1
|
Elgar C, Yusoh NA, Tiley PR, Kolozsvári N, Bennett LG, Gamble A, Péan EV, Davies ML, Staples CJ, Ahmad H, Gill MR. Ruthenium(II) Polypyridyl Complexes as FRET Donors: Structure- and Sequence-Selective DNA-Binding and Anticancer Properties. J Am Chem Soc 2023; 145:1236-1246. [PMID: 36607895 PMCID: PMC9853847 DOI: 10.1021/jacs.2c11111] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Ruthenium(II) polypyridyl complexes (RPCs) that emit from metal-to-ligand charge transfer (MLCT) states have been developed as DNA probes and are being examined as potential anticancer agents. Here, we report that MLCT-emissive RPCs that bind DNA undergo Förster resonance energy transfer (FRET) with Cy5.5-labeled DNA, forming mega-Stokes shift FRET pairs. Based on this discovery, we developed a simple and rapid FRET binding assay to examine DNA-binding interactions of RPCs with diverse photophysical properties, including non-"light switch" complexes [Ru(dppz)2(5,5'dmb)]2+ and [Ru(PIP)2(5,5'dmb)]2+ (dppz = dipyridophenazine, 5,5'dmb = 5,5'-dimethyl-2,2'-bipyridine, PIP = 2-phenyl-imidazo[4,5-f][1,10]phenanthroline). Binding affinities toward duplex, G-quadruplex, three-way junction, and mismatch DNA were determined, and derived FRET donor-acceptor proximities provide information on potential binding sites. Molecules characterized by this method demonstrate encouraging anticancer properties, including synergy with the PARP inhibitor Olaparib, and mechanistic studies indicate that [Ru(PIP)2(5,5'dmb)]2+ acts to block DNA replication fork progression.
Collapse
Affiliation(s)
- Christopher
E. Elgar
- Department
of Chemistry, Faculty of Science and Engineering, Swansea University, Swansea SA2 8PP, U.K.
| | - Nur Aininie Yusoh
- UPM-MAKNA
Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Paul R. Tiley
- Department
of Chemistry, Faculty of Science and Engineering, Swansea University, Swansea SA2 8PP, U.K.
| | - Natália Kolozsvári
- Department
of Chemistry, Faculty of Science and Engineering, Swansea University, Swansea SA2 8PP, U.K.
| | - Laura G. Bennett
- North
West Cancer Research Institute, School of Medical Sciences, Bangor University, Bangor LL57 2DG, U.K.
| | - Amelia Gamble
- North
West Cancer Research Institute, School of Medical Sciences, Bangor University, Bangor LL57 2DG, U.K.
| | - Emmanuel V. Péan
- SPECIFIC
IKC, Materials Science and Engineering, Faculty of Science and Engineering, Swansea University, Swansea SA1 8EN, U.K.
| | - Matthew L. Davies
- SPECIFIC
IKC, Materials Science and Engineering, Faculty of Science and Engineering, Swansea University, Swansea SA1 8EN, U.K.
| | - Christopher J. Staples
- North
West Cancer Research Institute, School of Medical Sciences, Bangor University, Bangor LL57 2DG, U.K.
| | - Haslina Ahmad
- UPM-MAKNA
Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia,Department
of Chemistry, Faculty of Science, Universiti
Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Martin R. Gill
- Department
of Chemistry, Faculty of Science and Engineering, Swansea University, Swansea SA2 8PP, U.K.,
| |
Collapse
|
2
|
Shaw DS, Honeychurch KC. Nanosensor Applications in Plant Science. BIOSENSORS 2022; 12:675. [PMID: 36140060 PMCID: PMC9496508 DOI: 10.3390/bios12090675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/12/2022] [Accepted: 08/18/2022] [Indexed: 12/28/2022]
Abstract
Plant science is a major research topic addressing some of the most important global challenges we face today, including energy and food security. Plant science has a role in the production of staple foods and materials, as well as roles in genetics research, environmental management, and the synthesis of high-value compounds such as pharmaceuticals or raw materials for energy production. Nanosensors-selective transducers with a characteristic dimension that is nanometre in scale-have emerged as important tools for monitoring biological processes such as plant signalling pathways and metabolism in ways that are non-destructive, minimally invasive, and capable of real-time analysis. A variety of nanosensors have been used to study different biological processes; for example, optical nanosensors based on Förster resonance energy transfer (FRET) have been used to study protein interactions, cell contents, and biophysical parameters, and electrochemical nanosensors have been used to detect redox reactions in plants. Nanosensor applications in plants include nutrient determination, disease assessment, and the detection of proteins, hormones, and other biological substances. The combination of nanosensor technology and plant sciences has the potential to be a powerful alliance and could support the successful delivery of the 2030 Sustainable Development Goals. However, a lack of knowledge regarding the health effects of nanomaterials and the high costs of some of the raw materials required has lessened their commercial impact.
Collapse
Affiliation(s)
- Daniel S. Shaw
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
- Faculty of Applied Sciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, UK
| | - Kevin C. Honeychurch
- Faculty of Applied Sciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, UK
| |
Collapse
|
3
|
Hypersensitive detection of transcription factors by multiple amplification strategy based on molecular beacon. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
4
|
Xu X, Wang L, Zhu D, Wang Y, Jiang W. Protein binding protection in combination with DNA masking for sensitive and reliable transcription factor detection. Talanta 2018; 186:293-298. [DOI: 10.1016/j.talanta.2018.04.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/04/2018] [Accepted: 04/15/2018] [Indexed: 10/17/2022]
|
5
|
Zhu D, Wang L, Xu X, Jiang W. Colocalization recognition-activated cascade signal amplification strategy for ultrasensitive detection of transcription factors. Biosens Bioelectron 2017; 89:978-983. [DOI: 10.1016/j.bios.2016.09.073] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/15/2016] [Accepted: 09/21/2016] [Indexed: 01/10/2023]
|
6
|
Krishnan A, Sreeremya TS, Mohamed AP, Hareesh US, Ghosh S. Concentration quenching in cerium oxide dispersions via a Förster resonance energy transfer mechanism facilitates the identification of fatty acids. RSC Adv 2015. [DOI: 10.1039/c4ra17326k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The distance dependence of FRET has been utilized, as a simple and novel analytical tool, for explaining the fluorescence quenching of cerium dioxide dispersions and in the prediction of the structure of fatty acids.
Collapse
Affiliation(s)
- Asha Krishnan
- Material Science and Technology Division
- National Institute for Interdisciplinary Science & Technology (NIIST)
- Council of Scientific & Industrial Research (CSIR)
- Trivandrum-695019
- India
| | - Thadathil S. Sreeremya
- Material Science and Technology Division
- National Institute for Interdisciplinary Science & Technology (NIIST)
- Council of Scientific & Industrial Research (CSIR)
- Trivandrum-695019
- India
| | - A. Peer Mohamed
- Material Science and Technology Division
- National Institute for Interdisciplinary Science & Technology (NIIST)
- Council of Scientific & Industrial Research (CSIR)
- Trivandrum-695019
- India
| | - Unnikrishnan Saraswathy Hareesh
- Material Science and Technology Division
- National Institute for Interdisciplinary Science & Technology (NIIST)
- Council of Scientific & Industrial Research (CSIR)
- Trivandrum-695019
- India
| | - Swapankumar Ghosh
- Material Science and Technology Division
- National Institute for Interdisciplinary Science & Technology (NIIST)
- Council of Scientific & Industrial Research (CSIR)
- Trivandrum-695019
- India
| |
Collapse
|
7
|
Liu Y, Zheng W, Zhang W, Chen N, Liu Y, Chen L, Zhou X, Chen X, Zheng H, Li X. Photoaffinity labeling of transcription factors by DNA-templated crosslinking. Chem Sci 2015; 6:745-751. [PMID: 28706637 PMCID: PMC5494549 DOI: 10.1039/c4sc01953a] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 09/30/2014] [Indexed: 12/24/2022] Open
Abstract
Characterization of transcription factor-DNA interaction is of high importance in elucidating the molecular mechanisms of gene transcriptions. DNA-based affinity probes were developed to capture and identify transcription factors by covalent crosslinking; however, the requirement of a crosslinker on the affinity probe remains a disadvantage, as the crosslinker itself often interferes with the protein-DNA interactions. We report a dual-probe method able to capture DNA-binding transcription factors with unmodified protein-binding sites in scenarios where conventional probes have failed. We have also shown the method's converse application in selecting specific transcription factor-binding DNA sequences from a probe library and its extension to studying proteins recognizing epigenetic marks. This study may provide a new tool for exploring DNA-binding proteins in biology.
Collapse
Affiliation(s)
- Ying Liu
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of Education , Beijing National Laboratory of Molecular Sciences , College of Chemistry and Molecular Engineering , Peking University , Beijing , China 100871 .
| | - Wenlu Zheng
- Key Laboratory of Chemical Genomics , School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen , China 518055
| | - Wan Zhang
- Key Laboratory of Chemical Genomics , School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen , China 518055
| | - Nan Chen
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of Education , Beijing National Laboratory of Molecular Sciences , College of Chemistry and Molecular Engineering , Peking University , Beijing , China 100871 .
| | - Yang Liu
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of Education , Beijing National Laboratory of Molecular Sciences , College of Chemistry and Molecular Engineering , Peking University , Beijing , China 100871 .
| | - Li Chen
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of Education , Beijing National Laboratory of Molecular Sciences , College of Chemistry and Molecular Engineering , Peking University , Beijing , China 100871 .
| | - Xiaozhou Zhou
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of Education , Beijing National Laboratory of Molecular Sciences , College of Chemistry and Molecular Engineering , Peking University , Beijing , China 100871 .
| | - Xingshuo Chen
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of Education , Beijing National Laboratory of Molecular Sciences , College of Chemistry and Molecular Engineering , Peking University , Beijing , China 100871 .
| | - Haifeng Zheng
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of Education , Beijing National Laboratory of Molecular Sciences , College of Chemistry and Molecular Engineering , Peking University , Beijing , China 100871 .
| | - Xiaoyu Li
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of Education , Beijing National Laboratory of Molecular Sciences , College of Chemistry and Molecular Engineering , Peking University , Beijing , China 100871 .
- Key Laboratory of Chemical Genomics , School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen , China 518055
| |
Collapse
|
8
|
Ye Z, Zhang W, Liu L, Chen G, Shen Z, Zhou N. Fabrication of a colorimetric biosensing platform for the detection of protein–DNA interaction. Biosens Bioelectron 2013; 46:108-12. [DOI: 10.1016/j.bios.2013.02.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Revised: 02/01/2013] [Accepted: 02/16/2013] [Indexed: 10/27/2022]
|
9
|
Huang CC, Lee GY, Chyi JI, Cheng HT, Hsu CP, Hsu YR, Hsu CH, Huang YF, Sun YC, Chen CC, Li SS, Andrew Yeh J, Yao DJ, Ren F, Wang YL. AlGaN/GaN high electron mobility transistors for protein-peptide binding affinity study. Biosens Bioelectron 2013; 41:717-22. [PMID: 23102432 PMCID: PMC7157921 DOI: 10.1016/j.bios.2012.09.066] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 09/14/2012] [Accepted: 09/27/2012] [Indexed: 01/09/2023]
Abstract
Antibody-immobilized AlGaN/GaN high electron mobility transistors (HEMTs) were used to detect a short peptide consisting of 20 amino acids. One-binding-site model and two-binding-site model were used for the analysis of the electrical signals, revealing the number of binding sites on an antibody and the dissociation constants between the antibody and the short peptide. In the binding-site models, the surface coverage ratio of the short peptide on the sensor surface is relevant to the electrical signals resulted from the peptide-antibody binding on the HEMTs. Two binding sites on an antibody were observed and two dissociation constants, 4.404×10(-11) M and 1.596×10(-9) M, were extracted from the binding-site model through the analysis of the surface coverage ratio of the short peptide on the sensor surface. We have also shown that the conventional method to extract the dissociation constant from the linear regression of curve-fitting with Langmuir isotherm equation may lead to an incorrect information if the receptor has more than one binding site for the ligand. The limit of detection (LOD) of the sensor observed in the experimental result (~10 pM of the short peptide) is very close to the LOD (around 2.7-3.4 pM) predicted from the value of the smallest dissociation constants. The sensitivity of the sensor is not only dependent on the transistors, but also highly relies on the affinity of the ligand-receptor pair. The results demonstrate that the AlGaN/GaN HEMTs cannot only be used for biosensors, but also for the biological affinity study.
Collapse
Affiliation(s)
- Chih-Cheng Huang
- Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu, 300, Taiwan, ROC
| | - Geng-Yen Lee
- Department of Electrical engineering, National Central University, Jhongli City, Taoyuan County 32001, Taiwan, ROC
| | - Jen-Inn Chyi
- Department of Electrical engineering, National Central University, Jhongli City, Taoyuan County 32001, Taiwan, ROC
| | - Hui-Teng Cheng
- Department of Nephrology, National Taiwan University Hospital, Hsinchu branch, Hsinchu 300, Taiwan, ROC
| | - Chen-Pin Hsu
- Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu, 300, Taiwan, ROC
| | - You-Ren Hsu
- Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu, 300, Taiwan, ROC
| | - Chia-Hsien Hsu
- Division of Medical Engineering, National Health Research Institutes, MiaoLi, Taiwan, ROC
| | - Yu-Fen Huang
- Department of Biomedical Engineering and Environmental Science, National Tsing Hua University, Hsinchu 300, Taiwan, ROC
| | - Yuh-Chang Sun
- Department of Biomedical Engineering and Environmental Science, National Tsing Hua University, Hsinchu 300, Taiwan, ROC
| | - Chih-Chen Chen
- Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu, 300, Taiwan, ROC
| | - Sheng-Shian Li
- Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu, 300, Taiwan, ROC
| | - J. Andrew Yeh
- Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu, 300, Taiwan, ROC
| | - Da-Jeng Yao
- Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu, 300, Taiwan, ROC
| | - Fan Ren
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Yu-Lin Wang
- Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu, 300, Taiwan, ROC
| |
Collapse
|
10
|
Cao A, Zhang CY. Real-Time Detection of Transcription Factors Using Target-Converted Helicase-Dependent Amplification Assay with Zero-Background Signal. Anal Chem 2013; 85:2543-7. [DOI: 10.1021/ac400010r] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Anping Cao
- Single-Molecule Detection and Imaging Laboratory, Shenzhen
Institutes of Advanced Technology, Chinese Academy of Sciences, Guangdong 518055, China
| | - Chun-yang Zhang
- Single-Molecule Detection and Imaging Laboratory, Shenzhen
Institutes of Advanced Technology, Chinese Academy of Sciences, Guangdong 518055, China
| |
Collapse
|
11
|
Chen NT, Cheng SH, Liu CP, Souris JS, Chen CT, Mou CY, Lo LW. Recent advances in nanoparticle-based Förster resonance energy transfer for biosensing, molecular imaging and drug release profiling. Int J Mol Sci 2012; 13:16598-623. [PMID: 23443121 PMCID: PMC3546710 DOI: 10.3390/ijms131216598] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 11/15/2012] [Accepted: 11/16/2012] [Indexed: 01/10/2023] Open
Abstract
Förster resonance energy transfer (FRET) may be regarded as a "smart" technology in the design of fluorescence probes for biological sensing and imaging. Recently, a variety of nanoparticles that include quantum dots, gold nanoparticles, polymer, mesoporous silica nanoparticles and upconversion nanoparticles have been employed to modulate FRET. Researchers have developed a number of "visible" and "activatable" FRET probes sensitive to specific changes in the biological environment that are especially attractive from the biomedical point of view. This article reviews recent progress in bringing these nanoparticle-modulated energy transfer schemes to fruition for applications in biosensing, molecular imaging and drug delivery.
Collapse
Affiliation(s)
- Nai-Tzu Chen
- Division of Medical Engineering Research, National Health Research Institutes, Zhunan 35053, Miaoli County, Taiwan; E-Mails: (N.-T.C.); (S.-H.C.); (C.-P.L.)
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan; E-Mail:
| | - Shih-Hsun Cheng
- Division of Medical Engineering Research, National Health Research Institutes, Zhunan 35053, Miaoli County, Taiwan; E-Mails: (N.-T.C.); (S.-H.C.); (C.-P.L.)
- Department of Radiology, The University of Chicago, Chicago, IL 60637, USA; E-Mails: (J.S.S.); (C.-T.C.)
| | - Ching-Ping Liu
- Division of Medical Engineering Research, National Health Research Institutes, Zhunan 35053, Miaoli County, Taiwan; E-Mails: (N.-T.C.); (S.-H.C.); (C.-P.L.)
| | - Jeffrey S. Souris
- Department of Radiology, The University of Chicago, Chicago, IL 60637, USA; E-Mails: (J.S.S.); (C.-T.C.)
| | - Chen-Tu Chen
- Department of Radiology, The University of Chicago, Chicago, IL 60637, USA; E-Mails: (J.S.S.); (C.-T.C.)
| | - Chung-Yuan Mou
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan; E-Mail:
| | - Leu-Wei Lo
- Division of Medical Engineering Research, National Health Research Institutes, Zhunan 35053, Miaoli County, Taiwan; E-Mails: (N.-T.C.); (S.-H.C.); (C.-P.L.)
| |
Collapse
|
12
|
Zhang Y, Hu J, Zhang CY. Sensitive detection of transcription factors by isothermal exponential amplification-based colorimetric assay. Anal Chem 2012; 84:9544-9. [PMID: 23050558 DOI: 10.1021/ac3024087] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Transcription factors regulate gene expression by binding to specific DNA sequences within the regulatory regions of genes and have become potential targets in clinical diagnosis and drug development. However, traditional approaches for the detection of transcription factors are usually laborious and time-consuming with a low sensitivity. Here, we develop an isothermal exponential amplification reaction (EXPAR)-based colorimetric assay for simple and sensitive detection of transcription factor NF-κB p50. In this assay, the presence of NF-κB p50 is converted to the reporter oligonucleotides through protein-DNA interaction, exonuclease III digestion, and isothermal exponential amplification. The subsequent sandwich hybridization of the reporter oligonucleotides with the gold nanoparticle (AuNP)-labeled DNA probes generates a red-to-purple color change, allowing the visual detection of NF-κB p50 with the naked eye. Notably, this method converts the detection of transcription factors to the detection of DNA without the requirement of DNA marker-linked antibodies in the case of immuno-PCR and can sensitively measure NF-κB p50 with a detection limit of 3.8 pM, which has improved by as much as 4 orders of magnitude as compared with the conventional AuNP-based colorimetric assay and the label-free luminescence assay and up to 4 orders of magnitude as compared with fluorescence resonance energy transfer (FRET)-based assay as well. Importantly, this method can be used to measure TNF-α-induced endogenous NF-κB p50 in HeLa cell nuclear extracts and might be further applied for the detection of various DNA-binding proteins and aptamer-binding molecules.
Collapse
Affiliation(s)
- Yan Zhang
- Single-Molecule Detection and Imaging Laboratory, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Guangdong 518055, China
| | | | | |
Collapse
|
13
|
Pakuła S, Orłowski M, Rymarczyk G, Krusiński T, Jakób M, Zoglowek A, Ożyhar A, Dobryszycki P. Conformational changes in the DNA-binding domains of the ecdysteroid receptor during the formation of a complex with the hsp27 response element. J Biomol Struct Dyn 2012; 30:379-93. [PMID: 22694217 DOI: 10.1080/07391102.2012.682215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The ecdysone receptor (EcR) and the ultraspiracle protein (Usp) form the functional receptor for ecdysteroids that initiates metamorphosis in insects. The Usp and EcR DNA-binding domains (UspDBD and EcRDBD, respectively) form a heterodimer on the natural pseudopalindromic element from the hsp27 gene promoter. The conformational changes in the protein-DNA during the formation of the UspDBD-EcRDBD-hsp27 complex were analyzed. Recombined UspDBD and EcRDBD proteins were purified and fluorescein labeled (FL) using the intein method at the C-ends of both proteins. The changes in the distances from the respective C-ends of EcRDBD and/or UspDBD to the 5'- and/or 3'-end of the response element were measured using fluorescence resonance energy transfer (FRET) methodology. The binding of EcRDBD induced a strong conformational change in UspDBD and caused the C-terminal fragment of the UspDBD molecule to move away from both ends of the regulatory element. UspDBD also induced a significant conformational change in the EcRDBD molecule. The EcRDBD C-terminus moved away from the 5'-end of the regulatory element and moved close to the 3'-end. An analysis was also done on the effect that DHR38DBD, the Drosophila ortholog of the mammalian NGFI-B, had on the interaction of UspDBD and EcRDBD with hsp27. FRET analysis demonstrated that hsp27 bending was induced by DHR38DBD. Fluorescence data revealed that hsp27 had a shorter end-to-end distance both in the presence of EcRDBD as well as in the presence of EcRDBD together with DHR38DBD, with DNA bend angles of about 36.2° and 33.6°, respectively. A model of how DHR38DBD binds to hsp27 in the presence of EcRDBD is presented.
Collapse
Affiliation(s)
- Szymon Pakuła
- Faculty of Chemistry, Division of Biochemistry, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Sinha SK, Bandyopadhyay S. Conformational fluctuations of a protein-DNA complex and the structure and ordering of water around it. J Chem Phys 2012; 135:245104. [PMID: 22225189 DOI: 10.1063/1.3670877] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Protein-DNA binding is an important process responsible for the regulation of genetic activities in living organisms. The most crucial issue in this problem is how the protein recognizes the DNA and identifies its target base sequences. Water molecules present around the protein and DNA are also expected to play an important role in mediating the recognition process and controlling the structure of the complex. We have performed atomistic molecular dynamics simulations of an aqueous solution of the protein-DNA complex formed between the DNA binding domain of human TRF1 protein and a telomeric DNA. The conformational fluctuations of the protein and DNA and the microscopic structure and ordering of water around them in the complex have been explored. In agreement with experimental studies, the calculations reveal conformational immobilization of the terminal segments of the protein on complexation. Importantly, it is discovered that both structural adaptations of the protein and DNA, and the subsequent correlation between them to bind, contribute to the net entropy loss associated with the complex formation. Further, it is found that water molecules around the DNA are more structured with significantly higher density and ordering than that around the protein in the complex.
Collapse
Affiliation(s)
- Sudipta Kumar Sinha
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur, India
| | | |
Collapse
|
15
|
Loakes D. Nucleotides and nucleic acids; oligo- and polynucleotides. ORGANOPHOSPHORUS CHEMISTRY 2012. [DOI: 10.1039/9781849734875-00169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- David Loakes
- Medical Research Council Laboratory of Molecular Biology, Hills Road Cambridge CB2 2QH UK
| |
Collapse
|
16
|
Sinha SK, Bandyopadhyay S. Dynamic properties of water around a protein-DNA complex from molecular dynamics simulations. J Chem Phys 2012; 135:135101. [PMID: 21992339 DOI: 10.1063/1.3634004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Formation of protein-DNA complex is an important step in regulation of genes in living organisms. One important issue in this problem is the role played by water in mediating the protein-DNA interactions. In this work, we have carried out atomistic molecular dynamics simulations to explore the heterogeneous dynamics of water molecules present in different regions around a complex formed between the DNA binding domain of human TRF1 protein and a telomeric DNA. It is demonstrated that such heterogeneous water motions around the complex are correlated with the relaxation time scales of hydrogen bonds formed by those water molecules with the protein and DNA. The calculations reveal the existence of a fraction of extraordinarily restricted water molecules forming a highly rigid thin layer in between the binding motifs of the protein and DNA. It is further proved that higher rigidity of water layers around the complex originates from more frequent reformations of broken water-water hydrogen bonds. Importantly, it is found that the formation of the complex affects the transverse and longitudinal degrees of freedom of surrounding water molecules in a nonuniform manner.
Collapse
Affiliation(s)
- Sudipta Kumar Sinha
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur - 721302, India
| | | |
Collapse
|
17
|
Wang ZQ, Zhao J, Zeng J, Wu KJ, Chen YL, Wang XY, Chang LS, He DL. Specific survivin dual fluorescence resonance energy transfer molecular beacons for detection of human bladder cancer cells. Acta Pharmacol Sin 2011; 32:1522-8. [PMID: 22019956 DOI: 10.1038/aps.2011.122] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
AIM Survivin molecular beacons can be used to detect bladder cancer cells in urine samples non-invasively. The aim of this study is to improve the specificity of detection of bladder cancer cells using survivin dual fluorescence resonance energy transfer molecular beacons (FRET MBs) that have fluorophores forming one donor-acceptor pair. METHODS Survivin-targeting dual fluorescence resonance energy transfer molecular beacons with unique target sequences were designed, which had no overlap with the other genes in the apoptosis inhibitor protein family. Human bladder cancer cell lines 5637, 253J and T24, as well as the exfoliated cells in the urine of healthy adults and patients with bladder cancer were examined. Images of cells were taken using a laser scanning confocal fluorescence microscope. For assays using dual FRET MBs, the excitation wavelength was 488 nm, and the emission detection wavelengths were 520±20 nm and 560±20 nm, respectively. RESULTS The human bladder cancer cell lines and exfoliated cells in the urine of patients with bladder cancer incubated with the survivin dual FRET MBs exhibited strong fluorescence signals. In contrast, no fluorescence was detected in the survivin-negative human dermal fibroblasts-adult (HDF-a) cells or exfoliated cells in the urine of healthy adults incubated with the survivin dual FRET MBs. CONCLUSION The results suggest that the survivin dual FRET MBs may be used as a specific and non-invasive method for early detection and follow-up of patients with bladder cancer.
Collapse
|
18
|
Park SH, Ban E, Song EJ, Lee H, Chung DS, Yoo YS. Capillary electrophoretic mobility shift assay for binding of DNA with NFAT3, a transcription factor from H9c2 cardiac myoblast cells. Electrophoresis 2011; 32:2174-80. [DOI: 10.1002/elps.201100091] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 05/11/2011] [Accepted: 05/13/2011] [Indexed: 11/05/2022]
|
19
|
Sahoo H. Förster resonance energy transfer – A spectroscopic nanoruler: Principle and applications. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2011. [DOI: 10.1016/j.jphotochemrev.2011.05.001] [Citation(s) in RCA: 217] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|