1
|
Wazan LE, Widhibrata A, Liu GS. Soluble FLT-1 in angiogenesis: pathophysiological roles and therapeutic implications. Angiogenesis 2024:10.1007/s10456-024-09942-8. [PMID: 39207600 DOI: 10.1007/s10456-024-09942-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Fine-tuning angiogenesis, the development of new blood vessels, is essential for maintaining a healthy circulatory and lymphatic system. The small glycoprotein vascular endothelial growth factors (VEGF) are the key mediators in this process, binding to their corresponding membrane-bound VEGF receptors (VEGFRs) to activate angiogenesis signaling pathways. These pathways are crucial throughout human life as they are involved in lymphatic and vascular endothelial cell permeability, migration, proliferation, and survival. Neovascularization, the formation of abnormal blood vessels, occurs when there is a dysregulation of angiogenesis and can result in debilitating disease. Hence, VEGFRs have been widely studied to understand their role in disease-causing angiogenesis. VEGFR1, also known as Fms-like tyrosine kinase-1 (FLT-1), is also found in a soluble form, soluble FLT-1 or sFLT-1, which is known to act as a VEGF neutralizer. It is incorporated into anti-VEGF therapy, designed to treat diseases caused by neovascularization. Here we review the journey of sFLT-1 discovery and delve into the alternative splicing mechanism that creates the soluble receptor, its prevalence in disease states, and its use in current and future potential therapies.
Collapse
Affiliation(s)
- Layal Ei Wazan
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Level 7, 32 Gisborne Street, East Melbourne, VIC, 3002, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, VIC, Australia
| | - Ariel Widhibrata
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Level 7, 32 Gisborne Street, East Melbourne, VIC, 3002, Australia
| | - Guei-Sheung Liu
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Level 7, 32 Gisborne Street, East Melbourne, VIC, 3002, Australia.
- Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, VIC, Australia.
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia.
| |
Collapse
|
2
|
Cao J, Kuyumcu-Martinez MN. Alternative polyadenylation regulation in cardiac development and cardiovascular disease. Cardiovasc Res 2023; 119:1324-1335. [PMID: 36657944 PMCID: PMC10262186 DOI: 10.1093/cvr/cvad014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/01/2022] [Accepted: 11/28/2022] [Indexed: 01/21/2023] Open
Abstract
Cleavage and polyadenylation of pre-mRNAs is a necessary step for gene expression and function. Majority of human genes exhibit multiple polyadenylation sites, which can be alternatively used to generate different mRNA isoforms from a single gene. Alternative polyadenylation (APA) of pre-mRNAs is important for the proteome and transcriptome landscape. APA is tightly regulated during development and contributes to tissue-specific gene regulation. Mis-regulation of APA is linked to a wide range of pathological conditions. APA-mediated gene regulation in the heart is emerging as a new area of research. Here, we will discuss the impact of APA on gene regulation during heart development and in cardiovascular diseases. First, we will briefly review how APA impacts gene regulation and discuss molecular mechanisms that control APA. Then, we will address APA regulation during heart development and its dysregulation in cardiovascular diseases. Finally, we will discuss pre-mRNA targeting strategies to correct aberrant APA patterns of essential genes for the treatment or prevention of cardiovascular diseases. The RNA field is blooming due to advancements in RNA-based technologies. RNA-based vaccines and therapies are becoming the new line of effective and safe approaches for the treatment and prevention of human diseases. Overall, this review will be influential for understanding gene regulation at the RNA level via APA in the heart and will help design RNA-based tools for the treatment of cardiovascular diseases in the future.
Collapse
Affiliation(s)
- Jun Cao
- Faculty of Environment and Life, Beijing University of Technology, Xueyuan Road, Haidian District, Beijing 100124, PR China
| | - Muge N Kuyumcu-Martinez
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77573, USA
- Department of Neurobiology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Institute for Translational Sciences, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77573, USA
| |
Collapse
|
3
|
Kremer V, Oppelaar JJ, Gimbel T, Koziarek S, Ganzevoort W, van Pampus MG, van den Born BJ, Vogt L, de Groot C, Boon RA. Neuro-oncological Ventral Antigen 2 Regulates Splicing of Vascular Endothelial Growth Factor Receptor 1 and Is Required for Endothelial Function. Reprod Sci 2023; 30:678-689. [PMID: 35927413 PMCID: PMC9988812 DOI: 10.1007/s43032-022-01044-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/16/2022] [Indexed: 11/24/2022]
Abstract
Pre-eclampsia (PE) affects 2-8% of pregnancies and is responsible for significant morbidity and mortality. The maternal clinical syndrome (defined by hypertension, proteinuria, and organ dysfunction) is the result of endothelial dysfunction. The endothelial response to increased levels of soluble FMS-like Tyrosine Kinase 1 (sFLT1) is thought to play a central role. sFLT1 is released from multiple tissues and binds VEGF with high affinity and antagonizes VEGF. Expression of soluble variants of sFLT1 is a result of alternative splicing; however, the mechanism is incompletely understood. We hypothesize that neuro-oncological ventral antigen 2 (NOVA2) contributes to this. NOVA2 was inhibited in human umbilical vein endothelial cells (HUVECs) and multiple cellular functions were assessed. NOVA2 and FLT1 expression in the placenta of PE, pregnancy-induced hypertension, and normotensive controls was measured by RT-qPCR. Loss of NOVA2 in HUVECs resulted in significantly increased levels of sFLT1, but did not affect expression of membrane-bound FLT1. NOVA2 protein was shown to directly interact with FLT1 mRNA. Loss of NOVA2 was also accompanied by impaired endothelial functions such as sprouting. We were able to restore sprouting capacity by exogenous VEGF. We did not observe statistically significant regulation of NOVA2 or sFLT1 in the placenta. However, we observed a negative correlation between sFLT1 and NOVA2 expression levels. In conclusion, NOVA2 was found to regulate FLT1 splicing in the endothelium. Loss of NOVA2 resulted in impaired endothelial function, at least partially dependent on VEGF. In PE patients, we observed a negative correlation between NOVA2 and sFLT1.
Collapse
Affiliation(s)
- Veerle Kremer
- Department of Physiology, Amsterdam Cardiovascular Sciences, VU Medical Center, Amsterdam UMC, Amsterdam, The Netherlands.,Department of Medical Chemistry, Academic Medical Center, Amsterdam UMC, Amsterdam, The Netherlands.,Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, The Netherlands
| | - Jetta J Oppelaar
- Department of Internal Medicine, Section of Nephrology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Theresa Gimbel
- Institute of Cardiovascular Regeneration, Goethe University, Frankfurt am Main, Germany.,German Centre for Cardiovascular Research DZHK, Partner Site Frankfurt Rhein/Main, Frankfurt am Main, Germany
| | - Susanne Koziarek
- Institute of Cardiovascular Regeneration, Goethe University, Frankfurt am Main, Germany.,German Centre for Cardiovascular Research DZHK, Partner Site Frankfurt Rhein/Main, Frankfurt am Main, Germany
| | - Wessel Ganzevoort
- Department of Obstetrics and Gynecology, Amsterdam Reproduction & Development, Amsterdam UMC University of Amsterdam, Amsterdam, The Netherlands
| | | | - Bert-Jan van den Born
- Department of Internal Medicine, Section of Vascular Medicine, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands.,Amsterdam Cardiovascular Sciences, Atherosclerosis and Ischemic Syndromes, Amsterdam, The Netherlands
| | - Liffert Vogt
- Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, The Netherlands.,Department of Internal Medicine, Section of Nephrology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Christianne de Groot
- Department of Obstetrics and Gynaecology, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - Reinier A Boon
- Department of Physiology, Amsterdam Cardiovascular Sciences, VU Medical Center, Amsterdam UMC, Amsterdam, The Netherlands. .,Institute of Cardiovascular Regeneration, Goethe University, Frankfurt am Main, Germany. .,German Centre for Cardiovascular Research DZHK, Partner Site Frankfurt Rhein/Main, Frankfurt am Main, Germany. .,Amsterdam UMC, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands.
| |
Collapse
|
4
|
Hernandez VA, Carvajal-Moreno J, Wang X, Pietrzak M, Yalowich JC, Elton TS. Use of CRISPR/Cas9 with homology-directed repair to silence the human topoisomerase IIα intron-19 5’ splice site: Generation of etoposide resistance in human leukemia K562 cells. PLoS One 2022; 17:e0265794. [PMID: 35617303 PMCID: PMC9135202 DOI: 10.1371/journal.pone.0265794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 05/06/2022] [Indexed: 11/19/2022] Open
Abstract
DNA Topoisomerase IIα (TOP2α/170) is an enzyme essential for proliferating cells. For rapidly multiplying malignancies, this has made TOP2α/170 an important target for etoposide and other clinically active anticancer drugs. Efficacy of these agents is often limited by chemoresistance related to alterations in TOP2α/170 expression levels. Our laboratory recently demonstrated reduced levels of TOP2α/170 and overexpression of a C-terminal truncated 90-kDa isoform, TOP2α/90, due to intronic polyadenylation (IPA; within intron 19) in an acquired etoposide-resistant K562 clonal cell line, K/VP.5. We previously reported that this isoform heterodimerized with TOP2α/170 and was a determinant of acquired resistance to etoposide. Optimization of the weak TOP2α exon 19/intron 19 5′ splice site in drug-resistant K/VP.5 cells by gene-editing restored TOP2α/170 levels, diminished TOP2α/90 expression, and circumvented drug resistance. Conversely, in the present study, silencing of the exon 19/intron 19 5′ splice site in parental K562 cells by CRISPR/Cas9 with homology-directed repair (HDR), and thereby forcing intron 19 retention, was used to induce resistance by disrupting normal RNA processing (i.e., gene knockout), and to further evaluate the role of TOP2α/170 and TOP2α/90 isoforms as resistance determinants. Gene-edited clones were identified by quantitative polymerase chain reaction (qPCR) and verified by Sanger sequencing. TOP2α/170 mRNA/protein expression levels were attenuated in the TOP2α gene-edited clones which resulted in resistance to etoposide as assessed by reduced etoposide-induced DNA damage (γH2AX, Comet assays) and growth inhibition. RNA-seq and qPCR studies suggested that intron 19 retention leads to decreased TOP2α/170 expression by degradation of the TOP2α edited mRNA transcripts. Forced expression of TOP2α/90 in the gene-edited K562 cells further decreased etoposide-induced DNA damage in support of a dominant negative role for this truncated isoform. Together results support the important role of both TOP2α/170 and TOP2α/90 as determinants of sensitivity/resistance to TOP2α-targeting agents.
Collapse
Affiliation(s)
- Victor A. Hernandez
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio, United States of America
| | - Jessika Carvajal-Moreno
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio, United States of America
| | - Xinyi Wang
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio, United States of America
| | - Maciej Pietrzak
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Jack C. Yalowich
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail: (JCY); (TSE)
| | - Terry S. Elton
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail: (JCY); (TSE)
| |
Collapse
|
5
|
Dou S, Wang Q, Qi X, Zhang B, Jiang H, Chen S, Duan H, Lu Y, Dong J, Cao Y, Xie L, Zhou Q, Shi W. Molecular identity of human limbal heterogeneity involved in corneal homeostasis and privilege. Ocul Surf 2021; 21:206-220. [PMID: 33964410 DOI: 10.1016/j.jtos.2021.04.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/10/2021] [Accepted: 04/24/2021] [Indexed: 12/20/2022]
Abstract
PURPOSE The corneal limbus maintains the homeostasis, immune and angiogenic privilege of cornea. This study aimed to depict the landscape of human limbal tissues by single-cell RNA sequencing (scRNA-seq). METHODS Single cells of human limbus collected from donor corneas were subjected to 10x scRNA-seq, followed by clustering cell types through the t-distributed stochastic neighbor embedding (t-SNE) and unbiased computational informatic analysis. Immunofluorescent staining was performed using human corneas to validate the analysis results. RESULTS 47,627 cells acquired from six human limbal tissues were collected and subjected to scRNA-seq. 14 distinct clusters were identified and 8 cell types were annotated with representative markers. In-depth dissection revealed three limbal epithelial cell subtypes and refined the X-Y-Z hypothesis of corneal epithelial maintenance. We further unveiled two cell states with higher stemness (TP63+ and CCL20+ cells), and two other differentiated cell states (GPHA2+ and KRT6B + cells) in homeostatic limbal stem/progenitor cells (LSPCs) that differ in transcriptional profiles. Cell-cell communication analysis revealed the central role of LSPCs and their bidirectional regulation with various niche cells. Moreover, comparative analysis between limbus and skin deciphered the pivotal contribution of limbal immune cells, vascular and lymphatic endothelial cells to corneal immune and angiogenic privilege. CONCLUSIONS The human limbus atlas provided valuable resources and foundations for understanding corneal biology, disease and potential interventions.
Collapse
Affiliation(s)
- Shengqian Dou
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China; Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| | - Qun Wang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China; Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| | - Xia Qi
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China; Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| | - Bin Zhang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China; Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| | - Hui Jiang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China; Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| | - Shengwen Chen
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China; Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| | - Haoyun Duan
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China; Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| | - Yao Lu
- OE Biotech Co., Ltd, Shanghai, Shanghai, China
| | | | - Yihai Cao
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Lixin Xie
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China; Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| | - Qingjun Zhou
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China; Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China.
| | - Weiyun Shi
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China; Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China; Eye Hospital of Shandong First Medical University, Jinan, China.
| |
Collapse
|
6
|
M Dave K, Kaur L, Randhir KN, Mehendale SS, Sundrani DP, Chandak GR, Joshi SR. Placental growth factor and Fms related tyrosine kinase-1 are hypomethylated in preeclampsia placentae. Epigenomics 2021; 13:257-269. [PMID: 33471580 DOI: 10.2217/epi-2020-0318] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Aim: This study aims to examine the DNA methylation (DNAm) and expression patterns of genes associated with placental angiogenesis in preeclampsia. Materials & methods: DNAm and expression were examined in normotensive (n = 100) and preeclampsia (n = 100) women using pyrosequencing and quantitative real-time PCR respectively. Results: Hypomethylation at several CpGs was observed in PlGF and FLT-1 in women with preeclampsia compared to normotensive controls. PlGF expression was lower in women with preeclampsia while FLT-1 expression was comparable. DNAm at various CpGs was negatively correlated with expression in both the genes and were associated with maternal blood pressure and birth outcomes. Conclusion: DNAm and expression of angiogenic factors in placentae are differentially regulated in preeclampsia and influence birth outcomes.
Collapse
Affiliation(s)
- Kinjal M Dave
- Mother & Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be) University, Pune 411043, India
| | - Lovejeet Kaur
- Genomic Research on Complex diseases (GRC Group), Council of Scientific and Industrial Research Centre for Cellular & Molecular Biology (CSIR-CCMB), Hyderabad 500007, India
| | - Karuna N Randhir
- Mother & Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be) University, Pune 411043, India
| | - Savita S Mehendale
- Department of Gynecology & Obstetrics, Bharati Vidyapeeth Medical College & Hospital, Pune 411043, India
| | - Deepali P Sundrani
- Mother & Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be) University, Pune 411043, India
| | - Giriraj R Chandak
- Genomic Research on Complex diseases (GRC Group), Council of Scientific and Industrial Research Centre for Cellular & Molecular Biology (CSIR-CCMB), Hyderabad 500007, India
| | - Sadhana R Joshi
- Mother & Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be) University, Pune 411043, India
| |
Collapse
|
7
|
Di Matteo A, Belloni E, Pradella D, Cappelletto A, Volf N, Zacchigna S, Ghigna C. Alternative splicing in endothelial cells: novel therapeutic opportunities in cancer angiogenesis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:275. [PMID: 33287867 PMCID: PMC7720527 DOI: 10.1186/s13046-020-01753-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023]
Abstract
Alternative splicing (AS) is a pervasive molecular process generating multiple protein isoforms, from a single gene. It plays fundamental roles during development, differentiation and maintenance of tissue homeostasis, while aberrant AS is considered a hallmark of multiple diseases, including cancer. Cancer-restricted AS isoforms represent either predictive biomarkers for diagnosis/prognosis or targets for anti-cancer therapies. Here, we discuss the contribution of AS regulation in cancer angiogenesis, a complex process supporting disease development and progression. We consider AS programs acting in a specific and non-redundant manner to influence morphological and functional changes involved in cancer angiogenesis. In particular, we describe relevant AS variants or splicing regulators controlling either secreted or membrane-bound angiogenic factors, which may represent attractive targets for therapeutic interventions in human cancer.
Collapse
Affiliation(s)
- Anna Di Matteo
- Istituto di Genetica Molecolare, "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche, via Abbiategrasso 207, 27100, Pavia, Italy
| | - Elisa Belloni
- Istituto di Genetica Molecolare, "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche, via Abbiategrasso 207, 27100, Pavia, Italy
| | - Davide Pradella
- Istituto di Genetica Molecolare, "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche, via Abbiategrasso 207, 27100, Pavia, Italy
| | - Ambra Cappelletto
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149, Trieste, Italy
| | - Nina Volf
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149, Trieste, Italy
| | - Serena Zacchigna
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149, Trieste, Italy. .,Department of Medical, Surgical and Health Sciences, University of Trieste, 34149, Trieste, Italy.
| | - Claudia Ghigna
- Istituto di Genetica Molecolare, "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche, via Abbiategrasso 207, 27100, Pavia, Italy.
| |
Collapse
|
8
|
Kikas T, Inno R, Ratnik K, Rull K, Laan M. C-allele of rs4769613 Near FLT1 Represents a High-Confidence Placental Risk Factor for Preeclampsia. Hypertension 2020; 76:884-891. [PMID: 32755415 DOI: 10.1161/hypertensionaha.120.15346] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The variant rs4769613 T/C within the enhancer element near FLT1, an acknowledged gene in preeclampsia, was previously identified as a risk factor for preeclampsia in the genome-wide association study (GWAS) targeting placental genotypes. We aimed to test the robustness of this association in 2 Estonian cohorts. Both placental sample sets HAPPY PREGNANCY (Development of novel non-invasive biomarkers for fertility and healthy pregnancy; preeclampsia, n=44 versus nonpreeclampsia, n=1724) and REPROMETA (REPROgrammed fetal and/or maternal METAbolism; 52/277) exhibited suggestive association between rs4769613[C] variant and preeclampsia (logistic regression adjusted for gestational age and fetal sex, nominal P<0.05). Meta-analysis across 2 samples (96/2001) replicated the genome-wide association study outcome (Bonferroni corrected P=4×10-3; odds ratio, 1.75 [95% CI, 1.23-2.49]). No association was detected with gestational diabetes mellitus, preterm birth, and newborn parameters. Also, neither maternal nor paternal rs4769613 genotypes predisposed to preeclampsia. The exact role of placental rs4769613 genotype in the preeclampsia pathogenesis is to be clarified as no effect was detected on maternal baseline serum sFlt-1 (soluble fms-related receptor tyrosine kinase 1) levels. However, when placental FLT1 gene expression and maternal serum sFlt-1 measurements were stratified by placental rs4769613 genotypes, significantly higher transcript and biomarker levels were detected in preeclampsia versus nonpreeclampsia cases in the CC- and CT- (Student t test, P≤0.02), but not in the TT-genotype subgroup. We suggest that rs4769613 represents a conditional expression Quantitative Trait Locus, whereby only the enhancer with the C-allele reacts to promote the FLT1 expression in unfavorable placental conditions. The study highlighted that the placental FLT1 rs4769613 C-allele is a preeclampsia-specific risk factor. It may contribute to early identification of high-risk women, for example, when genotyped in the cffDNA available in maternal blood plasma.
Collapse
Affiliation(s)
- Triin Kikas
- From the Human Genetics Research Group, Institute of Biomedicine and Translational Medicine (T.K., R.I., K. Ratnik, K. Rull, M.L.), University of Tartu, Tartu, Estonia
| | - Rain Inno
- From the Human Genetics Research Group, Institute of Biomedicine and Translational Medicine (T.K., R.I., K. Ratnik, K. Rull, M.L.), University of Tartu, Tartu, Estonia
| | - Kaspar Ratnik
- From the Human Genetics Research Group, Institute of Biomedicine and Translational Medicine (T.K., R.I., K. Ratnik, K. Rull, M.L.), University of Tartu, Tartu, Estonia
- SYNLAB Estonia OÜ, Tallinn, Estonia (K. Ratnik)
| | - Kristiina Rull
- From the Human Genetics Research Group, Institute of Biomedicine and Translational Medicine (T.K., R.I., K. Ratnik, K. Rull, M.L.), University of Tartu, Tartu, Estonia
- Department of Obstetrics and Gynaecology (K. Rull), University of Tartu, Tartu, Estonia
- Women's Clinic, Tartu University Hospital, Tartu, Estonia (K. Rull)
| | - Maris Laan
- From the Human Genetics Research Group, Institute of Biomedicine and Translational Medicine (T.K., R.I., K. Ratnik, K. Rull, M.L.), University of Tartu, Tartu, Estonia
| |
Collapse
|
9
|
Effect of Chlorpyrifos on human extravillous-like trophoblast cells. Reprod Toxicol 2019; 90:118-125. [PMID: 31509763 DOI: 10.1016/j.reprotox.2019.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 09/03/2019] [Accepted: 09/06/2019] [Indexed: 01/11/2023]
Abstract
An increased risk of pregnancy disorders has been reported in women and animal models exposed to organophosphate pesticides. However, less information is available on impacts to human placental function. Here, we addressed the impact of chlorpyrifos (CPF) on extravillous cytotrophoblasts (evCTB) employing HTR8/SVneo cells as an in vitro model. Cell proliferation, migration and invasion were not affected by CPF under conditions where cell viability was not compromised; however, we observed reduced expression of genes for vascular endothelial growth factor receptor 1, hypoxia-inducible factor 1-alpha, peroxisome proliferator activated receptor gamma, and the β-subunit of human chorionic gonadotropin. These results are the first effects reported by organophosphate pesticide in evCTB cells and show altered expression of several genes important for placental development that could serve as potential biomarkers for future research.
Collapse
|
10
|
Modulation of Receptor Tyrosine Kinase Activity through Alternative Splicing of Ligands and Receptors in the VEGF-A/VEGFR Axis. Cells 2019; 8:cells8040288. [PMID: 30925751 PMCID: PMC6523102 DOI: 10.3390/cells8040288] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 03/19/2019] [Accepted: 03/22/2019] [Indexed: 12/14/2022] Open
Abstract
Vascular endothelial growth factor A (VEGF-A) signaling is essential for physiological and pathological angiogenesis. Alternative splicing of the VEGF-A pre-mRNA gives rise to a pro-angiogenic family of isoforms with a differing number of amino acids (VEGF-Axxxa), as well as a family of isoforms with anti-angiogenic properties (VEGF-Axxxb). The biological functions of VEGF-A proteins are mediated by a family of cognate protein tyrosine kinase receptors, known as the VEGF receptors (VEGFRs). VEGF-A binds to both VEGFR-1, largely suggested to function as a decoy receptor, and VEGFR-2, the predominant signaling receptor. Both VEGFR-1 and VEGFR-2 can also be alternatively spliced to generate soluble isoforms (sVEGFR-1/sVEGFR-2). The disruption of the splicing of just one of these genes can result in changes to the entire VEGF-A/VEGFR signaling axis, such as the increase in VEGF-A165a relative to VEGF-A165b resulting in increased VEGFR-2 signaling and aberrant angiogenesis in cancer. Research into this signaling axis has recently focused on manipulating the splicing of these genes as a potential therapeutic avenue in disease. Therefore, further research into understanding the mechanisms by which the splicing of VEGF-A/VEGFR-1/VEGFR-2 is regulated will help in the development of drugs aimed at manipulating splicing or inhibiting specific splice isoforms in a therapeutic manner.
Collapse
|
11
|
Genome-wide atlas of alternative polyadenylation in the forage legume red clover. Sci Rep 2018; 8:11379. [PMID: 30054540 PMCID: PMC6063945 DOI: 10.1038/s41598-018-29699-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 07/05/2018] [Indexed: 12/13/2022] Open
Abstract
Studies on prevalence and significance of alternative polyadenylation (APA) in plants have been so far limited mostly to the model plants. Here, a genome-wide analysis of APA was carried out in different tissue types in the non-model forage legume red clover (Trifolium pratense L). A profile of poly(A) sites in different tissue types was generated using so-called 'poly(A)-tag sequencing' (PATseq) approach. Our analysis revealed tissue-wise dynamics of usage of poly(A) sites located at different genomic locations. We also identified poly(A) sites and underlying genes displaying APA in different tissues. Functional categories enriched in groups of genes manifesting APA between tissue types were determined. Analysis of spatial expression of genes encoding different poly(A) factors showed significant differential expression of genes encoding orthologs of FIP1(V) and PCFS4, suggesting that these two factors may play a role in regulating spatial APA in red clover. Our analysis also revealed a high degree of conservation in diverse plant species of APA events in mRNAs encoding two key polyadenylation factors, CPSF30 and FIP1(V). Together with our previously reported study of spatial gene expression in red clover, this study will provide a comprehensive account of transcriptome dynamics in this non-model forage legume.
Collapse
|
12
|
Failla CM, Carbo M, Morea V. Positive and Negative Regulation of Angiogenesis by Soluble Vascular Endothelial Growth Factor Receptor-1. Int J Mol Sci 2018; 19:ijms19051306. [PMID: 29702562 PMCID: PMC5983705 DOI: 10.3390/ijms19051306] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 04/23/2018] [Accepted: 04/24/2018] [Indexed: 12/20/2022] Open
Abstract
Vascular endothelial growth factor receptor (VEGFR)-1 exists in different forms, derived from alternative splicing of the same gene. In addition to the transmembrane form, endothelial cells produce a soluble VEGFR-1 (sVEGFR-1) isoform, whereas non-endothelial cells produce both sVEGFR-1 and a different soluble molecule, known as soluble fms-like tyrosine kinase (sFlt)1-14. By binding members of the vascular endothelial growth factor (VEGF) family, the soluble forms reduce the amounts of VEGFs available for the interaction with their transmembrane receptors, thereby negatively regulating VEGFR-mediated signaling. In agreement with this activity, high levels of circulating sVEGFR-1 or sFlt1-14 are associated with different pathological conditions involving vascular dysfunction. Moreover, sVEGFR-1 and sFlt1-14 have an additional role in angiogenesis: they are deposited in the endothelial cell and pericyte extracellular matrix, and interact with cell membrane components. Interaction of sVEGFR-1 with α5β1 integrin on endothelial cell membranes regulates vessel growth, triggering a dynamic, pro-angiogenic phenotype. Interaction of sVEGFR-1/sFlt1-14 with cell membrane glycosphingolipids in lipid rafts controls kidney cell morphology and glomerular barrier functions. These cell⁻matrix contacts represent attractive novel targets for pharmacological intervention in addition to those addressing interactions between VEGFs and their receptors.
Collapse
Affiliation(s)
| | - Miriam Carbo
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University, 00185 Rome, Italy.
| | - Veronica Morea
- National Research Council of Italy (CNR), Department of Biochemical Sciences "A. Rossi Fanelli", Institute of Molecular Biology and Pathology c/o, Sapienza University, 00185 Rome, Italy.
| |
Collapse
|
13
|
Ashar-Patel A, Kaymaz Y, Rajakumar A, Bailey JA, Karumanchi SA, Moore MJ. FLT1 and transcriptome-wide polyadenylation site (PAS) analysis in preeclampsia. Sci Rep 2017; 7:12139. [PMID: 28939845 PMCID: PMC5610261 DOI: 10.1038/s41598-017-11639-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 08/25/2017] [Indexed: 12/18/2022] Open
Abstract
Maternal symptoms of preeclampsia (PE) are primarily driven by excess anti-angiogenic factors originating from the placenta. Chief among these are soluble Flt1 proteins (sFlt1s) produced from alternatively polyadenylated mRNA isoforms. Here we used polyadenylation site sequencing (PAS-Seq) of RNA from normal and PE human placentae to interrogate transcriptome-wide gene expression and alternative polyadenylation signatures associated with early-onset PE (EO-PE; symptom onset < 34 weeks) and late-onset PE (LO-PE; symptom onset > 34 weeks) cohorts. While we observed no general shift in alternative polyadenylation associated with PE, the EO-PE and LO-PE cohorts do exhibit gene expression profiles distinct from both each other and from normal placentae. The only two genes upregulated across all transcriptome-wide PE analyses to date (microarray, RNA-Seq and PAS-Seq) are NRIP1 (RIP140), a transcriptional co-regulator linked to metabolic syndromes associated with obesity, and Flt1. Consistent with sFlt1 overproduction being a significant driver of clinical symptoms, placental Flt1 mRNA levels strongly correlate with maternal blood pressure. For Flt1, just three mRNA isoforms account for > 94% of all transcripts, with increased transcription of the entire locus driving Flt1 upregulation in both EO-PE and LO-PE. These three isoforms thus represent potential targets for therapeutic RNA interference (RNAi) in both early and late presentations.
Collapse
Affiliation(s)
- Ami Ashar-Patel
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Yasin Kaymaz
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Boston, MA, USA
| | - Augustine Rajakumar
- Departments of Gynecology and Obstetrics, Emory University, Atlanta, USA.,Departments of Medicine, Obstetrics and Gynecology and Center for Vascular Biology Research, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Jeffrey A Bailey
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Boston, MA, USA.,Division of Transfusion Medicine, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - S Ananth Karumanchi
- Departments of Medicine, Obstetrics and Gynecology and Center for Vascular Biology Research, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Melissa J Moore
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
14
|
Bioinformatics analysis of alternative polyadenylation in green alga Chlamydomonas reinhardtii using transcriptome sequences from three different sequencing platforms. G3-GENES GENOMES GENETICS 2014; 4:871-83. [PMID: 24626288 PMCID: PMC4025486 DOI: 10.1534/g3.114.010249] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Messenger RNA 3′-end formation is an essential posttranscriptional processing step for most eukaryotic genes. Different from plants and animals where AAUAAA and its variants routinely are found as the main poly(A) signal, Chlamydomonas reinhardtii uses UGUAA as the major poly(A) signal. The advance of sequencing technology provides an enormous amount of sequencing data for us to explore the variations of poly(A) signals, alternative polyadenylation (APA), and its relationship with splicing in this algal species. Through genome-wide analysis of poly(A) sites in C. reinhardtii, we identified a large number of poly(A) sites: 21,041 from Sanger expressed sequence tags, 88,184 from 454, and 195,266 from Illumina sequence reads. In comparison with previous collections, more new poly(A) sites are found in coding sequences and intron and intergenic regions by deep-sequencing. Interestingly, G-rich signals are particularly abundant in intron and intergenic regions. The prevalence of different poly(A) signals between coding sequences and a 3′-untranslated region implies potentially different polyadenylation mechanisms. Our data suggest that the APA occurs in about 68% of C. reinhardtii genes. Using Gene Ontolgy analysis, we found most of the APA genes are involved in RNA regulation and metabolic process, protein synthesis, hydrolase, and ligase activities. Moreover, intronic poly(A) sites are more abundant in constitutively spliced introns than retained introns, suggesting an interplay between polyadenylation and splicing. Our results support that APA, as in higher eukaryotes, may play significant roles in increasing transcriptome diversity and gene expression regulation in this algal species. Our datasets also provide useful information for accurate annotation of transcript ends in C. reinhardtii.
Collapse
|
15
|
Regulation of the Ras-MAPK and PI3K-mTOR Signalling Pathways by Alternative Splicing in Cancer. Int J Cell Biol 2013; 2013:568931. [PMID: 24078813 PMCID: PMC3775402 DOI: 10.1155/2013/568931] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 07/26/2013] [Indexed: 01/21/2023] Open
Abstract
Alternative splicing is a fundamental step in regulation of gene expression of many tumor suppressors and oncogenes in cancer. Signalling through the Ras-MAPK and PI3K-mTOR pathways is misregulated and hyperactivated in most types of cancer. However, the regulation of the Ras-MAPK and PI3K-mTOR signalling pathways by alternative splicing is less well established. Recent studies have shown the contribution of alternative splicing regulation of these signalling pathways which can lead to cellular transformation, cancer development, and tumor maintenance. This review will discuss findings in the literature which describe new modes of regulation of components of the Ras-MAPK and PI3K-mTOR signalling pathways by alternative splicing. We will also describe the mechanisms by which signals from extracellular stimuli can be communicated to the splicing machinery and to specific RNA-binding proteins that ultimately control exon definition events.
Collapse
|
16
|
TNFSF15 inhibits vasculogenesis by regulating relative levels of membrane-bound and soluble isoforms of VEGF receptor 1. Proc Natl Acad Sci U S A 2013; 110:13863-8. [PMID: 23918400 DOI: 10.1073/pnas.1304529110] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Mouse bone marrow-derived Lin(-)-Sca-1(+) endothelial progenitor cell (EPC) has pluripotent abilities such as supporting neovascularization. Vascular endothelial growth factor (VEGF) receptor 1 (VEGFR1) (Flt1) recognizes various VEGF isoforms and is critically implicated in a wide range of physiological and pathological settings, including vasculogenesis. Mouse EPC expresses two isoforms of VEGFR1: mFlt1, which transmits ligand-induced signals; and sFlt1, which acts as a negative regulator by sequestering ligands of VEGF receptors. How the relative levels of mFlt1 and sFlt1 are regulated is not yet clear. We report here that tumor necrosis factor superfamily 15 (TNFSF15) (also known as VEGI or TL1A), an endothelial cell-secreted cytokine, simultaneously promotes mFlt1 degradation and up-regulates sFlt1 expression in EPC, giving rise to disruption of VEGF- or PlGF-induced activation of eNOS and MAPK p38 and effective inhibition of VEGF-driven, EPC-supported vasculogenesis in a murine Matrigel implant model. TNFSF15 treatment of EPC cultures facilitates Akt deactivation-dependent, ubiquitin-assisted degradation of mFlt1 and stimulates sFlt1 expression by activating the PKC, Src, and Erk1/2 signaling pathway. Additionally, TNFSF15 promotes alternative splicing of the Flt1 gene in favor of sFlt1 production by down-regulating nuclear protein Jumonji domain-containing protein 6 (Jmjd6), thus alleviating Jmjd6-inhibited sFlt1 expression. These findings indicate that TNFSF15 is a key component of a molecular mechanism that negatively modulates EPC-supported vasculogenesis through regulation of the relative levels of mFlt1 and sFlt1 in EPC.
Collapse
|
17
|
Raikwar NS, Liu KZ, Thomas CP. Protein kinase C regulates FLT1 abundance and stimulates its cleavage in vascular endothelial cells with the release of a soluble PlGF/VEGF antagonist. Exp Cell Res 2013; 319:2578-87. [PMID: 23911939 DOI: 10.1016/j.yexcr.2013.07.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Revised: 06/25/2013] [Accepted: 07/09/2013] [Indexed: 01/18/2023]
Abstract
FLT1 and its soluble form (sFLT1) arise as alternate transcripts from the same gene and sFLT1 can antagonize the effect of vascular endothelial growth factor (VEGF) on its cognate receptors. We investigated the effect of VEGF and protein kinase C (PKC) activation on sFLT1 abundance. We demonstrated that VEGF stimulates sFLT1 and FLT1 mRNA and protein levels in vascular endothelial cells via VEGFR2 and PKC. Using an FLT1 expression vector with N and C-terminal epitope tags, we show that PKC activation increases the cleavage of FLT1 into an N-terminal extracellular fragment and a C-terminal intracellular fragment with the cleavage occurring adjacent to the transmembrane domain. The trafficking and glycosylation inhibitors brefeldin, monensin and tunicamycin substantially reduced cleavage and release of the N-terminal ectodomain of FLT1 and inhibited secretion of the isoforms of sFLT1. The shed FLT1 ectodomain can bind VEGF and PlGF and inhibit VEGF-induced vascular tube formation thus confirming that it is functionally equivalent to the alternately spliced and secreted sFLT1 isoforms.
Collapse
Affiliation(s)
- Nandita S Raikwar
- Department of Internal Medicine, University of Iowa College of Medicine, Iowa City, IA, USA
| | | | | |
Collapse
|
18
|
Kelemen O, Convertini P, Zhang Z, Wen Y, Shen M, Falaleeva M, Stamm S. Function of alternative splicing. Gene 2013; 514:1-30. [PMID: 22909801 PMCID: PMC5632952 DOI: 10.1016/j.gene.2012.07.083] [Citation(s) in RCA: 524] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 07/21/2012] [Accepted: 07/30/2012] [Indexed: 12/15/2022]
Abstract
Almost all polymerase II transcripts undergo alternative pre-mRNA splicing. Here, we review the functions of alternative splicing events that have been experimentally determined. The overall function of alternative splicing is to increase the diversity of mRNAs expressed from the genome. Alternative splicing changes proteins encoded by mRNAs, which has profound functional effects. Experimental analysis of these protein isoforms showed that alternative splicing regulates binding between proteins, between proteins and nucleic acids as well as between proteins and membranes. Alternative splicing regulates the localization of proteins, their enzymatic properties and their interaction with ligands. In most cases, changes caused by individual splicing isoforms are small. However, cells typically coordinate numerous changes in 'splicing programs', which can have strong effects on cell proliferation, cell survival and properties of the nervous system. Due to its widespread usage and molecular versatility, alternative splicing emerges as a central element in gene regulation that interferes with almost every biological function analyzed.
Collapse
Affiliation(s)
- Olga Kelemen
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Paolo Convertini
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Zhaiyi Zhang
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Yuan Wen
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Manli Shen
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Marina Falaleeva
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Stefan Stamm
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| |
Collapse
|
19
|
Vorlová S, Rocco G, Lefave CV, Jodelka FM, Hess K, Hastings ML, Henke E, Cartegni L. Induction of antagonistic soluble decoy receptor tyrosine kinases by intronic polyA activation. Mol Cell 2011; 43:927-39. [PMID: 21925381 DOI: 10.1016/j.molcel.2011.08.009] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 04/18/2011] [Accepted: 08/02/2011] [Indexed: 01/23/2023]
Abstract
Alternative intronic polyadenylation (IPA) can generate truncated protein isoforms with significantly altered functions. Here, we describe 31 dominant-negative, secreted variant isoforms of receptor tyrosine kinases (RTKs) that are produced by activation of intronic poly(A) sites. We show that blocking U1-snRNP can activate IPA, indicating a larger role for U1-snRNP in RNA surveillance. Moreover, we report the development of an antisense-based method to effectively and specifically activate expression of individual soluble decoy RTKs (sdRTKs) to alter signaling, with potential therapeutic implications. In particular, a quantitative switch from signal transducing full-length vascular endothelial growth factor receptor-2 (VEGFR2/KDR) to a dominant-negative sKDR results in a strong antiangiogenic effect both on directly targeted cells and on naive cells exposed to conditioned media, suggesting a role for this approach in interfering with angiogenic paracrine and autocrine loops.
Collapse
Affiliation(s)
- Sandra Vorlová
- Molecular Pharmacology and Chemistry, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Groesch KA, Torry RJ, Wilber AC, Abrams R, Bieniarz A, Guilbert LJ, Torry DS. Nitric oxide generation affects pro- and anti-angiogenic growth factor expression in primary human trophoblast. Placenta 2011; 32:926-31. [PMID: 21963217 DOI: 10.1016/j.placenta.2011.08.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 08/17/2011] [Accepted: 08/18/2011] [Indexed: 12/20/2022]
Abstract
OBJECTIVES Preeclampsia is associated with reduced trophoblast placenta growth factor (PGF) expression, elevated soluble fms-like tyrosine kinase-1 (sFlt-1) and decreased bioactivity of nitric oxide (NO). Elevated sFlt-1 reduces bio-availability of PGF and vascular endothelial growth factor (VEGF) leading to maternal endothelial dysfunction. Although NO can regulate gene expression, its ability to regulate trophoblast expression of angiogenic growth factors is not known. STUDY DESIGN Human primary term trophoblast and JEG-3 choriocarcinoma cells were cultured under 21%O(2) or 1%O(2) conditions in the presence or absence of NO donor (SNP) or inhibitor (L-NAME). Effects on PGF, VEGF and Flt-1 isoform mRNA expression were determined by quantitative real-time PCR. Changes in expression of soluble protein isoforms of FLT-1 was monitored by ELISA. RESULTS Hypoxia decreased PGF mRNA but increased VEGF, sFlt-1 and Flt-1 mRNA expression in trophoblast. Generation of NO in trophoblast under 1%O(2) culture conditions significantly reversed sFlt-1 mRNA and protein expression, independent of mFlt-1. Conversely NO generation in hypoxic trophoblast increased VEGF and PGF mRNA expression. CONCLUSIONS NO production in primary human trophoblast cultures had divergent effects on pro-angiogenic (PGF, VEGF) versus anti-angiogenic (sFlt-1) mRNA expression, resulting in an enhanced pro-angiogenic gene expression environment in vitro.
Collapse
Affiliation(s)
- K A Groesch
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
VEGFs (vascular endothelial growth factors) control vascular development during embryogenesis and the function of blood vessels and lymphatic vessels in the adult. There are five related mammalian ligands, which act through three receptor tyrosine kinases. Signalling is modulated through neuropilins, which act as VEGF co-receptors. Heparan sulfate and integrins are also important modulators of VEGF signalling. Therapeutic agents that interfere with VEGF signalling have been developed with the aim of decreasing angiogenesis in diseases that involve tissue growth and inflammation, such as cancer. The present review will outline the current understanding and consequent biology of VEGF receptor signalling.
Collapse
|
22
|
Prevention of gravidic endothelial hypertension by aspirin treatment administered from the 8th week of gestation. Hypertens Res 2011; 34:1116-20. [DOI: 10.1038/hr.2011.111] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
23
|
Jebbink J, Keijser R, Veenboer G, van der Post J, Ris-Stalpers C, Afink G. Expression of placental FLT1 transcript variants relates to both gestational hypertensive disease and fetal growth. Hypertension 2011; 58:70-6. [PMID: 21518965 DOI: 10.1161/hypertensionaha.110.164079] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The recent discovery of additional alternative spliced FLT1 transcripts encoding novel soluble (s)FLT1 protein isoforms complicates both the predictive value and functional implications of sFLT1 in preeclampsia. We investigated FLT1 expression levels and splicing patterns in placentas of normotensive and preeclamptic women, and established the tissue specificity of all FLT1 transcript variants. mRNA levels of sFLT1 splice variants were determined by real-time polymerase chain reaction in 21 normal human tissues and placental biopsies from 91 normotensive and 55 preeclamptic women. Cellular localization of placental FLT1 expression was established by RNA in situ hybridization. Of all tissues investigated, placenta has by far the highest FLT1 mRNA expression level, mainly localized in the syncytiotrophoblast layer. More than 80% of placental transcripts correspond to sFLT1_v2. Compared with normotensive placenta, preeclamptic placenta has ≈3-fold higher expression of all FLT1 transcript variants (P<0.001), with a slight shift in favor of sFLT1_v1. Although to a lesser degree, transcript levels are also increased in placenta from normotensive women that deliver a small for gestational age neonate. We conclude that sFLT isoform-specific assays could potentially improve the accuracy of current sFLT1 assays for the prediction of preeclampsia. However, placental FLT1 transcript levels are increased not only in preeclampsia but also in normotensive pregnancy with a small for gestational age fetus. This may indicate a common pathway involved in the development of both conditions but complicates the use of circulating sFLT1 protein levels for the prediction or diagnosis of preeclampsia alone.
Collapse
Affiliation(s)
- Jiska Jebbink
- Reproductive Biology Laboratory, Academic Medical Center, University of Amsterdam, 1100 DD Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|