relating to developmental delay and/or intellectual disability in human euploid blastocysts. PLoS One 2014; 9:e85207. [PMID: 24409323 PMCID: PMC3883698 DOI: 10.1371/journal.pone.0085207] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 11/21/2013] [Indexed: 11/22/2022] Open
Abstract
Chromosomal anomalies in human embryos produced by in vitro fertilization are very common, which include numerical (aneuploidy) and structural (deletion, duplication or others) anomalies. Our previous study indicated that chromosomal deletion(s) is the most common structural anomaly accounting for approximately 8% of euploid blastocysts. It is still unknown if these deletions in human euploid blastocysts have clinical significance. In this study, we analyzed 15 previously diagnosed euploid blastocysts that had chromosomal deletion(s) using Agilent oligonucleotide DNA microarray platform and localized the gene location in each deletion. Then, we used OMIM gene map and phenotype database to investigate if these deletions are related with some important genes that cause genetic diseases, especially developmental delay or intellectual disability. As results, we found that the detectable chromosomal deletion size with Agilent microarray is above 2.38 Mb, while the deletions observed in human blastocysts are between 11.6 to 103 Mb. With OMIM gene map and phenotype database information, we found that deletions can result in loss of 81-464 genes. Out of these genes, 34–149 genes are related with known genetic problems. Furthermore, we found that 5 out of 15 samples lost genes in the deleted region, which were related to developmental delay and/or intellectual disability. In conclusion, our data indicates that all human euploid blastocysts with chromosomal deletion(s) are abnormal and transfer of these embryos may cause birth defects and/or developmental and intellectual disabilities. Therefore, the embryos with chromosomal deletion revealed by DNA microarray should not be transferred to the patients, or further gene map and/or phenotype seeking is necessary before making a final decision.
Collapse
Affiliation(s)
- Wenyin He
- Key Laboratory of Major Obstetrics Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangdong, China
| | - Xiaofang Sun
- Key Laboratory of Major Obstetrics Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangdong, China
| | - Lian Liu
- Pacgenomics Inc., Village Medical Center, Thousand Oaks, California, United States of America
| | - Man Li
- Pacgenomics Inc., Village Medical Center, Thousand Oaks, California, United States of America
| | - Hua Jin
- Pacgenomics Inc., Village Medical Center, Thousand Oaks, California, United States of America
| | - Wei-Hua Wang
- New Houston Health, Houston, Texas, United States of America
- Vivere Health, Franklin, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
26
|
Møller EK, Kumar P, Voet T, Peterson A, Van Loo P, Mathiesen RR, Fjelldal R, Grundstad J, Borgen E, Baumbusch LO, Naume B, Børresen-Dale AL, White KP, Nord S, Kristensen VN. Next-generation sequencing of disseminated tumor cells. Front Oncol 2013; 3:320. [PMID: 24427740 PMCID: PMC3876274 DOI: 10.3389/fonc.2013.00320] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 12/16/2013] [Indexed: 12/19/2022] Open
Abstract
Disseminated tumor cells (DTCs) detected in the bone marrow have been shown as an independent prognostic factor for women with breast cancer. However, the mechanisms behind the tumor cell dissemination are still unclear and more detailed knowledge is needed to fully understand why some cells remain dormant and others metastasize. Sequencing of single cells has opened for the possibility to dissect the genetic content of subclones of a primary tumor, as well as DTCs. Previous studies of genetic changes in DTCs have employed single-cell array comparative genomic hybridization which provides information about larger aberrations. To date, next-generation sequencing provides the possibility to discover new, smaller, and copy neutral genetic changes. In this study, we performed whole-genome amplification and subsequently next-generation sequencing to analyze DTCs from two breast cancer patients. We compared copy-number profiles of the DTCs and the corresponding primary tumor generated from sequencing and SNP-comparative genomic hybridization (CGH) data, respectively. While one tumor revealed mostly whole-arm gains and losses, the other had more complex alterations, as well as subclonal amplification and deletions. Whole-arm gains or losses in the primary tumor were in general also observed in the corresponding DTC. Both primary tumors showed amplification of chromosome 1q and deletion of parts of chromosome 16q, which was recaptured in the corresponding DTCs. Interestingly, clear differences were also observed, indicating that the DTC underwent further evolution at the copy-number level. This study provides a proof-of-principle for sequencing of DTCs and correlation with primary copy-number profiles. The analyses allow insight into tumor cell dissemination and show ongoing copy-number evolution in DTCs compared to the primary tumors.
Collapse
Affiliation(s)
- Elen K Møller
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet , Oslo , Norway ; K.G. Jebsen Center for Breast Cancer Research, Institute for Clinical Medicine, Faculty of Medicine, University of Oslo , Oslo , Norway
| | - Parveen Kumar
- Centre for Human Genetics, Department of Human Genetics, University Hospital Leuven, KU Leuven , Leuven , Belgium
| | - Thierry Voet
- Centre for Human Genetics, Department of Human Genetics, University Hospital Leuven, KU Leuven , Leuven , Belgium ; Single-Cell Genomics Centre, Wellcome Trust Sanger Institute , Hinxton , UK
| | - April Peterson
- Institute for Genomics and Systems Biology, Department of Human Genetics, The University of Chicago , Chicago, IL , USA
| | - Peter Van Loo
- Cancer Genome Project, Wellcome Trust Sanger Institute , Hinxton , UK ; Department of Human Genetics, VIB and KU Leuven , Leuven , Belgium
| | - Randi R Mathiesen
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet , Oslo , Norway ; Department of Oncology, Division of Surgery and Cancer Medicine, Oslo University Hospital Radiumhospitalet , Oslo , Norway
| | - Renathe Fjelldal
- Department of Pathology, Oslo University Hospital Radiumhospitalet , Oslo , Norway
| | - Jason Grundstad
- Institute for Genomics and Systems Biology, Department of Human Genetics, The University of Chicago , Chicago, IL , USA
| | - Elin Borgen
- Department of Pathology, Oslo University Hospital Radiumhospitalet , Oslo , Norway
| | - Lars O Baumbusch
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet , Oslo , Norway ; K.G. Jebsen Center for Breast Cancer Research, Institute for Clinical Medicine, Faculty of Medicine, University of Oslo , Oslo , Norway
| | - Bjørn Naume
- K.G. Jebsen Center for Breast Cancer Research, Institute for Clinical Medicine, Faculty of Medicine, University of Oslo , Oslo , Norway ; Department of Oncology, Division of Surgery and Cancer Medicine, Oslo University Hospital Radiumhospitalet , Oslo , Norway ; Institute for Clinical Medicine, Faculty of Medicine, University of Oslo , Oslo , Norway
| | - Anne-Lise Børresen-Dale
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet , Oslo , Norway ; K.G. Jebsen Center for Breast Cancer Research, Institute for Clinical Medicine, Faculty of Medicine, University of Oslo , Oslo , Norway
| | - Kevin P White
- Institute for Genomics and Systems Biology, Department of Human Genetics, The University of Chicago , Chicago, IL , USA
| | - Silje Nord
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet , Oslo , Norway ; K.G. Jebsen Center for Breast Cancer Research, Institute for Clinical Medicine, Faculty of Medicine, University of Oslo , Oslo , Norway
| | - Vessela N Kristensen
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet , Oslo , Norway ; K.G. Jebsen Center for Breast Cancer Research, Institute for Clinical Medicine, Faculty of Medicine, University of Oslo , Oslo , Norway ; Department of Clinical Molecular Biology (EpiGen), Medical Division, Akershus University Hospital , Lørenskog , Norway
| |
Collapse
|
27
|
Lixin D, Zhifeng X, Cong H, Jinzhou Z, Hongbin X. Aneuploidy analysis of non-pronuclear embryos from IVF with use of array CGH: a case report. J Mol Histol 2013; 45:269-74. [PMID: 24292656 DOI: 10.1007/s10735-013-9556-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Accepted: 11/21/2013] [Indexed: 12/01/2022]
Abstract
By using array comparative genomic hybridization (array CGH), to analyze the aneuploidy of the single blastomeres from non-pronuclear embryos on cleavage-stage in IVF cycle. Four non-pronuclear embryos were got from an IVF cycle, and the each single cell was biopsied from the four cleavage-stage embryos on the third day after the insemination which was investigated by using array CGH. After the biopsy, all the embryos continued to cleave, and lately entered the morula stage on the fifth day, just one embryo 3 was developed to early blastocyst stage on the sixth day. The four blastomere 24 chromosomes showed one X monomer and three normal XY diploids; the autosome chromosomes of blastomeres were abnormally gained or lost at different chromosome from four embryos, such as Embryo 1 : 49,X (-1, -5, -11, -19, -20, -21, -Y, +3, +6, +7, +8, +10, +13, +14, +16, +17, +18); Embryo 2 : 44,XY (-12, -15); Embryo 3: 47,XY (-3, -8, -9, -21, +7, +17, +18, +19, +20); Embryo 4 : 54,XY (+4, +7, +10, +12, +13, +16, +17, +22). With the use of the array CGH, the aneuploidy analysis could review the abnormal chromosomes of single blastomere from the non-pronuclear embryos, which can harbor the risk of abnormal sex chromosome and autosome chromosomes.
Collapse
Affiliation(s)
- Deng Lixin
- Animal Husbandry and Veterinary Institute of Henan Agricultural University, Zhengzhou, 450002, Henan Province, China
| | | | | | | | | |
Collapse
|
28
|
El-Heliebi A, Kroneis T, Zöhrer E, Haybaeck J, Fischereder K, Kampel-Kettner K, Zigeuner R, Pock H, Riedl R, Stauber R, Geigl JB, Huppertz B, Sedlmayr P, Lackner C. Are morphological criteria sufficient for the identification of circulating tumor cells in renal cancer? J Transl Med 2013; 11:214. [PMID: 24044779 PMCID: PMC3848446 DOI: 10.1186/1479-5876-11-214] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 09/13/2013] [Indexed: 12/22/2022] Open
Abstract
Background Single circulating tumor cells (CTCs) or circulating tumor microemboli (CTMs) are potential biomarkers of renal cell cancer (RCC), however studies of CTCs/CTMs in RCC are limited. In this pilot study we aimed to evaluate a novel blood filtration technique suited for cytomorphological classification, immunocytochemical and molecular characterization of filtered, so called circulating non-hematologic cells (CNHCs) - putative CTCs/CTMs - in patients with RCC. Methods Blood of 40 patients with renal tumors was subjected to ScreenCell® filtration. CNHCs were classified according to cytomorphological criteria. Immunocytochemical analysis was performed with antibodies against CD45, CD31 and carbonic anhydrase IX (CAIX, a RCC marker). DNA of selected CNHCs and respective primary tumors was analysed by array-CGH. Results CNHC-clusters with malignant or uncertain malignant cytomorphological features - putative CTMs - were negative for CD45, positive for CD31, while only 6% were CAIX positive. Array-CGH revealed that 83% of malignant and uncertain malignant cells did represent with a balanced genome whereas 17% presented genomic DNA imbalances which did not match the aberrations of the primary tumors. Putative single CTCs were negative for CD45, 33% were positive for CD31 and 56% were positive for CAIX. Conclusions The majority of CNHC-clusters, putative CTMs, retrieved by ScreenCell® filtration may be of endothelial origin. Morphological criteria seem to be insufficient to distinguish malignant from non-malignant cells in renal cancer.
Collapse
Affiliation(s)
- Amin El-Heliebi
- Institute of Pathology, Medical University of Graz, Auenbruggerplatz 25, Graz, 8036, Austria.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Van der Aa N, Zamani Esteki M, Vermeesch JR, Voet T. Preimplantation genetic diagnosis guided by single-cell genomics. Genome Med 2013; 5:71. [PMID: 23998893 PMCID: PMC3979122 DOI: 10.1186/gm475] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Preimplantation genetic diagnosis (PGD) aims to help couples with heritable genetic disorders to avoid the birth of diseased offspring or the recurrence of loss of conception. Following in vitro fertilization, one or a few cells are biopsied from each human preimplantation embryo for genetic testing, allowing diagnosis and selection of healthy embryos for uterine transfer. Although classical methods, including single-cell PCR and fluorescent in situ hybridization, enable PGD for many genetic disorders, they have limitations. They often require family-specific designs and can be labor intensive, resulting in long waiting lists. Furthermore, certain types of genetic anomalies are not easy to diagnose using these classical approaches, and healthy offspring carrying the parental mutant allele(s) can result. Recently, state-of-the-art methods for single-cell genomics have flourished, which may overcome the limitations associated with classical PGD, and these underpin the development of generic assays for PGD that enable selection of embryos not only for the familial genetic disorder in question, but also for various other genetic aberrations and traits at once. Here, we discuss the latest single-cell genomics methodologies based on DNA microarrays, single-nucleotide polymorphism arrays or next-generation sequence analysis. We focus on their strengths, their validation status, their weaknesses and the challenges for implementing them in PGD.
Collapse
Affiliation(s)
- Niels Van der Aa
- Laboratory of Reproductive Genomics, Department of Human Genetics, KU Leuven, Leuven 3000, Belgium
| | - Masoud Zamani Esteki
- Laboratory of Reproductive Genomics, Department of Human Genetics, KU Leuven, Leuven 3000, Belgium
| | - Joris R Vermeesch
- Laboratory of Cytogenetics and Genome Research, Department of Human Genetics, KU Leuven, Leuven 3000, Belgium
| | - Thierry Voet
- Laboratory of Reproductive Genomics, Department of Human Genetics, KU Leuven, Leuven 3000, Belgium ; Single-cell Genomics Centre, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
| |
Collapse
|
30
|
Balic M, Schwarzenbacher D, Stanzer S, Heitzer E, Auer M, Geigl JB, Cote RJ, Datar RH, Dandachi N. Genetic and epigenetic analysis of putative breast cancer stem cell models. BMC Cancer 2013; 13:358. [PMID: 23883436 PMCID: PMC3727963 DOI: 10.1186/1471-2407-13-358] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 07/22/2013] [Indexed: 12/17/2022] Open
Abstract
Background Cancer stem cell model hypothesizes existence of a small proportion of tumor cells capable of sustaining tumor formation, self-renewal and differentiation. In breast cancer, these cells were found to be associated with CD44+CD24-low and ALDH+ phenotype. Our study was performed to evaluate the suitability of current approaches for breast cancer stem cell analyses to evaluate heterogeneity of breast cancer cells through their extensive genetic and epigenetic characterization. Methods Breast cancer cell lines MCF7 and SUM159 were cultured in adherent conditions and as mammospheres. Flow cytometry sorting for CD44, CD24 and ALDH was performed. Sorted and unsorted populations, mammospheres and adherent cell cultures were subjected to DNA profiling by array CGH and methylation profiling by Epitect Methyl qPCR array. Methylation status of selected genes was further evaluated by pyrosequencing. Functional impact of methylation was evaluated by mRNA analysis for selected genes. Results Array CGH did not reveal any genomic differences. In contrast, putative breast cancer stem cells showed altered methylation levels of several genes compared to parental tumor cells. Conclusions Our results underpin the hypothesis that epigenetic mechanisms seem to play a major role in the regulation of CSCs. However, it is also clear that more efficient methods for CSC enrichment are needed. This work underscores requirement of additional approaches to reveal heterogeneity within breast cancer.
Collapse
Affiliation(s)
- Marija Balic
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, A-8036 Graz, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
A robust method to analyze copy number alterations of less than 100 kb in single cells using oligonucleotide array CGH. PLoS One 2013; 8:e67031. [PMID: 23825608 PMCID: PMC3692546 DOI: 10.1371/journal.pone.0067031] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 05/14/2013] [Indexed: 12/31/2022] Open
Abstract
Comprehensive genome wide analyses of single cells became increasingly important in cancer research, but remain to be a technically challenging task. Here, we provide a protocol for array comparative genomic hybridization (aCGH) of single cells. The protocol is based on an established adapter-linker PCR (WGAM) and allowed us to detect copy number alterations as small as 56 kb in single cells. In addition we report on factors influencing the success of single cell aCGH downstream of the amplification method, including the characteristics of the reference DNA, the labeling technique, the amount of input DNA, reamplification, the aCGH resolution, and data analysis. In comparison with two other commercially available non-linear single cell amplification methods, WGAM showed a very good performance in aCGH experiments. Finally, we demonstrate that cancer cells that were processed and identified by the CellSearch® System and that were subsequently isolated from the CellSearch® cartridge as single cells by fluorescence activated cell sorting (FACS) could be successfully analyzed using our WGAM-aCGH protocol. We believe that even in the era of next-generation sequencing, our single cell aCGH protocol will be a useful and (cost-) effective approach to study copy number alterations in single cells at resolution comparable to those reported currently for single cell digital karyotyping based on next generation sequencing data.
Collapse
|
32
|
Voet T, Kumar P, Van Loo P, Cooke SL, Marshall J, Lin ML, Zamani Esteki M, Van der Aa N, Mateiu L, McBride DJ, Bignell GR, McLaren S, Teague J, Butler A, Raine K, Stebbings LA, Quail MA, D'Hooghe T, Moreau Y, Futreal PA, Stratton MR, Vermeesch JR, Campbell PJ. Single-cell paired-end genome sequencing reveals structural variation per cell cycle. Nucleic Acids Res 2013; 41:6119-38. [PMID: 23630320 PMCID: PMC3695511 DOI: 10.1093/nar/gkt345] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The nature and pace of genome mutation is largely unknown. Because standard methods sequence DNA from populations of cells, the genetic composition of individual cells is lost, de novo mutations in cells are concealed within the bulk signal and per cell cycle mutation rates and mechanisms remain elusive. Although single-cell genome analyses could resolve these problems, such analyses are error-prone because of whole-genome amplification (WGA) artefacts and are limited in the types of DNA mutation that can be discerned. We developed methods for paired-end sequence analysis of single-cell WGA products that enable (i) detecting multiple classes of DNA mutation, (ii) distinguishing DNA copy number changes from allelic WGA-amplification artefacts by the discovery of matching aberrantly mapping read pairs among the surfeit of paired-end WGA and mapping artefacts and (iii) delineating the break points and architecture of structural variants. By applying the methods, we capture DNA copy number changes acquired over one cell cycle in breast cancer cells and in blastomeres derived from a human zygote after in vitro fertilization. Furthermore, we were able to discover and fine-map a heritable inter-chromosomal rearrangement t(1;16)(p36;p12) by sequencing a single blastomere. The methods will expedite applications in basic genome research and provide a stepping stone to novel approaches for clinical genetic diagnosis.
Collapse
Affiliation(s)
- Thierry Voet
- Department of Human Genetics, KU Leuven, Leuven, 3000, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Liang L, Wang CT, Sun X, Liu L, Li M, Witz C, Williams D, Griffith J, Skorupski J, Haddad G, Gill J, Wang WH. Identification of chromosomal errors in human preimplantation embryos with oligonucleotide DNA microarray. PLoS One 2013; 8:e61838. [PMID: 23613950 PMCID: PMC3628862 DOI: 10.1371/journal.pone.0061838] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 03/14/2013] [Indexed: 11/19/2022] Open
Abstract
A previous study comparing the performance of different platforms for DNA microarray found that the oligonucleotide (oligo) microarray platform containing 385K isothermal probes had the best performance when evaluating dosage sensitivity, precision, specificity, sensitivity and copy number variations border definition. Although oligo microarray platform has been used in some research fields and clinics, it has not been used for aneuploidy screening in human embryos. The present study was designed to use this new microarray platform for preimplantation genetic screening in the human. A total of 383 blastocysts from 72 infertility patients with either advanced maternal age or with previous miscarriage were analyzed after biopsy and microarray. Euploid blastocysts were transferred to patients and clinical pregnancy and implantation rates were measured. Chromosomes in some aneuploid blastocysts were further analyzed by fluorescence in-situ hybridization (FISH) to evaluate accuracy of the results. We found that most (58.1%) of the blastocysts had chromosomal abnormalities that included single or multiple gains and/or losses of chromosome(s), partial chromosome deletions and/or duplications in both euploid and aneuploid embryos. Transfer of normal euploid blastocysts in 34 cycles resulted in 58.8% clinical pregnancy and 54.4% implantation rates. Examination of abnormal blastocysts by FISH showed that all embryos had matching results comparing microarray and FISH analysis. The present study indicates that oligo microarray conducted with a higher resolution and a greater number of probes is able to detect not only aneuploidy, but also minor chromosomal abnormalities, such as partial chromosome deletion and/or duplication in human embryos. Preimplantation genetic screening of the aneuploidy by DNA microarray is an advanced technology used to select embryos for transfer and improved embryo implantation can be obtained after transfer of the screened normal embryos.
Collapse
Affiliation(s)
- Lifeng Liang
- Houston Fertility Institute, Houston, Texas, United States of America
- Key Laboratory of Major Obstetrics Diseases of Guangdong Province, The Third Hospital Affiliated to Guangzhou Medical University, Guangdong, China
| | - Cassie T. Wang
- Houston Fertility Institute, Houston, Texas, United States of America
| | - Xiaofang Sun
- Key Laboratory of Major Obstetrics Diseases of Guangdong Province, The Third Hospital Affiliated to Guangzhou Medical University, Guangdong, China
| | - Lian Liu
- Pacgenomics Inc., Village Medical Center, Thousand Oaks, California, United States of America
| | - Man Li
- Pacgenomics Inc., Village Medical Center, Thousand Oaks, California, United States of America
| | - Craig Witz
- Houston Fertility Institute, Houston, Texas, United States of America
| | - Daniel Williams
- Houston Fertility Institute, Houston, Texas, United States of America
| | - Jason Griffith
- Houston Fertility Institute, Houston, Texas, United States of America
| | - Josh Skorupski
- Houston Fertility Institute, Houston, Texas, United States of America
| | - Ghassan Haddad
- Houston Fertility Institute, Houston, Texas, United States of America
| | - Jimmy Gill
- Houston Fertility Institute, Houston, Texas, United States of America
| | - Wei-Hua Wang
- Houston Fertility Institute, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
34
|
Heitzer E, Ulz P, Belic J, Gutschi S, Quehenberger F, Fischereder K, Benezeder T, Auer M, Pischler C, Mannweiler S, Pichler M, Eisner F, Haeusler M, Riethdorf S, Pantel K, Samonigg H, Hoefler G, Augustin H, Geigl JB, Speicher MR. Tumor-associated copy number changes in the circulation of patients with prostate cancer identified through whole-genome sequencing. Genome Med 2013; 5:30. [PMID: 23561577 PMCID: PMC3707016 DOI: 10.1186/gm434] [Citation(s) in RCA: 264] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Revised: 03/13/2013] [Accepted: 04/05/2013] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Patients with prostate cancer may present with metastatic or recurrent disease despite initial curative treatment. The propensity of metastatic prostate cancer to spread to the bone has limited repeated sampling of tumor deposits. Hence, considerably less is understood about this lethal metastatic disease, as it is not commonly studied. Here we explored whole-genome sequencing of plasma DNA to scan the tumor genomes of these patients non-invasively. METHODS We wanted to make whole-genome analysis from plasma DNA amenable to clinical routine applications and developed an approach based on a benchtop high-throughput platform, that is, Illuminas MiSeq instrument. We performed whole-genome sequencing from plasma at a shallow sequencing depth to establish a genome-wide copy number profile of the tumor at low costs within 2 days. In parallel, we sequenced a panel of 55 high-interest genes and 38 introns with frequent fusion breakpoints such as the TMPRSS2-ERG fusion with high coverage. After intensive testing of our approach with samples from 25 individuals without cancer we analyzed 13 plasma samples derived from five patients with castration resistant (CRPC) and four patients with castration sensitive prostate cancer (CSPC). RESULTS The genome-wide profiling in the plasma of our patients revealed multiple copy number aberrations including those previously reported in prostate tumors, such as losses in 8p and gains in 8q. High-level copy number gains in the AR locus were observed in patients with CRPC but not with CSPC disease. We identified the TMPRSS2-ERG rearrangement associated 3-Mbp deletion on chromosome 21 and found corresponding fusion plasma fragments in these cases. In an index case multiregional sequencing of the primary tumor identified different copy number changes in each sector, suggesting multifocal disease. Our plasma analyses of this index case, performed 13 years after resection of the primary tumor, revealed novel chromosomal rearrangements, which were stable in serial plasma analyses over a 9-month period, which is consistent with the presence of one metastatic clone. CONCLUSIONS The genomic landscape of prostate cancer can be established by non-invasive means from plasma DNA. Our approach provides specific genomic signatures within 2 days which may therefore serve as 'liquid biopsy'.
Collapse
Affiliation(s)
- Ellen Heitzer
- Institute of Human Genetics, Medical University of Graz, Harrachgasse 21/8, A-8010 Graz, Austria
| | - Peter Ulz
- Institute of Human Genetics, Medical University of Graz, Harrachgasse 21/8, A-8010 Graz, Austria
| | - Jelena Belic
- Institute of Human Genetics, Medical University of Graz, Harrachgasse 21/8, A-8010 Graz, Austria
| | - Stefan Gutschi
- Department of Urology, Medical University of Graz, Auenbruggerplatz 5/6, A-8036 Graz, Austria
| | - Franz Quehenberger
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Auenbruggerplatz 2, A-8036 Graz, Austria
| | - Katja Fischereder
- Department of Urology, Medical University of Graz, Auenbruggerplatz 5/6, A-8036 Graz, Austria
| | - Theresa Benezeder
- Institute of Human Genetics, Medical University of Graz, Harrachgasse 21/8, A-8010 Graz, Austria
| | - Martina Auer
- Institute of Human Genetics, Medical University of Graz, Harrachgasse 21/8, A-8010 Graz, Austria
| | - Carina Pischler
- Institute of Human Genetics, Medical University of Graz, Harrachgasse 21/8, A-8010 Graz, Austria
| | - Sebastian Mannweiler
- Institute of Pathology, Medical University of Graz, Auenbruggerplatz 25, A-8036 Graz, Austria
| | - Martin Pichler
- Division of Oncology, Medical University of Graz, Auenbruggerplatz 15, A-8036 Graz, Austria
| | - Florian Eisner
- Division of Oncology, Medical University of Graz, Auenbruggerplatz 15, A-8036 Graz, Austria
| | - Martin Haeusler
- Department of Obstetrics and Gynecology, Medical University of Graz, Auenbruggerplatz 14, A-8036 Graz, Austria
| | - Sabine Riethdorf
- Institute of Tumor Biology, University Medical Center Hamburg Eppendorf, Martinistr. 52, D-20246 Hamburg, Germany
| | - Klaus Pantel
- Institute of Tumor Biology, University Medical Center Hamburg Eppendorf, Martinistr. 52, D-20246 Hamburg, Germany
| | - Hellmut Samonigg
- Division of Oncology, Medical University of Graz, Auenbruggerplatz 15, A-8036 Graz, Austria
| | - Gerald Hoefler
- Institute of Pathology, Medical University of Graz, Auenbruggerplatz 25, A-8036 Graz, Austria
| | - Herbert Augustin
- Department of Urology, Medical University of Graz, Auenbruggerplatz 5/6, A-8036 Graz, Austria
| | - Jochen B Geigl
- Institute of Human Genetics, Medical University of Graz, Harrachgasse 21/8, A-8010 Graz, Austria
| | - Michael R Speicher
- Institute of Human Genetics, Medical University of Graz, Harrachgasse 21/8, A-8010 Graz, Austria
| |
Collapse
|
35
|
Heitzer E, Auer M, Gasch C, Pichler M, Ulz P, Hoffmann EM, Lax S, Waldispuehl-Geigl J, Mauermann O, Lackner C, Höfler G, Eisner F, Sill H, Samonigg H, Pantel K, Riethdorf S, Bauernhofer T, Geigl JB, Speicher MR. Complex tumor genomes inferred from single circulating tumor cells by array-CGH and next-generation sequencing. Cancer Res 2013; 73:2965-75. [PMID: 23471846 DOI: 10.1158/0008-5472.can-12-4140] [Citation(s) in RCA: 392] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Circulating tumor cells (CTC) released into blood from primary cancers and metastases reflect the current status of tumor genotypes, which are prone to changes. Here, we conducted the first comprehensive genomic profiling of CTCs using array-comparative genomic hybridization (CGH) and next-generation sequencing. We used the U.S. Food and Drug Administration-cleared CellSearch system, which detected CTCs in 21 of 37 patients (range, 1-202/7.5 mL sample) with stage IV colorectal carcinoma. In total, we were able to isolate 37 intact CTCs from six patients and identified in those multiple colorectal cancer-associated copy number changes, many of which were also present in the respective primary tumor. We then used massive parallel sequencing of a panel of 68 colorectal cancer-associated genes to compare the mutation spectrum in the primary tumors, metastases, and the corresponding CTCs from two of these patients. Mutations in known driver genes [e.g., adenomatous polyposis coli (APC), KRAS, or PIK3CA] found in the primary tumor and metastasis were also detected in corresponding CTCs. However, we also observed mutations exclusively in CTCs. To address whether these mutations were derived from a small subclone in the primary tumor or represented new variants of metastatic cells, we conducted additional deep sequencing of the primary tumor and metastasis and applied a customized statistical algorithm for analysis. We found that most mutations initially found only in CTCs were also present at subclonal level in the primary tumors and metastases from the same patient. This study paves the way to use CTCs as a liquid biopsy in patients with cancer, providing more effective options to monitor tumor genomes that are prone to change during progression, treatment, and relapse.
Collapse
Affiliation(s)
- Ellen Heitzer
- Institute of Human Genetics, Medical University of Graz, Graz, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Van der Aa N, Cheng J, Mateiu L, Zamani Esteki M, Kumar P, Dimitriadou E, Vanneste E, Moreau Y, Vermeesch JR, Voet T. Genome-wide copy number profiling of single cells in S-phase reveals DNA-replication domains. Nucleic Acids Res 2013; 41:e66. [PMID: 23295674 PMCID: PMC3616740 DOI: 10.1093/nar/gks1352] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Single-cell genomics is revolutionizing basic genome research and clinical genetic diagnosis. However, none of the current research or clinical methods for single-cell analysis distinguishes between the analysis of a cell in G1-, S- or G2/M-phase of the cell cycle. Here, we demonstrate by means of array comparative genomic hybridization that charting the DNA copy number landscape of a cell in S-phase requires conceptually different approaches to that of a cell in G1- or G2/M-phase. Remarkably, despite single-cell whole-genome amplification artifacts, the log2 intensity ratios of single S-phase cells oscillate according to early and late replication domains, which in turn leads to the detection of significantly more DNA imbalances when compared with a cell in G1- or G2/M-phase. Although these DNA imbalances may, on the one hand, be falsely interpreted as genuine structural aberrations in the S-phase cell’s copy number profile and hence lead to misdiagnosis, on the other hand, the ability to detect replication domains genome wide in one cell has important applications in DNA-replication research. Genome-wide cell-type-specific early and late replicating domains have been identified by analyses of DNA from populations of cells, but cell-to-cell differences in DNA replication may be important in genome stability, disease aetiology and various other cellular processes.
Collapse
Affiliation(s)
- Niels Van der Aa
- Laboratory of Reproductive Genomics, Department of Human Genetics, KU Leuven, Leuven, 3000, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Mantikou E, Wong KM, Repping S, Mastenbroek S. Molecular origin of mitotic aneuploidies in preimplantation embryos. Biochim Biophys Acta Mol Basis Dis 2012; 1822:1921-30. [DOI: 10.1016/j.bbadis.2012.06.013] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 06/14/2012] [Accepted: 06/26/2012] [Indexed: 01/06/2023]
|
38
|
Bi W, Breman A, Shaw CA, Stankiewicz P, Gambin T, Lu X, Cheung SW, Jackson LG, Lupski JR, Van den Veyver IB, Beaudet AL. Detection of ≥1Mb microdeletions and microduplications in a single cell using custom oligonucleotide arrays. Prenat Diagn 2012; 32:10-20. [PMID: 22470934 DOI: 10.1002/pd.2855] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE High resolution detection of genomic copy number abnormalities in a single cell is relevant to preimplantation genetic diagnosis and potentially to noninvasive prenatal diagnosis. Our objective is to develop a reliable array comparative genomic hybridization (CGH) platform to detect genomic imbalances as small as ~1Mb ina single cell. METHODS We empirically optimized the conditions for oligonucleotide-based array CGH using single cells from multiple lymphoblastoid cell lines with known copy number abnormalities. To improve resolution, we designed custom arrays with high density probes covering clinically relevant genomic regions. RESULTS The detection of megabase-sized copy number variations (CNVs) in a single cell was influenced by the number of probes clustered in the interrogated region. Using our custom array, we reproducibly detected multiple chromosome abnormalities including trisomy 21, a 1.2Mb Williams syndrome deletion, and a 1.3Mb CMT1A duplication. Replicate analyses yielded consistent results. CONCLUSION Aneuploidy and genomic imbalances with CNVs as small as 1.2Mb in a single cell are detectable by array CGH using arrays with high-density coverage in the targeted regions. This approach has the potential to be applied for preimplantation genetic diagnosis to detect aneuploidy and common microdeletion/duplication syndromes and for noninvasive prenatal diagnosis if single fetal cells can be isolated.
Collapse
Affiliation(s)
- Weimin Bi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Kutzner H, Metzler G, Argenyi Z, Requena L, Palmedo G, Mentzel T, Rütten A, Hantschke M, Paredes BE, Schärer L, Hesse B, El-Shabrawi-Caelen L, Shabrawi-Caelen LE, Fried I, Kerl H, Lorenzo C, Murali R, Wiesner T. Histological and genetic evidence for a variant of superficial spreading melanoma composed predominantly of large nests. Mod Pathol 2012; 25:838-45. [PMID: 22388759 DOI: 10.1038/modpathol.2012.35] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cutaneous melanomas are characterized by a range of histological appearances, and several morphological variants have been described. In this study, we report a variant of superficial spreading melanoma that is characterized by large, irregular junctional melanocytic nests. The junctional nests varied in shape and size, showed focal tendency to confluence, and were often surrounded by a cuff of epidermal keratinocytes. The melanocytes comprising the nests showed variable cytological atypia. In most of the cases, scant intraepidermal or junctional single melanocytes were seen, and other well-documented diagnostic criteria for melanoma were lacking, and as a result, histological recognition of these tumors as melanoma was difficult. Some cases were associated with an invasive dermal component or showed evidence of sun damage. To provide supporting evidence for malignancy, we analyzed these tumors for genomic aberrations. Using array comparative genomic hybridization (aCGH), we identified multiple genomic aberrations in all analyzed cases. A similar pattern of genomic aberrations was seen in a control group of bona fide superficial spreading melanomas, suggesting that these 'melanomas composed exclusively or predominantly of large nests' are indeed variants of superficial spreading melanoma. Fluorescence in-situ hybridization (FISH) was positive in 40% of the cases. However, using aCGH, the FISH-negative cases showed multiple genomic aberrations in regions that are not covered by FISH. The low sensitivity of the FISH test can be explained by the fact that FISH only evaluates four genomic loci for aberrations, whereas aCGH surveys the entire genome. In summary, we present histological and molecular genetic evidence for a morphological variant of superficial spreading melanoma. Awareness of the histological features will aid in their correct diagnosis as melanoma, and in difficult cases, judicious application of ancillary tests such as aCGH (rather than FISH) will assist accurate diagnosis.
Collapse
Affiliation(s)
- Heinz Kutzner
- Dermatopathologie Friedrichshafen, Friedrichshafen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Katz SF, Lechel A, Obenauf AC, Begus-Nahrmann Y, Kraus JM, Hoffmann EM, Duda J, Eshraghi P, Hartmann D, Liss B, Schirmacher P, Kestler HA, Speicher MR, Rudolph KL. Disruption of Trp53 in livers of mice induces formation of carcinomas with bilineal differentiation. Gastroenterology 2012; 142:1229-1239.e3. [PMID: 22342966 DOI: 10.1053/j.gastro.2012.02.009] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 01/20/2012] [Accepted: 02/07/2012] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS p53 limits the self-renewal of stem cells from various tissues. Loss of p53, in combination with other oncogenic events, results in aberrant self-renewal and transformation of progenitor cells. It is not known whether loss of p53 is sufficient to induce tumor formation in liver. METHODS We used AlfpCre mice to create mice with liver-specific disruption of Trp53 (AlfpCre(+)Trp53(Δ2-10/Δ2-10) mice). We analyzed colony formation and genomic features and gene expression patterns in liver cells during hepatocarcinogenesis in mice with homozygous, heterozygous, and no disruption of Trp53. RESULTS Liver-specific disruption of Trp53 consistently induced formation of liver carcinomas that had bilineal differentiation. In nontransformed liver cells and cultured primary liver cells, loss of p53 (but not p21) resulted in chromosomal imbalances and increased clonogenic capacity of liver progenitor cells (LPCs) and hepatocytes. Primary cultures of hepatocytes and LPCs from AlfpCre(+)Trp53(Δ2-10/Δ2-10) mice, but not Cdkn1a(-/-) mice, formed tumors with bilineal differentiation when transplanted into immunocompromised mice. Spontaneous liver tumors that developed in AlfpCre(+)Trp53(Δ2-10/Δ2-10) mice had significant but complex alterations in expression of Rb checkpoint genes compared with chemically induced liver tumors that developed mice with wild-type Trp53. CONCLUSIONS Deletion of p53 from livers of mice is sufficient to induce tumor formation. The tumors have bilineal differentiation and dysregulation of Rb checkpoint genes.
Collapse
Affiliation(s)
- Sarah-Fee Katz
- Institute of Molecular Medicine and Max Planck Research Group on Stem Cell Aging, University of Ulm, Ulm, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Somatic mosaicism is the result of postzygotic de novo mutation occurring in a portion of the cells making up an organism. Structural genetic variation is a very heterogeneous group of changes, in terms of numerous types of aberrations that are included in this category, involvement of many mechanisms behind the generation of structural variants, and because structural variation can encompass genomic regions highly variable in size. Structural variation rapidly evolved as the dominating type of changes behind human genetic diversity, and the importance of this variation in biology and medicine is continuously increasing. In this review, we combine the evidence of structural variation in the context of somatic cells. We discuss the normal and disease-related somatic structural variation. We review the recent advances in the field of monozygotic twins and other models that have been studied for somatic mutations, including other vertebrates. We also discuss chromosomal mosaicism in a few prime examples of disease genes that contributed to understanding of the importance of somatic heterogeneity. We further highlight challenges and opportunities related to this field, including methodological and practical aspects of detection of somatic mosaicism. The literature devoted to interindividual variation versus papers reporting on somatic variation suggests that the latter is understudied and underestimated. It is important to increase our awareness about somatic mosaicism, in particular, related to structural variation. We believe that further research of somatic mosaicism will prove beneficial for better understanding of common sporadic disorders.
Collapse
|
42
|
Microdissection of spatially identified single nuclei in a solid tumor for single cell whole genome sequencing. Biotechniques 2012; 52:000113860. [PMID: 26307250 DOI: 10.2144/000113860] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2012] [Accepted: 04/02/2012] [Indexed: 11/23/2022] Open
Abstract
The relative spatial distribution of cells in a solid tumor contributes to development of malignancy, yet the details of this process remain poorly understood. To elucidate these mechanisms, the ability to extract and analyze the entire DNA content of individual cells whose precise location in the tumor is known is required, yet such methodology has not yet been described. Here we detail a procedure to directly extract complete individual nuclei from fixed-frozen tissue sections using through-focus analysis coupled with laser microdissection, followed by whole genome amplification. We show that this technique is suitable for routine evaluation of genomic variation such as SNP analyses of the specifically selected nuclei. Our method should provide a means for whole genome variation studies of single cells from spatially defined positions within tumor tissues.
Collapse
|
43
|
Vanneste E, Bittman L, Van der Aa N, Voet T, Vermeesch JR. New array approaches to explore single cells genomes. Front Genet 2012; 3:44. [PMID: 22509179 PMCID: PMC3325760 DOI: 10.3389/fgene.2012.00044] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 03/12/2012] [Indexed: 11/14/2022] Open
Abstract
Microarray analysis enables the genome-wide detection of copy number variations and the investigation of chromosomal instability. Whereas array techniques have been well established for the analysis of unamplified DNA derived from many cells, it has been more challenging to enable the accurate analysis of single cell genomes. In this review, we provide an overview of single cell DNA amplification techniques, the different array approaches, and discuss their potential applications to study human embryos.
Collapse
Affiliation(s)
- Evelyne Vanneste
- Laboratory for Cytogenetics and Genome Research, Center for Human Genetics, Katholieke Universiteit Leuven, Universitair Ziekenhuis Gasthuisberg Leuven, Belgium
| | | | | | | | | |
Collapse
|
44
|
Abstract
We present a protocol for reliably detecting DNA copy number aberrations in a single human cell. Multiple displacement-amplified DNAs of a cell are hybridized to a 3,000-bacterial artificial chromosome (BAC) array and to an Affymetrix 250,000 (250K)-SNP array. Subsequent copy number calling is based on the integration of BAC probe-specific copy number probabilities that are estimated by comparing probe intensities with a single-cell whole-genome amplification (WGA) reference model for diploid chromosomes, as well as SNP copy number and loss-of-heterozygosity states estimated by hidden Markov models (HMM). All methods for detecting DNA copy number aberrations in single human cells have difficulty in confidently discriminating WGA artifacts from true genetic variants. Furthermore, some methods lack thorough validation for segmental DNA imbalance detection. Our protocol minimizes false-positive variant calling and enables uniparental isodisomy detection in single cells. Additionally, it provides quality assessment, allowing the exclusion of uninterpretable single-cell WGA samples. The protocol takes 5-7 d.
Collapse
|
45
|
Mathiesen RR, Fjelldal R, Liestøl K, Due EU, Geigl JB, Riethdorf S, Borgen E, Rye IH, Schneider IJ, Obenauf AC, Mauermann O, Nilsen G, Christian Lingjaerde O, Børresen-Dale AL, Pantel K, Speicher MR, Naume B, Baumbusch LO. High-resolution analyses of copy number changes in disseminated tumor cells of patients with breast cancer. Int J Cancer 2011; 131:E405-15. [PMID: 21935921 DOI: 10.1002/ijc.26444] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Accepted: 09/02/2011] [Indexed: 12/13/2022]
Abstract
The presence of disseminated tumor cells (DTCs) in bone marrow (BM) identifies breast cancer patients with less favorable outcome. Furthermore, molecular characterization is required to investigate the malignant potential of these cells. This study presents a single-cell array comparative genomic hybridization (SCaCGH) method providing molecular analysis of immunomorphologically detected DTCs. The resolution limit of the method was estimated using the cancer cell line SK-BR-3 on 44 and 244k arrays. The technique was further tested on 28 circulating tumor cells and four hematopoietic cells (HCs) from peripheral blood (n = 8 patients). The SCaCGH method was finally applied to 24 DTCs, three immunopositive cells morphologically classified as probable HCs from breast cancer patients and five HC controls from BM (n = 7 patients plus n = 1 healthy donor). The frequency of copy number changes of the DTCs revealed similarities with primary breast tumor samples. Three of the patients had available profiles for DTCs and the corresponding tumor tissue from primary surgery. More than two-third of the analyzed DTCs disclosed equivalent changes, both to each other and to the corresponding primary disease, whereas the rest of the cells showed balanced profiles. The probable HCs revealed either balanced profiles (n = 2) or changes comparable to the tumor tissue and DTCs (n = 1), indicating morphological overlap between HCs and DTCs. Similar aberration patterns were visible in DTCs collected at diagnosis and at 3 years relapse-free follow-up. SCaCGH may be a powerful tool for the molecular characterization of DTCs.
Collapse
Affiliation(s)
- Randi R Mathiesen
- Department of Genetics, Oslo University Hospital Radiumhospitalet, Oslo, Norway
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Russnes HG, Navin N, Hicks J, Borresen-Dale AL. Insight into the heterogeneity of breast cancer through next-generation sequencing. J Clin Invest 2011; 121:3810-8. [PMID: 21965338 DOI: 10.1172/jci57088] [Citation(s) in RCA: 171] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Rapid and sophisticated improvements in molecular analysis have allowed us to sequence whole human genomes as well as cancer genomes, and the findings suggest that we may be approaching the ability to individualize the diagnosis and treatment of cancer. This paradigmatic shift in approach will require clinicians and researchers to overcome several challenges including the huge spectrum of tumor types within a given cancer, as well as the cell-to-cell variations observed within tumors. This review discusses how next-generation sequencing of breast cancer genomes already reveals insight into tumor heterogeneity and how it can contribute to future breast cancer classification and management.
Collapse
Affiliation(s)
- Hege G Russnes
- Laboratory of Molecular Pathology, Division of Pathology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.
| | | | | | | |
Collapse
|
47
|
Single-cell copy number variation detection. Genome Biol 2011; 12:R80. [PMID: 21854607 PMCID: PMC3245619 DOI: 10.1186/gb-2011-12-8-r80] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 08/09/2011] [Accepted: 08/19/2011] [Indexed: 12/15/2022] Open
Abstract
Detection of chromosomal aberrations from a single cell by array comparative genomic hybridization (single-cell array CGH), instead of from a population of cells, is an emerging technique. However, such detection is challenging because of the genome artifacts and the DNA amplification process inherent to the single cell approach. Current normalization algorithms result in inaccurate aberration detection for single-cell data. We propose a normalization method based on channel, genome composition and recurrent genome artifact corrections. We demonstrate that the proposed channel clone normalization significantly improves the copy number variation detection in both simulated and real single-cell array CGH data.
Collapse
|
48
|
Vandewoestyne M, Kumps C, Swerts K, Menten B, Lammens T, Philippé J, De Preter K, Laureys G, Van Roy N, Speleman F, Deforce D. Isolation of disseminated neuroblastoma cells from bone marrow aspirates for pretreatment risk assessment by array comparative genomic hybridization. Int J Cancer 2011; 130:1098-108. [PMID: 21484798 DOI: 10.1002/ijc.26133] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 03/15/2011] [Indexed: 11/05/2022]
Abstract
In neuroblastoma, tumor biopsies are used for prognostic evaluation and risk assessment by molecular genetic analyses such as fluorescence in situ hybridization (FISH) and array comparative genomic hybridization (array CGH). Analysis of primary tumors by array CGH can be hampered by the lack of sufficient tumor cells due to small biopsy size or availability of invaded bone marrow only. Given the importance of accurate assessment of genetic alterations in the diagnostic work-up of patients with neuroblastoma, we evaluated the possibility to analyze bone marrow metastases in patients with disseminated disease. Disseminated neuroblastoma cells were isolated from bone marrow aspirates by using either laser capture microdissection (LCM) or magnetic activated cell sorting (MACS). The array CGH profiles of these isolated metastases were compared to array CGH profiles and/or FISH data of the corresponding primary tumor. Here, we show that the major recurrent DNA copy number alterations detected in primary neuroblastoma tumors (i.e., 1p, 3p and 11q deletion, 17q gain and MYCN amplification) can be detected, with high sensitivity and specificity, in the disseminated neuroblastoma cells isolated from the bone marrow aspirates, using an array platform with high coverage for these regions. Moreover, we demonstrate that for archived material, for example, for retrospective studies, LCM is the method of choice, while for fresh bone marrow aspirates, acquired at the time of diagnosis, MACS is superior.
Collapse
Affiliation(s)
- Mado Vandewoestyne
- Faculty of Pharmaceutical Sciences, Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Advances in whole genome amplification and next-generation sequencing methods have enabled genomic analyses of single cells, and these techniques are now beginning to be used to detect genomic lesions in individual cancer cells. Previous approaches have been unable to resolve genomic differences in complex mixtures of cells, such as heterogeneous tumors, despite the importance of characterizing such tumors for cancer treatment. Sequencing of single cells is likely to improve several aspects of medicine, including the early detection of rare tumor cells, monitoring of circulating tumor cells (CTCs), measuring intratumor heterogeneity, and guiding chemotherapy. In this review we discuss the challenges and technical aspects of single-cell sequencing, with a strong focus on genomic copy number, and discuss how this information can be used to diagnose and treat cancer patients.
Collapse
|
50
|
Abstract
Isothermal DNA amplification is an alternative to PCR-based amplification for point-of-care diagnosis. Since the early 1990s, the approach has been refined into a simple, rapid and cost-effective tool by means of several distinct strategies. Input signals have been diversified from DNA to RNA, protein or small organic molecules by translating these signals into input DNA before amplification, thus allowing assays on various classes of biomolecules. In situ detection of single biomolecules has been achieved using an isothermal method, leveraging localized signal amplification in an intact specimen. A few pioneering studies to develop a homogenous isothermal protein assay have successfully translated structure-switching of a probe upon target binding into input DNA for isothermal amplification. In addition to the detection of specific targets, isothermal methods have made whole-genome amplification of single cells possible owing to the unbiased, linear nature of the amplification process as well as the large size of amplified products given by ϕ29 DNA polymerase. These applications have been devised with the four isothermal amplification strategies covered in this review: strand-displacement amplification, rolling circle amplification, helicase-dependent amplification and recombinase polymerase amplification.
Collapse
|