1
|
Albert P, Varga B, Ferenc G, Kiss A. Conversion of the CG specific M.MpeI DNA methyltransferase into an enzyme predominantly methylating CCA and CCC sites. Nucleic Acids Res 2024; 52:1896-1908. [PMID: 38164970 PMCID: PMC10899764 DOI: 10.1093/nar/gkad1217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/04/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024] Open
Abstract
We used structure guided mutagenesis and directed enzyme evolution to alter the specificity of the CG specific bacterial DNA (cytosine-5) methyltransferase M.MpeI. Methylation specificity of the M.MpeI variants was characterized by digestions with methylation sensitive restriction enzymes and by measuring incorporation of tritiated methyl groups into double-stranded oligonucleotides containing single CC, CG, CA or CT sites. Site specific mutagenesis steps designed to disrupt the specific contacts between the enzyme and the non-substrate base pair of the target sequence (5'-CG/5'-CG) yielded M.MpeI variants with varying levels of CG specific and increasing levels of CA and CC specific MTase activity. Subsequent random mutagenesis of the target recognizing domain coupled with selection for non-CG specific methylation yielded a variant, which predominantly methylates CC dinucleotides, has very low activity on CG and CA sites, and no activity on CT sites. This M.MpeI variant contains a one amino acid deletion (ΔA323) and three substitutions (N324G, R326G and E305N) in the target recognition domain. The mutant enzyme has very strong preference for A and C in the 3' flanking position making it a CCA and CCC specific DNA methyltransferase.
Collapse
Affiliation(s)
- Pál Albert
- Laboratory of DNA-Protein Interactions, Institute of Biochemistry, HUN-REN Biological Research Centre, 6726 Szeged, Hungary
- Doctoral School of Biology, Faculty of Science and Informatics, University of Szeged, 6726 Szeged, Hungary
| | - Bence Varga
- Laboratory of DNA-Protein Interactions, Institute of Biochemistry, HUN-REN Biological Research Centre, 6726 Szeged, Hungary
- Doctoral School of Biology, Faculty of Science and Informatics, University of Szeged, 6726 Szeged, Hungary
- Nucleic Acid Synthesis Laboratory, Institute of Plant Biology, HUN-REN Biological Research Centre, 6726 Szeged, Hungary
| | - Györgyi Ferenc
- Nucleic Acid Synthesis Laboratory, Institute of Plant Biology, HUN-REN Biological Research Centre, 6726 Szeged, Hungary
| | - Antal Kiss
- Laboratory of DNA-Protein Interactions, Institute of Biochemistry, HUN-REN Biological Research Centre, 6726 Szeged, Hungary
| |
Collapse
|
2
|
Loo CE, Hix MA, Wang T, Cisneros GA, Kohli RM. Revealing Drivers for Carboxy- S-adenosyl-l-methionine Use by Neomorphic Variants of a DNA Methyltransferase. ACS Chem Biol 2023; 18:2224-2232. [PMID: 37379458 PMCID: PMC10592258 DOI: 10.1021/acschembio.3c00184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
Methylation of DNA plays a key role in diverse biological processes spanning from bacteria to mammals. DNA methyltransferases (MTases) typically employ S-adenosyl-l-methionine (SAM) as a critical cosubstrate and the relevant methyl donor for modification of the C5 position of cytosine. Recently, work on the CpG-specific bacterial MTase, M.MpeI, has shown that a single N374K point mutation can confer the enzyme with the neomorphic ability to use the sparse, naturally occurring metabolite carboxy-S-adenosyl-l-methionine (CxSAM) in order to generate the unnatural DNA modification, 5-carboxymethylcytosine (5cxmC). Here, we aimed to investigate the mechanistic basis for this DNA carboxymethyltransferase (CxMTase) activity by employing a combination of computational modeling and in vitro characterization. Modeling of substrate interactions with the enzyme variant allowed us to identify a favorable salt bridge between CxSAM and N374K that helps to rationalize selectivity of the CxMTase. Unexpectedly, we also discovered a potential role for a key active site E45 residue that makes a bidentate interaction with the ribosyl sugar of CxSAM, located on the opposite face of the CxMTase active site. Prompted by these modeling results, we further explored the space-opening E45D mutation and found that the E45D/N374K double mutant in fact inverts selectivity, preferring CxSAM over SAM in biochemical assays. These findings provide new insight into CxMTase active site architecture and may offer broader utility given the numerous opportunities offered by using SAM analogs for selective molecular labeling in concert with nucleic acid or even protein-modifying MTases.
Collapse
Affiliation(s)
- Christian E. Loo
- Graduate Group in Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Mark A. Hix
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Tong Wang
- Graduate Group in Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - G. Andrés Cisneros
- Department of Physics, University of Texas at Dallas, Richardson, Texas 75801, United States; Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75801, United States
| | - Rahul M. Kohli
- Department of Medicine and Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
3
|
Pradhan S, Apaydin S, Bucevičius J, Gerasimaitė R, Kostiuk G, Lukinavičius G. Sequence-specific DNA labelling for fluorescence microscopy. Biosens Bioelectron 2023; 230:115256. [PMID: 36989663 DOI: 10.1016/j.bios.2023.115256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/04/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023]
Abstract
The preservation of nucleus structure during microscopy imaging is a top priority for understanding chromatin organization, genome dynamics, and gene expression regulation. In this review, we summarize the sequence-specific DNA labelling methods that can be used for imaging in fixed and/or living cells without harsh treatment and DNA denaturation: (i) hairpin polyamides, (ii) triplex-forming oligonucleotides, (iii) dCas9 proteins, (iv) transcription activator-like effectors (TALEs) and (v) DNA methyltransferases (MTases). All these techniques are capable of identifying repetitive DNA loci and robust probes are available for telomeres and centromeres, but visualizing single-copy sequences is still challenging. In our futuristic vision, we see gradual replacement of the historically important fluorescence in situ hybridization (FISH) by less invasive and non-destructive methods compatible with live cell imaging. Combined with super-resolution fluorescence microscopy, these methods will open the possibility to look into unperturbed structure and dynamics of chromatin in living cells, tissues and whole organisms.
Collapse
|
4
|
Stankevičius V, Gibas P, Masiulionytė B, Gasiulė L, Masevičius V, Klimašauskas S, Vilkaitis G. Selective chemical tracking of Dnmt1 catalytic activity in live cells. Mol Cell 2022; 82:1053-1065.e8. [PMID: 35245449 PMCID: PMC8901439 DOI: 10.1016/j.molcel.2022.02.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/04/2021] [Accepted: 02/01/2022] [Indexed: 12/24/2022]
Abstract
Enzymatic methylation of cytosine to 5-methylcytosine in DNA is a fundamental epigenetic mechanism involved in mammalian development and disease. DNA methylation is brought about by collective action of three AdoMet-dependent DNA methyltransferases, whose catalytic interactions and temporal interplay are poorly understood. We used structure-guided engineering of the Dnmt1 methyltransferase to enable catalytic transfer of azide tags onto DNA from a synthetic cofactor analog, Ado-6-azide, in vitro. We then CRISPR-edited the Dnmt1 locus in mouse embryonic stem cells to install the engineered codon, which, following pulse internalization of the Ado-6-azide cofactor by electroporation, permitted selective azide tagging of Dnmt1-specific genomic targets in cellulo. The deposited covalent tags were exploited as "click" handles for reading adjoining sequences and precise genomic mapping of the methylation sites. The proposed approach, Dnmt-TOP-seq, enables high-resolution temporal tracking of the Dnmt1 catalysis in mammalian cells, paving the way to selective studies of other methylation pathways in eukaryotic systems.
Collapse
Affiliation(s)
- Vaidotas Stankevičius
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius 10257, Lithuania
| | - Povilas Gibas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius 10257, Lithuania
| | - Bernadeta Masiulionytė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius 10257, Lithuania
| | - Liepa Gasiulė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius 10257, Lithuania
| | - Viktoras Masevičius
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius 10257, Lithuania; Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Vilnius 03225, Lithuania
| | - Saulius Klimašauskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius 10257, Lithuania.
| | - Giedrius Vilkaitis
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius 10257, Lithuania.
| |
Collapse
|
5
|
DNA Labeling Using DNA Methyltransferases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1389:535-562. [DOI: 10.1007/978-3-031-11454-0_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
6
|
Kasai Y, Sato K, Utsumi S, Ichikawa S. Improvement of S N Ar Reaction Rate by an Electron-Withdrawing Group in the Crosslinking of DNA Cytosine-5 Methyltransferase by a Covalent Oligodeoxyribonucleotide Inhibitor. Chembiochem 2018; 19:1866-1872. [PMID: 29900657 DOI: 10.1002/cbic.201800244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Indexed: 12/31/2022]
Abstract
DNA cytosine 5-methyltransferase (DNMT) catalyzes methylation at the C5 position of the cytosine residues in the CpG sequence. Aberrant DNA methylation patterns are found in cancer cells. Therefore, inhibition of human DNMT is an effective strategy for treating various cancers. The inhibitors of DNMT have an electron-deficient nucleobase because this group facilitates attack by the catalytic Cys residue in DNMTs. Recently, we reported the synthesis and properties of mechanism-based modified nucleosides, 2-amino-4-halopyridine-C-nucleosides (dX P), as inhibitors of DNMT. To develop a more efficient inhibitor of DNMT for oligonucleotide therapeutics, oligodeoxyribonucleotides (ODNs) containing other nucleoside analogues, which react more quickly with DNMT, are needed. Herein, we describe the design, synthesis, and evaluation of the properties of 2-amino-3-cyano-4-halopyridine-C-nucleosides (dX PCN ) and ODNs containing dX PCN , as more reactive inhibitors of DNMTs. Nucleophilic aromatic substitution (SN Ar) of the designed nucleosides, dX PCN , was faster than that of dX P, and the ODN containing dX PCN effectively formed a complex with DNMTs. This study suggests that the incorporation of an electron-withdrawing group would be an effective method to increase reactivity toward the nucleophile of the DNMTs, while maintaining high specificity.
Collapse
Affiliation(s)
- Yukiko Kasai
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, 060-0812, Japan
| | - Kousuke Sato
- Faculty of Pharmaceutical Sciences, Health Sciences, University of Hokkaido, 1757 Kanazawa, Tobetsu, Ishikari-gun, 061-0293, Japan
| | - Shohei Utsumi
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, 060-0812, Japan
| | - Satoshi Ichikawa
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, 060-0812, Japan.,Center for Research and Education on Drug Discovery, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, 060-0812, Japan
| |
Collapse
|
7
|
Deen J, Vranken C, Leen V, Neely RK, Janssen KPF, Hofkens J. Methyltransferase-Directed Labeling of Biomolecules and its Applications. Angew Chem Int Ed Engl 2017; 56:5182-5200. [PMID: 27943567 PMCID: PMC5502580 DOI: 10.1002/anie.201608625] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Indexed: 01/01/2023]
Abstract
Methyltransferases (MTases) form a large family of enzymes that methylate a diverse set of targets, ranging from the three major biopolymers to small molecules. Most of these MTases use the cofactor S-adenosyl-l-Methionine (AdoMet) as a methyl source. In recent years, there have been significant efforts toward the development of AdoMet analogues with the aim of transferring moieties other than simple methyl groups. Two major classes of AdoMet analogues currently exist: doubly-activated molecules and aziridine based molecules, each of which employs a different approach to achieve transalkylation rather than transmethylation. In this review, we discuss the various strategies for labelling and functionalizing biomolecules using AdoMet-dependent MTases and AdoMet analogues. We cover the synthetic routes to AdoMet analogues, their stability in biological environments and their application in transalkylation reactions. Finally, some perspectives are presented for the potential use of AdoMet analogues in biology research, (epi)genetics and nanotechnology.
Collapse
Affiliation(s)
- Jochem Deen
- Laboratory of Nanoscale BiologySchool of Engineering, EPFL, STI IBI-STI LBEN BM 5134 (Bâtiment BM)Station 17CH-1015LausanneSwitzerland
| | - Charlotte Vranken
- Laboratory of Photochemistry and Spectroscopy, Department of ChemistryKU LeuvenCelestijnenlaan 200FB-3001HeverleeBelgium
| | - Volker Leen
- Laboratory of Photochemistry and Spectroscopy, Department of ChemistryKU LeuvenCelestijnenlaan 200FB-3001HeverleeBelgium
| | - Robert K. Neely
- School of ChemistryUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
| | - Kris P. F. Janssen
- Laboratory of Photochemistry and Spectroscopy, Department of ChemistryKU LeuvenCelestijnenlaan 200FB-3001HeverleeBelgium
| | - Johan Hofkens
- Laboratory of Photochemistry and Spectroscopy, Department of ChemistryKU LeuvenCelestijnenlaan 200FB-3001HeverleeBelgium
| |
Collapse
|
8
|
Deen J, Vranken C, Leen V, Neely RK, Janssen KPF, Hofkens J. Die Methyltransferase-gesteuerte Markierung von Biomolekülen und ihre Anwendungen. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201608625] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Jochem Deen
- Laboratory of Nanoscale Biology; School of Engineering, EPFL, STI IBI-STI LBEN BM 5134 (Bâtiment BM); Station 17 CH-1015 Lausanne Schweiz
| | - Charlotte Vranken
- Laboratory of Photochemistry and Spectroscopy, Department of Chemistry; KU Leuven; Celestijnenlaan 200F B-3001 Heverlee Belgien
| | - Volker Leen
- Laboratory of Photochemistry and Spectroscopy, Department of Chemistry; KU Leuven; Celestijnenlaan 200F B-3001 Heverlee Belgien
| | - Robert K. Neely
- School of Chemistry; University of Birmingham; Edgbaston Birmingham B15 2TT Großbritannien
| | - Kris P. F. Janssen
- Laboratory of Photochemistry and Spectroscopy, Department of Chemistry; KU Leuven; Celestijnenlaan 200F B-3001 Heverlee Belgien
| | - Johan Hofkens
- Laboratory of Photochemistry and Spectroscopy, Department of Chemistry; KU Leuven; Celestijnenlaan 200F B-3001 Heverlee Belgien
| |
Collapse
|
9
|
Engineering and Directed Evolution of DNA Methyltransferases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016. [PMID: 27826849 DOI: 10.1007/978-3-319-43624-1_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
DNA methyltransferases (MTases) constitute an attractive target for protein engineering, thus opening the road to new ways of manipulating DNA in a unique and selective manner. Here, we review various aspects of MTase engineering, both methodological and conceptual, and also discuss future directions and challenges. Bacterial MTases that are part of restriction/modification (R/M) systems offer a convenient way for the selection of large gene libraries, both in vivo and in vitro. We review these selection methods, their strengths and weaknesses, and also the prospects for new selection approaches that will enable the directed evolution of mammalian DNA methyltransferases (Dnmts). We explore various properties of MTases that may be subject to engineering. These include engineering for higher stability and soluble expression (MTases, including bacterial ones, are prone to misfolding), engineering of the DNA target specificity, and engineering for the usage of S-adenosyl-L-methionine (AdoMet) analogs. Directed evolution of bacterial MTases also offers insights into how these enzymes readily evolve in nature, thus yielding MTases with a huge spectrum of DNA target specificities. Engineering for alternative cofactors, on the other hand, enables modification of DNA with various groups other than methyl and thus can be employed to map and redirect DNA epigenetic modifications.
Collapse
|
10
|
Tomkuvienė M, Kriukienė E, Klimašauskas S. DNA Labeling Using DNA Methyltransferases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 945:511-535. [PMID: 27826850 PMCID: PMC11032744 DOI: 10.1007/978-3-319-43624-1_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
DNA methyltransferases (MTases) uniquely combine the ability to recognize and covalently modify specific target sequences in DNA using the ubiquitous cofactor S-adenosyl-L-methionine (AdoMet). Although DNA methylation plays important roles in biological signaling, the transferred methyl group is a poor reporter and is highly inert to further biocompatible derivatization. To unlock the biotechnological power of these enzymes, two major types of cofactor AdoMet analogs were developed that permit targeted MTase-directed attachment of larger moieties containing functional or reporter groups onto DNA. One such approach (named sequence-specific methyltransferase-induced labeling, SMILing) uses reactive aziridine or N-mustard mimics of the cofactor AdoMet, which render targeted coupling of a whole cofactor molecule to the target DNA. The second approach (methyltransferase-directed transfer of activated groups, mTAG) uses AdoMet analogs with a sulfonium-bound extended side chain replacing the methyl group, which permits MTase-directed covalent transfer of the activated side chain alone. As the enlarged cofactors are not always compatible with the active sites of native MTases, steric engineering of the active site has been employed to optimize their alkyltransferase activity. In addition to the described cofactor analogs, recently discovered atypical reactions of DNA cytosine-5 MTases involving non-cofactor-like compounds can also be exploited for targeted derivatization and labeling of DNA. Altogether, these approaches offer new powerful tools for sequence-specific covalent DNA labeling, which not only pave the way to developing a variety of useful techniques in DNA research, diagnostics, and nanotechnologies but have already proven practical utility for optical DNA mapping and epigenome studies.
Collapse
Affiliation(s)
- Miglė Tomkuvienė
- Institute of Biotechnology, Vilnius University, Vilnius, LT-10222, Lithuania
| | - Edita Kriukienė
- Institute of Biotechnology, Vilnius University, Vilnius, LT-10222, Lithuania
| | | |
Collapse
|
11
|
Metadynamics simulation study on the conformational transformation of HhaI methyltransferase: an induced-fit base-flipping hypothesis. BIOMED RESEARCH INTERNATIONAL 2014; 2014:304563. [PMID: 25045662 PMCID: PMC4090504 DOI: 10.1155/2014/304563] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 05/12/2014] [Indexed: 12/02/2022]
Abstract
DNA methyltransferases play crucial roles in establishing and maintenance of DNA methylation, which is an important epigenetic mark. Flipping the target cytosine out of the DNA helical stack and into the active site of protein provides DNA methyltransferases with an opportunity to access and modify the genetic information hidden in DNA. To investigate the conversion process of base flipping in the HhaI methyltransferase (M.HhaI), we performed different molecular simulation approaches on M.HhaI-DNA-S-adenosylhomocysteine ternary complex. The results demonstrate that the nonspecific binding of DNA to M.HhaI is initially induced by electrostatic interactions. Differences in chemical environment between the major and minor grooves determine the orientation of DNA. Gln237 at the target recognition loop recognizes the GCGC base pair from the major groove side by hydrogen bonds. In addition, catalytic loop motion is a key factor during this process. Our study indicates that base flipping is likely to be an “induced-fit” process. This study provides a solid foundation for future studies on the discovery and development of mechanism-based DNA methyltransferases regulators.
Collapse
|
12
|
Chaikind B, Ostermeier M. Directed evolution of improved zinc finger methyltransferases. PLoS One 2014; 9:e96931. [PMID: 24810747 PMCID: PMC4014571 DOI: 10.1371/journal.pone.0096931] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 04/14/2014] [Indexed: 01/09/2023] Open
Abstract
The ability to target DNA methylation toward a single, user-designated CpG site in vivo may have wide applicability for basic biological and biomedical research. A tool for targeting methylation toward single sites could be used to study the effects of individual methylation events on transcription, protein recruitment to DNA, and the dynamics of such epigenetic alterations. Although various tools for directing methylation to promoters exist, none offers the ability to localize methylation solely to a single CpG site. In our ongoing research to create such a tool, we have pursued a strategy employing artificially bifurcated DNA methyltransferases; each methyltransferase fragment is fused to zinc finger proteins with affinity for sequences flanking a targeted CpG site for methylation. We sought to improve the targeting of these enzymes by reducing the methyltransferase activity at non-targeted sites while maintaining high levels of activity at a targeted site. Here we demonstrate an in vitro directed evolution selection strategy to improve methyltransferase specificity and use it to optimize an engineered zinc finger methyltransferase derived from M.SssI. The unusual restriction enzyme McrBC is a key component of this strategy and is used to select against methyltransferases that methylate multiple sites on a plasmid. This strategy allowed us to quickly identify mutants with high levels of methylation at the target site (up to ∼80%) and nearly unobservable levels of methylation at a off-target sites (<1%), as assessed in E. coli. We also demonstrate that replacing the zinc finger domains with new zinc fingers redirects the methylation to a new target CpG site flanked by the corresponding zinc finger binding sequences.
Collapse
Affiliation(s)
- Brian Chaikind
- Chemistry-Biology Interface Graduate Program, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Marc Ostermeier
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
13
|
Mao X, Wei M, Zhu C, Lu J, Gao J, Simon AJ, Shi J, Huang Q, Fan C. Real time in vitro regulation of DNA methylation using a 5-fluorouracil conjugated DNA-based stimuli-responsive platform. ACS APPLIED MATERIALS & INTERFACES 2013; 5:2604-2609. [PMID: 23480369 DOI: 10.1021/am3033052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
DNA methylation, catalyzed by methylases, plays a critical role in many biological processes, and many methylases have been regarded as promising targets for antimicrobial drugs. In this work, we report a stimulus responsive, self-regulating anticancer drug release platform, comprising a multifunctional DNA that upon methylation by methyltransferase (MTase) releases 5-fluorouracil (5-Fu) and in turn inhibits subsequent expression of MTase. The multifunctional DNA with anticancer drug are first methylated by DNA adenine methylation (DAM) methyltransferase (MTase) and then cut by the methylation-sensitive restriction endonuclease Dpn I. Removal of duplex from the functional DNA by the methylation/cleavage process will release the anticancer drug, resulting in inhibition of the activity of DAM in turn. Consequently, the enzyme activity of DAM MTase can be self-regulated. Furthermore, we found that the inhibition efficiency of 5-Fu significantly increase as it is functionalized with DNA.
Collapse
Affiliation(s)
- Xiuhai Mao
- Laboratory of Physical Biology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Lukinavičius G, Tomkuvienė M, Masevičius V, Klimašauskas S. Enhanced chemical stability of adomet analogues for improved methyltransferase-directed labeling of DNA. ACS Chem Biol 2013; 8:1134-9. [PMID: 23557731 DOI: 10.1021/cb300669x] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Methyltransferases catalyze specific transfers of methyl groups from the ubiquitous cofactor S-adenosyl-l-methionine (AdoMet) to various nucleophilic positions in biopolymers like DNA, RNA, and proteins. We had previously described synthesis and application of AdoMet analogues carrying sulfonium-bound 4-substituted but-2-ynyl side chains for transfer by methyltransferases. Although useful in certain applications, these cofactor analogues exhibited short lifetimes in physiological buffers. Examination of the reaction kinetics and products showed that their fast inactivation followed a different pathway than observed for AdoMet and rather involved a pH-dependent addition of a water molecule to the side chain. This side reaction was eradicated by synthesis of a series of cofactor analogues in which the separation between an electronegative group and the triple bond was increased from one to three carbon units. The designed hex-2-ynyl moiety-based cofactor analogues with terminal amino, azide, or alkyne groups showed a markedly improved enzymatic transalkylation activity and proved well suitable for methyltransferase-directed sequence-specific labeling of DNA in vitro and in bacterial cell lysates.
Collapse
Affiliation(s)
| | - Miglė Tomkuvienė
- Institute of Biotechnology, Vilnius University, LT-02241 Vilnius, Lithuania
| | - Viktoras Masevičius
- Institute of Biotechnology, Vilnius University, LT-02241 Vilnius, Lithuania
- Faculty of Chemistry, Vilnius University, LT-03225 Vilnius, Lithuania
| | | |
Collapse
|
15
|
Lukinavicius G, Lapinaite A, Urbanaviciute G, Gerasimaite R, Klimasauskas S. Engineering the DNA cytosine-5 methyltransferase reaction for sequence-specific labeling of DNA. Nucleic Acids Res 2012; 40:11594-602. [PMID: 23042683 PMCID: PMC3526304 DOI: 10.1093/nar/gks914] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
DNA methyltransferases catalyse the transfer of a methyl group from the ubiquitous cofactor S-adenosyl-L-methionine (AdoMet) onto specific target sites on DNA and play important roles in organisms from bacteria to humans. AdoMet analogs with extended propargylic side chains have been chemically produced for methyltransferase-directed transfer of activated groups (mTAG) onto DNA, although the efficiency of reactions with synthetic analogs remained low. We performed steric engineering of the cofactor pocket in a model DNA cytosine-5 methyltransferase (C5-MTase), M.HhaI, by systematic replacement of three non-essential positions, located in two conserved sequence motifs and in a variable region, with smaller residues. We found that double and triple replacements lead to a substantial improvement of the transalkylation activity, which manifests itself in a mild increase of cofactor binding affinity and a larger increase of the rate of alkyl transfer. These effects are accompanied with reduction of both the stability of the product DNA–M.HhaI–AdoHcy complex and the rate of methylation, permitting competitive mTAG labeling in the presence of AdoMet. Analogous replacements of two conserved residues in M.HpaII and M2.Eco31I also resulted in improved transalkylation activity attesting a general applicability of the homology-guided engineering to the C5-MTase family and expanding the repertoire of sequence-specific tools for covalent in vitro and ex vivo labeling of DNA.
Collapse
Affiliation(s)
- Grazvydas Lukinavicius
- Department of Biological DNA Modification, Institute of Biotechnology, Vilnius University, 02241 Vilnius, Lithuania
| | | | | | | | | |
Collapse
|
16
|
Behrens GA, Hummel A, Padhi SK, Schätzle S, Bornscheuer UT. Discovery and Protein Engineering of Biocatalysts for Organic Synthesis. Adv Synth Catal 2011. [DOI: 10.1002/adsc.201100446] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
17
|
Jurkowska RZ, Siddique AN, Jurkowski TP, Jeltsch A. Approaches to Enzyme and Substrate Design of the Murine Dnmt3a DNA Methyltransferase. Chembiochem 2011; 12:1589-94. [DOI: 10.1002/cbic.201000673] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Indexed: 11/11/2022]
|
18
|
Matje DM, Coughlin DF, Connolly BA, Dahlquist FW, Reich NO. Determinants of precatalytic conformational transitions in the DNA cytosine methyltransferase M.HhaI. Biochemistry 2011; 50:1465-73. [PMID: 21229971 DOI: 10.1021/bi101446g] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The DNA methyltransferase M.HhaI is an excellent model for understanding how recognition of a nucleic acid substrate is translated into site-specific modification. In this study, we utilize direct, real-time monitoring of the catalytic loop position via engineered tryptophan fluorescence reporters to dissect the conformational transitions that occur in both enzyme and DNA substrate prior to methylation of the target cytosine. Using nucleobase analogues in place of the target and orphan bases, the kinetics of the base flipping and catalytic loop closure rates were determined, revealing that base flipping precedes loop closure as the rate-determining step prior to methyl transfer. To determine the mechanism by which individual specific hydrogen bond contacts at the enzyme-DNA interface mediate these conformational transitions, nucleobase analogues lacking hydrogen bonding groups were incorporated into the recognition sequence to disrupt the major groove recognition elements. The consequences of binding, loop closure, and catalysis were determined for four contacts, revealing large differences in the contribution of individual hydrogen bonds to DNA recognition and conformational transitions on the path to catalysis. Our results describe how M.HhaI utilizes direct readout contacts to accelerate extrication of the target base that offer new insights into the evolutionary history of this important class of enzymes.
Collapse
Affiliation(s)
- Douglas M Matje
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106-9510, United States
| | | | | | | | | |
Collapse
|
19
|
Feng SY, Ota K, Ito T. A yeast one-hybrid system to screen for methylated DNA-binding proteins. Nucleic Acids Res 2010; 38:e189. [PMID: 20798175 PMCID: PMC2978385 DOI: 10.1093/nar/gkq757] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We had previously exploited a method for targeted DNA methylation in budding yeast to succeed in one-hybrid detection of methylation-dependent DNA-protein interactions. Based on this finding, we developed a yeast one-hybrid system to screen cDNA libraries for clones encoding methylated DNA-binding proteins. Concurrent use of two independent bait sequences in the same cell, or dual-bait system, effectively reduced false positive clones, which were derived from methylation-insensitive sequence-specific DNA-binding proteins. We applied the dual-bait system to screen cDNA libraries and demonstrated efficient isolation of clones for methylated DNA-binding proteins. This system would serve as a unique research tool for epigenetics.
Collapse
Affiliation(s)
- Shu-Ying Feng
- Department of Computational Biology, Graduate School of Frontier Sciences, University of Tokyo, Tokyo, Japan
| | | | | |
Collapse
|