1
|
Affar M, Bottardi S, Quansah N, Lemarié M, Ramón AC, Affar EB, Milot E. IKAROS: from chromatin organization to transcriptional elongation control. Cell Death Differ 2023:10.1038/s41418-023-01212-2. [PMID: 37620540 DOI: 10.1038/s41418-023-01212-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/26/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023] Open
Abstract
IKAROS is a master regulator of cell fate determination in lymphoid and other hematopoietic cells. This transcription factor orchestrates the association of epigenetic regulators with chromatin, ensuring the expression pattern of target genes in a developmental and lineage-specific manner. Disruption of IKAROS function has been associated with the development of acute lymphocytic leukemia, lymphoma, chronic myeloid leukemia and immune disorders. Paradoxically, while IKAROS has been shown to be a tumor suppressor, it has also been identified as a key therapeutic target in the treatment of various forms of hematological malignancies, including multiple myeloma. Indeed, targeted proteolysis of IKAROS is associated with decreased proliferation and increased death of malignant cells. Although the molecular mechanisms have not been elucidated, the expression levels of IKAROS are variable during hematopoiesis and could therefore be a key determinant in explaining how its absence can have seemingly opposite effects. Mechanistically, IKAROS collaborates with a variety of proteins and complexes controlling chromatin organization at gene regulatory regions, including the Nucleosome Remodeling and Deacetylase complex, and may facilitate transcriptional repression or activation of specific genes. Several transcriptional regulatory functions of IKAROS have been proposed. An emerging mechanism of action involves the ability of IKAROS to promote gene repression or activation through its interaction with the RNA polymerase II machinery, which influences pausing and productive transcription at specific genes. This control appears to be influenced by IKAROS expression levels and isoform production. In here, we summarize the current state of knowledge about the biological roles and mechanisms by which IKAROS regulates gene expression. We highlight the dynamic regulation of this factor by post-translational modifications. Finally, potential avenues to explain how IKAROS destruction may be favorable in the treatment of certain hematological malignancies are also explored.
Collapse
Affiliation(s)
- Malik Affar
- Faculty of Medicine, University of Montreal, Montréal, QC, Canada
- Maisonneuve-Rosemont Hospital Research Center, CIUSSS de l'Est-de-l'Île de Montréal, 5415 boulevard de l'Assomption, Montréal, QC, H1T 2M4, Canada
| | - Stefania Bottardi
- Maisonneuve-Rosemont Hospital Research Center, CIUSSS de l'Est-de-l'Île de Montréal, 5415 boulevard de l'Assomption, Montréal, QC, H1T 2M4, Canada
| | - Norreen Quansah
- Maisonneuve-Rosemont Hospital Research Center, CIUSSS de l'Est-de-l'Île de Montréal, 5415 boulevard de l'Assomption, Montréal, QC, H1T 2M4, Canada
| | - Maud Lemarié
- Faculty of Medicine, University of Montreal, Montréal, QC, Canada
- Maisonneuve-Rosemont Hospital Research Center, CIUSSS de l'Est-de-l'Île de Montréal, 5415 boulevard de l'Assomption, Montréal, QC, H1T 2M4, Canada
| | - Ailyn C Ramón
- Faculty of Medicine, University of Montreal, Montréal, QC, Canada
- Maisonneuve-Rosemont Hospital Research Center, CIUSSS de l'Est-de-l'Île de Montréal, 5415 boulevard de l'Assomption, Montréal, QC, H1T 2M4, Canada
| | - El Bachir Affar
- Faculty of Medicine, University of Montreal, Montréal, QC, Canada.
- Maisonneuve-Rosemont Hospital Research Center, CIUSSS de l'Est-de-l'Île de Montréal, 5415 boulevard de l'Assomption, Montréal, QC, H1T 2M4, Canada.
| | - Eric Milot
- Faculty of Medicine, University of Montreal, Montréal, QC, Canada.
- Maisonneuve-Rosemont Hospital Research Center, CIUSSS de l'Est-de-l'Île de Montréal, 5415 boulevard de l'Assomption, Montréal, QC, H1T 2M4, Canada.
| |
Collapse
|
2
|
Conserva MR, Redavid I, Anelli L, Zagaria A, Tarantini F, Cumbo C, Tota G, Parciante E, Coccaro N, Minervini CF, Minervini A, Specchia G, Musto P, Albano F. IKAROS in Acute Leukemia: A Positive Influencer or a Mean Hater? Int J Mol Sci 2023; 24:3282. [PMID: 36834692 PMCID: PMC9961161 DOI: 10.3390/ijms24043282] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/31/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023] Open
Abstract
One key process that controls leukemogenesis is the regulation of oncogenic gene expression by transcription factors acting as tumor suppressors. Understanding this intricate mechanism is crucial to elucidating leukemia pathophysiology and discovering new targeted treatments. In this review, we make a brief overview of the physiological role of IKAROS and the molecular pathway that contributes to acute leukemia pathogenesis through IKZF1 gene lesions. IKAROS is a zinc finger transcription factor of the Krüppel family that acts as the main character during hematopoiesis and leukemogenesis. It can activate or repress tumor suppressors or oncogenes, regulating the survival and proliferation of leukemic cells. More than 70% of Ph+ and Ph-like cases of acute lymphoblastic leukemia exhibit IKZF1 gene variants, which are linked to worse treatment outcomes in both childhood and adult B-cell precursor acute lymphoblastic leukemia. In the last few years, much evidence supporting IKAROS involvement in myeloid differentiation has been reported, suggesting that loss of IKZF1 might also be a determinant of oncogenesis in acute myeloid leukemia. Considering the complicated "social" network that IKAROS manages in hematopoietic cells, we aim to focus on its involvement and the numerous alterations of molecular pathways it can support in acute leukemias.
Collapse
Affiliation(s)
- Maria Rosa Conserva
- Hematology Section, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari ‘Aldo Moro’, 70124 Bari, Italy
| | - Immacolata Redavid
- Hematology Section, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari ‘Aldo Moro’, 70124 Bari, Italy
| | - Luisa Anelli
- Hematology Section, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari ‘Aldo Moro’, 70124 Bari, Italy
| | - Antonella Zagaria
- Hematology Section, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari ‘Aldo Moro’, 70124 Bari, Italy
| | - Francesco Tarantini
- Hematology Section, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari ‘Aldo Moro’, 70124 Bari, Italy
| | - Cosimo Cumbo
- Hematology Section, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari ‘Aldo Moro’, 70124 Bari, Italy
| | - Giuseppina Tota
- Hematology Section, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari ‘Aldo Moro’, 70124 Bari, Italy
| | - Elisa Parciante
- Hematology Section, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari ‘Aldo Moro’, 70124 Bari, Italy
| | - Nicoletta Coccaro
- Hematology Section, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari ‘Aldo Moro’, 70124 Bari, Italy
| | - Crescenzio Francesco Minervini
- Hematology Section, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari ‘Aldo Moro’, 70124 Bari, Italy
| | - Angela Minervini
- Hematology Section, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari ‘Aldo Moro’, 70124 Bari, Italy
| | - Giorgina Specchia
- School of Medicine, University of Bari ‘Aldo Moro’, 70124 Bari, Italy
| | - Pellegrino Musto
- Hematology Section, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari ‘Aldo Moro’, 70124 Bari, Italy
| | - Francesco Albano
- Hematology Section, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari ‘Aldo Moro’, 70124 Bari, Italy
| |
Collapse
|
3
|
Wang X, Fan Y, Wu Q. The regulation of transcription elongation in embryonic stem cells. Front Cell Dev Biol 2023; 11:1145611. [PMID: 36875763 PMCID: PMC9978399 DOI: 10.3389/fcell.2023.1145611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/08/2023] [Indexed: 02/18/2023] Open
Abstract
Transcription elongation is a fundamental molecular process which is accurately regulated to ensure proper gene expression in cellular activities whereas its malfunction is associated with impaired cellular functions. Embryonic stem cells (ESCs) have significant value in regenerative medicine due to their self-renewal ability and their potential to differentiate to almost all types of cells. Therefore, dissection of the exact regulatory mechanism of transcription elongation in ESCs is crucial for both basic research and their clinical applications. In this review, we discuss the current understanding on the regulatory mechanisms of transcription elongation mediated by transcription factors and epigenetic modifications in ESCs.
Collapse
Affiliation(s)
- Xuepeng Wang
- The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Yudan Fan
- The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Qiang Wu
- The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| |
Collapse
|
4
|
When Pol II sees red. Blood 2021; 138:1648-1649. [PMID: 34735000 DOI: 10.1182/blood.2021012453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 05/14/2021] [Indexed: 11/20/2022] Open
|
5
|
Lemarié M, Bottardi S, Mavoungou L, Pak H, Milot E. IKAROS is required for the measured response of NOTCH target genes upon external NOTCH signaling. PLoS Genet 2021; 17:e1009478. [PMID: 33770102 PMCID: PMC8026084 DOI: 10.1371/journal.pgen.1009478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 04/07/2021] [Accepted: 03/08/2021] [Indexed: 12/16/2022] Open
Abstract
The tumor suppressor IKAROS binds and represses multiple NOTCH target genes. For their induction upon NOTCH signaling, IKAROS is removed and replaced by NOTCH Intracellular Domain (NICD)-associated proteins. However, IKAROS remains associated to other NOTCH activated genes upon signaling and induction. Whether IKAROS could participate to the induction of this second group of NOTCH activated genes is unknown. We analyzed the combined effect of IKAROS abrogation and NOTCH signaling on the expression of NOTCH activated genes in erythroid cells. In IKAROS-deleted cells, we observed that many of these genes were either overexpressed or no longer responsive to NOTCH signaling. IKAROS is then required for the organization of bivalent chromatin and poised transcription of NOTCH activated genes belonging to either of the aforementioned groups. Furthermore, we show that IKAROS-dependent poised organization of the NOTCH target Cdkn1a is also required for its adequate induction upon genotoxic insults. These results highlight the critical role played by IKAROS in establishing bivalent chromatin and transcriptional poised state at target genes for their activation by NOTCH or other stress signals. NOTCH1 deregulation can favor hematological malignancies. In addition to RBP-Jκ/NICD/MAML1, other regulators are required for the measured activation of NOTCH target genes. IKAROS is a known repressor of many NOTCH targets. Since it can also favor transcriptional activation and control gene expression levels, we questioned whether IKAROS could participate to the activation of specific NOTCH target genes. We are reporting that upon NOTCH induction, the absence of IKAROS impairs the measured activation of two groups of NOTCH target genes: (i) those overexpressed and characterized by an additive effect imposed by the absence of IKAROS and NOTCH induction; and (ii) those ‘desensitized’ and no more activated by NOTCH. At genes of both groups, IKAROS controls the timely recruitment of the chromatin remodelers CHD4 and BRG1. IKAROS then influences the activation of these genes through the organization of chromatin and poised transcription or through transcriptional elongation control. The importance of the IKAROS controlled and measured activation of genes is not limited to NOTCH signaling as it also characterizes Cdkn1a expression upon genotoxic stress. Thus, these results provide a new perspective on the importance of IKAROS for the adequate cellular response to stress, whether imposed by NOTCH or genotoxic insults.
Collapse
Affiliation(s)
- Maud Lemarié
- Maisonneuve-Rosemont Hospital Research Center; CIUSSS de l’est de l’Île de Montréal, Montréal, QC, Canada
- Department of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Stefania Bottardi
- Maisonneuve-Rosemont Hospital Research Center; CIUSSS de l’est de l’Île de Montréal, Montréal, QC, Canada
| | - Lionel Mavoungou
- Maisonneuve-Rosemont Hospital Research Center; CIUSSS de l’est de l’Île de Montréal, Montréal, QC, Canada
| | - Helen Pak
- Maisonneuve-Rosemont Hospital Research Center; CIUSSS de l’est de l’Île de Montréal, Montréal, QC, Canada
| | - Eric Milot
- Maisonneuve-Rosemont Hospital Research Center; CIUSSS de l’est de l’Île de Montréal, Montréal, QC, Canada
- Department of Medicine, Université de Montréal, Montréal, Québec, Canada
- * E-mail:
| |
Collapse
|
6
|
Insight of fetal to adult hemoglobin switch: Genetic modulators and therapeutic targets. Blood Rev 2021; 49:100823. [PMID: 33726930 DOI: 10.1016/j.blre.2021.100823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 02/08/2021] [Accepted: 03/03/2021] [Indexed: 01/31/2023]
Abstract
The clinical heterogeneity of β-hemoglobinopathies is so variable that it prompted the researchers to identify the genetic modulators of these diseases. Though the primary modulator is the type of β-globin mutation which affects the degree of β-globin chain synthesis, the co-inheritance of α-thalassemia and the fetal hemoglobin (HbF) levels also act as potent secondary genetic modifiers. As elevated HbF levels ameliorate the severity of hemoglobinopathies, in this review, the genetic modulators lying within and outside the β-globin gene cluster with their plausible role in governing the HbF levels have been summarised, which in future may act as potential therapeutic targets.
Collapse
|
7
|
Wang Y, Qiu T. Positive transcription elongation factor b and its regulators in development. ALL LIFE 2020. [DOI: 10.1080/21553769.2019.1663277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Affiliation(s)
- Yan Wang
- Department of Pediatrics, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, People’s Republic of China
| | - Tong Qiu
- Department of Pediatrics, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, People’s Republic of China
| |
Collapse
|
8
|
Abstract
Transcription factor IKZF1 (IKAROS) acts as a critical regulator of lymphoid differentiation and is frequently deleted or mutated in B-cell precursor acute lymphoblastic leukemia. IKZF1 gene defects are associated with inferior treatment outcome in both childhood and adult B-cell precursor acute lymphoblastic leukemia and occur in more than 70% of BCR-ABL1-positive and BCR-ABL1-like cases of acute lymphoblastic leukemia. Over the past few years, much has been learned about the tumor suppressive function of IKZF1 during leukemia development and the molecular pathways that relate to its impact on treatment outcome. In this review, we provide a concise overview on the role of IKZF1 during normal lymphopoiesis and the pathways that contribute to leukemia pathogenesis as a consequence of altered IKZF1 function. Furthermore, we discuss different mechanisms by which IKZF1 alterations impose therapy resistance on leukemic cells, including enhanced cell adhesion and modulation of glucocorticoid response.
Collapse
Affiliation(s)
- René Marke
- Laboratory of Pediatric Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Frank N van Leeuwen
- Laboratory of Pediatric Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Blanca Scheijen
- Laboratory of Pediatric Oncology, Radboud University Medical Center, Nijmegen, the Netherlands .,Department of Pathology, Radboud University Medical Center; Radboud Institute for Molecular Life Sciences (RIMLS), Nijmegen, the Netherlands
| |
Collapse
|
9
|
Fan Y, Lu D. The Ikaros family of zinc-finger proteins. Acta Pharm Sin B 2016; 6:513-521. [PMID: 27818917 PMCID: PMC5071621 DOI: 10.1016/j.apsb.2016.06.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 05/20/2016] [Accepted: 05/24/2016] [Indexed: 12/21/2022] Open
Abstract
Ikaros represents a zinc-finger protein family important for lymphocyte development and certain other physiological processes. The number of family members is large, with alternative splicing producing various additional isoforms from each of the five homologous genes in the family. The functional forms of Ikaros proteins could be even more diverse due to protein–protein interactions readily established between family members. Emerging evidence suggests that targeting Ikaros proteins is feasible and effective in therapeutic applications, although the exact roles of Ikaros proteins remain elusive within the intricate regulatory networks in which they are involved. In this review we collect existing knowledge as to the functions, regulatory pathways, and molecular mechanisms of this family of proteins in an attempt to gain a better understanding through the comparison of activities and interactions among family members.
Collapse
|
10
|
Robinson C, Lowe M, Schwartz A, Kikyo N. Mechanisms and Developmental Roles of Promoter-proximal Pausing of RNA Polymerase II. ACTA ACUST UNITED AC 2016; 6. [PMID: 27158559 PMCID: PMC4855949 DOI: 10.4172/2157-7633.1000330] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
RNA polymerase II (Pol II) temporarily stops transcription after synthesizing 30–50 bases, and resumes elongation only after stimulations by various signaling molecules and developmental cues. This phenomenon, called promoter-proximal pausing, is observed in 10–50% of the entire genes from Drosophila embryos to human cells. Release of paused Pol II is primarily mediated by the activated form of positive transcription elongation factor b (P-TEFb) initially sequestered in the inhibitory 7SK small nuclear ribonucleoprotein (7SK snRNP) complex. Many proteins and RNAs have been discovered and studied in detail to explain the process of the pausing and release of Pol II in relation to P-TEFb. At the functional level, promoter-proximal pausing regulates genes involved in stimulus-response and development in Drosophila. In mammalian stem cell biology, pausing is important for proliferation and signaling in embryonic stem cells and the formation of induced pluripotent stem cells. Other than this, however, little is known about the biological significance of pausing in mammalian cell differentiation. Further study on pausing mechanisms as well as its functions will contribute to the development of stem cell biology and its clinical applications.
Collapse
Affiliation(s)
- Christine Robinson
- Stem Cell Institute, Department of Genetics, Cell Biology and Development, University of Minnesota, USA
| | - Matthew Lowe
- Stem Cell Institute, Department of Genetics, Cell Biology and Development, University of Minnesota, USA
| | - Amanda Schwartz
- Stem Cell Institute, Department of Genetics, Cell Biology and Development, University of Minnesota, USA
| | - Nobuaki Kikyo
- Stem Cell Institute, Department of Genetics, Cell Biology and Development, University of Minnesota, USA
| |
Collapse
|
11
|
DeVilbiss AW, Tanimura N, McIver SC, Katsumura KR, Johnson KD, Bresnick EH. Navigating Transcriptional Coregulator Ensembles to Establish Genetic Networks: A GATA Factor Perspective. Curr Top Dev Biol 2016; 118:205-44. [PMID: 27137658 DOI: 10.1016/bs.ctdb.2016.01.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Complex developmental programs require orchestration of intrinsic and extrinsic signals to control cell proliferation, differentiation, and survival. Master regulatory transcription factors are vital components of the machinery that transduce these stimuli into cellular responses. This is exemplified by the GATA family of transcription factors that establish cell type-specific genetic networks and control the development and homeostasis of systems including blood, vascular, adipose, and cardiac. Dysregulated GATA factor activity/expression underlies anemia, immunodeficiency, myelodysplastic syndrome, and leukemia. Parameters governing the capacity of a GATA factor expressed in multiple cell types to generate cell type-specific transcriptomes include selective coregulator usage and target gene-specific chromatin states. As knowledge of GATA-1 mechanisms in erythroid cells constitutes a solid foundation, we will focus predominantly on GATA-1, while highlighting principles that can be extrapolated to other master regulators. GATA-1 interacts with ubiquitous and lineage-restricted transcription factors, chromatin modifying/remodeling enzymes, and other coregulators to activate or repress transcription and to maintain preexisting transcriptional states. Major unresolved issues include: how does a GATA factor selectively utilize diverse coregulators; do distinct epigenetic landscapes and nuclear microenvironments of target genes dictate coregulator requirements; and do gene cohorts controlled by a common coregulator ensemble function in common pathways. This review will consider these issues in the context of GATA factor-regulated hematopoiesis and from a broader perspective.
Collapse
Affiliation(s)
- A W DeVilbiss
- UW-Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; UW-Madison Blood Research Program, Madison, WI, United States
| | - N Tanimura
- UW-Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; UW-Madison Blood Research Program, Madison, WI, United States
| | - S C McIver
- UW-Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; UW-Madison Blood Research Program, Madison, WI, United States
| | - K R Katsumura
- UW-Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; UW-Madison Blood Research Program, Madison, WI, United States
| | - K D Johnson
- UW-Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; UW-Madison Blood Research Program, Madison, WI, United States
| | - E H Bresnick
- UW-Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; UW-Madison Blood Research Program, Madison, WI, United States.
| |
Collapse
|
12
|
Amanatiadou EP, Papadopoulos GL, Strouboulis J, Vizirianakis IS. GATA1 and PU.1 Bind to Ribosomal Protein Genes in Erythroid Cells: Implications for Ribosomopathies. PLoS One 2015; 10:e0140077. [PMID: 26447946 PMCID: PMC4598024 DOI: 10.1371/journal.pone.0140077] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 09/21/2015] [Indexed: 12/15/2022] Open
Abstract
The clear connection between ribosome biogenesis dysfunction and specific hematopoiesis-related disorders prompted us to examine the role of critical lineage-specific transcription factors in the transcriptional regulation of ribosomal protein (RP) genes during terminal erythroid differentiation. By applying EMSA and ChIP methodologies in mouse erythroleukemia cells we show that GATA1 and PU.1 bind in vitro and in vivo the proximal promoter region of the RPS19 gene which is frequently mutated in Diamond-Blackfan Anemia. Moreover, ChIPseq data analysis also demonstrates that several RP genes are enriched as potential GATA1 and PU.1 gene targets in mouse and human erythroid cells, with GATA1 binding showing an association with higher ribosomal protein gene expression levels during terminal erythroid differentiation in human and mouse. Our results suggest that RP gene expression and hence balanced ribosome biosynthesis may be specifically and selectively regulated by lineage specific transcription factors during hematopoiesis, a finding which may be clinically relevant to ribosomopathies.
Collapse
Affiliation(s)
- Elsa P. Amanatiadou
- Laboratory of Pharmacology, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Giorgio L. Papadopoulos
- Division of Molecular Oncology, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | - John Strouboulis
- Division of Molecular Oncology, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
- * E-mail: (JS); (ISV)
| | - Ioannis S. Vizirianakis
- Laboratory of Pharmacology, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
- * E-mail: (JS); (ISV)
| |
Collapse
|
13
|
Liu X, Kraus WL, Bai X. Ready, pause, go: regulation of RNA polymerase II pausing and release by cellular signaling pathways. Trends Biochem Sci 2015; 40:516-25. [PMID: 26254229 DOI: 10.1016/j.tibs.2015.07.003] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 06/07/2015] [Accepted: 07/06/2015] [Indexed: 01/06/2023]
Abstract
Promoter-proximal pausing by RNA polymerase II (Pol II) is a well-established mechanism to control the timing, rate, and possibly the magnitude of transcriptional responses. Recent studies have shown that cellular signaling pathways can regulate gene transcription and signaling outcomes by controlling Pol II pausing in a wide array of biological systems. Identification of the proteins and small molecules that affect the establishment and release of paused Pol II is shedding new light on the mechanisms and biology of Pol II pausing. This review focuses on the interplay between cellular signaling pathways and Pol II pausing during normal development and under disease conditions.
Collapse
Affiliation(s)
- Xiuli Liu
- Molecular Genetics of Blood Development Laboratory, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center at Dallas, TX 75390, USA; Division of Basic Reproductive Biology Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - W Lee Kraus
- Signaling and Gene Regulation Laboratory, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center at Dallas, TX 75390, USA; Division of Basic Reproductive Biology Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaoying Bai
- Molecular Genetics of Blood Development Laboratory, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center at Dallas, TX 75390, USA; Division of Basic Reproductive Biology Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
14
|
Bottardi S, Mavoungou L, Milot E. IKAROS: a multifunctional regulator of the polymerase II transcription cycle. Trends Genet 2015; 31:500-8. [PMID: 26049627 DOI: 10.1016/j.tig.2015.05.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 05/06/2015] [Accepted: 05/07/2015] [Indexed: 11/16/2022]
Abstract
Transcription factors are important determinants of lineage specification during hematopoiesis. They favor recruitment of cofactors involved in epigenetic regulation, thereby defining patterns of gene expression in a development- and lineage-specific manner. Additionally, transcription factors can facilitate transcription preinitiation complex (PIC) formation and assembly on chromatin. Interestingly, a few lineage-specific transcription factors, including IKAROS, also regulate transcription elongation. IKAROS is a tumor suppressor frequently inactivated in leukemia and associated with a poor prognosis. It forms a complex with the nucleosome remodeling and deacetylase (NuRD) complex and the positive transcription elongation factor b (P-TEFb), which is required for productive transcription elongation. It has also been reported that IKAROS interacts with factors involved in transcription termination. Here we review these and other recent findings that establish IKAROS as the first transcription factor found to act as a multifunctional regulator of the transcription cycle in hematopoietic cells.
Collapse
Affiliation(s)
- Stefania Bottardi
- Maisonneuve-Rosemont Hospital Research Center, Maisonneuve-Rosemont Hospital, Montreal, QC H1T 3W5, Canada; Department of Medicine, University of Montreal, 5415 boulevard l'Assomption, Montreal, QC H1T 2M4, Canada
| | - Lionel Mavoungou
- Maisonneuve-Rosemont Hospital Research Center, Maisonneuve-Rosemont Hospital, Montreal, QC H1T 3W5, Canada; Department of Medicine, University of Montreal, 5415 boulevard l'Assomption, Montreal, QC H1T 2M4, Canada
| | - Eric Milot
- Maisonneuve-Rosemont Hospital Research Center, Maisonneuve-Rosemont Hospital, Montreal, QC H1T 3W5, Canada; Department of Medicine, University of Montreal, 5415 boulevard l'Assomption, Montreal, QC H1T 2M4, Canada.
| |
Collapse
|
15
|
Bottardi S, Mavoungou L, Pak H, Daou S, Bourgoin V, Lakehal YA, Affar EB, Milot E. The IKAROS interaction with a complex including chromatin remodeling and transcription elongation activities is required for hematopoiesis. PLoS Genet 2014; 10:e1004827. [PMID: 25474253 PMCID: PMC4256266 DOI: 10.1371/journal.pgen.1004827] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 10/14/2014] [Indexed: 12/15/2022] Open
Abstract
IKAROS is a critical regulator of hematopoietic cell fate and its dynamic expression pattern is required for proper hematopoiesis. In collaboration with the Nucleosome Remodeling and Deacetylase (NuRD) complex, it promotes gene repression and activation. It remains to be clarified how IKAROS can support transcription activation while being associated with the HDAC-containing complex NuRD. IKAROS also binds to the Positive-Transcription Elongation Factor b (P-TEFb) at gene promoters. Here, we demonstrate that NuRD and P-TEFb are assembled in a complex that can be recruited to specific genes by IKAROS. The expression level of IKAROS influences the recruitment of the NuRD-P-TEFb complex to gene regulatory regions and facilitates transcription elongation by transferring the Protein Phosphatase 1α (PP1α), an IKAROS-binding protein and P-TEFb activator, to CDK9. We show that an IKAROS mutant that is unable to bind PP1α cannot sustain gene expression and impedes normal differentiation of IkNULL hematopoietic progenitors. Finally, the knock-down of the NuRD subunit Mi2 reveals that the occupancy of the NuRD complex at transcribed regions of genes favors the relief of POL II promoter-proximal pausing and thereby, promotes transcription elongation. Perturbation of the expression level of IKAROS, a transcription factor critical during hematopoiesis, is associated with malignant transformation in mice and humans. The importance of IKAROS expression levels for the control of target-gene regulation was addressed in hematopoietic progenitor cells. The collaboration between IKAROS and the Nucleosome Remodeling and Deacetylase (NuRD) complex can promote gene activation or repression. IKAROS can also interact with the Positive-Transcription Elongation Factor b (P-TEFb) and the Protein Phosphatase 1 (PP1), an important P-TEFb regulator. Immunoaffinity purification of IKAROS interacting proteins and Fast Protein Liquid Chromatography analysis revealed a dynamic interaction between IKAROS, PP1 and the newly defined NuRD-P-TEFb complex. This complex can be targeted to specific genes in cells expressing high levels of IKAROS to promote productive transcription elongation. Based on our results we suggest that, in addition to P-TEFb, the NuRD complex and PP1 are required to facilitate transcription elongation of IKAROS-target genes and normal differentiation of hematopoietic progenitor cells.
Collapse
Affiliation(s)
- Stefania Bottardi
- Maisonneuve Rosemont Hospital Research Center, Maisonneuve-Rosemont Hospital and Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Lionel Mavoungou
- Maisonneuve Rosemont Hospital Research Center, Maisonneuve-Rosemont Hospital and Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Helen Pak
- Maisonneuve Rosemont Hospital Research Center, Maisonneuve-Rosemont Hospital and Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Salima Daou
- Maisonneuve Rosemont Hospital Research Center, Maisonneuve-Rosemont Hospital and Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Vincent Bourgoin
- Maisonneuve Rosemont Hospital Research Center, Maisonneuve-Rosemont Hospital and Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Yahia A. Lakehal
- Maisonneuve Rosemont Hospital Research Center, Maisonneuve-Rosemont Hospital and Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - El Bachir Affar
- Maisonneuve Rosemont Hospital Research Center, Maisonneuve-Rosemont Hospital and Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Eric Milot
- Maisonneuve Rosemont Hospital Research Center, Maisonneuve-Rosemont Hospital and Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
16
|
Albert TK, Rigault C, Eickhoff J, Baumgart K, Antrecht C, Klebl B, Mittler G, Meisterernst M. Characterization of molecular and cellular functions of the cyclin-dependent kinase CDK9 using a novel specific inhibitor. Br J Pharmacol 2014; 171:55-68. [PMID: 24102143 DOI: 10.1111/bph.12408] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 07/22/2013] [Accepted: 08/11/2013] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND AND PURPOSE The cyclin-dependent kinase CDK9 is an important therapeutic target but currently available inhibitors exhibit low specificity and/or narrow therapeutic windows. Here we have used a new highly specific CDK9 inhibitor, LDC000067 to interrogate gene control mechanisms mediated by CDK9. EXPERIMENTAL APPROACH The selectivity of LDC000067 was established in functional kinase assays. Functions of CDK9 in gene expression were assessed with in vitro transcription experiments, single gene analyses and genome-wide expression profiling. Cultures of mouse embryonic stem cells, HeLa cells, several cancer cell lines, along with cells from patients with acute myelogenous leukaemia were also used to investigate cellular responses to LDC000067. KEY RESULTS The selectivity of LDC000067 for CDK9 over other CDKs exceeded that of the known inhibitors flavopiridol and DRB. LDC000067 inhibited in vitro transcription in an ATP-competitive and dose-dependent manner. Gene expression profiling of cells treated with LDC000067 demonstrated a selective reduction of short-lived mRNAs, including important regulators of proliferation and apoptosis. Analysis of de novo RNA synthesis suggested a wide ranging positive role of CDK9. At the molecular and cellular level, LDC000067 reproduced effects characteristic of CDK9 inhibition such as enhanced pausing of RNA polymerase II on genes and, most importantly, induction of apoptosis in cancer cells. CONCLUSIONS AND IMPLICATIONS Our study provides a framework for the mechanistic understanding of cellular responses to CDK9 inhibition. LDC000067 represents a promising lead for the development of clinically useful, highly specific CDK9 inhibitors.
Collapse
Affiliation(s)
- T K Albert
- Institute of Molecular Tumor Biology (IMTB), Faculty of Medicine, Westfalian Wilhelms University Muenster (WWU), Muenster, Germany
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Dai Q, Luan G, Deng L, Lei T, Kang H, Song X, Zhang Y, Xiao ZX, Li Q. Primordial dwarfism gene maintains Lin28 expression to safeguard embryonic stem cells from premature differentiation. Cell Rep 2014; 7:735-46. [PMID: 24768001 DOI: 10.1016/j.celrep.2014.03.053] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 01/15/2014] [Accepted: 03/20/2014] [Indexed: 01/09/2023] Open
Abstract
Primordial dwarfism (PD) is characterized by global growth failure, both during embryogenesis and postnatally. Loss-of-function germline mutations in La ribonucleoprotein domain family, member 7 (LAPR7) have recently been linked to PD. Paradoxically, LARP7 deficiency was previously assumed to be associated with increased cell growth and proliferation via activation of positive transcription elongation factor b (P-TEFb). Here, we show that Larp7 deficiency likely does not significantly increase P-TEFb activity. We further discover that Larp7 knockdown does not affect pluripotency but instead primes embryonic stem cells (ESCs) for differentiation via downregulation of Lin28, a positive regulator of organismal growth. Mechanistically, we show that Larp7 interacts with a poly(A) polymerase Star-PAP to maintain Lin28 mRNA stability. We propose that proper regulation of Lin28 and PTEFb is essential for embryonic cells to achieve a sufficient number of cell divisions prior to differentiation and ultimately to maintain proper organismal size.
Collapse
Affiliation(s)
- Qian Dai
- Center of Growth, Metabolism, and Aging, Key Laboratory of Bio-Resources and Eco-Environment, and State Key Laboratory of Biotherapy, College of Life Sciences, Sichuan University, Chengdu 610064, Sichuan, China
| | - Guangxin Luan
- Center of Growth, Metabolism, and Aging, Key Laboratory of Bio-Resources and Eco-Environment, and State Key Laboratory of Biotherapy, College of Life Sciences, Sichuan University, Chengdu 610064, Sichuan, China
| | - Li Deng
- Center of Growth, Metabolism, and Aging, Key Laboratory of Bio-Resources and Eco-Environment, and State Key Laboratory of Biotherapy, College of Life Sciences, Sichuan University, Chengdu 610064, Sichuan, China
| | - Tingjun Lei
- Center of Growth, Metabolism, and Aging, Key Laboratory of Bio-Resources and Eco-Environment, and State Key Laboratory of Biotherapy, College of Life Sciences, Sichuan University, Chengdu 610064, Sichuan, China
| | - Han Kang
- Center of Growth, Metabolism, and Aging, Key Laboratory of Bio-Resources and Eco-Environment, and State Key Laboratory of Biotherapy, College of Life Sciences, Sichuan University, Chengdu 610064, Sichuan, China
| | - Xu Song
- Center of Growth, Metabolism, and Aging, Key Laboratory of Bio-Resources and Eco-Environment, and State Key Laboratory of Biotherapy, College of Life Sciences, Sichuan University, Chengdu 610064, Sichuan, China
| | - Yujun Zhang
- Center of Growth, Metabolism, and Aging, Key Laboratory of Bio-Resources and Eco-Environment, and State Key Laboratory of Biotherapy, College of Life Sciences, Sichuan University, Chengdu 610064, Sichuan, China
| | - Zhi-Xiong Xiao
- Center of Growth, Metabolism, and Aging, Key Laboratory of Bio-Resources and Eco-Environment, and State Key Laboratory of Biotherapy, College of Life Sciences, Sichuan University, Chengdu 610064, Sichuan, China
| | - Qintong Li
- Center of Growth, Metabolism, and Aging, Key Laboratory of Bio-Resources and Eco-Environment, and State Key Laboratory of Biotherapy, College of Life Sciences, Sichuan University, Chengdu 610064, Sichuan, China.
| |
Collapse
|
18
|
Elagib KE, Rubinstein JD, Delehanty LL, Ngoh VS, Greer PA, Li S, Lee JK, Li Z, Orkin SH, Mihaylov IS, Goldfarb AN. Calpain 2 activation of P-TEFb drives megakaryocyte morphogenesis and is disrupted by leukemogenic GATA1 mutation. Dev Cell 2014; 27:607-20. [PMID: 24369834 DOI: 10.1016/j.devcel.2013.11.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 08/01/2013] [Accepted: 11/18/2013] [Indexed: 12/11/2022]
Abstract
Megakaryocyte morphogenesis employs a "hypertrophy-like" developmental program that is dependent on P-TEFb kinase activation and cytoskeletal remodeling. P-TEFb activation classically occurs by a feedback-regulated process of signal-induced, reversible release of active Cdk9-cyclin T modules from large, inactive 7SK small nuclear ribonucleoprotein particle (snRNP) complexes. Here, we have identified an alternative pathway of irreversible P-TEFb activation in megakaryopoiesis that is mediated by dissolution of the 7SK snRNP complex. In this pathway, calpain 2 cleavage of the core 7SK snRNP component MePCE promoted P-TEFb release and consequent upregulation of a cohort of cytoskeleton remodeling factors, including α-actinin-1. In a subset of human megakaryocytic leukemias, the transcription factor GATA1 undergoes truncating mutation (GATA1s). Here, we linked the GATA1s mutation to defects in megakaryocytic upregulation of calpain 2 and of P-TEFb-dependent cytoskeletal remodeling factors. Restoring calpain 2 expression in GATA1s mutant megakaryocytes rescued normal development, implicating this morphogenetic pathway as a target in human leukemogenesis.
Collapse
Affiliation(s)
- Kamaleldin E Elagib
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Jeremy D Rubinstein
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Lorrie L Delehanty
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Valerie S Ngoh
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Peter A Greer
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Shuran Li
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Jae K Lee
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Zhe Li
- Division of Hematology/Oncology, Children's Hospital Boston, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Stuart H Orkin
- Division of Hematology/Oncology, Children's Hospital Boston, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Ivailo S Mihaylov
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Adam N Goldfarb
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
| |
Collapse
|
19
|
Epstein-Barr virus utilizes Ikaros in regulating its latent-lytic switch in B cells. J Virol 2014; 88:4811-27. [PMID: 24522918 DOI: 10.1128/jvi.03706-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
UNLABELLED Ikaros is a zinc finger DNA-binding protein that regulates chromatin remodeling and the expression of genes involved in the cell cycle, apoptosis, and Notch signaling. It is a master regulator of lymphocyte differentiation and functions as a tumor suppressor in acute lymphoblastic leukemia. Nevertheless, no previous reports described effects of Ikaros on the life cycle of any human lymphotropic virus. Here, we demonstrate that full-length Ikaros (IK-1) functions as a major factor in the maintenance of viral latency in Epstein-Barr virus (EBV)-positive Burkitt's lymphoma Sal and MutuI cell lines. Either silencing of Ikaros expression by small hairpin RNA (shRNA) knockdown or ectopic expression of a non-DNA-binding isoform induced lytic gene expression. These effects synergized with other lytic inducers of EBV, including transforming growth factor β (TGF-β) and the hypoxia mimic desferrioxamine. Data from chromatin immunoprecipitation (ChIP)-quantitative PCR (qPCR) and ChIP-sequencing (ChIP-seq) analyses indicated that Ikaros did not bind to either of the EBV immediate early genes BZLF1 and BRLF1. Rather, Ikaros affected the expression of Oct-2 and Bcl-6, other transcription factors that directly inhibit EBV reactivation and plasma cell differentiation, respectively. IK-1 also complexed with the EBV immediate early R protein in coimmunoprecipitation assays and partially colocalized with R within cells. The presence of R alleviated IK-1-mediated transcriptional repression, with IK-1 then cooperating with Z and R to enhance lytic gene expression. Thus, we conclude that Ikaros plays distinct roles at different stages of EBV's life cycle: it contributes to maintaining latency via indirect mechanisms, and it may also synergize with Z and R to enhance lytic replication through direct association with R and/or R-induced alterations in Ikaros' functional activities via cellular signaling pathways. IMPORTANCE This is the first report showing that the cellular protein Ikaros, a known master regulator of hematopoiesis and critical tumor suppressor in acute lymphoblastic leukemia, also plays important roles in the life cycle of Epstein-Barr virus in B cells.
Collapse
|
20
|
Direct protein interactions are responsible for Ikaros-GATA and Ikaros-Cdk9 cooperativeness in hematopoietic cells. Mol Cell Biol 2013; 33:3064-76. [PMID: 23732910 DOI: 10.1128/mcb.00296-13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ikaros (Ik) is a critical regulator of hematopoietic gene expression. Here, we established that the Ik interactions with GATA transcription factors and cyclin-dependent kinase 9 (Cdk9), a component of the positive transcription elongation factor b (P-TEFb), are required for transcriptional activation of Ik target genes. A detailed dissection of Ik-GATA and Ik-Cdk9 protein interactions indicated that the C-terminal zinc finger domain of Ik interacts directly with the C-terminal zinc fingers of GATA1, GATA2, and GATA3, whereas the N-terminal zinc finger domain of Ik is required for interaction with the kinase and T-loop domains of Cdk9. The relevance of these interactions was demonstrated in vivo in COS-7 and primary hematopoietic cells, in which Ik facilitated Cdk9 and GATA protein recruitment to gene promoters and transcriptional activation. Moreover, the oncogenic isoform Ik6 did not efficiently interact with Cdk9 or GATA proteins in vivo and perturbed Cdk9/P-TEFb recruitment to Ik target genes, thereby affecting transcription elongation. Finally, characterization of a novel nuclear Ik isoform revealed that Ik exon 6 is dispensable for interactions with Mi2 and GATA proteins but is essential for the Cdk9 interaction. Thus, Ik is central to the Ik-GATA-Cdk9 regulatory network, which is broadly utilized for gene regulation in hematopoietic cells.
Collapse
|
21
|
Abstract
Ikaros is the founding member of a family of zinc finger transcription factors whose function during early hematopoietic development is required for differentiation into the three major hematopoietic lineages. Ikaros deletions have been described in human malignancies, particularly precursor B-cell leukemia. Deletions of this transcription factor appear to mediate leukemogenesis, although the exact mechanism is unclear. This article reviews the structure and function of Ikaros proteins in chromatin remodeling and gene expression as well as the current knowledge of Ikaros deletions in human malignancies. A new proteomic platform, mass cytometry, is introduced which allows measurements of greater than 30 parameters at the single-cell level and should thus provide a greater level of detail to unravel the mechanistic consequences of Ikaros dysfunction in leukemia.
Collapse
|
22
|
Serine phosphorylation by SYK is critical for nuclear localization and transcription factor function of Ikaros. Proc Natl Acad Sci U S A 2012; 109:18072-7. [PMID: 23071339 DOI: 10.1073/pnas.1209828109] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ikaros is a zinc finger-containing DNA-binding protein that plays a pivotal role in immune homeostasis through transcriptional regulation of the earliest stages of lymphocyte ontogeny and differentiation. Functional deficiency of Ikaros has been implicated in the pathogenesis of acute lymphoblastic leukemia, the most common form of childhood cancer. Therefore, a stringent regulation of Ikaros activity is considered of paramount importance, but the operative molecular mechanisms responsible for its regulation remain largely unknown. Here we provide multifaceted genetic and biochemical evidence for a previously unknown function of spleen tyrosine kinase (SYK) as a partner and posttranslational regulator of Ikaros. We demonstrate that SYK phoshorylates Ikaros at unique C-terminal serine phosphorylation sites S358 and S361, thereby augmenting its nuclear localization and sequence-specific DNA binding activity. Mechanistically, we establish that SYK-induced Ikaros activation is essential for its nuclear localization and optimal transcription factor function.
Collapse
|
23
|
Tijchon E, Havinga J, van Leeuwen FN, Scheijen B. B-lineage transcription factors and cooperating gene lesions required for leukemia development. Leukemia 2012; 27:541-52. [PMID: 23047478 DOI: 10.1038/leu.2012.293] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Differentiation of hematopoietic stem cells into B lymphocytes requires the concerted action of specific transcription factors, such as RUNX1, IKZF1, E2A, EBF1 and PAX5. As key determinants of normal B-cell development, B-lineage transcription factors are frequently deregulated in hematological malignancies, such as B-cell precursor acute lymphoblastic leukemia (BCP-ALL), and affected by either chromosomal translocations, gene deletions or point mutations. However, genetic aberrations in this developmental pathway are generally insufficient to induce BCP-ALL, and often complemented by genetic defects in cytokine receptors and tyrosine kinases (IL-7Rα, CRLF2, JAK2 and c-ABL1), transcriptional cofactors (TBL1XR1, CBP and BTG1), as well as the regulatory pathways that mediate cell-cycle control (pRB and INK4A/B). Here we provide a detailed overview of the genetic pathways that interact with these B-lineage specification factors, and describe how mutations affecting these master regulators together with cooperating lesions drive leukemia development.
Collapse
Affiliation(s)
- E Tijchon
- Nijmegen Centre for Molecular Life Sciences, Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
24
|
Deng W, Lee J, Wang H, Miller J, Reik A, Gregory PD, Dean A, Blobel GA. Controlling long-range genomic interactions at a native locus by targeted tethering of a looping factor. Cell 2012; 149:1233-44. [PMID: 22682246 DOI: 10.1016/j.cell.2012.03.051] [Citation(s) in RCA: 511] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 03/05/2012] [Accepted: 03/30/2012] [Indexed: 11/19/2022]
Abstract
Chromatin loops juxtapose distal enhancers with active promoters, but their molecular architecture and relationship with transcription remain unclear. In erythroid cells, the locus control region (LCR) and β-globin promoter form a chromatin loop that requires transcription factor GATA1 and the associated molecule Ldb1. We employed artificial zinc fingers (ZF) to tether Ldb1 to the β-globin promoter in GATA1 null erythroblasts, in which the β-globin locus is relaxed and inactive. Remarkably, targeting Ldb1 or only its self-association domain to the β-globin promoter substantially activated β-globin transcription in the absence of GATA1. Promoter-tethered Ldb1 interacted with endogenous Ldb1 complexes at the LCR to form a chromatin loop, causing recruitment and phosphorylation of RNA polymerase II. ZF-Ldb1 proteins were inactive at alleles lacking the LCR, demonstrating that their activities depend on long-range interactions. Our findings establish Ldb1 as a critical effector of GATA1-mediated loop formation and indicate that chromatin looping causally underlies gene regulation.
Collapse
Affiliation(s)
- Wulan Deng
- Division of Hematology, The Children's Hospital of Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
GATA-1 utilizes Ikaros and polycomb repressive complex 2 to suppress Hes1 and to promote erythropoiesis. Mol Cell Biol 2012; 32:3624-38. [PMID: 22778136 DOI: 10.1128/mcb.00163-12] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The transcription factor Hairy Enhancer of Split 1 (HES1), a downstream effector of the Notch signaling pathway, is an important regulator of hematopoiesis. Here, we demonstrate that in primary erythroid cells, Hes1 gene expression is transiently repressed around proerythroblast stage of differentiation. Using mouse erythroleukemia cells, we found that the RNA interference (RNAi)-mediated depletion of HES1 enhances erythroid cell differentiation, suggesting that this protein opposes terminal erythroid differentiation. This is also supported by the decreased primary erythroid cell differentiation upon HES1 upregulation in Ikaros-deficient mice. A comprehensive analysis led us to determine that Ikaros favors Hes1 repression in erythroid cells by facilitating recruitment of the master regulator of erythropoiesis GATA-1 alongside FOG-1, which mediates Hes1 repression. GATA-1 is then necessary for the chromatin binding of the NuRD remodeling complex ATPase MI-2, the transcription factor GFI1B, and the histone H3K27 methyltransferase EZH2 along with Polycomb repressive complex 2. We show that EZH2 is required for the transient repression of Hes1 in erythroid cells. In aggregate, our results describe a mechanism whereby GATA-1 utilizes Ikaros and Polycomb repressive complex 2 to promote Hes1 repression as an important step in erythroid cell differentiation.
Collapse
|
26
|
Sellars M, Kastner P, Chan S. Ikaros in B cell development and function. World J Biol Chem 2011; 2:132-9. [PMID: 21765979 PMCID: PMC3135860 DOI: 10.4331/wjbc.v2.i6.132] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 06/18/2011] [Accepted: 06/23/2011] [Indexed: 02/05/2023] Open
Abstract
The zinc finger transcription factor, Ikaros, is a central regulator of hematopoiesis. It is required for the development of the earliest B cell progenitors and at later stages for VDJ recombination and B cell receptor expression. Mature B cells rely on Ikaros to set the activation threshold for various stimuli, and to choose the correct antibody isotype during class switch recombination. Thus, Ikaros contributes to nearly every level of B cell differentiation and function.
Collapse
Affiliation(s)
- Maclean Sellars
- MacLean Sellars, New York University School of Medicine, New York, NY 10016, United States
| | | | | |
Collapse
|