1
|
Bryce-Smith S, Brown AL, Mehta PR, Mattedi F, Mikheenko A, Barattucci S, Zanovello M, Dattilo D, Yome M, Hill SE, Qi YA, Wilkins OG, Sun K, Ryadnov E, Wan Y, Vargas JNS, Birsa N, Raj T, Humphrey J, Keuss M, Ward M, Secrier M, Fratta P. TDP-43 loss induces extensive cryptic polyadenylation in ALS/FTD. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.22.576625. [PMID: 38313254 PMCID: PMC10836071 DOI: 10.1101/2024.01.22.576625] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Nuclear depletion and cytoplasmic aggregation of the RNA-binding protein TDP-43 is the hallmark of ALS, occurring in over 97% of cases. A key consequence of TDP-43 nuclear loss is the de-repression of cryptic exons. Whilst TDP-43 regulated cryptic splicing is increasingly well catalogued, cryptic alternative polyadenylation (APA) events, which define the 3' end of last exons, have been largely overlooked, especially when not associated with novel upstream splice junctions. We developed a novel bioinformatic approach to reliably identify distinct APA event types: alternative last exons (ALE), 3'UTR extensions (3'Ext) and intronic polyadenylation (IPA) events. We identified novel neuronal cryptic APA sites induced by TDP-43 loss of function by systematically applying our pipeline to a compendium of publicly available and in house datasets. We find that TDP-43 binding sites and target motifs are enriched at these cryptic events and that TDP-43 can have both repressive and enhancing action on APA. Importantly, all categories of cryptic APA can also be identified in ALS and FTD post mortem brain regions with TDP-43 proteinopathy underlining their potential disease relevance. RNA-seq and Ribo-seq analyses indicate that distinct cryptic APA categories have different downstream effects on transcript and translation. Intriguingly, cryptic 3'Exts occur in multiple transcription factors, such as ELK1, SIX3, and TLX1, and lead to an increase in wild-type protein levels and function. Finally, we show that an increase in RNA stability leading to a higher cytoplasmic localisation underlies these observations. In summary, we demonstrate that TDP-43 nuclear depletion induces a novel category of cryptic RNA processing events and we expand the palette of TDP-43 loss consequences by showing this can also lead to an increase in normal protein translation.
Collapse
Affiliation(s)
- Sam Bryce-Smith
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Anna-Leigh Brown
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Puja R. Mehta
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Francesca Mattedi
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Alla Mikheenko
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Simone Barattucci
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Matteo Zanovello
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Dario Dattilo
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Matthew Yome
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Sarah E. Hill
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Yue A. Qi
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Oscar G. Wilkins
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
- The Francis Crick Institute, London, UK
| | - Kai Sun
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Eugeni Ryadnov
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Yixuan Wan
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
| | | | - Jose Norberto S. Vargas
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Nicol Birsa
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Towfique Raj
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences & Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jack Humphrey
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences & Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew Keuss
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Michael Ward
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Maria Secrier
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Pietro Fratta
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
- The Francis Crick Institute, London, UK
| |
Collapse
|
2
|
EGF-Dependent Activation of ELK1 Contributes to the Induction of CLDND1 Expression Involved in Tight Junction Formation. Biomedicines 2022; 10:biomedicines10081792. [PMID: 35892692 PMCID: PMC9329870 DOI: 10.3390/biomedicines10081792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/14/2022] [Accepted: 07/22/2022] [Indexed: 11/23/2022] Open
Abstract
Claudin proteins are intercellular adhesion molecules. Increased claudin domain-containing 1 (CLDND1) expression is associated with the malignant transformation of estrogen receptor-negative breast cancer cells with low sensitivity to hormone therapy. Abnormal CLDND1 expression is also implicated in vascular diseases. Previously, we investigated the regulatory mechanism underlying CLDND1 expression and identified a strong enhancer region near the promoter. In silico analysis of the sequence showed high homology to the ETS domain-containing protein-1 (ELK1)-binding sequence which is involved in cell growth, differentiation, angiogenesis, and cancer. Transcriptional ELK1 activation is associated with the mitogen-activated protein kinase (MAPK) signaling cascade originating from the epidermal growth factor receptor (EGFR). Here, we evaluated the effect of gefitinib, an EGFR tyrosine kinase inhibitor, on the suppression of CLDND1 expression using ELK1 overexpression in luciferase reporter and chromatin immunoprecipitation assays. ELK1 was found to be an activator of the enhancer region, and its transient expression increased that of CLDND1 at the mRNA and protein levels. CLDND1 expression was increased following EGF-induced ELK1 phosphorylation. Furthermore, this increase in CLDND1 was significantly suppressed by gefitinib. Therefore, EGF-dependent activation of ELK1 contributes to the induction of CLDND1 expression. These findings open avenues for the development of new anticancer agents targeting CLDND1.
Collapse
|
3
|
Gene Regulatory Network of ETS Domain Transcription Factors in Different Stages of Glioma. J Pers Med 2021; 11:jpm11020138. [PMID: 33671331 PMCID: PMC7922321 DOI: 10.3390/jpm11020138] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/07/2021] [Accepted: 02/13/2021] [Indexed: 12/30/2022] Open
Abstract
The ETS domain family of transcription factors is involved in a number of biological processes, and is commonly misregulated in various forms of cancer. Using microarray datasets from patients with different grades of glioma, we have analyzed the expression profiles of various ETS genes, and have identified ETV1, ELK3, ETV4, ELF4, and ETV6 as novel biomarkers for the identification of different glioma grades. We have further analyzed the gene regulatory networks of ETS transcription factors and compared them to previous microarray studies, where Elk-1-VP16 or PEA3-VP16 were overexpressed in neuroblastoma cell lines, and we identify unique and common regulatory networks for these ETS proteins.
Collapse
|
4
|
Activating KRAS, NRAS, and BRAF mutants enhance proteasome capacity and reduce endoplasmic reticulum stress in multiple myeloma. Proc Natl Acad Sci U S A 2020; 117:20004-20014. [PMID: 32747568 DOI: 10.1073/pnas.2005052117] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
KRAS, NRAS, and BRAF mutations which activate p44/42 mitogen-activated protein kinase (MAPK) signaling are found in half of myeloma patients and contribute to proteasome inhibitor (PI) resistance, but the underlying mechanisms are not fully understood. We established myeloma cell lines expressing wild-type (WT), constitutively active (CA) (G12V/G13D/Q61H), or dominant-negative (DN) (S17N)-KRAS and -NRAS, or BRAF-V600E. Cells expressing CA mutants showed increased proteasome maturation protein (POMP) and nuclear factor (erythroid-derived 2)-like 2 (NRF2) expression. This correlated with an increase in catalytically active proteasome subunit β (PSMB)-8, PSMB9, and PSMB10, which occurred in an ETS transcription factor-dependent manner. Proteasome chymotrypsin-like, trypsin-like, and caspase-like activities were increased, and this enhanced capacity reduced PI sensitivity, while DN-KRAS and DN-NRAS did the opposite. Pharmacologic RAF or MAPK kinase (MEK) inhibitors decreased proteasome activity, and sensitized myeloma cells to PIs. CA-KRAS, CA-NRAS, and CA-BRAF down-regulated expression of endoplasmic reticulum (ER) stress proteins, and reduced unfolded protein response activation, while DN mutations increased both. Finally, a bortezomib (BTZ)/MEK inhibitor combination showed enhanced activity in vivo specifically in CA-NRAS models. Taken together, the data support the hypothesis that activating MAPK pathway mutations enhance PI resistance by increasing proteasome capacity, and provide a rationale for targeting such patients with PI/RAF or PI/MEK inhibitor combinations. Moreover, they argue these mutations promote myeloma survival by reducing cellular stress, thereby distancing plasma cells from the apoptotic threshold, potentially explaining their high frequency in myeloma.
Collapse
|
5
|
Early epigenomic and transcriptional changes reveal Elk-1 transcription factor as a therapeutic target in Huntington's disease. Proc Natl Acad Sci U S A 2019; 116:24840-24851. [PMID: 31744868 DOI: 10.1073/pnas.1908113116] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Huntington's disease (HD) is a chronic neurodegenerative disorder characterized by a late clinical onset despite ubiquitous expression of the mutant Huntingtin gene (HTT) from birth. Transcriptional dysregulation is a pivotal feature of HD. Yet, the genes that are altered in the prodromal period and their regulators, which present opportunities for therapeutic intervention, remain to be elucidated. Using transcriptional and chromatin profiling, we found aberrant transcription and changes in histone H3K27acetylation in the striatum of R6/1 mice during the presymptomatic disease stages. Integrating these data, we identified the Elk-1 transcription factor as a candidate regulator of prodromal changes in HD. Exogenous expression of Elk-1 exerted beneficial effects in a primary striatal cell culture model of HD, and adeno-associated virus-mediated Elk-1 overexpression alleviated transcriptional dysregulation in R6/1 mice. Collectively, our work demonstrates that aberrant gene expression precedes overt disease onset in HD, identifies the Elk-1 transcription factor as a key regulator linked to early epigenetic and transcriptional changes in HD, and presents evidence for Elk-1 as a target for alleviating molecular pathology in HD.
Collapse
|
6
|
Szczesny RJ, Kowalska K, Klosowska-Kosicka K, Chlebowski A, Owczarek EP, Warkocki Z, Kulinski TM, Adamska D, Affek K, Jedroszkowiak A, Kotrys AV, Tomecki R, Krawczyk PS, Borowski LS, Dziembowski A. Versatile approach for functional analysis of human proteins and efficient stable cell line generation using FLP-mediated recombination system. PLoS One 2018; 13:e0194887. [PMID: 29590189 PMCID: PMC5874048 DOI: 10.1371/journal.pone.0194887] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 03/12/2018] [Indexed: 12/21/2022] Open
Abstract
Deciphering a function of a given protein requires investigating various biological aspects. Usually, the protein of interest is expressed with a fusion tag that aids or allows subsequent analyses. Additionally, downregulation or inactivation of the studied gene enables functional studies. Development of the CRISPR/Cas9 methodology opened many possibilities but in many cases it is restricted to non-essential genes. Recombinase-dependent gene integration methods, like the Flp-In system, are very good alternatives. The system is widely used in different research areas, which calls for the existence of compatible vectors and efficient protocols that ensure straightforward DNA cloning and generation of stable cell lines. We have created and validated a robust series of 52 vectors for streamlined generation of stable mammalian cell lines using the FLP recombinase-based methodology. Using the sequence-independent DNA cloning method all constructs for a given coding-sequence can be made with just three universal PCR primers. Our collection allows tetracycline-inducible expression of proteins with various tags suitable for protein localization, FRET, bimolecular fluorescence complementation (BiFC), protein dynamics studies (FRAP), co-immunoprecipitation, the RNA tethering assay and cell sorting. Some of the vectors contain a bidirectional promoter for concomitant expression of miRNA and mRNA, so that a gene can be silenced and its product replaced by a mutated miRNA-insensitive version. Our toolkit and protocols have allowed us to create more than 500 constructs with ease. We demonstrate the efficacy of our vectors by creating stable cell lines with various tagged proteins (numatrin, fibrillarin, coilin, centrin, THOC5, PCNA). We have analysed transgene expression over time to provide a guideline for future experiments and compared the effectiveness of commonly used inducers for tetracycline-responsive promoters. As proof of concept we examined the role of the exoribonuclease XRN2 in transcription termination by RNAseq.
Collapse
Affiliation(s)
- Roman J. Szczesny
- Laboratory of RNA Biology and Functional Genomics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
- * E-mail: (RJS); (AD)
| | - Katarzyna Kowalska
- Laboratory of RNA Biology and Functional Genomics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Kamila Klosowska-Kosicka
- Laboratory of RNA Biology and Functional Genomics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Aleksander Chlebowski
- Laboratory of RNA Biology and Functional Genomics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Ewelina P. Owczarek
- Laboratory of RNA Biology and Functional Genomics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Zbigniew Warkocki
- Laboratory of RNA Biology and Functional Genomics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Tomasz M. Kulinski
- Laboratory of RNA Biology and Functional Genomics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Dorota Adamska
- Laboratory of RNA Biology and Functional Genomics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Kamila Affek
- Laboratory of RNA Biology and Functional Genomics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Agata Jedroszkowiak
- Laboratory of RNA Biology and Functional Genomics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Anna V. Kotrys
- Laboratory of RNA Biology and Functional Genomics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Rafal Tomecki
- Laboratory of RNA Biology and Functional Genomics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Pawel S. Krawczyk
- Laboratory of RNA Biology and Functional Genomics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Lukasz S. Borowski
- Laboratory of RNA Biology and Functional Genomics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Andrzej Dziembowski
- Laboratory of RNA Biology and Functional Genomics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
- * E-mail: (RJS); (AD)
| |
Collapse
|
7
|
Jiang Y, Lin MK, Jicha GA, Ding X, McIlwrath SL, Fardo DW, Broster LS, Schmitt FA, Kryscio R, Lipsky RH. Functional human GRIN2B promoter polymorphism and variation of mental processing speed in older adults. Aging (Albany NY) 2018; 9:1293-1306. [PMID: 28439047 PMCID: PMC5425128 DOI: 10.18632/aging.101228] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 04/17/2017] [Indexed: 02/07/2023]
Abstract
We investigated the role of a single nucleotide polymorphism rs3764030 (G>A) within the human GRIN2B promoter in mental processing speed in healthy, cognitively intact, older adults. In vitro DNA-binding and reporter gene assays of different allele combinations in transfected cells showed that the A allele was a gain-of-function variant associated with increasing GRIN2B mRNA levels. We tested the hypothesis that individuals with A allele will have better memory performance (i.e. faster reaction times) in older age. Twenty-eight older adults (ages 65-86) from a well-characterized longitudinal cohort were recruited and performed a modified delayed match-to-sample task. The rs3764030 polymorphism was genotyped and participants were grouped based on the presence of the A allele into GG and AA/AG. Carriers of the A allele maintained their speed of memory retrieval over age compared to GG carriers (p = 0.026 slope of the regression line between AA and AG versus GG groups). To validate the results, 12 older adults from the same cohort participated in a different version of the short-term memory task. Reaction times were significantly slower with age in older adults with G allele (p < 0.001). These findings support a role for rs3764030 in maintaining faster mental processing speed over aging.
Collapse
Affiliation(s)
- Yang Jiang
- Department of Behavioral Science, University of Kentucky, Lexington, KY 40536, USA.,Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
| | - Ming Kuan Lin
- Department of Molecular Neuroscience, the Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA 22030, USA
| | - Gregory A Jicha
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA.,Department of Neurology, University of Kentucky, Lexington, KY 40536, USA
| | - Xiuhua Ding
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA.,Departments of Statistics and Biostatistics, University of Kentucky, Lexington, KY 40536, USA
| | - Sabrina L McIlwrath
- Department of Behavioral Science, University of Kentucky, Lexington, KY 40536, USA
| | - David W Fardo
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA.,Departments of Statistics and Biostatistics, University of Kentucky, Lexington, KY 40536, USA
| | - Lucas S Broster
- Department of Behavioral Science, University of Kentucky, Lexington, KY 40536, USA
| | - Frederick A Schmitt
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA.,Department of Neurology, University of Kentucky, Lexington, KY 40536, USA
| | - Richard Kryscio
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA.,Departments of Statistics and Biostatistics, University of Kentucky, Lexington, KY 40536, USA
| | - Robert H Lipsky
- Department of Molecular Neuroscience, the Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA 22030, USA.,Department of Neurosciences, Inova Neuroscience Institute, Inova Health System, Falls Church, VA 22042, USA
| |
Collapse
|
8
|
Gualdrini F, Esnault C, Horswell S, Stewart A, Matthews N, Treisman R. SRF Co-factors Control the Balance between Cell Proliferation and Contractility. Mol Cell 2016; 64:1048-1061. [PMID: 27867007 PMCID: PMC5179500 DOI: 10.1016/j.molcel.2016.10.016] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 09/26/2016] [Accepted: 10/11/2016] [Indexed: 12/20/2022]
Abstract
The ERK-regulated ternary complex factors (TCFs) act with the transcription factor serum response factor (SRF) to activate mitogen-induced transcription. However, the extent of their involvement in the immediate-early transcriptional response, and their wider functional significance, has remained unclear. We show that, in MEFs, TCF inactivation significantly inhibits over 60% of TPA-inducible gene transcription and impairs cell proliferation. Using integrated SRF ChIP-seq and Hi-C data, we identified over 700 TCF-dependent SRF direct target genes involved in signaling, transcription, and proliferation. These also include a significant number of cytoskeletal gene targets for the Rho-regulated myocardin-related transcription factor (MRTF) SRF cofactor family. The TCFs act as general antagonists of MRTF-dependent SRF target gene expression, competing directly with the MRTFs for access to SRF. As a result, TCF-deficient MEFs exhibit hypercontractile and pro-invasive behavior. Thus, competition between TCFs and MRTFs for SRF determines the balance between antagonistic proliferative and contractile programs of gene expression.
Collapse
Affiliation(s)
- Francesco Gualdrini
- Signalling and Transcription Group, Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK
| | - Cyril Esnault
- Signalling and Transcription Group, Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK
| | - Stuart Horswell
- Bioinformatics and Biostatistics STP, Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK
| | - Aengus Stewart
- Bioinformatics and Biostatistics STP, Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK
| | - Nik Matthews
- Advanced Sequencing STP, Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK
| | - Richard Treisman
- Signalling and Transcription Group, Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK.
| |
Collapse
|
9
|
Larsen S, Kawamoto S, Tanuma SI, Uchiumi F. The hematopoietic regulator, ELF-1, enhances the transcriptional response to Interferon-β of the OAS1 anti-viral gene. Sci Rep 2015; 5:17497. [PMID: 26643049 PMCID: PMC4672336 DOI: 10.1038/srep17497] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 10/30/2015] [Indexed: 12/11/2022] Open
Abstract
Interferon (IFN) therapy is effective in treating cancers, haematological and virus induced diseases. The classical Jak/Stat pathway of IFN signal transduction leading to changes in transcriptional activity is well established but alone does not explain the whole spectrum of cellular responses to IFN. Gene promoters contain cis-acting sequences that allow precise and contextual binding of transcription factors, which control gene expression. Using the transcriptional response to IFN as a starting point we report a high frequency of tandem GGAA motifs in the proximal promoters of Interferon stimulated genes, suggesting a key regulatory action. Utilizing the well-characterized anti-viral gene, OAS1, as an example Interferon stimulated gene promoter containing such a duplicated GGAA motif, we have demonstrated a regulatory role of this promoter in response to IFN by mutation analysis. Furthermore, we identified ELF-1 as a direct binding factor at this motif. Additionally, recruitment of RB1 and SP1 factors to the promoter following IFN stimulation is shown. ELF-1 overexpression enhanced and knockdown of ELF-1 inhibited full activation of OAS1 by IFN stimulation. Collectively, ELF-1 binds an important duplicated GGAA cis-acting element at the OAS1 promoter and in cooperation with RB1 and SP1 recruitment contributes to regulation in response to IFN stimulation.
Collapse
Affiliation(s)
- Steven Larsen
- Research Center for RNA Science, RIST, Tokyo University of Science, Noda, Chiba, Japan.,Department of Gene Regulation, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Shota Kawamoto
- Department of Gene Regulation, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Sei-ichi Tanuma
- Research Center for RNA Science, RIST, Tokyo University of Science, Noda, Chiba, Japan.,Department of Biochemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Fumiaki Uchiumi
- Research Center for RNA Science, RIST, Tokyo University of Science, Noda, Chiba, Japan.,Department of Gene Regulation, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| |
Collapse
|
10
|
Zeng X, Xiao X, Wu Y, Huang H. Downregulated protein expression of transcriptional activator ELK-1 in atrial myocardium of chronic AF patients. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:11909-11914. [PMID: 26617947 PMCID: PMC4637763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 07/27/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND The structural alterations in atrial myocytes appear to be an adaptive response of dedifferentiation during chronic atrial fibrillation (AF). Transcriptional activator ELK-1, one of the members of ETS family, has been shown to play an important role in regulating cell differentiation, It is reasonable to presume that ELK-1 participate in the molecular and structural remodeling by which AF is sustained. To prove this hypothesis, the expression of ELK-1 protein in chronically fibrillating atria compared to that in normal rhythmic atria was detected. METHODS Right atrial myocardium were obtained from twenty-four patients undergoing valve replacement surgery, twelve patients were in chronic AF (>6 months), whereas the others were in sinus rhythm (SR). The protein expression level of ELK-1 was quantified by Western blot analysis, and the cellular localization and expression pattern of ELK-1 was examined by immunohistochemical staining and indirect immunofluorescence. RESULTS Western blot analysis showed that the protein expression of ELK-1 was significantly reduced in the atrial tissue of chronic AF patients compared to that in the controls. Immunohistochemistry showed that ELK-1 immunostaining occurred in both cytosolic and nuclear compartments of atrial myocardium. Indirect immunofluorescence showed that the nuclei of normal rhythmic atrial cells were densely labeled, whereas the nuclei in chronically fibrillating atrial cells were very faintly labeled. CONCLUSIONS Our results suggest that the downregulated expression of transcriptional activator ELK-1 may play an important role in the pathogenesis of AF.
Collapse
Affiliation(s)
- Xiangjun Zeng
- Department of Cardiovascular Surgery, Guangdong Provincial Cardiovascular Institute, Guangdong General Hospital/Guangdong Academy of Medical Sciences 106 Zhong Shan Er Lu, Guangzhou 510080, Guangdong Province, China
| | - Xuejun Xiao
- Department of Cardiovascular Surgery, Guangdong Provincial Cardiovascular Institute, Guangdong General Hospital/Guangdong Academy of Medical Sciences 106 Zhong Shan Er Lu, Guangzhou 510080, Guangdong Province, China
| | - Yueheng Wu
- Department of Cardiovascular Surgery, Guangdong Provincial Cardiovascular Institute, Guangdong General Hospital/Guangdong Academy of Medical Sciences 106 Zhong Shan Er Lu, Guangzhou 510080, Guangdong Province, China
| | - Huanlei Huang
- Department of Cardiovascular Surgery, Guangdong Provincial Cardiovascular Institute, Guangdong General Hospital/Guangdong Academy of Medical Sciences 106 Zhong Shan Er Lu, Guangzhou 510080, Guangdong Province, China
| |
Collapse
|
11
|
Bouveret R, Waardenberg AJ, Schonrock N, Ramialison M, Doan T, de Jong D, Bondue A, Kaur G, Mohamed S, Fonoudi H, Chen CM, Wouters MA, Bhattacharya S, Plachta N, Dunwoodie SL, Chapman G, Blanpain C, Harvey RP. NKX2-5 mutations causative for congenital heart disease retain functionality and are directed to hundreds of targets. eLife 2015; 4. [PMID: 26146939 PMCID: PMC4548209 DOI: 10.7554/elife.06942] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 07/05/2015] [Indexed: 12/30/2022] Open
Abstract
We take a functional genomics approach to congenital heart disease mechanism. We used DamID to establish a robust set of target genes for NKX2-5 wild type and disease associated NKX2-5 mutations to model loss-of-function in gene regulatory networks. NKX2-5 mutants, including those with a crippled homeodomain, bound hundreds of targets including NKX2-5 wild type targets and a unique set of "off-targets", and retained partial functionality. NKXΔHD, which lacks the homeodomain completely, could heterodimerize with NKX2-5 wild type and its cofactors, including E26 transformation-specific (ETS) family members, through a tyrosine-rich homophilic interaction domain (YRD). Off-targets of NKX2-5 mutants, but not those of an NKX2-5 YRD mutant, showed overrepresentation of ETS binding sites and were occupied by ETS proteins, as determined by DamID. Analysis of kernel transcription factor and ETS targets show that ETS proteins are highly embedded within the cardiac gene regulatory network. Our study reveals binding and activities of NKX2-5 mutations on WT target and off-targets, guided by interactions with their normal cardiac and general cofactors, and suggest a novel type of gain-of-function in congenital heart disease.
Collapse
Affiliation(s)
- Romaric Bouveret
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia
| | | | - Nicole Schonrock
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia
| | | | - Tram Doan
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia
| | - Danielle de Jong
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia
| | - Antoine Bondue
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Université Libre de Bruxelles, Brussels, Belgium
| | - Gurpreet Kaur
- European Molecular Biology Laboratory, Australian Regenerative Medicine Institute, Monash University, Clayton, Australia
| | | | - Hananeh Fonoudi
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia
| | - Chiann-Mun Chen
- Department of Cardiovascular Medicine, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Merridee A Wouters
- Bioinformatics, Olivia Newton-John Cancer Research Institute, Melbourne, Australia
| | - Shoumo Bhattacharya
- Department of Cardiovascular Medicine, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Nicolas Plachta
- European Molecular Biology Laboratory, Australian Regenerative Medicine Institute, Monash University, Clayton, Australia
| | | | - Gavin Chapman
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia
| | - Cédric Blanpain
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Université Libre de Bruxelles, Brussels, Belgium
| | - Richard P Harvey
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia
| |
Collapse
|
12
|
Pfeiffer A, Shi H, Tepperman JM, Zhang Y, Quail PH. Combinatorial complexity in a transcriptionally centered signaling hub in Arabidopsis. MOLECULAR PLANT 2014; 7:1598-1618. [PMID: 25122696 PMCID: PMC4587546 DOI: 10.1093/mp/ssu087] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 07/29/2014] [Indexed: 05/18/2023]
Abstract
A subfamily of four Phytochrome (phy)-Interacting bHLH transcription Factors (PIFs) collectively promote skotomorphogenic development in dark-grown seedlings. This activity is reversed upon exposure to light, by photoactivated phy molecules that induce degradation of the PIFs, thereby triggering the transcriptional changes that drive a transition to photomorphogenesis. The PIFs function both redundantly and partially differentially at the morphogenic level in this process. To identify the direct targets of PIF transcriptional regulation genome-wide, we analyzed the DNA-binding sites for all four PIFs by ChIP-seq analysis, and defined the genes transcriptionally regulated by each PIF, using RNA-seq analysis of pif mutants. Despite the absence of detectable differences in DNA-binding-motif recognition between the PIFs, the data show a spectrum of regulatory patterns, ranging from single PIF dominance to equal contributions by all four. Similarly, a broad array of promoter architectures was found, ranging from single PIF-binding sites, containing single sequence motifs, through multiple PIF-binding sites, each containing one or more motifs, with each site occupied preferentially by one to multiple PIFs. Quantitative analysis of the promoter occupancy and expression level induced by each PIF revealed an intriguing pattern. Although there is no robust correlation broadly across the target-gene population, examination of individual genes that are shared targets of multiple PIFs shows a gradation in correlation from strongly positive, through uncorrelated, to negative. This finding suggests a dual-layered mechanism of transcriptional regulation, comprising both a continuum of binding-site occupancy by each PIF and a superimposed layer of local regulation that acts differentially on each PIF, to modulate its intrinsic transcriptional activation capacity at each site, in a quantitative pattern that varies between the individual PIFs from gene to gene. These findings provide a framework for probing the mechanisms by which transcription factors with overlapping direct-target genes integrate and selectively transduce signals to their target networks.
Collapse
Affiliation(s)
- Anne Pfeiffer
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA; United States Department of Agriculture, Plant Gene Expression Center, Albany, CA 94710, USA
| | - Hui Shi
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA; United States Department of Agriculture, Plant Gene Expression Center, Albany, CA 94710, USA
| | - James M Tepperman
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA; United States Department of Agriculture, Plant Gene Expression Center, Albany, CA 94710, USA
| | - Yu Zhang
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA; United States Department of Agriculture, Plant Gene Expression Center, Albany, CA 94710, USA
| | - Peter H Quail
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA; United States Department of Agriculture, Plant Gene Expression Center, Albany, CA 94710, USA.
| |
Collapse
|
13
|
Gao S, Bajrami I, Verrill C, Kigozi A, Ouaret D, Aleksic T, Asher R, Han C, Allen P, Bailey D, Feller S, Kashima T, Athanasou N, Blay JY, Schmitz S, Machiels JP, Upile N, Jones TM, Thalmann G, Ashraf SQ, Wilding JL, Bodmer WF, Middleton MR, Ashworth A, Lord CJ, Macaulay VM. Dsh homolog DVL3 mediates resistance to IGFIR inhibition by regulating IGF-RAS signaling. Cancer Res 2014; 74:5866-77. [PMID: 25168481 DOI: 10.1158/0008-5472.can-14-0806] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Drugs that inhibit insulin-like growth factor 1 (IGFI) receptor IGFIR were encouraging in early trials, but predictive biomarkers were lacking and the drugs provided insufficient benefit in unselected patients. In this study, we used genetic screening and downstream validation to identify the WNT pathway element DVL3 as a mediator of resistance to IGFIR inhibition. Sensitivity to IGFIR inhibition was enhanced specifically in vitro and in vivo by genetic or pharmacologic blockade of DVL3. In breast and prostate cancer cells, sensitization tracked with enhanced MEK-ERK activation and relied upon MEK activity and DVL3 expression. Mechanistic investigations showed that DVL3 is present in an adaptor complex that links IGFIR to RAS, which includes Shc, growth factor receptor-bound-2 (Grb2), son-of-sevenless (SOS), and the tumor suppressor DAB2. Dual DVL and DAB2 blockade synergized in activating ERKs and sensitizing cells to IGFIR inhibition, suggesting a nonredundant role for DVL3 in the Shc-Grb2-SOS complex. Clinically, tumors that responded to IGFIR inhibition contained relatively lower levels of DVL3 protein than resistant tumors, and DVL3 levels in tumors correlated inversely with progression-free survival in patients treated with IGFIR antibodies. Because IGFIR does not contain activating mutations analogous to EGFR variants associated with response to EGFR inhibitors, we suggest that IGF signaling achieves an equivalent integration at the postreceptor level through adaptor protein complexes, influencing cellular dependence on the IGF axis and identifying a patient population with potential to benefit from IGFIR inhibition.
Collapse
Affiliation(s)
- Shan Gao
- Department of Oncology, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Ilirjana Bajrami
- Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Clare Verrill
- Department of Cellular Pathology and NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Trust, John Radcliffe Hospital, Oxford, United Kingdom
| | - Asha Kigozi
- Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Djamila Ouaret
- Department of Oncology, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Tamara Aleksic
- Department of Oncology, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Ruth Asher
- Department of Cellular Pathology and NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Trust, John Radcliffe Hospital, Oxford, United Kingdom
| | - Cheng Han
- Department of Oncology, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Paul Allen
- Department of Cellular Pathology, Oxford University Hospitals NHS Trust, John Radcliffe Hospital, Oxford, United Kingdom
| | - Deborah Bailey
- Department of Cellular Pathology, Oxford University Hospitals NHS Trust, John Radcliffe Hospital, Oxford, United Kingdom
| | - Stephan Feller
- Department of Oncology, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Takeshi Kashima
- Department of Oncology, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Nicholas Athanasou
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Science, Department of Pathology, Nuffield Orthopaedic Centre, Oxford, United Kingdom
| | - Jean-Yves Blay
- University Claude Bernard Lyon I, Centre Léon Bérard, Department of Medicine, Lyon, France
| | - Sandra Schmitz
- Service d'oncologie médicale, Cliniques universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium
| | - Jean-Pascal Machiels
- Service d'oncologie médicale, Cliniques universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium
| | - Nav Upile
- Liverpool CR-UK Centre, Department of Molecular and Clinical Cancer Medicine, Royal Liverpool University Hospital, Liverpool, United Kingdom
| | - Terry M Jones
- Liverpool CR-UK Centre, Department of Molecular and Clinical Cancer Medicine, Royal Liverpool University Hospital, Liverpool, United Kingdom
| | | | - Shazad Q Ashraf
- Department of Oncology, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Jennifer L Wilding
- Department of Oncology, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Walter F Bodmer
- Department of Oncology, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Mark R Middleton
- Oxford Cancer and Haematology Centre, Oxford University Hospitals NHS Trust, Churchill Hospital, Oxford, Liverpool, United Kingdom
| | - Alan Ashworth
- Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Christopher J Lord
- Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Valentine M Macaulay
- Department of Oncology, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom. Oxford Cancer and Haematology Centre, Oxford University Hospitals NHS Trust, Churchill Hospital, Oxford, Liverpool, United Kingdom.
| |
Collapse
|
14
|
Yang SH, Kalkan T, Morissroe C, Marks H, Stunnenberg H, Smith A, Sharrocks A. Otx2 and Oct4 drive early enhancer activation during embryonic stem cell transition from naive pluripotency. Cell Rep 2014; 7:1968-81. [PMID: 24931607 PMCID: PMC4074343 DOI: 10.1016/j.celrep.2014.05.037] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 04/11/2014] [Accepted: 05/19/2014] [Indexed: 02/02/2023] Open
Abstract
Embryonic stem cells (ESCs) are unique in that they have the capacity to differentiate into all of the cell types in the body. We know a lot about the complex transcriptional control circuits that maintain the naive pluripotent state under self-renewing conditions but comparatively less about how cells exit from this state in response to differentiation stimuli. Here, we examined the role of Otx2 in this process in mouse ESCs and demonstrate that it plays a leading role in remodeling the gene regulatory networks as cells exit from ground state pluripotency. Otx2 drives enhancer activation through affecting chromatin marks and the activity of associated genes. Mechanistically, Oct4 is required for Otx2 expression, and reciprocally, Otx2 is required for efficient Oct4 recruitment to many enhancer regions. Therefore, the Oct4-Otx2 regulatory axis actively establishes a new regulatory chromatin landscape during the early events that accompany exit from ground state pluripotency.
Collapse
Affiliation(s)
- Shen-Hsi Yang
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Tüzer Kalkan
- Wellcome Trust-Medical Research Council Stem Cell Institute and Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - Claire Morissroe
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Hendrik Marks
- Department of Molecular Biology, Faculty of Science, Raboud Institute for Molecular Life Sciences, Radboud University, 6525GA Nijmegen, the Netherlands
| | - Hendrik Stunnenberg
- Department of Molecular Biology, Faculty of Science, Raboud Institute for Molecular Life Sciences, Radboud University, 6525GA Nijmegen, the Netherlands
| | - Austin Smith
- Wellcome Trust-Medical Research Council Stem Cell Institute and Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - Andrew D. Sharrocks
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK,Corresponding author
| |
Collapse
|
15
|
Gaspar L, van de Werken M, Johansson AS, Moriggi E, Owe-Larsson B, Kocks JWH, Lundkvist GB, Gordijn MCM, Brown SA. Human cellular differences in cAMP--CREB signaling correlate with light-dependent melatonin suppression and bipolar disorder. Eur J Neurosci 2014; 40:2206-15. [PMID: 24898566 DOI: 10.1111/ejn.12602] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 03/28/2014] [Indexed: 12/21/2022]
Abstract
Various lines of evidence suggest a mechanistic role for altered cAMP-CREB (cAMP response element - binding protein) signaling in depressive and affective disorders. However, the establishment and validation of human inter-individual differences in this and other major signaling pathways has proven difficult. Here, we describe a novel lentiviral methodology to investigate signaling variation over long periods of time directly in human primary fibroblasts. On a cellular level, this method showed surprisingly large inter-individual differences in three major signaling pathways in human subjects that nevertheless correlated with cellular measures of genome-wide transcription and drug toxicity. We next validated this method by establishing a likely role for cAMP-mediated signaling in a human neuroendocrine response to light - the light-dependent suppression of the circadian hormone melatonin - that shows wide inter-individual differences of unknown origin in vivo. Finally, we show an overall greater magnitude of cellular CREB signaling in individuals with bipolar disorder, suggesting a possible role for this signaling pathway in susceptibility to mental disease. Overall, our results suggest that genetic differences in major signaling pathways can be reliably detected with sensitive viral-based reporter profiling, and that these differences can be conserved across tissues and be predictive of physiology and disease susceptibility.
Collapse
Affiliation(s)
- Ludmila Gaspar
- Institute of Pharmacology and Toxicology, University of Zurich, 190 Winterthurerstrasse, Zurich, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Kajiyama K, Okada-Hatakeyama M, Hayashizaki Y, Kawaji H, Suzuki H. Capturing drug responses by quantitative promoter activity profiling. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2013; 2:e77. [PMID: 24067440 PMCID: PMC4026637 DOI: 10.1038/psp.2013.53] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 08/16/2013] [Indexed: 11/25/2022]
Abstract
Quantitative analysis of cellular responses to drugs is of major interest in pharmaceutical research. Microarray technologies have been widely used for monitoring genome-wide expression changes. However, this approach has several limitations in terms of coverage of targeted RNAs, sensitivity, and quantitativeness, which are crucial for accurate monitoring of cellular responses. In this article, we report an application of genome-wide and quantitative profiling of cellular responses to drugs. We monitored promoter activities in MCF-7 cells by Cap Analysis of Gene Expression using a single-molecule sequencer. We identified a distinct set of promoters affected even by subtle inhibition of the Ras-ERK and phosphatidylinositol-3-kinase-Akt signal-transduction pathways. Furthermore, we succeeded in explaining the majority of promoter responses to inhibition of the upstream epidermal growth factor receptor kinase quantitatively based on the promoter profiles upon inhibition of the two individual downstream signaling pathways. Our results demonstrate unexplored utility of highly quantitative promoter activity profiling in drug research.
Collapse
Affiliation(s)
- K Kajiyama
- 1] RIKEN Center for Life Science Technologies, Division of Genomic Technologies, Tsurumi-ku, Yokohama, Japan [2] Graduate School of Nanobioscience, Yokohama City University, Tsurumi-ku, Yokohama, Kanagawa, Japan
| | | | | | | | | |
Collapse
|
17
|
Kasza A. Signal-dependent Elk-1 target genes involved in transcript processing and cell migration. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:1026-33. [PMID: 23711433 DOI: 10.1016/j.bbagrm.2013.05.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 05/16/2013] [Accepted: 05/17/2013] [Indexed: 11/25/2022]
Abstract
Elk-1 was regarded as a transcription factor engaged mainly in the regulation of cell growth, differentiation, and survival. Recent findings show the engagement of Elk-1 in the control of expression of genes encoding proteins involved in transcript turnover, such as MCPIP1/ZC3H12A and tristetraprolin (TTP/ZFP36). Thus, Elk-1 plays an important role in the control of gene expression not only through the stimulation of expression of transcription factors, but also through regulation of transcript half-live. Moreover, Elk-1 is engaged in the regulation of expression of genes encoding proteins that control proteolytic activity, such as inhibitor of plasminogen activator-1 (PAI-1) and metalloproteinases-2 and -9 (MMP-2 and MMP-9). This review summarizes the biological roles of proteins with expression regulated by Elk-1, involved in transcripts turnover or in cell migration. The broad range of function of these proteins illustrates the complex role of Elk-1 in the regulation of cancer and inflammation.
Collapse
Affiliation(s)
- Aneta Kasza
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| |
Collapse
|
18
|
A quartet of PIF bHLH factors provides a transcriptionally centered signaling hub that regulates seedling morphogenesis through differential expression-patterning of shared target genes in Arabidopsis. PLoS Genet 2013; 9:e1003244. [PMID: 23382695 PMCID: PMC3561105 DOI: 10.1371/journal.pgen.1003244] [Citation(s) in RCA: 305] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 11/30/2012] [Indexed: 11/19/2022] Open
Abstract
Dark-grown seedlings exhibit skotomorphogenic development. Genetic and molecular evidence indicates that a quartet of Arabidopsis Phytochrome (phy)-Interacting bHLH Factors (PIF1, 3, 4, and 5) are critically necessary to maintaining this developmental state and that light activation of phy induces a switch to photomorphogenic development by inducing rapid degradation of the PIFs. Here, using integrated ChIP–seq and RNA–seq analyses, we have identified genes that are direct targets of PIF3 transcriptional regulation, exerted by sequence-specific binding to G-box (CACGTG) or PBE-box (CACATG) motifs in the target promoters genome-wide. In addition, expression analysis of selected genes in this set, in all triple pif-mutant combinations, provides evidence that the PIF quartet members collaborate to generate an expression pattern that is the product of a mosaic of differential transcriptional responsiveness of individual genes to the different PIFs and of differential regulatory activity of individual PIFs toward the different genes. Together with prior evidence that all four PIFs can bind to G-boxes, the data suggest that this collective activity may be exerted via shared occupancy of binding sites in target promoters. An important issue in understanding mechanisms of eukaryotic transcriptional regulation is how members of large transcription-factor families, with conserved DNA–binding domains (such as the 162-member Arabidopsis bHLH family), discriminate between target genes. However, the specific question of whether, and to what extent, closely related sub-family members, with potential overlapping functional redundancy (like the quartet of Phytochrome (phy)-Interacting bHLH transcription Factors (PIF1, 3, 4, and 5) studied here), share regulation of target genes through shared binding to promoter-localized consensus motifs does not appear to have been widely investigated. Here, using ChIP–seq analysis, we have identified genes that bind PIF3 to conserved, sequence-specific sites in their promoters; and, using RNA–seq, we have identified those genes displaying altered expression in various pif mutants. Integration of these data identifies those genes that are likely direct targets of transcriptional regulation by PIF3. Our data suggest that the PIF quartet members share directly in transcriptional activation of numerous target genes, potentially via redundant promoter occupancy, in a manner that varies quantitatively from gene to gene. This finding suggests that these PIFs function collectively as a signaling hub, selectively partitioning common upstream signals from light-activated phys at the transcriptional-network interface.
Collapse
|
19
|
Pallai R, Bhaskar A, Sodi V, Rice LM. Ets1 and Elk1 transcription factors regulate cancerous inhibitor of protein phosphatase 2A expression in cervical and endometrial carcinoma cells. Transcription 2012; 3:323-35. [PMID: 23117818 DOI: 10.4161/trns.22518] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Cancerous inhibitor of protein phosphatase 2A (CIP2A) has been identified as a proto-oncogene that is overexpressed in various types of human cancers. CIP2A acts by inhibiting protein phosphatase 2A-dependent destabilization of c-Myc, resulting in increased cell proliferation. Here, we have characterized the proximal promoter region of the human CIP2A gene in cervical, endometrial and liver carcinoma cells. The 5' flanking minimal proximal promoter of the CIP2A gene consists of putative binding sites for Ets1 and Elk1 in forward and reverse orientations. Here, we show that Ets1 and Elk1 binding is essential for CIP2A basal expression in several urogenital cancer cell lines. Interestingly, both Ets1 and Elk1 are required together for CIP2A expression, as siRNA knockdown of Ets1 and Elk1 together decreased CIP2A gene transcription, whereas knockdown of Ets1 or Elk1 alone had no effect. Moreover, ectopic expression of Ets1 and Elk1 together increased CIP2A expression. To gain physiological significance of the Ets1 and Elk1 regulation we observed, a panel of matched human cervical carcinoma samples was analyzed for the expression of CIP2A and Ets1 and/or Elk1. We found a direct correlation between the levels of CIP2A and the levels of Ets1 and Elk1. Our results suggest that the binding of Ets1 and Elk1 together to the proximal CIP2A promoter is absolutely required for CIP2A expression in cervical, endometrial and liver carcinoma cell lines. Thus, different factors regulate CIP2A expression in a cell-type specific manner. As previous work has shown a requirement for only Ets1 in prostate and gastric carcinomas, our results now indicate that CIP2A regulation is more complex than previously determined.
Collapse
Affiliation(s)
- Rajash Pallai
- Department of Cancer Signaling and Cell Cycle, Venenum Biodesign, L.L.C, Hamilton, NJ, USA
| | | | | | | |
Collapse
|
20
|
Immediate-early gene activation by the MAPK pathways: what do and don't we know? Biochem Soc Trans 2012; 40:58-66. [PMID: 22260666 DOI: 10.1042/bst20110636] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The study of IE (immediate-early) gene activation mechanisms has provided numerous paradigms for how transcription is controlled in response to extracellular signalling. Many of the findings have been derived from investigating one of the IE genes, FOS, and the models extrapolated to regulatory mechanisms for other IE genes. However, whereas the overall principles of activation appear similar, recent evidence suggests that the underlying mechanistic details may differ depending on cell type, cellular stimulus and IE gene under investigation. In the present paper, we review recent advances in our understanding of IE gene transcription, chiefly focusing on FOS and its activation by ERK (extracellular-signal-regulated kinase) MAPK (mitogen-activated protein kinase) pathway signalling. We highlight important fundamental regulatory principles, but also illustrate the gaps in our current knowledge and the potential danger in making assumptions based on extrapolation from disparate studies.
Collapse
|
21
|
Odrowaz Z, Sharrocks AD. ELK1 uses different DNA binding modes to regulate functionally distinct classes of target genes. PLoS Genet 2012; 8:e1002694. [PMID: 22589737 PMCID: PMC3349735 DOI: 10.1371/journal.pgen.1002694] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 03/22/2012] [Indexed: 12/13/2022] Open
Abstract
Eukaryotic transcription factors are grouped into families and, due to their similar DNA binding domains, often have the potential to bind to the same genomic regions. This can lead to redundancy at the level of DNA binding, and mechanisms are required to generate specific functional outcomes that enable distinct gene expression programmes to be controlled by a particular transcription factor. Here we used ChIP–seq to uncover two distinct binding modes for the ETS transcription factor ELK1. In one mode, other ETS transcription factors can bind regulatory regions in a redundant fashion; in the second, ELK1 binds in a unique fashion to another set of genomic targets. Each binding mode is associated with different binding site features and also distinct regulatory outcomes. Furthermore, the type of binding mode also determines the control of functionally distinct subclasses of genes and hence the phenotypic response elicited. This is demonstrated for the unique binding mode where a novel role for ELK1 in controlling cell migration is revealed. We have therefore uncovered an unexpected link between the type of binding mode employed by a transcription factor, the subsequent gene regulatory mechanisms used, and the functional categories of target genes controlled. One of the major outstanding questions in eukaryotic gene regulation is how transcription factors with seemingly very similar DNA binding specificities elicit specific biological responses. The ETS transcription factor family provides a paradigm for investigating this phenomenon. Here, we have focused on the ETS transcription factor ELK1, and by combining genome-wide binding analysis coupled with gene expression analysis we have dissected two distinct gene regulatory activities for this transcription factor. In each of these regulatory modes, ELK1 exhibits distinct DNA binding characteristics which correlate with either positive or negative transcriptional activities and give rise to functionally distinct gene expression programmes. We demonstrate a novel function for ELK1 in controlling cell migration through one of these regulatory modes. Thus, we have demonstrated a clear link between the types of regulatory region bound by a transcription factor and its ability to control gene expression (i.e. in a positive or negative manner) and the functional downstream consequences of its target gene cohort. This work has implications for understanding how members of other multi-protein transcription factor families might function to generate different downstream functional consequences through engaging with different types of regulatory regions.
Collapse
Affiliation(s)
| | - Andrew D. Sharrocks
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
- * E-mail:
| |
Collapse
|
22
|
Anglada-Huguet M, Giralt A, Perez-Navarro E, Alberch J, Xifró X. Activation of Elk-1 participates as a neuroprotective compensatory mechanism in models of Huntington's disease. J Neurochem 2012; 121:639-48. [PMID: 22372926 DOI: 10.1111/j.1471-4159.2012.07711.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The transcription factor Elk-1 has been revealed as neuroprotective against toxic stimuli. In this study, we explored the neuroprotective capacity of Elk-1 in Huntington's disease. To this aim, we used two exon-1 mutant huntingtin (mhtt) mouse models (R6/1 and R6/2), and a full-length mhtt striatal cell model (STHdh(Q111/Q111) ). Analysis of Elk-1 and pElk-1(Ser383) in the striatum of R6 mice revealed increased levels during the disease progression. Similarly, Elk-1 and pElk-1(Ser383) levels were increased in STHdh(Q111/Q111) cells when compared with wild-type cells. In addition, we observed a predominant nuclear localization of Elk-1 in STHdh(Q111/Q111) cells, and in the striatum of 30-week-old R6/1 mice. Nuclear Elk-1 did not colocalize with mhtt aggregates, suggesting a higher transcriptional activity. In agreement, the knock-down of Elk-1 decreased immediate early genes expression in STHdh(Q111/Q111) cells, but not in wild-type cells. Interestingly, reduction of Elk-1 levels by siRNAs transfection promoted cell death and caspase 3 cleavage in STHdh(Q111/Q111) cells, but not in wild-type cells. In summary, we propose that increased protein levels, phosphorylation and nuclear localization of Elk-1 observed in exon-1 and full-length Huntington's disease models could be a compensatory mechanism activated by striatal cells in response to the presence of mhtt that contributes to neuroprotection.
Collapse
Affiliation(s)
- Marta Anglada-Huguet
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| | | | | | | | | |
Collapse
|
23
|
Hollenhorst PC, McIntosh LP, Graves BJ. Genomic and biochemical insights into the specificity of ETS transcription factors. Annu Rev Biochem 2011; 80:437-71. [PMID: 21548782 DOI: 10.1146/annurev.biochem.79.081507.103945] [Citation(s) in RCA: 375] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
ETS proteins are a group of evolutionarily related, DNA-binding transcriptional factors. These proteins direct gene expression in diverse normal and disease states by binding to specific promoters and enhancers and facilitating assembly of other components of the transcriptional machinery. The highly conserved DNA-binding ETS domain defines the family and is responsible for specific recognition of a common sequence motif, 5'-GGA(A/T)-3'. Attaining specificity for biological regulation in such a family is thus a conundrum. We present the current knowledge of routes to functional diversity and DNA binding specificity, including divergent properties of the conserved ETS and PNT domains, the involvement of flanking structured and unstructured regions appended to these dynamic domains, posttranslational modifications, and protein partnerships with other DNA-binding proteins and coregulators. The review emphasizes recent advances from biochemical and biophysical approaches, as well as insights from genomic studies that detect ETS-factor occupancy in living cells.
Collapse
Affiliation(s)
- Peter C Hollenhorst
- Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana 47405, USA.
| | | | | |
Collapse
|
24
|
Keld R, Guo B, Downey P, Cummins R, Gulmann C, Ang YS, Sharrocks AD. PEA3/ETV4-related transcription factors coupled with active ERK signalling are associated with poor prognosis in gastric adenocarcinoma. Br J Cancer 2011; 105:124-30. [PMID: 21673681 PMCID: PMC3137405 DOI: 10.1038/bjc.2011.187] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Background: Transcription factors often play important roles in tumourigenesis. Members of the PEA3 subfamily of ETS-domain transcription factors fulfil such a role and have been associated with tumour metastasis in several different cancers. Moreover, the activity of the PEA3 subfamily transcription factors is potentiated by Ras-ERK pathway signalling, which is itself often deregulated in tumour cells. Methods: Immunohistochemical patterns of PEA3 expression and active ERK signalling were analysed and mRNA expression levels of PEA3, ER81, MMP-1 and MMP-7 were determined in gastric adenocarcinoma samples. Results: Here, we have studied the expression of the PEA3 subfamily members PEA3/ETV4 and ER81/ETV1 in gastric adenocarcinomas. PEA3 is upregulated at the protein level in gastric adenocarcinomas and both PEA3/ETV4 and ER81/ETV1 are upregulated at the mRNA level in gastric adenocarcinoma tissues. This increased expression correlates with the expression of a target gene associated with metastasis, MMP-1. Enhanced ERK signalling is also more prevalent in late-stage gastric adenocarcinomas, and the co-association of ERK signalling and PEA3 expression also occurs in late-stage gastric adenocarcinomas. Furthermore, the co-association of ERK signalling and PEA3 expression correlates with decreased survival rates. Conclusions: This study shows that members of the PEA3 subfamily of transcription factors are upregulated in gastric adenocarcinomas and that the simultaneous upregulation of PEA3 expression and ERK pathway signalling is indicative of late-stage disease and a poor survival prognosis.
Collapse
Affiliation(s)
- R Keld
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | | | | | | | | | | | | |
Collapse
|
25
|
Shin SY, Kim CG, Lim Y, Lee YH. The ETS family transcription factor ELK-1 regulates induction of the cell cycle-regulatory gene p21(Waf1/Cip1) and the BAX gene in sodium arsenite-exposed human keratinocyte HaCaT cells. J Biol Chem 2011; 286:26860-72. [PMID: 21642427 DOI: 10.1074/jbc.m110.216721] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Cyclin-dependent kinase inhibitor (CDKN1A), often referred to as p21(Waf1/Cip1) (p21), is induced by a variety of environmental stresses. Transcription factor ELK-1 is a member of the ETS oncogene superfamily. Here, we show that ELK-1 directly trans-activates the p21 gene, independently of p53 and EGR-1, in sodium arsenite (NaASO(2))-exposed HaCaT cells. Promoter deletion analysis and site-directed mutagenesis identified the presence of an ELK-1-binding core motif between -190 and -170 bp of the p21 promoter that confers inducibility by NaASO(2). Chromatin immunoprecipitation and electrophoretic mobility shift analyses confirmed the specific binding of ELK-1 to its putative binding sequence within the p21 promoter. In addition, NaASO(2)-induced p21 promoter activity was enhanced by exogenous expression of ELK-1 and reduced by expression of siRNA targeted to ELK-1 mRNA. The importance of ELK-1 in response to NaASO(2) was further confirmed by the observation that stable expression of ELK-1 siRNA in HaCaT cells resulted in the attenuation of NaASO(2)-induced p21 expression. Although ELK-1 was activated by ERK, JNK, and p38 MAPK in response to NaASO(2), ELK-1-mediated activation of the p21 promoter was largely dependent on ERK. In addition, EGR-1 induced by ELK-1 seemed to be involved in NaASO(2)-induced expression of BAX. This supports the view that the ERK/ELK-1 cascade is involved in p53-independent induction of p21 and BAX gene expression.
Collapse
Affiliation(s)
- Soon Young Shin
- SMART Institute of Advanced Biomedical Science, Konkuk University, Seoul 143-701, Korea.
| | | | | | | |
Collapse
|
26
|
|
27
|
Besnard A, Galan-Rodriguez B, Vanhoutte P, Caboche J. Elk-1 a transcription factor with multiple facets in the brain. Front Neurosci 2011; 5:35. [PMID: 21441990 PMCID: PMC3060702 DOI: 10.3389/fnins.2011.00035] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Accepted: 03/04/2011] [Indexed: 12/30/2022] Open
Abstract
The ternary complex factor (TCF) Elk-1 is a transcription factor that regulates immediate early gene (IEG) expression via the serum response element (SRE) DNA consensus site. Elk-1 is associated with a dimer of serum response factor (SRF) at the SRE site, and its phosphorylation occurs at specific residues in response to mitogen-activated protein kinases (MAPKs), including c-Jun-N terminal kinase (JNK), p38/MAPK, and extracellular-signal regulated kinase (ERK). This phosphorylation event is critical for triggering SRE-dependent transcription. Although MAPKs are fundamental actors for the instatement and maintenance of memory, and much investigation of their downstream signaling partners have been conducted, no data yet clearly implicate Elk-1 in these processes. This is partly due to the complexity of Elk-1 sub-cellular localization, and hence functions, within neurons. Elk-1 is present in its resting state in the cytoplasm, where it colocalizes with mitochondrial proteins or microtubules. In this particular sub-cellular compartment, overexpression of Elk-1 is toxic for neuronal cells. When phosphorylated by the MAPK/ERK, Elk-1 translocates to the nucleus where it is implicated in regulating chromatin remodeling, SRE-dependent transcription, and neuronal differentiation. Another post-translational modification is the conjugation to SUMO (Small Ubiquitin-like MOdifier), which relocalizes Elk-1 in the cytoplasm. Thus, Elk-1 plays a dual role in neuronal functions: pro-apoptotic within the cytoplasm, and pro-differentiation within the nucleus. To address the role of Elk-1 in the brain, one must be aware of its multiple facets, and design molecular tools that will shut down Elk-1 expression, trafficking, or activation, in specific neuronal compartments. We summarize in this review the known molecular functions of Elk-1, its regulation in neuronal cells, and present evidence of its possible implication in model systems of synaptic plasticity, learning, but also in neurodegenerative diseases.
Collapse
Affiliation(s)
- Antoine Besnard
- Laboratoire de Physiopathologie des Maladies du Système Nerveux Central, UMR CNRS-7224 CNRS et UMRS-INSERM 952, Université Pierre et Marie Curie-Paris 6 Paris, France
| | | | | | | |
Collapse
|
28
|
Epidermal growth factor regulates Mcl-1 expression through the MAPK-Elk-1 signalling pathway contributing to cell survival in breast cancer. Oncogene 2011; 30:2367-78. [PMID: 21258408 PMCID: PMC3145838 DOI: 10.1038/onc.2010.616] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Myeloid cell leukaemia-1 (Mcl-1) is an anti-apoptotic member of the Bcl-2 family that is elevated in a variety of tumour types including breast cancer. In breast tumours, increased Mcl-1 expression correlates with high tumour grade and poor patient survival. We have previously demonstrated that Her-2 levels correspond to increased Mcl-1 expression in breast tumours. Epidermal growth factor (EGF) receptor signalling is frequently deregulated in breast cancer and leads to increased proliferation and survival. Herein, we determined the critical downstream signals responsible for the EGF mediated increase of Mcl-1 and their role in cell survival. We found that both Mcl-1 mRNA and protein levels are rapidly induced upon stimulation with EGF. Promoter analysis revealed that an Elk-1 transcription factor-binding site is critical for EGF activation of the Mcl-1 promoter. Furthermore, we found that knockdown of Elk-1or inhibition of the Erk signalling pathway was sufficient to block EGF upregulation of Mcl-1 and EGF mediated cell survival. Using chromatin immunoprecipitation and biotin labelled probes of the Mcl-1 promoter, we found that Elk-1 and serum response factor are bound to the promoter after EGF stimulation. To determine whether Mcl-1 confers a survival advantage, we found that knockdown of Mcl-1 expression increased apoptosis whereas overexpression of Mcl-1 inhibited drug induced cell death. In human breast tumours, we found a correlation between phosphorylated Elk-1 and Mcl-1 protein levels. These results indicate that the EGF induced activation of Elk-1 is an important mediator of Mcl-1 expression and cell survival and therefore a potential therapeutic target in breast cancer.
Collapse
|
29
|
The ERK MAP kinase-PEA3/ETV4-MMP-1 axis is operative in oesophageal adenocarcinoma. Mol Cancer 2010; 9:313. [PMID: 21143918 PMCID: PMC3009708 DOI: 10.1186/1476-4598-9-313] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Accepted: 12/09/2010] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Many members of the ETS-domain transcription factor family are important drivers of tumourigenesis. In this context, their activation by Ras-ERK pathway signaling is particularly relevant to the tumourigenic properties of many ETS-domain transcription factors. The PEA3 subfamily of ETS-domain transcription factors have been implicated in tumour metastasis in several different cancers. RESULTS Here, we have studied the expression of the PEA3 subfamily members PEA3/ETV4 and ER81/ETV1 in oesophageal adenocarcinomas and determined their role in oesophageal adenocarcinoma cell function. PEA3 plays an important role in controlling both the proliferation and invasive properties of OE33 oesophageal adenocarcinoma cells. A key target gene is MMP-1. The ERK MAP kinase pathway activates PEA3 subfamily members and also plays a role in these PEA3 controlled events, establishing the ERK-PEA3-MMP-1 axis as important in OE33 cells. PEA3 subfamily members are upregulated in human adenocarcinomas and expression correlates with MMP-1 expression and late stage metastatic disease. Enhanced ERK signaling is also more prevalent in late stage oesophageal adenocarcinomas. CONCLUSIONS This study shows that the ERK-PEA3-MMP-1 axis is upregulated in oesophageal adenocarcinoma cells and is a potentially important driver of the metastatic progression of oesophageal adenocarcinomas.
Collapse
|
30
|
O'Geen H, Lin YH, Xu X, Echipare L, Komashko VM, He D, Frietze S, Tanabe O, Shi L, Sartor MA, Engel JD, Farnham PJ. Genome-wide binding of the orphan nuclear receptor TR4 suggests its general role in fundamental biological processes. BMC Genomics 2010; 11:689. [PMID: 21126370 PMCID: PMC3019231 DOI: 10.1186/1471-2164-11-689] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Accepted: 12/02/2010] [Indexed: 02/06/2023] Open
Abstract
Background The orphan nuclear receptor TR4 (human testicular receptor 4 or NR2C2) plays a pivotal role in a variety of biological and metabolic processes. With no known ligand and few known target genes, the mode of TR4 function was unclear. Results We report the first genome-wide identification and characterization of TR4 in vivo binding. Using chromatin immunoprecipitation followed by high throughput sequencing (ChIP-seq), we identified TR4 binding sites in 4 different human cell types and found that the majority of target genes were shared among different cells. TR4 target genes are involved in fundamental biological processes such as RNA metabolism and protein translation. In addition, we found that a subset of TR4 target genes exerts cell-type specific functions. Analysis of the TR4 binding sites revealed that less than 30% of the peaks from any of the cell types contained the DR1 motif previously derived from in vitro studies, suggesting that TR4 may be recruited to the genome via interaction with other proteins. A bioinformatics analysis of the TR4 binding sites predicted a cis regulatory module involving TR4 and ETS transcription factors. To test this prediction, we performed ChIP-seq for the ETS factor ELK4 and found that 30% of TR4 binding sites were also bound by ELK4. Motif analysis of the sites bound by both factors revealed a lack of the DR1 element, suggesting that TR4 binding at a subset of sites is facilitated through the ETS transcription factor ELK4. Further studies will be required to investigate the functional interdependence of these two factors. Conclusions Our data suggest that TR4 plays a pivotal role in fundamental biological processes across different cell types. In addition, the identification of cell type specific TR4 binding sites enables future studies of the pathways underlying TR4 action and its possible role in metabolic diseases.
Collapse
Affiliation(s)
- Henriette O'Geen
- Genome Center, University of California at Davis, Davis, CA 95616, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
The essential function for serum response factor in T-cell development reflects its specific coupling to extracellular signal-regulated kinase signaling. Mol Cell Biol 2010; 31:267-76. [PMID: 21098124 DOI: 10.1128/mcb.01058-10] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Serum response factor (SRF) recruits members of two families of signal-regulated coactivators, the extracellular signal-regulated kinase (ERK)-regulated ternary complex factors (TCFs) and the actin-regulated myocardin-related transcription factors (MRTFs), to its target genes through its DNA-binding domain. Whether coactivator association is required for SRF function in vivo and whether particular SRF functions reflect specific coupling to one or the other signal pathway have remained largely unexplored. We show that SRF is essential for thymocyte positive selection and thymic T(reg) and NK T-cell development but dispensable for early thymocyte development and negative selection. Expression of wild-type SRF, or mutants lacking the N-terminal phosphorylation sites or C-terminal transcriptional activation domain, restores positive selection in SRF null thymocytes. In contrast, SRF.V194E, which cannot recruit TCF or MRTF family members, is inactive, although it is recruited to target genes. Fusion of a TCF C-terminal activation domain to SRF.V194E effectively restores ERK-dependent single-positive (SP) thymocyte development. The resulting SP thymocytes exhibit normal surface marker expression and proliferation following T-cell receptor cross-linking. Thus, ERK signaling through the TCF pathway to SRF is necessary and sufficient for SRF function in thymocyte positive selection.
Collapse
|
32
|
Fernández-Alvarez A, Soledad Alvarez M, Cucarella C, Casado M. Characterization of the human insulin-induced gene 2 (INSIG2) promoter: the role of Ets-binding motifs. J Biol Chem 2010; 285:11765-74. [PMID: 20145255 DOI: 10.1074/jbc.m109.067447] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Insulin-induced gene 2 (INSIG2) and its homolog INSIG1 encode closely related endoplasmic reticulum proteins that regulate the proteolytic activation of sterol regulatory element-binding proteins, transcription factors that activate the synthesis of cholesterol and fatty acids in animal cells. Several studies have been carried out to identify INSIG2 genetic variants associated with metabolic diseases. However, few data have been published regarding the regulation of INSIG2 gene expression. Two Insig2 transcripts have been described in rodents through the use of different promoters that produce different noncoding first exons that splice into a common second exon. Herein we report the cloning and characterization of the human INSIG2 promoter and the detection of an INSIG2-specific transcript homologous to the Insig2b mouse variant in human liver. Deletion analyses on 3 kb of 5'-flanking DNA of the human INSIG2 gene revealed the functional importance of a 350-bp region upstream of the transcription start site. Mutated analyses, chromatin immunoprecipitation assays, and RNA interference analyses unveiled the significance of an Ets-consensus motif in the proximal region and the interaction of the Ets family member SAP1a (serum response factor (SRF) accessory protein-1a) with this region of the human INSIG2 promoter. Moreover, our findings suggest that insulin activated the human INSIG2 promoter in a process mediated by phosphorylated SAP1a. Overall, these results map the functional elements in the human INSIG2 promoter sequence and suggest an unexpected regulation of INSIG2 gene expression in human liver.
Collapse
Affiliation(s)
- Ana Fernández-Alvarez
- Instituto de Biomedicina de Valencia (Consejo Superior de Investigaciones Científicas), Valencia, Spain
| | | | | | | |
Collapse
|