1
|
Fernando CD, Jayasekara WSN, Inampudi C, Kohonen-Corish MRJ, Cooper WA, Beilharz TH, Josephs TM, Garama DJ, Gough DJ. A STAT3 protein complex required for mitochondrial mRNA stability and cancer. Cell Rep 2023; 42:113033. [PMID: 37703176 DOI: 10.1016/j.celrep.2023.113033] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 06/16/2023] [Accepted: 08/10/2023] [Indexed: 09/15/2023] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) is a potent transcription factor necessary for life whose activity is corrupted in diverse diseases, including cancer. STAT3 biology was presumed to be entirely dependent on its activity as a transcription factor until the discovery of a mitochondrial pool of STAT3, which is necessary for normal tissue function and tumorigenesis. However, the mechanism of this mitochondrial activity remained elusive. This study uses immunoprecipitation and mass spectrometry to identify a complex containing STAT3, leucine-rich pentatricopeptide repeat containing (LRPPRC), and SRA stem-loop-interacting RNA-binding protein (SLIRP) that is required for the stability of mature mitochondrially encoded mRNAs and transport to the mitochondrial ribosome. Moreover, we show that this complex is enriched in patients with lung adenocarcinoma and that its deletion inhibits the growth of lung cancer in vivo, providing therapeutic opportunities through the specific targeting of the mitochondrial activity of STAT3.
Collapse
Affiliation(s)
- C Dilanka Fernando
- Department of Molecular Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3800, Australia; Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia
| | - W Samantha N Jayasekara
- Department of Molecular Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3800, Australia; Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia
| | - Chaitanya Inampudi
- Department of Molecular Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3800, Australia; Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia
| | - Maija R J Kohonen-Corish
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; Woolcock Institute of Medical Research, Glebe, NSW 2037, Australia; School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; Faculty of Science, UTS Sydney, Ultimo, NSW 2007, Australia
| | - Wendy A Cooper
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; Tissue Pathology and Diagnostic Oncology, NSW Health Pathology, Royal Prince Alfred Hospital, Missenden Road, Camperdown, NSW 2050, Australia; Sydney Medical School, University of Sydney, Camperdown, NSW 2006, Australia
| | - Traude H Beilharz
- Development and Stem Cells Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Tracy M Josephs
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Daniel J Garama
- Department of Molecular Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3800, Australia; Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia.
| | - Daniel J Gough
- Department of Molecular Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3800, Australia; Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia.
| |
Collapse
|
2
|
Human Mitochondrial RNA Processing and Modifications: Overview. Int J Mol Sci 2021; 22:ijms22157999. [PMID: 34360765 PMCID: PMC8348895 DOI: 10.3390/ijms22157999] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 01/29/2023] Open
Abstract
Mitochondria, often referred to as the powerhouses of cells, are vital organelles that are present in almost all eukaryotic organisms, including humans. They are the key energy suppliers as the site of adenosine triphosphate production, and are involved in apoptosis, calcium homeostasis, and regulation of the innate immune response. Abnormalities occurring in mitochondria, such as mitochondrial DNA (mtDNA) mutations and disturbances at any stage of mitochondrial RNA (mtRNA) processing and translation, usually lead to severe mitochondrial diseases. A fundamental line of investigation is to understand the processes that occur in these organelles and their physiological consequences. Despite substantial progress that has been made in the field of mtRNA processing and its regulation, many unknowns and controversies remain. The present review discusses the current state of knowledge of RNA processing in human mitochondria and sheds some light on the unresolved issues.
Collapse
|
3
|
D’Souza AR, Van Haute L, Powell CA, Mutti CD, Páleníková P, Rebelo-Guiomar P, Rorbach J, Minczuk M. YbeY is required for ribosome small subunit assembly and tRNA processing in human mitochondria. Nucleic Acids Res 2021; 49:5798-5812. [PMID: 34037799 PMCID: PMC8191802 DOI: 10.1093/nar/gkab404] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 04/20/2021] [Accepted: 05/06/2021] [Indexed: 12/12/2022] Open
Abstract
Mitochondria contain their own translation apparatus which enables them to produce the polypeptides encoded in their genome. The mitochondrially-encoded RNA components of the mitochondrial ribosome require various post-transcriptional processing steps. Additional protein factors are required to facilitate the biogenesis of the functional mitoribosome. We have characterized a mitochondrially-localized protein, YbeY, which interacts with the assembling mitoribosome through the small subunit. Loss of YbeY leads to a severe reduction in mitochondrial translation and a loss of cell viability, associated with less accurate mitochondrial tRNASer(AGY) processing from the primary transcript and a defect in the maturation of the mitoribosomal small subunit. Our results suggest that YbeY performs a dual, likely independent, function in mitochondria being involved in precursor RNA processing and mitoribosome biogenesis. Issue Section: Nucleic Acid Enzymes.
Collapse
Affiliation(s)
- Aaron R D’Souza
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Lindsey Van Haute
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Christopher A Powell
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Christian D Mutti
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Petra Páleníková
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Pedro Rebelo-Guiomar
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Joanna Rorbach
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Michal Minczuk
- To whom correspondence should be addressed. Tel: +44 122 325 2750;
| |
Collapse
|
4
|
Mechanisms and regulation of protein synthesis in mitochondria. Nat Rev Mol Cell Biol 2021; 22:307-325. [PMID: 33594280 DOI: 10.1038/s41580-021-00332-2] [Citation(s) in RCA: 166] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2021] [Indexed: 02/06/2023]
Abstract
Mitochondria are cellular organelles responsible for generation of chemical energy in the process called oxidative phosphorylation. They originate from a bacterial ancestor and maintain their own genome, which is expressed by designated, mitochondrial transcription and translation machineries that differ from those operating for nuclear gene expression. In particular, the mitochondrial protein synthesis machinery is structurally and functionally very different from that governing eukaryotic, cytosolic translation. Despite harbouring their own genetic information, mitochondria are far from being independent of the rest of the cell and, conversely, cellular fitness is closely linked to mitochondrial function. Mitochondria depend heavily on the import of nuclear-encoded proteins for gene expression and function, and hence engage in extensive inter-compartmental crosstalk to regulate their proteome. This connectivity allows mitochondria to adapt to changes in cellular conditions and also mediates responses to stress and mitochondrial dysfunction. With a focus on mammals and yeast, we review fundamental insights that have been made into the biogenesis, architecture and mechanisms of the mitochondrial translation apparatus in the past years owing to the emergence of numerous near-atomic structures and a considerable amount of biochemical work. Moreover, we discuss how cellular mitochondrial protein expression is regulated, including aspects of mRNA and tRNA maturation and stability, roles of auxiliary factors, such as translation regulators, that adapt mitochondrial translation rates, and the importance of inter-compartmental crosstalk with nuclear gene expression and cytosolic translation and how it enables integration of mitochondrial translation into the cellular context.
Collapse
|
5
|
Bruni F, Proctor-Kent Y, Lightowlers RN, Chrzanowska-Lightowlers ZM. Messenger RNA delivery to mitoribosomes - hints from a bacterial toxin. FEBS J 2020; 288:437-451. [PMID: 32329962 PMCID: PMC7891357 DOI: 10.1111/febs.15342] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 04/06/2020] [Accepted: 04/21/2020] [Indexed: 11/28/2022]
Abstract
In mammalian mitochondria, messenger RNA is processed and matured from large primary transcripts in structures known as RNA granules. The identity of the factors and process transferring the matured mRNA to the mitoribosome for translation is unclear. Nascent mature transcripts are believed to associate initially with the small mitoribosomal subunit prior to recruitment of the large subunit to form the translationally active monosome. When the small subunit fails to assemble, however, the stability of mt‐mRNA is only marginally affected, and under these conditions, the LRPPRC/SLIRP RNA‐binding complex has been implicated in maintaining mt‐mRNA stability. Here, we exploit the activity of a bacterial ribotoxin, VapC20, to show that in the absence of the large mitoribosomal subunit, mt‐mRNA species are selectively lost. Further, if the small subunit is also depleted, the mt‐mRNA levels are recovered. As a consequence of these data, we suggest a natural pathway for loading processed mt‐mRNA onto the mitoribosome.
Collapse
Affiliation(s)
- Francesco Bruni
- The Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, UK.,Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Italy
| | - Yasmin Proctor-Kent
- The Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, UK
| | - Robert N Lightowlers
- The Wellcome Centre for Mitochondrial Research, Institute for Cell and Molecular Biosciences, Newcastle University, UK
| | | |
Collapse
|
6
|
Abstract
Mitochondria are essential organelles in eukaryotes. Most mitochondrial proteins are encoded by the nuclear genome and translated in the cytosol. Nuclear-encoded mitochondrial proteins need to be imported, processed, folded, and assembled into their functional states. To maintain protein homeostasis (proteostasis), mitochondria are equipped with a distinct set of quality control machineries. Deficiencies in such systems lead to mitochondrial dysfunction, which is a hallmark of aging and many human diseases, such as neurodegenerative diseases, cardiovascular diseases, and cancer. In this review, we discuss the unique challenges and solutions of proteostasis in mitochondria. The import machinery coordinates with mitochondrial proteases and chaperones to maintain the mitochondrial proteome. Moreover, mitochondrial proteostasis depends on cytosolic protein quality control mechanisms during crises. In turn, mitochondria facilitate cytosolic proteostasis. Increasing evidence suggests that enhancing mitochondrial proteostasis may hold therapeutic potential to protect against protein aggregation-associated cellular defects.
Collapse
Affiliation(s)
- Linhao Ruan
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA; , , , , ,
- Biochemistry, Cellular and Molecular Biology (BCMB) Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Yuhao Wang
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA; , , , , ,
- Biochemistry, Cellular and Molecular Biology (BCMB) Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Xi Zhang
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA; , , , , ,
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Alexis Tomaszewski
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA; , , , , ,
- Biochemistry, Cellular and Molecular Biology (BCMB) Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Joshua T McNamara
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA; , , , , ,
- Biochemistry, Cellular and Molecular Biology (BCMB) Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Rong Li
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA; , , , , ,
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
7
|
Kotrys AV, Szczesny RJ. Mitochondrial Gene Expression and Beyond-Novel Aspects of Cellular Physiology. Cells 2019; 9:cells9010017. [PMID: 31861673 PMCID: PMC7017415 DOI: 10.3390/cells9010017] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/15/2019] [Accepted: 12/17/2019] [Indexed: 02/06/2023] Open
Abstract
Mitochondria are peculiar organelles whose proper function depends on the crosstalk between two genomes, mitochondrial and nuclear. The human mitochondrial genome (mtDNA) encodes only 13 proteins; nevertheless, its proper expression is essential for cellular homeostasis, as mtDNA-encoded proteins are constituents of mitochondrial respiratory complexes. In addition, mtDNA expression results in the production of RNA molecules, which influence cell physiology once released from the mitochondria into the cytoplasm. As a result, dysfunctions of mtDNA expression may lead to pathologies in humans. Here, we review the mechanisms of mitochondrial gene expression with a focus on recent findings in the field. We summarize the complex turnover of mitochondrial transcripts and present an increasing body of evidence indicating new functions of mitochondrial transcripts. We discuss mitochondrial gene regulation in different cellular contexts, focusing on stress conditions. Finally, we highlight the importance of emerging aspects of mitochondrial gene regulation in human health and disease.
Collapse
|
8
|
Wang Q, Wang Z, Bao Z, Zhang C, Wang Z, Jiang T. PABPC1 relevant bioinformatic profiling and prognostic value in gliomas. Future Oncol 2019; 16:4279-4288. [PMID: 31797689 DOI: 10.2217/fon-2019-0268] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Aim: We aimed at investigating molecular features and potential clinical value of PABPC1 in gliomas. Materials & methods: We assembled totally 1000 glioma samples with mRNA expression data from Chinese Glioma Genome Atlas and The Cancer Genome Atlas. We utilized R language as the main analysis tool. Gene Ontology was performed for functional analysis. Results: PABPC1 was downregulated in gliomas with higher malignance and PABPC1 may contribute as potential predictor of proneural subtype in gliomas. Higher expression of PABPC1 was significantly related to better prognosis and related to biological process of translation. Conclusion: Our finding improves the understanding of PABPC1 as a novel biomarker with potential therapeutic connotations.
Collapse
Affiliation(s)
- Qiangwei Wang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, PR China
| | - Zhiliang Wang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, PR China
| | - Zhaoshi Bao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - Chuanbao Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - Zheng Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - Tao Jiang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, PR China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China.,China National Clinical Research Center for Neurological Diseases, Beijing, PR China.,Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, PR China
| |
Collapse
|
9
|
Mammalian mitochondrial translation - revealing consequences of divergent evolution. Biochem Soc Trans 2019; 47:1429-1436. [PMID: 31551356 DOI: 10.1042/bst20190265] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/15/2019] [Accepted: 08/19/2019] [Indexed: 12/16/2022]
Abstract
Mitochondria are ubiquitous organelles present in the cytoplasm of all nucleated eukaryotic cells. These organelles are described as arising from a common ancestor but a comparison of numerous aspects of mitochondria between different organisms provides remarkable examples of divergent evolution. In humans, these organelles are of dual genetic origin, comprising ∼1500 nuclear-encoded proteins and thirteen that are encoded by the mitochondrial genome. Of the various functions that these organelles perform, it is only oxidative phosphorylation, which provides ATP as a source of chemical energy, that is dependent on synthesis of these thirteen mitochondrially encoded proteins. A prerequisite for this process of translation are the mitoribosomes. The recent revolution in cryo-electron microscopy has generated high-resolution mitoribosome structures and has undoubtedly revealed some of the most distinctive molecular aspects of the mitoribosomes from different organisms. However, we still lack a complete understanding of the mechanistic aspects of this process and many of the factors involved in post-transcriptional gene expression in mitochondria. This review reflects on the current knowledge and illustrates some of the striking differences that have been identified between mitochondria from a range of organisms.
Collapse
|
10
|
Toompuu M, Tuomela T, Laine P, Paulin L, Dufour E, Jacobs HT. Polyadenylation and degradation of structurally abnormal mitochondrial tRNAs in human cells. Nucleic Acids Res 2019. [PMID: 29518244 PMCID: PMC6007314 DOI: 10.1093/nar/gky159] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
RNA 3' polyadenylation is known to serve diverse purposes in biology, in particular, regulating mRNA stability and translation. Here we determined that, upon exposure to high levels of the intercalating agent ethidium bromide (EtBr), greater than those required to suppress mitochondrial transcription, mitochondrial tRNAs in human cells became polyadenylated. Relaxation of the inducing stress led to rapid turnover of the polyadenylated tRNAs. The extent, kinetics and duration of tRNA polyadenylation were EtBr dose-dependent, with mitochondrial tRNAs differentially sensitive to the stress. RNA interference and inhibitor studies indicated that ongoing mitochondrial ATP synthesis, plus the mitochondrial poly(A) polymerase and SUV3 helicase were required for tRNA polyadenylation, while polynucleotide phosphorylase counteracted the process and was needed, along with SUV3, for degradation of the polyadenylated tRNAs. Doxycycline treatment inhibited both tRNA polyadenylation and turnover, suggesting a possible involvement of the mitoribosome, although other translational inhibitors had only minor effects. The dysfunctional tRNALeu(UUR) bearing the pathological A3243G mutation was constitutively polyadenylated at a low level, but this was markedly enhanced after doxycycline treatment. We propose that polyadenylation of structurally and functionally abnormal mitochondrial tRNAs entrains their PNPase/SUV3-mediated destruction, and that this pathway could play an important role in mitochondrial diseases associated with tRNA mutations.
Collapse
Affiliation(s)
- Marina Toompuu
- Faculty of Medicine and Life Sciences, BioMediTech Institute and Tampere University Hospital, FI-33014 University of Tampere, Finland
| | - Tea Tuomela
- Faculty of Medicine and Life Sciences, BioMediTech Institute and Tampere University Hospital, FI-33014 University of Tampere, Finland
| | - Pia Laine
- Institute of Biotechnology, FI-00014 University of Helsinki, Finland
| | - Lars Paulin
- Institute of Biotechnology, FI-00014 University of Helsinki, Finland
| | - Eric Dufour
- Faculty of Medicine and Life Sciences, BioMediTech Institute and Tampere University Hospital, FI-33014 University of Tampere, Finland
| | - Howard T Jacobs
- Faculty of Medicine and Life Sciences, BioMediTech Institute and Tampere University Hospital, FI-33014 University of Tampere, Finland.,Institute of Biotechnology, FI-00014 University of Helsinki, Finland
| |
Collapse
|
11
|
Transcription, Processing, and Decay of Mitochondrial RNA in Health and Disease. Int J Mol Sci 2019; 20:ijms20092221. [PMID: 31064115 PMCID: PMC6540609 DOI: 10.3390/ijms20092221] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/01/2019] [Accepted: 05/03/2019] [Indexed: 12/16/2022] Open
Abstract
Although the large majority of mitochondrial proteins are nuclear encoded, for their correct functioning mitochondria require the expression of 13 proteins, two rRNA, and 22 tRNA codified by mitochondrial DNA (mtDNA). Once transcribed, mitochondrial RNA (mtRNA) is processed, mito-ribosomes are assembled, and mtDNA-encoded proteins belonging to the respiratory chain are synthesized. These processes require the coordinated spatio-temporal action of several enzymes, and many different factors are involved in the regulation and control of protein synthesis and in the stability and turnover of mitochondrial RNA. In this review, we describe the essential steps of mitochondrial RNA synthesis, maturation, and degradation, the factors controlling these processes, and how the alteration of these processes is associated with human pathologies.
Collapse
|
12
|
van Esveld SL, Huynen MA. Does mitochondrial DNA evolution in metazoa drive the origin of new mitochondrial proteins? IUBMB Life 2018; 70:1240-1250. [PMID: 30281911 DOI: 10.1002/iub.1940] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/14/2018] [Accepted: 08/21/2018] [Indexed: 01/10/2023]
Abstract
Most eukaryotic cells contain mitochondria with a genome that evolved from their α-proteobacterial ancestor. In the course of eukaryotic evolution, the mitochondrial genome underwent a dramatic reduction in size, caused by the loss and translocation of genes. This required adjustments in mitochondrial gene expression mechanisms and resulted in a complex collaborative system of mitochondrially encoded transfer RNAs and ribosomal RNAs with nuclear encoded proteins to express the mitochondrial encoded oxidative phosphorylation (OXPHOS) proteins. In this review, we examine mitochondrial gene expression from an evolutionary point of view: to what extent can we correlate changes in the mitochondrial genome in the evolutionary lineage leading to human with the origin of new nuclear encoded proteins. We dated the evolutionary origin of mitochondrial proteins that interact with mitochondrial DNA or its RNA and/or protein products in a systematic manner and compared them with documented changes in the mitochondrial DNA. We find anecdotal but accumulating evidence that metazoan RNA-interacting proteins arose in conjunction with changes of the mitochondrial DNA. We find no substantial evidence for such compensatory evolution in new OXPHOS proteins, which appear to be constrained by the ability to form supercomplexes. © 2018 IUBMB Life, 70(12):1240-1250, 2018.
Collapse
Affiliation(s)
- S L van Esveld
- Radboud Center for Mitochondrial Medicine, Radboudumc, Nijmegen, The Netherlands.,Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
| | - M A Huynen
- Radboud Center for Mitochondrial Medicine, Radboudumc, Nijmegen, The Netherlands
| |
Collapse
|
13
|
Mitochondrial transcription and translation: overview. Essays Biochem 2018; 62:309-320. [PMID: 30030363 PMCID: PMC6056719 DOI: 10.1042/ebc20170102] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/14/2018] [Accepted: 05/14/2018] [Indexed: 12/13/2022]
Abstract
Mitochondria are the major source of ATP in the cell. Five multi-subunit complexes in the inner membrane of the organelle are involved in the oxidative phosphorylation required for ATP production. Thirteen subunits of these complexes are encoded by the mitochondrial genome often referred to as mtDNA. For this reason, the expression of mtDNA is vital for the assembly and functioning of the oxidative phosphorylation complexes. Defects of the mechanisms regulating mtDNA gene expression have been associated with deficiencies in assembly of these complexes, resulting in mitochondrial diseases. Recently, numerous factors involved in these processes have been identified and characterized leading to a deeper understanding of the mechanisms that underlie mitochondrial diseases.
Collapse
|
14
|
Inhibition of stress-inducible HSP70 impairs mitochondrial proteostasis and function. Oncotarget 2018; 8:45656-45669. [PMID: 28484090 PMCID: PMC5542216 DOI: 10.18632/oncotarget.17321] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 04/03/2017] [Indexed: 12/20/2022] Open
Abstract
Protein quality control is an important component of survival for all cells. The use of proteasome inhibitors for cancer therapy derives from the fact that tumor cells generally exhibit greater levels of proteotoxic stress than do normal cells, and thus cancer cells tend to be more sensitive to proteasome inhibition. However, this approach has been limited in some cases by toxicity to normal cells. Recently, the concept of inhibiting proteostasis in organelles for cancer therapy has been advanced, in part because it is predicted to have reduced toxicity for normal cells. Here we demonstrate that a fraction of the major stress-induced chaperone HSP70 (also called HSPA1A or HSP72, but hereafter HSP70) is abundantly present in mitochondria of tumor cells, but is expressed at quite low or undetectable levels in mitochondria of most normal tissues and non-tumor cell lines. We show that treatment of tumor cells with HSP70 inhibitors causes a marked change in mitochondrial protein quality control, loss of mitochondrial membrane potential, reduced oxygen consumption rate, and loss of ATP production. We identify several nuclear-encoded mitochondrial proteins, including polyadenylate binding protein-1 (PABPC1), which exhibit decreased abundance in mitochondria following treatment with HSP70 inhibitors. We also show that targeting HSP70 function leads to reduced levels of several mitochondrial-encoded RNA species that encode components of the electron transport chain. Our data indicate that small molecule inhibitors of HSP70 represent a new class of organelle proteostasis inhibitors that impair mitochondrial function in cancer cells, and therefore constitute novel therapeutics.
Collapse
|
15
|
Szczesny RJ, Kowalska K, Klosowska-Kosicka K, Chlebowski A, Owczarek EP, Warkocki Z, Kulinski TM, Adamska D, Affek K, Jedroszkowiak A, Kotrys AV, Tomecki R, Krawczyk PS, Borowski LS, Dziembowski A. Versatile approach for functional analysis of human proteins and efficient stable cell line generation using FLP-mediated recombination system. PLoS One 2018; 13:e0194887. [PMID: 29590189 PMCID: PMC5874048 DOI: 10.1371/journal.pone.0194887] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 03/12/2018] [Indexed: 12/21/2022] Open
Abstract
Deciphering a function of a given protein requires investigating various biological aspects. Usually, the protein of interest is expressed with a fusion tag that aids or allows subsequent analyses. Additionally, downregulation or inactivation of the studied gene enables functional studies. Development of the CRISPR/Cas9 methodology opened many possibilities but in many cases it is restricted to non-essential genes. Recombinase-dependent gene integration methods, like the Flp-In system, are very good alternatives. The system is widely used in different research areas, which calls for the existence of compatible vectors and efficient protocols that ensure straightforward DNA cloning and generation of stable cell lines. We have created and validated a robust series of 52 vectors for streamlined generation of stable mammalian cell lines using the FLP recombinase-based methodology. Using the sequence-independent DNA cloning method all constructs for a given coding-sequence can be made with just three universal PCR primers. Our collection allows tetracycline-inducible expression of proteins with various tags suitable for protein localization, FRET, bimolecular fluorescence complementation (BiFC), protein dynamics studies (FRAP), co-immunoprecipitation, the RNA tethering assay and cell sorting. Some of the vectors contain a bidirectional promoter for concomitant expression of miRNA and mRNA, so that a gene can be silenced and its product replaced by a mutated miRNA-insensitive version. Our toolkit and protocols have allowed us to create more than 500 constructs with ease. We demonstrate the efficacy of our vectors by creating stable cell lines with various tagged proteins (numatrin, fibrillarin, coilin, centrin, THOC5, PCNA). We have analysed transgene expression over time to provide a guideline for future experiments and compared the effectiveness of commonly used inducers for tetracycline-responsive promoters. As proof of concept we examined the role of the exoribonuclease XRN2 in transcription termination by RNAseq.
Collapse
Affiliation(s)
- Roman J. Szczesny
- Laboratory of RNA Biology and Functional Genomics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
- * E-mail: (RJS); (AD)
| | - Katarzyna Kowalska
- Laboratory of RNA Biology and Functional Genomics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Kamila Klosowska-Kosicka
- Laboratory of RNA Biology and Functional Genomics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Aleksander Chlebowski
- Laboratory of RNA Biology and Functional Genomics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Ewelina P. Owczarek
- Laboratory of RNA Biology and Functional Genomics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Zbigniew Warkocki
- Laboratory of RNA Biology and Functional Genomics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Tomasz M. Kulinski
- Laboratory of RNA Biology and Functional Genomics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Dorota Adamska
- Laboratory of RNA Biology and Functional Genomics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Kamila Affek
- Laboratory of RNA Biology and Functional Genomics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Agata Jedroszkowiak
- Laboratory of RNA Biology and Functional Genomics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Anna V. Kotrys
- Laboratory of RNA Biology and Functional Genomics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Rafal Tomecki
- Laboratory of RNA Biology and Functional Genomics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Pawel S. Krawczyk
- Laboratory of RNA Biology and Functional Genomics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Lukasz S. Borowski
- Laboratory of RNA Biology and Functional Genomics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Andrzej Dziembowski
- Laboratory of RNA Biology and Functional Genomics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
- * E-mail: (RJS); (AD)
| |
Collapse
|
16
|
Chrzanowska-Lightowlers Z, Rorbach J, Minczuk M. Human mitochondrial ribosomes can switch structural tRNAs - but when and why? RNA Biol 2017; 14:1668-1671. [PMID: 28786741 PMCID: PMC5731804 DOI: 10.1080/15476286.2017.1356551] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
High resolution cryoEM of mammalian mitoribosomes revealed the unexpected presence of mitochondrially encoded tRNA as a structural component of mitochondrial large ribosomal subunit (mt-LSU). Our previously published data identified that only mitochondrial (mt-) tRNAPhe and mt-tRNAVal can be incorporated into mammalian mt-LSU and within an organism there is no evidence of tissue specific variation. When mt-tRNAVal is limiting, human mitoribosomes can integrate mt-tRNAPhe instead to generate a translationally competent monosome. Here we discuss the possible reasons for and consequences of the observed plasticity of the structural mt-tRNA integration. We also indicate potential direction for further research that could help our understanding of the mechanistic and evolutionary aspects of this unprecedented system.
Collapse
Affiliation(s)
- Zofia Chrzanowska-Lightowlers
- a The Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience , Newcastle University , Newcastle upon Tyne , England , UK
| | - Joanna Rorbach
- b Department of Medical Biochemistry and Biophysics , Karolinska Institutet , Retzius väg 8, Stockholm , Sweden
| | - Michal Minczuk
- c MRC Mitochondrial Biology Unit , Wellcome Trust/MRC Building, Hills Road, Cambridge, England , UK
| |
Collapse
|
17
|
Pearce SF, Rorbach J, Haute LV, D’Souza AR, Rebelo-Guiomar P, Powell CA, Brierley I, Firth AE, Minczuk M. Maturation of selected human mitochondrial tRNAs requires deadenylation. eLife 2017; 6:e27596. [PMID: 28745585 PMCID: PMC5544427 DOI: 10.7554/elife.27596] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 07/21/2017] [Indexed: 02/02/2023] Open
Abstract
Human mitochondria contain a genome (mtDNA) that encodes essential subunits of the oxidative phosphorylation system. Expression of mtDNA entails multi-step maturation of precursor RNA. In other systems, the RNA life cycle involves surveillance mechanisms, however, the details of RNA quality control have not been extensively characterised in human mitochondria. Using a mitochondrial ribosome profiling and mitochondrial poly(A)-tail RNA sequencing (MPAT-Seq) assay, we identify the poly(A)-specific exoribonuclease PDE12 as a major factor for the quality control of mitochondrial non-coding RNAs. The lack of PDE12 results in a spurious polyadenylation of the 3' ends of the mitochondrial (mt-) rRNA and mt-tRNA. While the aberrant adenylation of 16S mt-rRNA did not affect the integrity of the mitoribosome, spurious poly(A) additions to mt-tRNA led to reduced levels of aminoacylated pool of certain mt-tRNAs and mitoribosome stalling at the corresponding codons. Therefore, our data uncover a new, deadenylation-dependent mtRNA maturation pathway in human mitochondria.
Collapse
Affiliation(s)
- Sarah F Pearce
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Joanna Rorbach
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Lindsey Van Haute
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Aaron R D’Souza
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Pedro Rebelo-Guiomar
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom
- Graduate Program in Areas of Basic and Applied Biology, University of Porto, Porto, Portugal
| | - Christopher A Powell
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Ian Brierley
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Andrew E Firth
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Michal Minczuk
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
18
|
Polyadenylation and degradation of RNA in the mitochondria. Biochem Soc Trans 2017; 44:1475-1482. [PMID: 27911729 DOI: 10.1042/bst20160126] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 06/24/2016] [Accepted: 06/28/2016] [Indexed: 12/20/2022]
Abstract
Mitochondria have their own gene expression machinery and the relative abundance of RNA products in these organelles in animals is mostly dictated by their rate of degradation. The molecular mechanisms regulating the differential accumulation of the transcripts in this organelle remain largely elusive. Here, we summarize the present knowledge of how RNA is degraded in human mitochondria and describe the coexistence of stable poly(A) tails and the nonabundant tails, which have been suggested to play a role in the RNA degradation process.
Collapse
|
19
|
Bratic A, Clemente P, Calvo-Garrido J, Maffezzini C, Felser A, Wibom R, Wedell A, Freyer C, Wredenberg A. Mitochondrial Polyadenylation Is a One-Step Process Required for mRNA Integrity and tRNA Maturation. PLoS Genet 2016; 12:e1006028. [PMID: 27176048 PMCID: PMC4866704 DOI: 10.1371/journal.pgen.1006028] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 04/14/2016] [Indexed: 12/20/2022] Open
Abstract
Polyadenylation has well characterised roles in RNA turnover and translation in a variety of biological systems. While polyadenylation on mitochondrial transcripts has been suggested to be a two-step process required to complete translational stop codons, its involvement in mitochondrial RNA turnover is less well understood. We studied knockdown and knockout models of the mitochondrial poly(A) polymerase (MTPAP) in Drosophila melanogaster and demonstrate that polyadenylation of mitochondrial mRNAs is exclusively performed by MTPAP. Further, our results show that mitochondrial polyadenylation does not regulate mRNA stability but protects the 3' terminal integrity, and that despite a lack of functioning 3' ends, these trimmed transcripts are translated, suggesting that polyadenylation is not required for mitochondrial translation. Additionally, loss of MTPAP leads to reduced steady-state levels and disturbed maturation of tRNACys, indicating that polyadenylation in mitochondria might be important for the stability and maturation of specific tRNAs. The polyadenylation of cellular RNAs is a well-studied signal for gene expression, with a defined function in either RNA turnover or translation, in the majority of systems. In mammalian mitochondria the role of polyadenylation is less clear, and can to date only be attributed to completing the translational stop signal on several mitochondrial transcripts. Previous work though demonstrated that mitochondrial polyadenylation requires a certain length and shortening of the poly(A) tail signal has detrimental effects on mitochondrial function. In this study we deleted the mitochondrial polymerase responsible for polyadenylation in the fly, Drosophila melanogaster, and demonstrate that the mitochondrial poly(A) tail is essential for preserving the 3’ ends of mitochondrial transcripts, with no other enzyme capable of completing stop signals. Our study also shows that polyadenylation does not regulate transcript stability nor is it required for translation, but might be involved in the maturation of certain mitochondrial tRNAs. We therefore conclude that besides completing translational stop signals, mitochondrial polyadenylation protects the 3’ termini from degradation.
Collapse
Affiliation(s)
- Ana Bratic
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Paula Clemente
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Javier Calvo-Garrido
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Camilla Maffezzini
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Andrea Felser
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Rolf Wibom
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Wedell
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Christoph Freyer
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
- * E-mail: (CF); (AW)
| | - Anna Wredenberg
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
- * E-mail: (CF); (AW)
| |
Collapse
|
20
|
Lasserre JP, Dautant A, Aiyar RS, Kucharczyk R, Glatigny A, Tribouillard-Tanvier D, Rytka J, Blondel M, Skoczen N, Reynier P, Pitayu L, Rötig A, Delahodde A, Steinmetz LM, Dujardin G, Procaccio V, di Rago JP. Yeast as a system for modeling mitochondrial disease mechanisms and discovering therapies. Dis Model Mech 2016; 8:509-26. [PMID: 26035862 PMCID: PMC4457039 DOI: 10.1242/dmm.020438] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mitochondrial diseases are severe and largely untreatable. Owing to the many essential processes carried out by mitochondria and the complex cellular systems that support these processes, these diseases are diverse, pleiotropic, and challenging to study. Much of our current understanding of mitochondrial function and dysfunction comes from studies in the baker's yeast Saccharomyces cerevisiae. Because of its good fermenting capacity, S. cerevisiae can survive mutations that inactivate oxidative phosphorylation, has the ability to tolerate the complete loss of mitochondrial DNA (a property referred to as ‘petite-positivity’), and is amenable to mitochondrial and nuclear genome manipulation. These attributes make it an excellent model system for studying and resolving the molecular basis of numerous mitochondrial diseases. Here, we review the invaluable insights this model organism has yielded about diseases caused by mitochondrial dysfunction, which ranges from primary defects in oxidative phosphorylation to metabolic disorders, as well as dysfunctions in maintaining the genome or in the dynamics of mitochondria. Owing to the high level of functional conservation between yeast and human mitochondrial genes, several yeast species have been instrumental in revealing the molecular mechanisms of pathogenic human mitochondrial gene mutations. Importantly, such insights have pointed to potential therapeutic targets, as have genetic and chemical screens using yeast. Summary: In this Review, we discuss the use of budding yeast to understand mitochondrial diseases and help in the search for their treatments.
Collapse
Affiliation(s)
- Jean-Paul Lasserre
- University Bordeaux-CNRS, IBGC, UMR 5095, 1 rue Camille Saint-Saëns, Bordeaux F-33000, France
| | - Alain Dautant
- University Bordeaux-CNRS, IBGC, UMR 5095, 1 rue Camille Saint-Saëns, Bordeaux F-33000, France
| | - Raeka S Aiyar
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstrasse 1, Heidelberg 69117, Germany
| | - Roza Kucharczyk
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Annie Glatigny
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Université Paris-Sud, 1 avenue de la terrasse, Gif-sur-Yvette 91198, France
| | - Déborah Tribouillard-Tanvier
- Institut National de la Santé et de la Recherche Médicale UMR1078, Université de Bretagne Occidentale, Faculté de Médecine et des Sciences de la Santé, Etablissement Français du Sang (EFS) Bretagne, CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, Brest F-29200, France
| | - Joanna Rytka
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Marc Blondel
- Institut National de la Santé et de la Recherche Médicale UMR1078, Université de Bretagne Occidentale, Faculté de Médecine et des Sciences de la Santé, Etablissement Français du Sang (EFS) Bretagne, CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, Brest F-29200, France
| | - Natalia Skoczen
- University Bordeaux-CNRS, IBGC, UMR 5095, 1 rue Camille Saint-Saëns, Bordeaux F-33000, France Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Pascal Reynier
- UMR CNRS 6214-INSERM U1083, Angers 49933, Cedex 9, France Département de Biochimie et Génétique, Centre Hospitalier Universitaire d'Angers, Angers 49933, Cedex 9, France
| | - Laras Pitayu
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Université Paris-Sud, rue Gregor Mendel, Orsay 91405, France
| | - Agnès Rötig
- Inserm U1163, Hôpital Necker-Enfants-Malades, Institut Imagine, Université Paris Descartes-Sorbonne Paris Cité, 149 rue de Sèvres, Paris 75015, France
| | - Agnès Delahodde
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Université Paris-Sud, rue Gregor Mendel, Orsay 91405, France
| | - Lars M Steinmetz
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstrasse 1, Heidelberg 69117, Germany Stanford Genome Technology Center, Department of Biochemistry, Stanford University, Palo Alto, CA 94304, USA Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305-5301, USA
| | - Geneviève Dujardin
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Université Paris-Sud, 1 avenue de la terrasse, Gif-sur-Yvette 91198, France
| | - Vincent Procaccio
- UMR CNRS 6214-INSERM U1083, Angers 49933, Cedex 9, France Département de Biochimie et Génétique, Centre Hospitalier Universitaire d'Angers, Angers 49933, Cedex 9, France
| | - Jean-Paul di Rago
- University Bordeaux-CNRS, IBGC, UMR 5095, 1 rue Camille Saint-Saëns, Bordeaux F-33000, France
| |
Collapse
|
21
|
Oláhová M, Hardy SA, Hall J, Yarham JW, Haack TB, Wilson WC, Alston CL, He L, Aznauryan E, Brown RM, Brown GK, Morris AAM, Mundy H, Broomfield A, Barbosa IA, Simpson MA, Deshpande C, Moeslinger D, Koch J, Stettner GM, Bonnen PE, Prokisch H, Lightowlers RN, McFarland R, Chrzanowska-Lightowlers ZMA, Taylor RW. LRPPRC mutations cause early-onset multisystem mitochondrial disease outside of the French-Canadian population. Brain 2015; 138:3503-19. [PMID: 26510951 PMCID: PMC4655343 DOI: 10.1093/brain/awv291] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 08/11/2015] [Indexed: 12/27/2022] Open
Abstract
The French-Canadian variant of COX-deficient Leigh syndrome (LSFC) is unique to Québec and caused by a founder mutation in the LRPPRC gene. Using whole exome sequencing, Oláhová et al. identify mutations in this gene associated with multisystem mitochondrial disease and early-onset neurodevelopmental problems in ten patients from different ethnic backgrounds. Mitochondrial Complex IV [cytochrome c oxidase (COX)] deficiency is one of the most common respiratory chain defects in humans. The clinical phenotypes associated with COX deficiency include liver disease, cardiomyopathy and Leigh syndrome, a neurodegenerative disorder characterized by bilateral high signal lesions in the brainstem and basal ganglia. COX deficiency can result from mutations affecting many different mitochondrial proteins. The French-Canadian variant of COX-deficient Leigh syndrome is unique to the Saguenay-Lac-Saint-Jean region of Québec and is caused by a founder mutation in the LRPPRC gene. This encodes the leucine-rich pentatricopeptide repeat domain protein (LRPPRC), which is involved in post-transcriptional regulation of mitochondrial gene expression. Here, we present the clinical and molecular characterization of novel, recessive LRPPRC gene mutations, identified using whole exome and candidate gene sequencing. The 10 patients come from seven unrelated families of UK-Caucasian, UK-Pakistani, UK-Indian, Turkish and Iraqi origin. They resemble the French-Canadian Leigh syndrome patients in having intermittent severe lactic acidosis and early-onset neurodevelopmental problems with episodes of deterioration. In addition, many of our patients have had neonatal cardiomyopathy or congenital malformations, most commonly affecting the heart and the brain. All patients who were tested had isolated COX deficiency in skeletal muscle. Functional characterization of patients’ fibroblasts and skeletal muscle homogenates showed decreased levels of mutant LRPPRC protein and impaired Complex IV enzyme activity, associated with abnormal COX assembly and reduced steady-state levels of numerous oxidative phosphorylation subunits. We also identified a Complex I assembly defect in skeletal muscle, indicating different roles for LRPPRC in post-transcriptional regulation of mitochondrial mRNAs between tissues. Patient fibroblasts showed decreased steady-state levels of mitochondrial mRNAs, although the length of poly(A) tails of mitochondrial transcripts were unaffected. Our study identifies LRPPRC as an important disease-causing gene in an early-onset, multisystem and neurological mitochondrial disease, which should be considered as a cause of COX deficiency even in patients originating outside of the French-Canadian population.
Collapse
Affiliation(s)
- Monika Oláhová
- 1 Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Steven A Hardy
- 1 Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Julie Hall
- 2 Department of Neuroradiology, Royal Victoria Infirmary, Newcastle upon Tyne, NE1 3BZ, UK
| | - John W Yarham
- 1 Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Tobias B Haack
- 3 Institute of Human Genetics, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany 4 Institut für Humangenetik, Technische Universität München, Arcisstrasse 21, 80333 Munich, Germany
| | - William C Wilson
- 1 Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Charlotte L Alston
- 1 Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Langping He
- 1 Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Erik Aznauryan
- 1 Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Ruth M Brown
- 5 Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Garry K Brown
- 5 Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Andrew A M Morris
- 6 Willink Biochemical Genetics Unit, Manchester Centre for Genomic Medicine, Central Manchester University Hospitals NHS Foundation Trust, Manchester, M13 9WL, UK
| | - Helen Mundy
- 7 Centre for Inherited Metabolic Disease, Evelina Children's Hospital, Guy's and St. Thomas' NHS Foundation Trust, London, SE1 7EH, UK
| | - Alex Broomfield
- 6 Willink Biochemical Genetics Unit, Manchester Centre for Genomic Medicine, Central Manchester University Hospitals NHS Foundation Trust, Manchester, M13 9WL, UK
| | - Ines A Barbosa
- 8 Division of Genetics and Molecular Medicine, King's College London School of Medicine, London, SE1 9RY, UK
| | - Michael A Simpson
- 8 Division of Genetics and Molecular Medicine, King's College London School of Medicine, London, SE1 9RY, UK
| | - Charu Deshpande
- 9 Department of Genetics, Guy's and St. Thomas' NHS Foundation Trust, London, SE1 9RT, UK
| | - Dorothea Moeslinger
- 10 Department of Paediatrics, University Children's Hospital, A-1090 Vienna, Austria
| | - Johannes Koch
- 11 Department of Paediatrics, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
| | - Georg M Stettner
- 12 Department of Paediatric Neurology, Georg August University, 37075 Göttingen, Germany
| | - Penelope E Bonnen
- 13 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Holger Prokisch
- 3 Institute of Human Genetics, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany 4 Institut für Humangenetik, Technische Universität München, Arcisstrasse 21, 80333 Munich, Germany
| | - Robert N Lightowlers
- 1 Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Robert McFarland
- 1 Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | | | - Robert W Taylor
- 1 Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| |
Collapse
|
22
|
Lagouge M, Mourier A, Lee HJ, Spåhr H, Wai T, Kukat C, Silva Ramos E, Motori E, Busch JD, Siira S, Kremmer E, Filipovska A, Larsson NG. SLIRP Regulates the Rate of Mitochondrial Protein Synthesis and Protects LRPPRC from Degradation. PLoS Genet 2015; 11:e1005423. [PMID: 26247782 PMCID: PMC4527767 DOI: 10.1371/journal.pgen.1005423] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 07/04/2015] [Indexed: 12/17/2022] Open
Abstract
We have studied the in vivo role of SLIRP in regulation of mitochondrial DNA (mtDNA) gene expression and show here that it stabilizes its interacting partner protein LRPPRC by protecting it from degradation. Although SLIRP is completely dependent on LRPPRC for its stability, reduced levels of LRPPRC persist in the absence of SLIRP in vivo. Surprisingly, Slirp knockout mice are apparently healthy and only display a minor weight loss, despite a 50-70% reduction in the steady-state levels of mtDNA-encoded mRNAs. In contrast to LRPPRC, SLIRP is dispensable for polyadenylation of mtDNA-encoded mRNAs. Instead, deep RNA sequencing (RNAseq) of mitochondrial ribosomal fractions and additional molecular analyses show that SLIRP is required for proper association of mRNAs to the mitochondrial ribosome and efficient translation. Our findings thus establish distinct functions for SLIRP and LRPPRC within the LRPPRC-SLIRP complex, with a novel role for SLIRP in mitochondrial translation. Very surprisingly, our results also demonstrate that mammalian mitochondria have a great excess of transcripts under basal physiological conditions in vivo.
Collapse
Affiliation(s)
- Marie Lagouge
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Arnaud Mourier
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Hyun Ju Lee
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Henrik Spåhr
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Timothy Wai
- CECAD Research Center, University of Cologne, Cologne, Germany
| | - Christian Kukat
- FACS and Imaging facility, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Eduardo Silva Ramos
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Elisa Motori
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Jakob D. Busch
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Stefan Siira
- Harry Perkins Institute of Medical Research, Centre for Medical Research and School of Chemistry and Biochemistry, The University of Western Australia, Perth, Australia
| | - German Mouse Clinic Consortium
- German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Elisabeth Kremmer
- Helmholtz Zentrum München, Institute of Molecular Immunology, Munich, Germany
| | - Aleksandra Filipovska
- Harry Perkins Institute of Medical Research, Centre for Medical Research and School of Chemistry and Biochemistry, The University of Western Australia, Perth, Australia
- * E-mail: (AF); (NGL)
| | - Nils-Göran Larsson
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, Cologne, Germany
- Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
- * E-mail: (AF); (NGL)
| |
Collapse
|
23
|
Clemente P, Pajak A, Laine I, Wibom R, Wedell A, Freyer C, Wredenberg A. SUV3 helicase is required for correct processing of mitochondrial transcripts. Nucleic Acids Res 2015; 43:7398-413. [PMID: 26152302 PMCID: PMC4551930 DOI: 10.1093/nar/gkv692] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 06/25/2015] [Indexed: 12/05/2022] Open
Abstract
Mitochondrial gene expression is largely regulated by post-transcriptional mechanisms that control the amount and translation of each mitochondrial mRNA. Despite its importance for mitochondrial function, the mechanisms and proteins involved in mRNA turnover are still not fully characterized. Studies in yeast and human cell lines have indicated that the mitochondrial helicase SUV3, together with the polynucleotide phosphorylase, PNPase, composes the mitochondrial degradosome. To further investigate the in vivo function of SUV3 we disrupted the homolog of SUV3 in Drosophila melanogaster (Dm). Loss of dmsuv3 led to the accumulation of mitochondrial mRNAs, without increasing rRNA levels, de novo transcription or decay intermediates. Furthermore, we observed a severe decrease in mitochondrial tRNAs accompanied by an accumulation of unprocessed precursor transcripts. These processing defects lead to reduced mitochondrial translation and a severe respiratory chain complex deficiency, resulting in a pupal lethal phenotype. In summary, our results propose that SUV3 is predominantly required for the processing of mitochondrial polycistronic transcripts in metazoan and that this function is independent of PNPase.
Collapse
Affiliation(s)
- Paula Clemente
- Division of Metabolic Diseases, Department of Laboratory Medicine; Karolinska Institutet, Stockholm 17177, Sweden
| | - Aleksandra Pajak
- Division of Metabolic Diseases, Department of Laboratory Medicine; Karolinska Institutet, Stockholm 17177, Sweden
| | - Isabelle Laine
- Division of Metabolic Diseases, Department of Laboratory Medicine; Karolinska Institutet, Stockholm 17177, Sweden
| | - Rolf Wibom
- Center for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm 17176, Sweden
| | - Anna Wedell
- Center for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm 17176, Sweden Department of Molecular Medicine and Surgery, Science for Life Laboratory, Karolinska Institutet, Stockholm 17176, Sweden
| | - Christoph Freyer
- Division of Metabolic Diseases, Department of Laboratory Medicine; Karolinska Institutet, Stockholm 17177, Sweden Center for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm 17176, Sweden
| | - Anna Wredenberg
- Division of Metabolic Diseases, Department of Laboratory Medicine; Karolinska Institutet, Stockholm 17177, Sweden Center for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm 17176, Sweden
| |
Collapse
|
24
|
Van Haute L, Pearce SF, Powell CA, D’Souza AR, Nicholls TJ, Minczuk M. Mitochondrial transcript maturation and its disorders. J Inherit Metab Dis 2015; 38:655-80. [PMID: 26016801 PMCID: PMC4493943 DOI: 10.1007/s10545-015-9859-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 04/27/2015] [Accepted: 04/29/2015] [Indexed: 11/03/2022]
Abstract
Mitochondrial respiratory chain deficiencies exhibit a wide spectrum of clinical presentations owing to defective mitochondrial energy production through oxidative phosphorylation. These defects can be caused by either mutations in the mitochondrial DNA (mtDNA) or mutations in nuclear genes coding for mitochondrially-targeted proteins. The underlying pathomechanisms can affect numerous pathways involved in mitochondrial biology including expression of mtDNA-encoded genes. Expression of the mitochondrial genes is extensively regulated at the post-transcriptional stage and entails nucleolytic cleavage of precursor RNAs, RNA nucleotide modifications, RNA polyadenylation, RNA quality and stability control. These processes ensure proper mitochondrial RNA (mtRNA) function, and are regulated by dedicated, nuclear-encoded enzymes. Recent growing evidence suggests that mutations in these nuclear genes, leading to incorrect maturation of RNAs, are a cause of human mitochondrial disease. Additionally, mutations in mtDNA-encoded genes may also affect RNA maturation and are frequently associated with human disease. We review the current knowledge on a subset of nuclear-encoded genes coding for proteins involved in mitochondrial RNA maturation, for which genetic variants impacting upon mitochondrial pathophysiology have been reported. Also, primary pathological mtDNA mutations with recognised effects upon RNA processing are described.
Collapse
Affiliation(s)
| | - Sarah F. Pearce
- MRC Mitochondrial Biology Unit, Hills Road, Cambridge, CB2 0XY UK
| | | | - Aaron R. D’Souza
- MRC Mitochondrial Biology Unit, Hills Road, Cambridge, CB2 0XY UK
| | - Thomas J. Nicholls
- MRC Mitochondrial Biology Unit, Hills Road, Cambridge, CB2 0XY UK
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Michal Minczuk
- MRC Mitochondrial Biology Unit, Hills Road, Cambridge, CB2 0XY UK
| |
Collapse
|
25
|
Wilson WC, Hornig-Do HT, Bruni F, Chang JH, Jourdain AA, Martinou JC, Falkenberg M, Spåhr H, Larsson NG, Lewis RJ, Hewitt L, Baslé A, Cross HE, Tong L, Lebel RR, Crosby AH, Chrzanowska-Lightowlers ZMA, Lightowlers RN. A human mitochondrial poly(A) polymerase mutation reveals the complexities of post-transcriptional mitochondrial gene expression. Hum Mol Genet 2014; 23:6345-55. [PMID: 25008111 PMCID: PMC4222368 DOI: 10.1093/hmg/ddu352] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The p.N478D missense mutation in human mitochondrial poly(A) polymerase (mtPAP) has previously been implicated in a form of spastic ataxia with optic atrophy. In this study, we have investigated fibroblast cell lines established from family members. The homozygous mutation resulted in the loss of polyadenylation of all mitochondrial transcripts assessed; however, oligoadenylation was retained. Interestingly, this had differential effects on transcript stability that were dependent on the particular species of transcript. These changes were accompanied by a severe loss of oxidative phosphorylation complexes I and IV, and perturbation of de novo mitochondrial protein synthesis. Decreases in transcript polyadenylation and in respiratory chain complexes were effectively rescued by overexpression of wild-type mtPAP. Both mutated and wild-type mtPAP localized to the mitochondrial RNA-processing granules thereby eliminating mislocalization as a cause of defective polyadenylation. In vitro polyadenylation assays revealed severely compromised activity by the mutated protein, which generated only short oligo(A) extensions on RNA substrates, irrespective of RNA secondary structure. The addition of LRPPRC/SLIRP, a mitochondrial RNA-binding complex, enhanced activity of the wild-type mtPAP resulting in increased overall tail length. The LRPPRC/SLIRP effect although present was less marked with mutated mtPAP, independent of RNA secondary structure. We conclude that (i) the polymerase activity of mtPAP can be modulated by the presence of LRPPRC/SLIRP, (ii) N478D mtPAP mutation decreases polymerase activity and (iii) the alteration in poly(A) length is sufficient to cause dysregulation of post-transcriptional expression and the pathogenic lack of respiratory chain complexes.
Collapse
Affiliation(s)
- William C Wilson
- Wellcome Trust Centre for Mitochondrial Research, Institute for Ageing and Health
| | - Hue-Tran Hornig-Do
- Wellcome Trust Centre for Mitochondrial Research, Institute for Ageing and Health
| | - Francesco Bruni
- Wellcome Trust Centre for Mitochondrial Research, Institute for Ageing and Health
| | - Jeong Ho Chang
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Alexis A Jourdain
- Department of Cell Biology, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Genève 4, Switzerland
| | - Jean-Claude Martinou
- Department of Cell Biology, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Genève 4, Switzerland
| | - Maria Falkenberg
- Department of Biochemistry and Cell Biology, University of Göteborg, Box 440, 40530 Göteborg, Sweden
| | - Henrik Spåhr
- Max Planck Institute for Biology of Ageing, Gleueler Strasse 50a, D-50931 Cologne, Germany
| | - Nils-Göran Larsson
- Max Planck Institute for Biology of Ageing, Gleueler Strasse 50a, D-50931 Cologne, Germany
| | | | | | - Arnaud Baslé
- Institute for Cell and Molecular Biosciences and
| | - Harold E Cross
- Department of Ophthalmology, University of Arizona School of Medicine, Tucson, AZ 85711, USA
| | - Liang Tong
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Robert R Lebel
- Center for Behavior, Development, and Genetics, Medical Genetics, SUNY Upstate Medical University, Syracuse, NY 13210, USA and
| | - Andrew H Crosby
- Molecular Genetics, University of Exeter Medical School, Royal Devon and Exeter Hospital, Barrack Road, Exeter EX2 5DW, UK
| | - Zofia M A Chrzanowska-Lightowlers
- Wellcome Trust Centre for Mitochondrial Research, Institute for Cell and Molecular Biosciences, Newcastle University Medical School, Newcastle upon Tyne NE2 4HH, UK,
| | - Robert N Lightowlers
- Wellcome Trust Centre for Mitochondrial Research, Institute for Cell and Molecular Biosciences, Newcastle University Medical School, Newcastle upon Tyne NE2 4HH, UK,
| |
Collapse
|
26
|
Wang DDH, Guo XE, Modrek AS, Chen CF, Chen PL, Lee WH. Helicase SUV3, polynucleotide phosphorylase, and mitochondrial polyadenylation polymerase form a transient complex to modulate mitochondrial mRNA polyadenylated tail lengths in response to energetic changes. J Biol Chem 2014; 289:16727-35. [PMID: 24770417 DOI: 10.1074/jbc.m113.536540] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mammalian mitochondrial mRNA (mt-mRNA) transcripts are polyadenylated at the 3' end with different lengths. The SUV3·PNPase complex and mtPAP have been shown to degrade and polyadenylate mt mRNA, respectively. How these two opposite actions are coordinated to modulate mt-mRNA poly(A) lengths is of interest to pursue. Here, we demonstrated that a fraction of the SUV3·PNPase complex interacts with mitochondrial polyadenylation polymerase (mtPAP) under low mitochondrial matrix inorganic phosphate (Pi) conditions. In vitro binding experiments using purified proteins suggested that SUV3 binds to mtPAP through the N-terminal region around amino acids 100-104, distinctive from the C-terminal region around amino acids 510-514 of SUV3 for PNPase binding. mtPAP does not interact with PNPase directly, and SUV3 served as a bridge capable of simultaneously binding with mtPAP and PNPase. The complex consists of a SUV3 dimer, a mtPAP dimer, and a PNPase trimer, based on the molecular sizing experiments. Mechanistically, SUV3 provides a robust single strand RNA binding domain to enhance the polyadenylation activity of mtPAP. Furthermore, purified SUV3·PNPase·mtPAP complex is capable of lengthening or shortening the RNA poly(A) tail lengths in low or high Pi/ATP ratios, respectively. Consistently, the poly(A) tail lengths of mt-mRNA transcripts can be lengthened or shortened by altering the mitochondrial matrix Pi levels via selective inhibition of the electron transport chain or ATP synthase, respectively. Taken together, these results suggested that SUV3·PNPase·mtPAP form a transient complex to modulate mt-mRNA poly(A) tail lengths in response to cellular energy changes.
Collapse
Affiliation(s)
- Dennis Ding-Hwa Wang
- From the Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California 92697 and
| | - Xuning Emily Guo
- From the Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California 92697 and
| | - Aram Sandaldjian Modrek
- From the Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California 92697 and
| | - Chi-Fen Chen
- From the Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California 92697 and
| | - Phang-Lang Chen
- From the Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California 92697 and
| | - Wen-Hwa Lee
- From the Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California 92697 and the Graduate Institute of Clinical Medical Science, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
27
|
Rorbach J, Bobrowicz A, Pearce S, Minczuk M. Polyadenylation in bacteria and organelles. Methods Mol Biol 2014; 1125:211-27. [PMID: 24590792 DOI: 10.1007/978-1-62703-971-0_18] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Polyadenylation is a posttranscriptional modification present throughout all the kingdoms of life with important roles in regulation of RNA stability, translation, and quality control. Functions of polyadenylation in prokaryotic and organellar RNA metabolism are still not fully characterized, and poly(A) tails appear to play contrasting roles in different systems. Here we present a general overview of the polyadenylation process and the factors involved in its regulation, with an emphasis on the diverse functions of 3' end modification in the control of gene expression in different biological systems.
Collapse
Affiliation(s)
- Joanna Rorbach
- Mitochondrial Genetics Group, MRC Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK,
| | | | | | | |
Collapse
|
28
|
Kazak L, Reyes A, Duncan AL, Rorbach J, Wood SR, Brea-Calvo G, Gammage PA, Robinson AJ, Minczuk M, Holt IJ. Alternative translation initiation augments the human mitochondrial proteome. Nucleic Acids Res 2012; 41:2354-69. [PMID: 23275553 PMCID: PMC3575844 DOI: 10.1093/nar/gks1347] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Alternative translation initiation (ATI) is a mechanism of producing multiple proteins from a single transcript, which in some cases regulates trafficking of proteins to different cellular compartments, including mitochondria. Application of a genome-wide computational screen predicts a cryptic mitochondrial targeting signal for 126 proteins in mouse and man that is revealed when an AUG codon located downstream from the canonical initiator methionine codon is used as a translation start site, which we term downstream ATI (dATI). Experimental evidence in support of dATI is provided by immunoblotting of endogenous truncated proteins enriched in mitochondrial cell fractions or of co-localization with mitochondria using immunocytochemistry. More detailed cellular localization studies establish mitochondrial targeting of a member of the cytosolic poly(A) binding protein family, PABPC5, and of the RNA/DNA helicase PIF1α. The mitochondrial isoform of PABPC5 co-immunoprecipitates with the mitochondrial poly(A) polymerase, and is markedly reduced in abundance when mitochondrial DNA and RNA are depleted, suggesting it plays a role in RNA metabolism in the organelle. Like PABPC5 and PIF1α, most of the candidates identified by the screen are not currently annotated as mitochondrial proteins, and so dATI expands the human mitochondrial proteome.
Collapse
Affiliation(s)
- Lawrence Kazak
- MRC-Mitochondrial Biology Unit, Wellcome Trust-MRC Building, Cambridge CB2 0XY, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
The central dogma states that DNA is transcribed to generate RNA and that the mRNA components are then translated to generate proteins; a simple statement that completely belies the complexities of gene expression. Post-transcriptional regulation alone has many points of control, including changes in the stability, translatability or susceptibility to degradation of RNA species, where both cis- and trans-acting elements will play a role in the outcome. The present review concentrates on just one aspect of this complicated process, which ultimately regulates the protein production in cells, or more specifically what governs RNA catabolism in a particular subcompartment of human cells: the mitochondrion.
Collapse
|
30
|
Chang JH, Tong L. Mitochondrial poly(A) polymerase and polyadenylation. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1819:992-7. [PMID: 22172994 PMCID: PMC3307840 DOI: 10.1016/j.bbagrm.2011.10.012] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 10/25/2011] [Accepted: 10/27/2011] [Indexed: 01/22/2023]
Abstract
Polyadenylation of mitochondrial RNAs in higher eukaryotic organisms have diverse effects on their function and metabolism. Polyadenylation completes the UAA stop codon of a majority of mitochondrial mRNAs in mammals, regulates the translation of the mRNAs, and has diverse effects on their stability. In contrast, polyadenylation of most mitochondrial mRNAs in plants leads to their degradation, consistent with the bacterial origin of this organelle. PAPD1 (mtPAP, TUTase1), a noncanonical poly(A) polymerase (ncPAP), is responsible for producing the poly(A) tails in mammalian mitochondria. The crystal structure of human PAPD1 was reported recently, offering molecular insights into its catalysis. This article is part of a Special Issue entitled: Mitochondrial Gene Expression.
Collapse
Affiliation(s)
- Jeong Ho Chang
- Department of Biological Sciences, Columbia University, New York, NY10027, USA
| | - Liang Tong
- Department of Biological Sciences, Columbia University, New York, NY10027, USA
| |
Collapse
|
31
|
Yagi M, Uchiumi T, Takazaki S, Okuno B, Nomura M, Yoshida SI, Kanki T, Kang D. p32/gC1qR is indispensable for fetal development and mitochondrial translation: importance of its RNA-binding ability. Nucleic Acids Res 2012; 40:9717-37. [PMID: 22904065 PMCID: PMC3479211 DOI: 10.1093/nar/gks774] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
p32 is an evolutionarily conserved and ubiquitously expressed multifunctional protein. Although p32 exists at diverse intra and extracellular sites, it is predominantly localized to the mitochondrial matrix near the nucleoid associated with mitochondrial transcription factor A. Nonetheless, its function in the matrix is poorly understood. Here, we determined p32 function via generation of p32-knockout mice. p32-deficient mice exhibited mid-gestation lethality associated with a severe developmental defect of the embryo. Primary embryonic fibroblasts isolated from p32-knockout embryos showed severe dysfunction of the mitochondrial respiratory chain, because of severely impaired mitochondrial protein synthesis. Recombinant p32 binds RNA, not DNA, and endogenous p32 interacts with all mitochondrial messenger RNA species in vivo. The RNA-binding ability of p32 is well correlated with the mitochondrial translation. Co-immunoprecipitation revealed the close association of p32 with the mitoribosome. We propose that p32 is required for functional mitoribosome formation to synthesize proteins within mitochondria.
Collapse
Affiliation(s)
- Mikako Yagi
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Mammalian mitochondria contain their own genome that encodes mRNAs for thirteen essential subunits of the complexes performing oxidative phosphorylation as well as the RNA components (two rRNAs and 22 tRNAs) needed for their translation in mitochondria. All RNA species are produced from single polycistronic precursor RNAs, yet the relative concentrations of various RNAs differ significantly. This underscores the essential role of post-transcriptional mechanisms that control the maturation, stability and translation of mitochondrial RNAs. The present review provides a detailed summary on the role of RNA maturation in the regulation of mitochondrial gene expression, focusing mainly on messenger RNA polyadenylation and stability control. Furthermore, the role of mitochondrial ribosomal RNA stability, processing and modifications in the biogenesis of the mitochondrial ribosome is discussed.
Collapse
|
33
|
Rackham O, Mercer TR, Filipovska A. The human mitochondrial transcriptome and the RNA-binding proteins that regulate its expression. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 3:675-95. [DOI: 10.1002/wrna.1128] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
34
|
Chujo T, Ohira T, Sakaguchi Y, Goshima N, Nomura N, Nagao A, Suzuki T. LRPPRC/SLIRP suppresses PNPase-mediated mRNA decay and promotes polyadenylation in human mitochondria. Nucleic Acids Res 2012; 40:8033-47. [PMID: 22661577 PMCID: PMC3439899 DOI: 10.1093/nar/gks506] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In human mitochondria, 10 mRNAs species are generated from a long polycistronic precursor that is transcribed from the heavy chain of mitochondrial DNA, in theory yielding equal copy numbers of mRNA molecules. However, the steady-state levels of these mRNAs differ substantially. Through absolute quantification of mRNAs in HeLa cells, we show that the copy numbers of all mitochondrial mRNA species range from 6000 to 51 000 molecules per cell, indicating that mitochondria actively regulate mRNA metabolism. In addition, the copy numbers of mitochondrial mRNAs correlated with their cellular half-life. Previously, mRNAs with longer half-lives were shown to be stabilized by the LRPPRC/SLIRP complex, which we find that cotranscriptionally binds to coding sequences of mRNAs. We observed that the LRPPRC/SLIRP complex suppressed 3′ exonucleolytic mRNA degradation mediated by PNPase and SUV3. Moreover, LRPPRC promoted the polyadenylation of mRNAs mediated by mitochondrial poly(A) polymerase (MTPAP) in vitro. These findings provide a framework for understanding the molecular mechanism of mRNA metabolism in human mitochondria.
Collapse
Affiliation(s)
- Takeshi Chujo
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
35
|
Szczesny RJ, Borowski LS, Malecki M, Wojcik MA, Stepien PP, Golik P. RNA degradation in yeast and human mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1819:1027-34. [PMID: 22178375 DOI: 10.1016/j.bbagrm.2011.11.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 11/29/2011] [Accepted: 11/30/2011] [Indexed: 01/23/2023]
Abstract
Expression of mitochondrially encoded genes must be finely tuned according to the cell's requirements. Since yeast and human mitochondria have limited possibilities to regulate gene expression by altering the transcription initiation rate, posttranscriptional processes, including RNA degradation, are of great importance. In both organisms mitochondrial RNA degradation seems to be mostly depending on the RNA helicase Suv3. Yeast Suv3 functions in cooperation with Dss1 ribonuclease by forming a two-subunit complex called the mitochondrial degradosome. The human ortholog of Suv3 (hSuv3, hSuv3p, SUPV3L1) is also indispensable for mitochondrial RNA decay but its ribonucleolytic partner has so far escaped identification. In this review we summarize the current knowledge about RNA degradation in human and yeast mitochondria. This article is part of a Special Issue entitled: Mitochondrial Gene Expression.
Collapse
Affiliation(s)
- Roman J Szczesny
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| | | | | | | | | | | |
Collapse
|
36
|
Ruzzenente B, Metodiev MD, Wredenberg A, Bratic A, Park CB, Cámara Y, Milenkovic D, Zickermann V, Wibom R, Hultenby K, Erdjument-Bromage H, Tempst P, Brandt U, Stewart JB, Gustafsson CM, Larsson NG. LRPPRC is necessary for polyadenylation and coordination of translation of mitochondrial mRNAs. EMBO J 2011; 31:443-56. [PMID: 22045337 DOI: 10.1038/emboj.2011.392] [Citation(s) in RCA: 251] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 09/30/2011] [Indexed: 11/09/2022] Open
Abstract
Regulation of mtDNA expression is critical for maintaining cellular energy homeostasis and may, in principle, occur at many different levels. The leucine-rich pentatricopeptide repeat containing (LRPPRC) protein regulates mitochondrial mRNA stability and an amino-acid substitution of this protein causes the French-Canadian type of Leigh syndrome (LSFC), a neurodegenerative disorder characterized by complex IV deficiency. We have generated conditional Lrpprc knockout mice and show here that the gene is essential for embryonic development. Tissue-specific disruption of Lrpprc in heart causes mitochondrial cardiomyopathy with drastic reduction in steady-state levels of most mitochondrial mRNAs. LRPPRC forms an RNA-dependent protein complex that is necessary for maintaining a pool of non-translated mRNAs in mammalian mitochondria. Loss of LRPPRC does not only decrease mRNA stability, but also leads to loss of mRNA polyadenylation and the appearance of aberrant mitochondrial translation. The translation pattern without the presence of LRPPRC is misregulated with excessive translation of some transcripts and no translation of others. Our findings point to the existence of an elaborate machinery that regulates mammalian mtDNA expression at the post-transcriptional level.
Collapse
Affiliation(s)
- Benedetta Ruzzenente
- Department of Mitochondrial Genetics, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Rorbach J, Nicholls TJJ, Minczuk M. PDE12 removes mitochondrial RNA poly(A) tails and controls translation in human mitochondria. Nucleic Acids Res 2011; 39:7750-63. [PMID: 21666256 PMCID: PMC3177208 DOI: 10.1093/nar/gkr470] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Polyadenylation of mRNA in human mitochondria is crucial for gene expression and perturbation of poly(A) tail length has been linked to a human neurodegenerative disease. Here we show that 2′-phosphodiesterase (2′-PDE), (hereafter PDE12), is a mitochondrial protein that specifically removes poly(A) extensions from mitochondrial mRNAs both in vitro and in mitochondria of cultured cells. In eukaryotes, poly(A) tails generally stabilize mature mRNAs, whereas in bacteria they increase mRNA turnover. In human mitochondria, the effects of increased PDE12 expression were transcript dependent. An excess of PDE12 led to an increase in the level of three mt-mRNAs (ND1, ND2 and CytB) and two (CO1 and CO2) were less abundant than in mitochondria of control cells and there was no appreciable effect on the steady-state level of the remainder of the mitochondrial transcripts. The alterations in poly(A) tail length accompanying elevated PDE12 expression were associated with severe inhibition of mitochondrial protein synthesis, and consequently respiratory incompetence. Therefore, we propose that mRNA poly(A) tails are important in regulating protein synthesis in human mitochondria, as it is the case for nuclear-encoded eukaryotic mRNA.
Collapse
Affiliation(s)
- Joanna Rorbach
- MRC Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Cambridge CB2 0XY, UK
| | | | | |
Collapse
|
38
|
Chrzanowska-Lightowlers ZMA, Horvath R, Lightowlers RN. 175th ENMC International Workshop: Mitochondrial protein synthesis in health and disease, 25-27th June 2010, Naarden, The Netherlands. Neuromuscul Disord 2010; 21:142-7. [PMID: 21111623 DOI: 10.1016/j.nmd.2010.10.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Z M A Chrzanowska-Lightowlers
- Mitochondrial Research Group, Institute for Ageing and Health, Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | | | | |
Collapse
|
39
|
Crosby AH, Patel H, Chioza BA, Proukakis C, Gurtz K, Patton MA, Sharifi R, Harlalka G, Simpson MA, Dick K, Reed JA, Al-Memar A, Chrzanowska-Lightowlers ZMA, Cross HE, Lightowlers RN. Defective mitochondrial mRNA maturation is associated with spastic ataxia. Am J Hum Genet 2010; 87:655-60. [PMID: 20970105 DOI: 10.1016/j.ajhg.2010.09.013] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 09/14/2010] [Accepted: 09/17/2010] [Indexed: 11/17/2022] Open
Abstract
In human mitochondria, polyadenylation of mRNA, undertaken by the nuclear-encoded mitochondrial poly(A) RNA polymerase, is essential for maintaining mitochondrial gene expression. Our molecular investigation of an autosomal-recessive spastic ataxia with optic atrophy, present among the Old Order Amish, identified a mutation of MTPAP associated with the disease phenotype. When subjected to poly(A) tail-length assays, mitochondrial mRNAs from affected individuals were shown to have severely truncated poly(A) tails. Although defective mitochondrial DNA maintenance underlies a well-described group of clinical disorders, our findings reveal a defect of mitochondrial mRNA maturation associated with human disease and imply that this disease mechanism should be considered in other complex neurodegenerative disorders.
Collapse
Affiliation(s)
- Andrew H Crosby
- Centre for Medical Genetics, St. George's University London, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Temperley RJ, Wydro M, Lightowlers RN, Chrzanowska-Lightowlers ZM. Human mitochondrial mRNAs--like members of all families, similar but different. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1797:1081-5. [PMID: 20211597 PMCID: PMC3003153 DOI: 10.1016/j.bbabio.2010.02.036] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 02/24/2010] [Accepted: 02/25/2010] [Indexed: 10/27/2022]
Abstract
The messenger RNAs containing the thirteen protein coding sequences of the human mitochondrial genome have frequently been regarded as a single functional category, alike in arrangement and hence in mode of expression. The "generic" mitochondrial mRNA is perceived as having (i) an arrangement within the polycistronic unit that permits its liberation following mt-tRNA processing, (ii) no 5' cap structure or introns, (iii) essentially no untranslated regions, and (iv) a poly(A) tail of approximately fifty nucleotides that is required in part to complete the termination codon. Closer inspection reveals that only two molecules fit this pattern. This article examines the extent to which human mitochondrial mRNA species differ from one another.
Collapse
Affiliation(s)
| | | | | | - Zofia M. Chrzanowska-Lightowlers
- Mitochondrial Research Group, Medical School, Institute for Ageing and Health, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| |
Collapse
|