1
|
Chen Y, Xiao Y, Zhang Y, Wang R, Wang F, Gao H, Liu Y, Zhang R, Sun H, Zhou Z, Wang S, Chen K, Sun Y, Tu M, Li J, Luo Q, Wu Y, Zhu L, Huang Y, Sun X, Guo G, Zhang D. Single-cell landscape analysis reveals systematic senescence in mammalian Down syndrome. Clin Transl Med 2023; 13:e1310. [PMID: 37461266 PMCID: PMC10352595 DOI: 10.1002/ctm2.1310] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 04/28/2023] [Accepted: 06/13/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Down syndrome (DS), which is characterized by various malfunctions, is the most common chromosomal disorder. As the DS population continues to grow and most of those with DS live beyond puberty, early-onset health problems have become apparent. However, the cellular landscape and molecular alterations have not been thoroughly studied. METHODS This study utilized single-cell resolution techniques to examine DS in humans and mice, spanning seven distinct organs. A total of 71 934 mouse and 98 207 human cells were analyzed to uncover the molecular alterations occurring in different cell types and organs related to DS, specifically starting from the fetal stage. Additionally, SA-β-Gal staining, western blot, and histological study were employed to verify the alterations. RESULTS In this study, we firstly established the transcriptomic profile of the mammalian DS, deciphering the cellular map and molecular mechanism. Our analysis indicated that DS cells across various types and organs experienced senescence stresses from as early as the fetal stage. This was marked by elevated SA-β-Gal activity, overexpression of cell cycle inhibitors, augmented inflammatory responses, and a loss of cellular identity. Furthermore, we found evidence of mitochondrial disturbance, an increase in ribosomal protein transcription, and heightened apoptosis in fetal DS cells. This investigation also unearthed a regulatory network driven by an HSA21 gene, which leads to genome-wide expression changes. CONCLUSION The findings from this study offer significant insights into the molecular alterations that occur in DS, shedding light on the pathological processes underlying this disorder. These results can potentially guide future research and treatment development for DS.
Collapse
Affiliation(s)
- Yao Chen
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanyu Xiao
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanye Zhang
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Renying Wang
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Feixia Wang
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huajing Gao
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yifeng Liu
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Runju Zhang
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huiyu Sun
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Ziming Zhou
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Siwen Wang
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kai Chen
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yixi Sun
- Department of Reproductive Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mixue Tu
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jingyi Li
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Birth Defect Control and Prevention Research Center of Zhejiang Province, Hangzhou, China
| | - Qiong Luo
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Birth Defect Control and Prevention Research Center of Zhejiang Province, Hangzhou, China
| | - Yiqing Wu
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Birth Defect Control and Prevention Research Center of Zhejiang Province, Hangzhou, China
| | - Linling Zhu
- Department of Gynecology, Hangzhou Women's Hospital, Hangzhou, China
| | - Yun Huang
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Birth Defect Control and Prevention Research Center of Zhejiang Province, Hangzhou, China
| | - Xiao Sun
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Guoji Guo
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Dan Zhang
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Birth Defect Control and Prevention Research Center of Zhejiang Province, Hangzhou, China
| |
Collapse
|
2
|
The transcription factor PREP1(PKNOX1) regulates nuclear stiffness, the expression of LINC complex proteins and mechanotransduction. Commun Biol 2022; 5:456. [PMID: 35550602 PMCID: PMC9098460 DOI: 10.1038/s42003-022-03406-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 04/23/2022] [Indexed: 11/16/2022] Open
Abstract
Mechanosignaling, initiated by extracellular forces and propagated through the intracellular cytoskeletal network, triggers signaling cascades employed in processes as embryogenesis, tissue maintenance and disease development. While signal transduction by transcription factors occurs downstream of cellular mechanosensing, little is known about the cell intrinsic mechanisms that can regulate mechanosignaling. Here we show that transcription factor PREP1 (PKNOX1) regulates the stiffness of the nucleus, the expression of LINC complex proteins and mechanotransduction of YAP-TAZ. PREP1 depletion upsets the nuclear membrane protein stoichiometry and renders nuclei soft. Intriguingly, these cells display fortified actomyosin network with bigger focal adhesion complexes resulting in greater traction forces at the substratum. Despite the high traction, YAP-TAZ translocation is impaired indicating disrupted mechanotransduction. Our data demonstrate mechanosignaling upstream of YAP-TAZ and suggest the existence of a transcriptional mechanism actively regulating nuclear membrane homeostasis and signal transduction through the active engagement/disengagement of the cell from the extracellular matrix. The transcription factor PREP1 binds to promoter regions of SUN1, SUN2 and LAP2 genes and promotes nuclear stiffness, and its depletion results in impaired mechanotransduction.
Collapse
|
3
|
Cimmino I, Prisco F, Orso S, Agognon AL, Liguoro P, De Biase D, Doti N, Ruvo M, Paciello O, Beguinot F, Formisano P, Oriente F. Interleukin 6 reduces vascular smooth muscle cell apoptosis via Prep1 and is associated with aging. FASEB J 2021; 35:e21989. [PMID: 34679197 DOI: 10.1096/fj.202100943r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/08/2021] [Accepted: 09/29/2021] [Indexed: 11/11/2022]
Abstract
Aging exacerbates neointimal formation by reducing apoptosis of vascular smooth muscle cells (VSMCs) and induces inflammation within vascular wall. Prep1 is a homeodomain transcription factor which stimulates the expression of proinflammatory cytokines in aortic endothelial cell models and plays a primary role in the regulation of apoptosis. In this study, we have investigated the role of Prep1 in aorta of Prep1 hypomorphic heterozygous mice (Prep1i/+ ) and in VSMCs, and its correlation with aging. Histological analysis from Prep1i/+ aortas revealed a 25% reduction in medial smooth muscle cell density compared to WT animals. This result paralleled higher apoptosis, caspase 3, caspase 9 and p53 levels in Prep1i/+ mice and lower Bcl-xL. Prep1 overexpression in VSMCs decreased apoptosis by 25% and caspase 3 and caspase 9 expression by 40% and 37%. In parallel, Bcl-xL inhibition by BH3I-1 and p53 induction by etoposide reverted the antiapoptotic effect of Prep1. Experiments performed in aorta from 18 months old WT mice showed a significant increase in Prep1, p16INK4 , p21Waf1 and interleukin 6 (IL-6) compared to youngest animals. Similar results have been observed in H2 O2 -induced senescent VSMCs. Interestingly, the synthetic Prep1 inhibitory peptide Prep1 (54-72) reduced the antiapoptotic effects mediated by IL-6, particularly in senescent VSMCs. These results indicate that IL-6-Prep1 signaling reduces apoptosis, by modulating Bcl-xL and p53 both in murine aorta and in VSMCs. In addition, age-dependent increase in IL-6 and Prep1 in senescent VSMCs and in old mice may be involved in the aging-related vascular dysfunction.
Collapse
Affiliation(s)
- Ilaria Cimmino
- Department of Translational Medicine, Federico II University of Naples and URT "Genomic of Diabetes" of Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), Naples, Italy
| | - Francesco Prisco
- Department of Veterinary Medicine and Animal Production, Federico II University of Naples, Naples, Italy
| | - Sonia Orso
- Department of Translational Medicine, Federico II University of Naples and URT "Genomic of Diabetes" of Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), Naples, Italy
| | - Ayewa L Agognon
- Department of Translational Medicine, Federico II University of Naples and URT "Genomic of Diabetes" of Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), Naples, Italy
| | - Pasquale Liguoro
- Department of Translational Medicine, Federico II University of Naples and URT "Genomic of Diabetes" of Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), Naples, Italy
| | - Davide De Biase
- Department of Veterinary Medicine and Animal Production, Federico II University of Naples, Naples, Italy
| | - Nunzianna Doti
- Institute of Biostructure and Bioimaging, National Research Council and Interuniversity Research Centre on Bioactive Peptides Naples, Naples, Italy
| | - Menotti Ruvo
- Institute of Biostructure and Bioimaging, National Research Council and Interuniversity Research Centre on Bioactive Peptides Naples, Naples, Italy
| | - Orlando Paciello
- Department of Veterinary Medicine and Animal Production, Federico II University of Naples, Naples, Italy
| | - Francesco Beguinot
- Department of Translational Medicine, Federico II University of Naples and URT "Genomic of Diabetes" of Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), Naples, Italy
| | - Pietro Formisano
- Department of Translational Medicine, Federico II University of Naples and URT "Genomic of Diabetes" of Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), Naples, Italy
| | - Francesco Oriente
- Department of Translational Medicine, Federico II University of Naples and URT "Genomic of Diabetes" of Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), Naples, Italy
| |
Collapse
|
4
|
Bayona-Bafaluy MP, Garrido-Pérez N, Meade P, Iglesias E, Jiménez-Salvador I, Montoya J, Martínez-Cué C, Ruiz-Pesini E. Down syndrome is an oxidative phosphorylation disorder. Redox Biol 2021; 41:101871. [PMID: 33540295 PMCID: PMC7859316 DOI: 10.1016/j.redox.2021.101871] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/29/2020] [Accepted: 01/13/2021] [Indexed: 02/07/2023] Open
Abstract
Down syndrome is the most common genomic disorder of intellectual disability and is caused by trisomy of chromosome 21. Several genes in this chromosome repress mitochondrial biogenesis. The goal of this study was to evaluate whether early overexpression of these genes may cause a prenatal impairment of oxidative phosphorylation negatively affecting neurogenesis. Reduction in the mitochondrial energy production and a lower mitochondrial function have been reported in diverse tissues or cell types, and also at any age, including early fetuses, suggesting that a defect in oxidative phosphorylation is an early and general event in Down syndrome individuals. Moreover, many of the medical conditions associated with Down syndrome are also frequently found in patients with oxidative phosphorylation disease. Several drugs that enhance mitochondrial biogenesis are nowadays available and some of them have been already tested in mouse models of Down syndrome restoring neurogenesis and cognitive defects. Because neurogenesis relies on a correct mitochondrial function and critical periods of brain development occur mainly in the prenatal and early neonatal stages, therapeutic approaches intended to improve oxidative phosphorylation should be provided in these periods.
Collapse
Affiliation(s)
- M Pilar Bayona-Bafaluy
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, C/ Miguel Servet, 177. 50013, Zaragoza, Spain and C/ Pedro Cerbuna, 12, 50009, Zaragoza, Spain; Instituto de Investigación Sanitaria (IIS) de Aragón, Av. San Juan Bosco, 13, 50009, Zaragoza, Spain; Centro de Investigaciones Biomédicas en Rd de Enfermedades Raras (CIBERER), Av. Monforte de Lemos, 3-5, 28029, Madrid, Spain; Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza. C/ Mariano Esquillor (Edificio I+D), 50018, Zaragoza, Spain.
| | - Nuria Garrido-Pérez
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, C/ Miguel Servet, 177. 50013, Zaragoza, Spain and C/ Pedro Cerbuna, 12, 50009, Zaragoza, Spain; Instituto de Investigación Sanitaria (IIS) de Aragón, Av. San Juan Bosco, 13, 50009, Zaragoza, Spain; Centro de Investigaciones Biomédicas en Rd de Enfermedades Raras (CIBERER), Av. Monforte de Lemos, 3-5, 28029, Madrid, Spain; Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza. C/ Mariano Esquillor (Edificio I+D), 50018, Zaragoza, Spain.
| | - Patricia Meade
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, C/ Miguel Servet, 177. 50013, Zaragoza, Spain and C/ Pedro Cerbuna, 12, 50009, Zaragoza, Spain; Instituto de Investigación Sanitaria (IIS) de Aragón, Av. San Juan Bosco, 13, 50009, Zaragoza, Spain; Centro de Investigaciones Biomédicas en Rd de Enfermedades Raras (CIBERER), Av. Monforte de Lemos, 3-5, 28029, Madrid, Spain; Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza. C/ Mariano Esquillor (Edificio I+D), 50018, Zaragoza, Spain.
| | - Eldris Iglesias
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, C/ Miguel Servet, 177. 50013, Zaragoza, Spain and C/ Pedro Cerbuna, 12, 50009, Zaragoza, Spain; Instituto de Investigación Sanitaria (IIS) de Aragón, Av. San Juan Bosco, 13, 50009, Zaragoza, Spain.
| | - Irene Jiménez-Salvador
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, C/ Miguel Servet, 177. 50013, Zaragoza, Spain and C/ Pedro Cerbuna, 12, 50009, Zaragoza, Spain; Instituto de Investigación Sanitaria (IIS) de Aragón, Av. San Juan Bosco, 13, 50009, Zaragoza, Spain.
| | - Julio Montoya
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, C/ Miguel Servet, 177. 50013, Zaragoza, Spain and C/ Pedro Cerbuna, 12, 50009, Zaragoza, Spain; Instituto de Investigación Sanitaria (IIS) de Aragón, Av. San Juan Bosco, 13, 50009, Zaragoza, Spain; Centro de Investigaciones Biomédicas en Rd de Enfermedades Raras (CIBERER), Av. Monforte de Lemos, 3-5, 28029, Madrid, Spain.
| | - Carmen Martínez-Cué
- Departamento de Fisiología y Farmacología. Facultad de Medicina, Universidad de Cantabria. Av. Herrera Oría, 39011, Santander, Spain.
| | - Eduardo Ruiz-Pesini
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, C/ Miguel Servet, 177. 50013, Zaragoza, Spain and C/ Pedro Cerbuna, 12, 50009, Zaragoza, Spain; Instituto de Investigación Sanitaria (IIS) de Aragón, Av. San Juan Bosco, 13, 50009, Zaragoza, Spain; Centro de Investigaciones Biomédicas en Rd de Enfermedades Raras (CIBERER), Av. Monforte de Lemos, 3-5, 28029, Madrid, Spain.
| |
Collapse
|
5
|
Abstract
Down syndrome, caused by trisomy 21, is characterized by a variety of medical conditions including intellectual impairments, cardiovascular defects, blood cell disorders and pre-mature aging phenotypes. Several somatic stem cell populations are dysfunctional in Down syndrome and their deficiencies may contribute to multiple Down syndrome phenotypes. Down syndrome is associated with muscle weakness but skeletal muscle stem cells or satellite cells in Down syndrome have not been investigated. We find that a failure in satellite cell expansion impairs muscle regeneration in the Ts65Dn mouse model of Down syndrome. Ts65Dn satellite cells accumulate DNA damage and over express Usp16, a histone de-ubiquitinating enzyme that regulates the DNA damage response. Impairment of satellite cell function, which further declines as Ts65Dn mice age, underscores stem cell deficiencies as an important contributor to Down syndrome pathologies.
Collapse
|
6
|
Stagni F, Giacomini A, Emili M, Guidi S, Bartesaghi R. Neurogenesis impairment: An early developmental defect in Down syndrome. Free Radic Biol Med 2018; 114:15-32. [PMID: 28756311 DOI: 10.1016/j.freeradbiomed.2017.07.026] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 07/24/2017] [Accepted: 07/25/2017] [Indexed: 02/06/2023]
Abstract
Down syndrome (DS) is characterized by brain hypotrophy and intellectual disability starting from early life stages. Accumulating evidence shows that the phenotypic features of the DS brain can be traced back to the fetal period since the DS brain exhibits proliferation potency reduction starting from the critical time window of fetal neurogenesis. This defect is worsened by the fact that neural progenitor cells exhibit reduced acquisition of a neuronal phenotype and an increase in the acquisition of an astrocytic phenotype. Consequently, the DS brain has fewer neurons in comparison with the typical brain. Although apoptotic cell death may be increased in DS, this does not seem to be the major cause of brain hypocellularity. Evidence obtained in brains of individuals with DS, DS-derived induced pluripotent stem cells (iPSCs), and DS mouse models has provided some insight into the mechanisms underlying the developmental defects due to the trisomic condition. Although many triplicated genes may be involved, in the light of the studies reviewed here, DYRK1A, APP, RCAN1 and OLIG1/2 appear to be particularly important determinants of many neurodevelopmental alterations that characterize DS because their triplication affects both the proliferation and fate of neural precursor cells as well as apoptotic cell death. Based on the evidence reviewed here, pathways downstream to these genes may represent strategic targets, for the design of possible interventions.
Collapse
Affiliation(s)
- Fiorenza Stagni
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Andrea Giacomini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Marco Emili
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Sandra Guidi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Renata Bartesaghi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.
| |
Collapse
|
7
|
Szybińska A, Leśniak W. P53 Dysfunction in Neurodegenerative Diseases - The Cause or Effect of Pathological Changes? Aging Dis 2017; 8:506-518. [PMID: 28840063 PMCID: PMC5524811 DOI: 10.14336/ad.2016.1120] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 11/20/2016] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative diseases are a heterogeneous, mostly age-associated group of disorders characterized by progressive neuronal loss, the most prevalent being Alzheimer disease. It is anticipated that, with continuously increasing life expectancy, these diseases will pose a serious social and health problem in the near feature. Meanwhile, however, their etiology remains largely obscure even though all possible novel clues are being thoroughly examined. In this regard, a concept has been proposed that p53, as a transcription factor controlling many vital cellular pathways including apoptosis, may contribute to neuronal death common to all neurodegenerative disorders. In this work, we review the research devoted to the possible role of p53 in the pathogenesis of these diseases. We not only describe aberrant changes in p53 level/activity observed in CNS regions affected by particular diseases but, most importantly, put special attention to the complicated reciprocal regulatory ties existing between p53 and proteins commonly regarded as pathological hallmarks of these diseases, with the ultimate goal to identify the primary element of their pathogenesis.
Collapse
Affiliation(s)
- Aleksandra Szybińska
- 1Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology in Warsaw, 4 Ks. Trojdena St., 02-109 Warsaw, Poland.,2Department of Neurodegenerative Disorders, Laboratory of Neurogenetics, Mossakowski Medical Research Center Polish Academy of Sciences, 5 Pawinskiego St. 02-106 Warsaw, Poland
| | - Wiesława Leśniak
- 3Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw Poland
| |
Collapse
|
8
|
Blasi F, Bruckmann C, Penkov D, Dardaei L. A tale of TALE, PREP1, PBX1, and MEIS1: Interconnections and competition in cancer. Bioessays 2017; 39. [DOI: 10.1002/bies.201600245] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Francesco Blasi
- IFOM, Foundation FIRC (Italian Foundation for Cancer Research) Institute of Molecular Oncology; Milan Italy
| | - Chiara Bruckmann
- IFOM, Foundation FIRC (Italian Foundation for Cancer Research) Institute of Molecular Oncology; Milan Italy
| | - Dmitry Penkov
- IFOM, Foundation FIRC (Italian Foundation for Cancer Research) Institute of Molecular Oncology; Milan Italy
| | - Leila Dardaei
- Massachusetts General Hospital Cancer Center; Charlestown MA USA
- Department of Medicine; Harvard Medical School; Boston MA USA
| |
Collapse
|
9
|
Colvin KL, Yeager ME. What people with Down Syndrome can teach us about cardiopulmonary disease. Eur Respir Rev 2017; 26:26/143/160098. [DOI: 10.1183/16000617.0098-2016] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 11/13/2016] [Indexed: 12/19/2022] Open
Abstract
Down syndrome is the most common chromosomal abnormality among live-born infants. Through full or partial trisomy of chromosome 21, Down syndrome is associated with cognitive impairment, congenital malformations (particularly cardiovascular) and dysmorphic features. Immune disturbances in Down syndrome account for an enormous disease burden ranging from quality-of-life issues (autoimmune alopecia) to more serious health issues (autoimmune thyroiditis) and life-threatening issues (leukaemia, respiratory tract infections and pulmonary hypertension). Cardiovascular and pulmonary diseases account for ∼75% of the mortality seen in persons with Down syndrome. This review summarises the cardiovascular, respiratory and immune challenges faced by individuals with Down syndrome, and the genetic underpinnings of their pathobiology. We strongly advocate increased comparative studies of cardiopulmonary disease in persons with and without Down syndrome, as we believe these will lead to new strategies to prevent and treat diseases affecting millions of people worldwide.
Collapse
|
10
|
Jackson RA, Nguyen ML, Barrett AN, Tan YY, Choolani MA, Chen ES. Synthetic combinations of missense polymorphic genetic changes underlying Down syndrome susceptibility. Cell Mol Life Sci 2016; 73:4001-17. [PMID: 27245382 PMCID: PMC11108497 DOI: 10.1007/s00018-016-2276-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 05/10/2016] [Accepted: 05/12/2016] [Indexed: 02/08/2023]
Abstract
Single nucleotide polymorphisms (SNPs) are important biomolecular markers in health and disease. Down syndrome, or Trisomy 21, is the most frequently occurring chromosomal abnormality in live-born children. Here, we highlight associations between SNPs in several important enzymes involved in the one-carbon folate metabolic pathway and the elevated maternal risk of having a child with Down syndrome. Our survey highlights that the combination of SNPs may be a more reliable predictor of the Down syndrome phenotype than single SNPs alone. We also describe recent links between SNPs in p53 and its related pathway proteins and Down syndrome, as well as highlight several proteins that help to associate apoptosis and p53 signaling with the Down syndrome phenotype. In addition to a comprehensive review of the literature, we also demonstrate that several SNPs reside within the same regions as these Down syndrome-linked SNPs, and propose that these closely located nucleotide changes may provide new candidates for future exploration.
Collapse
Affiliation(s)
- Rebecca A Jackson
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, #05-05, MD7, 8 Medical Drive, Singapore, 117597, Singapore
| | - Mai Linh Nguyen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, #05-05, MD7, 8 Medical Drive, Singapore, 117597, Singapore
| | - Angela N Barrett
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, #05-05, MD7, 8 Medical Drive, Singapore, 117597, Singapore
| | - Yuan Yee Tan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, #05-05, MD7, 8 Medical Drive, Singapore, 117597, Singapore
| | - Mahesh A Choolani
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, #05-05, MD7, 8 Medical Drive, Singapore, 117597, Singapore.
- National University Health System, Singapore, Singapore.
| | - Ee Sin Chen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, #05-05, MD7, 8 Medical Drive, Singapore, 117597, Singapore.
- National University Health System, Singapore, Singapore.
- NUS Graduate School of Science and Engineering, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
11
|
Han L, Liu D, Li Z, Tian N, Han Z, Wang G, Fu Y, Guo Z, Zhu Z, Du C, Tian Y. HOXB1 Is a Tumor Suppressor Gene Regulated by miR-3175 in Glioma. PLoS One 2015; 10:e0142387. [PMID: 26565624 PMCID: PMC4643923 DOI: 10.1371/journal.pone.0142387] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 10/21/2015] [Indexed: 12/19/2022] Open
Abstract
The HOXB1 gene plays a critical role as an oncogene in diverse tumors. However, the functional role of HOXB1 and the mechanism regulating HOXB1 expression in glioma are not fully understood. A preliminary bioinformatics analysis showed that HOXB1 is ectopically expressed in glioma, and that HOXB1 is a possible target of miR-3175. In this study, we investigated the function of HOXB1 and the relationship between HOXB1 and miR-3175 in glioma. We show that HOXB1 expression is significantly downregulated in glioma tissues and cell lines, and that its expression may be closely associated with the degree of malignancy. Reduced HOXB1 expression promoted the proliferation and invasion of glioma cells, and inhibited their apoptosis in vitro, and the downregulation of HOXB1 was also associated with worse survival in glioma patients. More importantly, HOXB1 was shown experimentally to be a direct target of miR-3175 in this study. The downregulated expression of miR-3175 inhibited cell proliferation and invasion, and promoted apoptosis in glioma. The oncogenicity induced by low HOXB1 expression was prevented by an miR-3175 inhibitor in glioma cells. Our results suggest that HOXB1 functions as a tumor suppressor, regulated by miR-3175 in glioma. These results clarify the pathogenesis of glioma and offer a potential target for its treatment.
Collapse
Affiliation(s)
- Liang Han
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Dehua Liu
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Zhaohui Li
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Nan Tian
- Department of Cell Biology, College of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Ziwu Han
- Department of Cell Biology, College of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Guang Wang
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Yao Fu
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Zhigang Guo
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Zifeng Zhu
- Department of Interventional Therapy, the First Hospital of Jilin University, Changchun, Jilin, China
| | - Chao Du
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
- * E-mail: (CD); (YT)
| | - Yu Tian
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
- * E-mail: (CD); (YT)
| |
Collapse
|
12
|
Necchi D, Pinto A, Tillhon M, Dutto I, Serafini MM, Lanni C, Govoni S, Racchi M, Prosperi E. Defective DNA repair and increased chromatin binding of DNA repair factors in Down syndrome fibroblasts. Mutat Res 2015; 780:15-23. [PMID: 26258283 DOI: 10.1016/j.mrfmmm.2015.07.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 06/13/2015] [Accepted: 07/23/2015] [Indexed: 10/23/2022]
Abstract
Down syndrome (DS) is characterized by genetic instability, neurodegeneration, and premature aging. However, the molecular mechanisms leading to this phenotype are not yet well understood. Here, we report that DS fibroblasts from both fetal and adult donors show the presence of oxidative DNA base damage, such as dihydro-8-oxoguanine (8-oxodG), and activation of a DNA damage response (DDR), already during unperturbed growth conditions. DDR with checkpoint activation was indicated by histone H2AX and Chk2 protein phosphorylation, and by increased p53 protein levels. In addition, both fetal and adult DS fibroblasts were more sensitive to oxidative DNA damage induced by potassium bromate, and were defective in the removal of 8-oxodG, as compared with age-matched cells from control healthy donors. The analysis of core proteins participating in base excision repair (BER), such as XRCC1 and DNA polymerase β, showed that higher amounts of these factors were bound to chromatin in DS than in control cells, even in the absence of DNA damage. These findings occurred in concomitance with increased levels of phosphorylated XRCC1 detected in DS cells. These results indicate that DS cells exhibit a BER deficiency, which is associated with prolonged chromatin association of core BER factors.
Collapse
Affiliation(s)
- Daniela Necchi
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy.
| | - Antonella Pinto
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | - Micol Tillhon
- Institute of Molecular Genetics of the National Research Council (CNR), 27100 Pavia, Italy
| | - Ilaria Dutto
- Institute of Molecular Genetics of the National Research Council (CNR), 27100 Pavia, Italy
| | | | - Cristina Lanni
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | - Stefano Govoni
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | - Marco Racchi
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | - Ennio Prosperi
- Institute of Molecular Genetics of the National Research Council (CNR), 27100 Pavia, Italy.
| |
Collapse
|
13
|
Risolino M, Mandia N, Iavarone F, Dardaei L, Longobardi E, Fernandez S, Talotta F, Bianchi F, Pisati F, Spaggiari L, Harter PN, Mittelbronn M, Schulte D, Incoronato M, Di Fiore PP, Blasi F, Verde P. Transcription factor PREP1 induces EMT and metastasis by controlling the TGF-β-SMAD3 pathway in non-small cell lung adenocarcinoma. Proc Natl Acad Sci U S A 2014; 111:E3775-84. [PMID: 25157139 PMCID: PMC4246949 DOI: 10.1073/pnas.1407074111] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Pre-B-cell leukemia homeobox (Pbx)-regulating protein-1 (Prep1) is a ubiquitous homeoprotein involved in early development, genomic stability, insulin sensitivity, and hematopoiesis. Previously we have shown that Prep1 is a haploinsufficient tumor suppressor that inhibits neoplastic transformation by competing with myeloid ecotropic integration site 1 for binding to the common heterodimeric partner Pbx1. Epithelial-mesenchymal transition (EMT) is controlled by complex networks of proinvasive transcription factors responsive to paracrine factors such as TGF-β. Here we show that, in addition to inhibiting primary tumor growth, PREP1 is a novel EMT inducer and prometastatic transcription factor. In human non-small cell lung cancer (NSCLC) cells, PREP1 overexpression is sufficient to trigger EMT, whereas PREP1 down-regulation inhibits the induction of EMT in response to TGF-β. PREP1 modulates the cellular sensitivity to TGF-β by inducing the small mothers against decapentaplegic homolog 3 (SMAD3) nuclear translocation through mechanisms dependent, at least in part, on PREP1-mediated transactivation of a regulatory element in the SMAD3 first intron. Along with the stabilization and accumulation of PBX1, PREP1 induces the expression of multiple activator protein 1 components including the proinvasive Fos-related antigen 1 (FRA-1) oncoprotein. Both FRA-1 and PBX1 are required for the mesenchymal changes triggered by PREP1 in lung tumor cells. Finally, we show that the PREP1-induced mesenchymal transformation correlates with significantly increased lung colonization by cells overexpressing PREP1. Accordingly, we have detected PREP1 accumulation in a large number of human brain metastases of various solid tumors, including NSCLC. These findings point to a novel role of the PREP1 homeoprotein in the control of the TGF-β pathway, EMT, and metastasis in NSCLC.
Collapse
Affiliation(s)
- Maurizio Risolino
- Institute of Genetics and Biophysics, Consiglio Nazionale delle Ricerche, 80131 Naples, Italy
| | - Nadia Mandia
- Institute of Genetics and Biophysics, Consiglio Nazionale delle Ricerche, 80131 Naples, Italy; Institute of Molecular Oncology (IFOM) of the Italian Foundation for Cancer Research (FIRC), 20139 Milan, Italy
| | - Francescopaolo Iavarone
- Institute of Genetics and Biophysics, Consiglio Nazionale delle Ricerche, 80131 Naples, Italy
| | - Leila Dardaei
- Institute of Molecular Oncology (IFOM) of the Italian Foundation for Cancer Research (FIRC), 20139 Milan, Italy
| | - Elena Longobardi
- Institute of Molecular Oncology (IFOM) of the Italian Foundation for Cancer Research (FIRC), 20139 Milan, Italy
| | - Serena Fernandez
- Institute of Genetics and Biophysics, Consiglio Nazionale delle Ricerche, 80131 Naples, Italy
| | - Francesco Talotta
- Institute of Genetics and Biophysics, Consiglio Nazionale delle Ricerche, 80131 Naples, Italy
| | - Fabrizio Bianchi
- Institute of Molecular Oncology (IFOM) of the Italian Foundation for Cancer Research (FIRC), 20139 Milan, Italy; Department of Medicine, Surgery, and Dentistry, University of Milan, 20122 Milan, Italy
| | - Federica Pisati
- Institute of Molecular Oncology (IFOM) of the Italian Foundation for Cancer Research (FIRC), 20139 Milan, Italy
| | - Lorenzo Spaggiari
- Department of Medicine, Surgery, and Dentistry, University of Milan, 20122 Milan, Italy
| | - Patrick N Harter
- Neuroscience Center, Neurological Institute (Edinger Institut), 60528 Frankfurt, Germany; and
| | - Michel Mittelbronn
- Neuroscience Center, Neurological Institute (Edinger Institut), 60528 Frankfurt, Germany; and
| | - Dorothea Schulte
- Neuroscience Center, Neurological Institute (Edinger Institut), 60528 Frankfurt, Germany; and
| | | | - Pier Paolo Di Fiore
- Institute of Molecular Oncology (IFOM) of the Italian Foundation for Cancer Research (FIRC), 20139 Milan, Italy; Department of Medicine, Surgery, and Dentistry, University of Milan, 20122 Milan, Italy
| | - Francesco Blasi
- Institute of Molecular Oncology (IFOM) of the Italian Foundation for Cancer Research (FIRC), 20139 Milan, Italy;
| | - Pasquale Verde
- Institute of Genetics and Biophysics, Consiglio Nazionale delle Ricerche, 80131 Naples, Italy; Istituto di Ricovero e Cura a Carattere Scientifico SDN (IRCCS SDN), 80142 Naples, Italy
| |
Collapse
|
14
|
Prep1 and Meis1 competition for Pbx1 binding regulates protein stability and tumorigenesis. Proc Natl Acad Sci U S A 2014; 111:E896-905. [PMID: 24578510 DOI: 10.1073/pnas.1321200111] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pbx-regulating protein-1 (Prep1) is a tumor suppressor, whereas myeloid ecotropic viral integration site-1 (Meis1) is an oncogene. We show that, to perform these activities in mouse embryonic fibroblasts, both proteins competitively heterodimerize with pre-B-cell leukemia homeobox-1 (Pbx1). Meis1 alone transforms Prep1-deficient fibroblasts, whereas Prep1 overexpression inhibits Meis1 tumorigenicity. Pbx1 can, therefore, alternatively act as an oncogene or tumor suppressor. Prep1 posttranslationally controls the level of Meis1, decreasing its stability by sequestering Pbx1. The different levels of Meis1 and the presence of Prep1 are followed at the transcriptional level by the induction of specific transcriptional signatures. The decrease of Meis1 prevents Meis1 interaction with Ddx3x and Ddx5, which are essential for Meis1 tumorigenesis, and modifies the growth-promoting DNA binding landscape of Meis1 to the growth-controlling landscape of Prep1. Hence, the key feature of Prep1 tumor-inhibiting activity is the control of Meis1 stability.
Collapse
|
15
|
Schulte D, Frank D. TALE transcription factors during early development of the vertebrate brain and eye. Dev Dyn 2013; 243:99-116. [DOI: 10.1002/dvdy.24030] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 07/11/2013] [Accepted: 07/13/2013] [Indexed: 12/25/2022] Open
Affiliation(s)
- Dorothea Schulte
- Institute of Neurology (Edinger Institute); University Hospital Frankfurt, J.W. Goethe University; Frankfurt Germany
| | - Dale Frank
- Department of Biochemistry; The Rappaport Family Institute for Research in the Medical Sciences, Faculty of Medicine, Technion-Israel Institute of Technology; Haifa Israel
| |
Collapse
|
16
|
|
17
|
Ruparelia A, Pearn ML, Mobley WC. Cognitive and pharmacological insights from the Ts65Dn mouse model of Down syndrome. Curr Opin Neurobiol 2012; 22:880-6. [PMID: 22658745 PMCID: PMC3434300 DOI: 10.1016/j.conb.2012.05.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 05/03/2012] [Indexed: 02/06/2023]
Abstract
Down syndrome (DS) is a multi-faceted condition resulting in the most common genetic form of intellectual disability. Mouse models of DS, especially the Ts65Dn model, have been pivotal in furthering our understanding of the genetic, molecular and neurobiological mechanisms that underlie learning and memory impairments in DS. Cognitive and pharmacological insights from the Ts65Dn mouse model have led to remarkable translational progress in the development of therapeutic targets and in the emergence of DS clinical trials. Unravelling the pathogenic role of trisomic genes on human chromosome 21 and the genotype-phenotype relationship still remains a pertinent goal for tackling cognitive deficits in DS.
Collapse
Affiliation(s)
- Aarti Ruparelia
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, WC1N 3BG, UK
| | - Matthew L Pearn
- Department of Anaesthesiology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
- VA San Diego Healthcare System, 3350 La Jolla Village Drive 9125, San Diego, CA 92161-9125, USA
| | - William C Mobley
- Department of Neurosciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| |
Collapse
|
18
|
Abstract
If assessed by a number of criteria for cancer predisposition, Down's syndrome (DS) should be an overwhelmingly cancer-prone condition. Although childhood leukaemias occur more frequently in DS, paradoxically, individuals with DS have a markedly lower incidence of most solid tumours. Understanding the mechanisms that are capable of overcoming such odds could potentially open new routes for cancer prevention and therapy. In this Opinion article, we discuss recent reports that suggest unique and only partially understood mechanisms behind this paradox, including tumour repression, anti-angiogenic effects and stem cell ageing and availability.
Collapse
Affiliation(s)
- Dean Nižetić
- The Barts and The London School of Medicine and Dentistry, The Blizard Institute, Centre for Paediatrics, and Stem Cell Laboratory, National Centre for Bowel Research and Surgical Innovation, Queen Mary University of London, UK.
| | | |
Collapse
|
19
|
Liao JM, Zhou X, Zhang Y, Lu H. MiR-1246: a new link of the p53 family with cancer and Down syndrome. Cell Cycle 2012; 11:2624-30. [PMID: 22751441 PMCID: PMC3409007 DOI: 10.4161/cc.20809] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Since the discovery of miRNAs, a number of miRNAs have been identified as p53's transcriptional targets. Most of them are involved in regulation of the known p53 functions, such as cell cycle, apoptosis and senescence. Our recent study revealed miR-1246 as a novel target of p53 and its analogs p63 and p73 to suppress the expression of DYRK1A and consequently activate NFAT, both of which are associated with Down syndrome and possibly with tumorigenesis. This finding suggests that miR-1246 might serve as a likely link of the p53 family with Down syndrome. Here, we provide some prospective views on the potential role of the p53 family in Down syndrome via miR-1246 and propose a new p53-miR-1246-DYRK1A-NFAT pathway in cancer.
Collapse
Affiliation(s)
- Jun-Ming Liao
- Department of Biochemistry & Molecular Biology and Tulane Cancer Center; Tulane University School of Medicine; New Orleans, LA USA
| | - Xiang Zhou
- Department of Biochemistry & Molecular Biology and Tulane Cancer Center; Tulane University School of Medicine; New Orleans, LA USA
| | - Yu Zhang
- Department of Obstetrics and Gynecology; Xiangya Hospital; Central South University; Hunan, China
| | - Hua Lu
- Department of Biochemistry & Molecular Biology and Tulane Cancer Center; Tulane University School of Medicine; New Orleans, LA USA
| |
Collapse
|
20
|
Rosales-Aviña JA, Torres-Flores J, Aguilar-Lemarroy A, Gurrola-Díaz C, Hernández-Flores G, Ortiz-Lazareno PC, Lerma-Díaz JM, de Celis R, González-Ramella Ó, Barrera-Chaires E, Bravo-Cuellar A, Jave-Suárez LF. MEIS1, PREP1, and PBX4 are differentially expressed in acute lymphoblastic leukemia: association of MEIS1 expression with higher proliferation and chemotherapy resistance. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2011; 30:112. [PMID: 22185299 PMCID: PMC3259065 DOI: 10.1186/1756-9966-30-112] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 12/20/2011] [Indexed: 01/27/2023]
Abstract
Background The Three-amino acid-loop-extension (TALE) superfamily of homeodomain-containing transcription factors have been implicated in normal hematopoiesis and in leukemogenesis and are important survival, differentiation, and apoptosis pathway modulators. In this work, we determined the expression levels of TALE genes in leukemic-derived cell lines, in blood samples of patients with Acute lymphoblastic leukemia (ALL), and in the blood samples of healthy donors. Results Here we show increased expression of MEIS1, MEIS2, and PREP1 genes in leukemia-derived cell lines compared with blood normal cells. High levels of MEIS1 and PREP1, and low levels of PBX4 expression were also founded in samples of patients with ALL. Importantly, silencing of MEIS1 decreases the proliferation of leukemia-derived cells but increases their survival after etoposide treatment. Etoposide-induced apoptosis induces down-regulation of MEIS1 expression or PREP1 up-regulation in chemotherapy-resistant cells. Conclusions Our results indicate that up-regulation of MEIS1 is important for sustaining proliferation of leukemic cells and that down-regulation of MEIS1 or up-regulation of PREP1 and PBX genes could be implicated in the modulation of the cellular response to chemotherapeutic-induced apoptosis.
Collapse
Affiliation(s)
- Judith A Rosales-Aviña
- División de Inmunología, Centro de Investigación Biomédica de Occidente - IMSS, Sierra Mojada No. 800, CP 44340, Guadalajara, Jalisco, Mexico
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Characterization of the regulatory region of the zebrafish Prep1.1 gene: analogies to the promoter of the human PREP1. PLoS One 2010; 5:e15047. [PMID: 21203543 PMCID: PMC3008670 DOI: 10.1371/journal.pone.0015047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Accepted: 10/25/2010] [Indexed: 01/29/2023] Open
Abstract
Prep1 is a developmentally essential TALE class homeodomain transcription factor. In zebrafish and mouse, Prep1 is already ubiquitously expressed at the earliest stages of development, with important tissue-specific peculiarities. The Prep1 gene in mouse is developmentally essential and has haploinsufficient tumor suppressor activity [1]. We have determined the human Prep1 transcription start site (TSS) by primer extension analysis and identified, within 20 bp, the transcription start region (TSR) of the zebrafish Prep1.1 promoter. The functions of the zebrafish 5′ upstream sequences were analyzed both by transient transfections in Hela Cells and by injection in zebrafish embryos. This analysis revealed a complex promoter with regulatory sequences extending up to −1.8, possibly −5.0 Kb, responsible for tissue specific expression. Moreover, the first intron contains a conserved tissue-specific enhancer both in zebrafish and in human cells. Finally, a two nucleotides mutation of an EGR-1 site, conserved in all species including human and zebrafish and located at a short distance from the TSS, destroyed the promoter activity of the −5.0 Kb promoter. A transgenic fish expressing GFP under the −1.8 Kb zebrafish promoter/enhancer co-expressed GFP and endogenous Prep1.1 during embryonic development. In the adult fish, GFP was expressed in hematopoietic regions like the kidney, in agreement with the essential function of Prep1 in mouse hematopoiesis. Sequence comparison showed conservation from man to fish of the sequences around the TSS, within the first intron enhancer. Moreover, about 40% of the sequences spread throughout the 5 Kbof the zebrafish promoter are concentrated in the −3 to −5 Kb of the human upstream region.
Collapse
|
22
|
Ruparelia A, Wiseman F, Sheppard O, Tybulewicz VL, Fisher EM. Down syndrome and the molecular pathogenesis resulting from trisomy of human chromosome 21. J Biomed Res 2010; 24:87-99. [PMID: 23554618 PMCID: PMC3596542 DOI: 10.1016/s1674-8301(10)60016-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Indexed: 01/12/2023] Open
Abstract
Chromosome copy number aberrations, anueploidies, are common in the human population but generally lethal. However, trisomy of human chromosome 21 is compatible with life and people born with this form of aneuploidy manifest the features of Down syndrome, named after Langdon Down who was a 19(th) century British physician who first described a group of people with this disorder. Down syndrome includes learning and memory deficits in all cases, as well as many other features which vary in penetrance and expressivity in different people. While Down syndrome clearly has a genetic cause - the extra dose of genes on chromosome 21 - we do not know which genes are important for which aspects of the syndrome, which biochemical pathways are disrupted, or, generally how design therapies to ameliorate the effects of these disruptions. Recently, with new insights gained from studying mouse models of Down syndrome, specific genes and pathways are being shown to be involved in the pathogenesis of the disorder. This is opening the way for exciting new studies of potential therapeutics for aspects of Down syndrome, particularly the learning and memory deficits.
Collapse
Affiliation(s)
- Aarti Ruparelia
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
| | - Frances Wiseman
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
| | - Olivia Sheppard
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
| | | | - Elizabeth M.C. Fisher
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
| |
Collapse
|