1
|
Ginno PA, Borgers H, Ernst C, Schneider A, Behm M, Aitken SJ, Taylor MS, Odom DT. Single-mitosis dissection of acute and chronic DNA mutagenesis and repair. Nat Genet 2024; 56:913-924. [PMID: 38627597 PMCID: PMC11096113 DOI: 10.1038/s41588-024-01712-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 03/08/2024] [Indexed: 04/24/2024]
Abstract
How chronic mutational processes and punctuated bursts of DNA damage drive evolution of the cancer genome is poorly understood. Here, we demonstrate a strategy to disentangle and quantify distinct mechanisms underlying genome evolution in single cells, during single mitoses and at single-strand resolution. To distinguish between chronic (reactive oxygen species (ROS)) and acute (ultraviolet light (UV)) mutagenesis, we microfluidically separate pairs of sister cells from the first mitosis following burst UV damage. Strikingly, UV mutations manifest as sister-specific events, revealing mirror-image mutation phasing genome-wide. In contrast, ROS mutagenesis in transcribed regions is reduced strand agnostically. Successive rounds of genome replication over persisting UV damage drives multiallelic variation at CC dinucleotides. Finally, we show that mutation phasing can be resolved to single strands across the entire genome of liver tumors from F1 mice. This strategy can be broadly used to distinguish the contributions of overlapping cancer relevant mutational processes.
Collapse
Affiliation(s)
- Paul Adrian Ginno
- German Cancer Research Center (DKFZ), Division of Regulatory Genomics and Cancer Evolution, Heidelberg, Germany
| | - Helena Borgers
- German Cancer Research Center (DKFZ), Division of Regulatory Genomics and Cancer Evolution, Heidelberg, Germany
| | - Christina Ernst
- Cancer Research UK - Cambridge Institute, University of Cambridge, Cambridge, UK
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Anja Schneider
- German Cancer Research Center (DKFZ), Division of Regulatory Genomics and Cancer Evolution, Heidelberg, Germany
| | - Mikaela Behm
- German Cancer Research Center (DKFZ), Division of Regulatory Genomics and Cancer Evolution, Heidelberg, Germany
| | - Sarah J Aitken
- Cancer Research UK - Cambridge Institute, University of Cambridge, Cambridge, UK
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
- Department of Histopathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Martin S Taylor
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.
| | - Duncan T Odom
- German Cancer Research Center (DKFZ), Division of Regulatory Genomics and Cancer Evolution, Heidelberg, Germany.
- Cancer Research UK - Cambridge Institute, University of Cambridge, Cambridge, UK.
| |
Collapse
|
2
|
Chakraborty A, Tapryal N, Islam A, Mitra S, Hazra T. Transcription coupled base excision repair in mammalian cells: So little is known and so much to uncover. DNA Repair (Amst) 2021; 107:103204. [PMID: 34390916 DOI: 10.1016/j.dnarep.2021.103204] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/06/2021] [Accepted: 08/03/2021] [Indexed: 12/31/2022]
Abstract
Oxidized bases in the genome has been implicated in various human pathologies, including cancer, aging and neurological diseases. Their repair is initiated with excision by DNA glycosylases (DGs) in the base excision repair (BER) pathway. Among the five oxidized base-specific human DGs, OGG1 and NTH1 preferentially excise oxidized purines and pyrimidines, respectively, while NEILs remove both oxidized purines and pyrimidines. However, little is known about why cells possess multiple DGs with overlapping substrate specificities. Studies of the past decades revealed that some DGs are involved in repair of oxidized DNA base lesions in the actively transcribed regions. Preferential removal of lesions from the transcribed strands of active genes, called transcription-coupled repair (TCR), was discovered as a distinct sub-pathway of nucleotide excision repair; however, such repair of oxidized DNA bases had not been established until our recent demonstration of NEIL2's role in TC-BER of the nuclear genome. We have shown that NEIL2 forms a distinct transcriptionally active, repair proficient complex. More importantly, we for the first time reconstituted TC-BER using purified components. These studies are important for characterizing critical requirement for the process. However, because NEIL2 cannot remove all types of oxidized bases, it is unlikely to be the only DNA glycosylase involved in TC-BER. Hence, we postulate TC-BER process to be universally involved in maintaining the functional integrity of active genes, especially in post-mitotic, non-growing cells. We further postulate that abnormal bases (e.g., uracil), and alkylated and other small DNA base adducts are also repaired via TC-BER. In this review, we have provided an overview of the various aspects of TC-BER in mammalian cells with the hope of generating significant interest of many researchers in the field. Further studies aimed at better understanding the mechanistic aspects of TC-BER could help elucidate the linkage of TC-BER deficiency to various human pathologies.
Collapse
Affiliation(s)
- Anirban Chakraborty
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Nisha Tapryal
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Azharul Islam
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Sankar Mitra
- Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Tapas Hazra
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
3
|
Després PC, Dubé AK, Seki M, Yachie N, Landry CR. Perturbing proteomes at single residue resolution using base editing. Nat Commun 2020; 11:1871. [PMID: 32313011 PMCID: PMC7170841 DOI: 10.1038/s41467-020-15796-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 03/27/2020] [Indexed: 01/18/2023] Open
Abstract
Base editors derived from CRISPR-Cas9 systems and DNA editing enzymes offer an unprecedented opportunity for the precise modification of genes, but have yet to be used at a genome-scale throughput. Here, we test the ability of the Target-AID base editor to systematically modify genes genome-wide by targeting yeast essential genes. We mutate around 17,000 individual sites in parallel across more than 1500 genes. We identify over 700 sites at which mutations have a significant impact on fitness. Using previously determined and preferred Target-AID mutational outcomes, we find that gRNAs with significant effects on fitness are enriched in variants predicted to be deleterious based on residue conservation and predicted protein destabilization. We identify key features influencing effective gRNAs in the context of base editing. Our results show that base editing is a powerful tool to identify key amino acid residues at the scale of proteomes.
Collapse
Affiliation(s)
- Philippe C Després
- Département de Biochimie, Microbiologie et Bio-informatique, Faculté de Sciences et Génie, Université Laval, Québec, QC, G1V 0A6, Canada
- PROTEO, le regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines, Université Laval, Québec, QC, G1V 0A6, Canada
- Centre de Recherche en Données Massives (CRDM), Université Laval, Québec, QC, G1V 0A6, Canada
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Alexandre K Dubé
- Département de Biochimie, Microbiologie et Bio-informatique, Faculté de Sciences et Génie, Université Laval, Québec, QC, G1V 0A6, Canada
- PROTEO, le regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines, Université Laval, Québec, QC, G1V 0A6, Canada
- Centre de Recherche en Données Massives (CRDM), Université Laval, Québec, QC, G1V 0A6, Canada
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, G1V 0A6, Canada
- Département de Biologie, Faculté de Sciences et Génie, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Motoaki Seki
- Research Center for Advanced Science and Technology, Synthetic Biology Division, University of Tokyo, Tokyo, 4-6-1 Komaba, Meguro-ku, 153-8904, Japan
| | - Nozomu Yachie
- Research Center for Advanced Science and Technology, Synthetic Biology Division, University of Tokyo, Tokyo, 4-6-1 Komaba, Meguro-ku, 153-8904, Japan.
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo, Tokyo, Japan.
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan.
| | - Christian R Landry
- Département de Biochimie, Microbiologie et Bio-informatique, Faculté de Sciences et Génie, Université Laval, Québec, QC, G1V 0A6, Canada.
- PROTEO, le regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines, Université Laval, Québec, QC, G1V 0A6, Canada.
- Centre de Recherche en Données Massives (CRDM), Université Laval, Québec, QC, G1V 0A6, Canada.
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, G1V 0A6, Canada.
- Département de Biologie, Faculté de Sciences et Génie, Université Laval, Québec, QC, G1V 0A6, Canada.
| |
Collapse
|
4
|
Alkyladenine DNA glycosylase associates with transcription elongation to coordinate DNA repair with gene expression. Nat Commun 2019; 10:5460. [PMID: 31784530 PMCID: PMC6884549 DOI: 10.1038/s41467-019-13394-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 11/05/2019] [Indexed: 12/17/2022] Open
Abstract
Base excision repair (BER) initiated by alkyladenine DNA glycosylase (AAG) is essential for removal of aberrantly methylated DNA bases. Genome instability and accumulation of aberrant bases accompany multiple diseases, including cancer and neurological disorders. While BER is well studied on naked DNA, it remains unclear how BER efficiently operates on chromatin. Here, we show that AAG binds to chromatin and forms complex with RNA polymerase (pol) II. This occurs through direct interaction with Elongator and results in transcriptional co-regulation. Importantly, at co-regulated genes, aberrantly methylated bases accumulate towards the 3′end in regions enriched for BER enzymes AAG and APE1, Elongator and active RNA pol II. Active transcription and functional Elongator are further crucial to ensure efficient BER, by promoting AAG and APE1 chromatin recruitment. Our findings provide insights into genome stability maintenance in actively transcribing chromatin and reveal roles of aberrantly methylated bases in regulation of gene expression. How genome stability is maintained at regions of active transcription is currently not entirely clear. Here, the authors reveal an association between base excision repair factors and transcription elongation to modulate DNA repair.
Collapse
|
5
|
Gonzalez-Hunt CP, Wadhwa M, Sanders LH. DNA damage by oxidative stress: Measurement strategies for two genomes. CURRENT OPINION IN TOXICOLOGY 2018. [DOI: 10.1016/j.cotox.2017.11.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
6
|
Electronic cigarette aerosols suppress cellular antioxidant defenses and induce significant oxidative DNA damage. PLoS One 2017; 12:e0177780. [PMID: 28542301 PMCID: PMC5436899 DOI: 10.1371/journal.pone.0177780] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 05/03/2017] [Indexed: 01/30/2023] Open
Abstract
Background Electronic cigarette (EC) aerosols contain unique compounds in addition to toxicants and carcinogens traditionally found in tobacco smoke. Studies are warranted to understand the public health risks of ECs. Objective The aim of this study was to determine the genotoxicity and the mechanisms induced by EC aerosol extracts on human oral and lung epithelial cells. Methods Cells were exposed to EC aerosol or mainstream smoke extracts and DNA damage was measured using the primer anchored DNA damage detection assay (q-PADDA) and 8-oxo-dG ELISA assay. Cell viability, reactive oxygen species (ROS) and total antioxidant capacity (TAC) were measured using standard methods. mRNA and protein expression were evaluated by RT-PCR and western blot, respectively. Results EC aerosol extracts induced DNA damage in a dose-dependent manner, but independently of nicotine concentration. Overall, EC aerosol extracts induced significantly less DNA damage than mainstream smoke extracts, as measured by q-PADDA. However, the levels of oxidative DNA damage, as indicated by the presence of 8-oxo-dG, a highly mutagenic DNA lesion, were similar or slightly higher after exposure to EC aerosol compared to mainstream smoke extracts. Mechanistically, while exposure to EC extracts significantly increased ROS, it decreased TAC as well as the expression of 8-oxoguanine DNA glycosylase (OGG1), an enzyme essential for the removal of oxidative DNA damage. Conclusions Exposure to EC aerosol extracts suppressed the cellular antioxidant defenses and led to significant DNA damage. These findings emphasize the urgent need to investigate the potential long-term cancer risk of exposure to EC aerosol for vapers and the general public.
Collapse
|
7
|
Evans MD, Mistry V, Singh R, Gackowski D, Różalski R, Siomek-Gorecka A, Phillips DH, Zuo J, Mullenders L, Pines A, Nakabeppu Y, Sakumi K, Sekiguchi M, Tsuzuki T, Bignami M, Oliński R, Cooke MS. Nucleotide excision repair of oxidised genomic DNA is not a source of urinary 8-oxo-7,8-dihydro-2'-deoxyguanosine. Free Radic Biol Med 2016; 99:385-391. [PMID: 27585947 DOI: 10.1016/j.freeradbiomed.2016.08.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 08/09/2016] [Accepted: 08/12/2016] [Indexed: 10/21/2022]
Abstract
Urinary 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) is a widely measured biomarker of oxidative stress. It has been commonly assumed to be a product of DNA repair, and therefore reflective of DNA oxidation. However, the source of urinary 8-oxodGuo is not understood, although potential confounding contributions from cell turnover and diet have been ruled out. Clearly it is critical to understand the precise biological origins of this important biomarker, so that the target molecule that is oxidised can be identified, and the significance of its excretion can be interpreted fully. In the present study we aimed to assess the contributions of nucleotide excision repair (NER), by both the global genome NER (GG-NER) and transcription-coupled NER (TC-NER) pathways, and sanitisation of the dGTP pool (e.g. via the activity of the MTH1 protein), on the production of 8-oxodGuo, using selected genetically-modified mice. In xeroderma pigmentosum A (XPA) mice, in which GG-NER and TC-NER are both defective, the urinary 8-oxodGuo data were unequivocal in ruling out a contribution from NER. In line with the XPA data, the production of urinary 8-oxodGuo was not affected in the xeroderma pigmentosum C mice, specifically excluding a role of the GG-NER pathway. The bulk of the literature supports the mechanism that the NER proteins are responsible for removing damage to the transcribed strand of DNA via TC-NER, and on this basis we also examined Cockayne Syndrome mice, which have a functional loss of TC-NER. These mice showed no difference in urinary 8-oxodGuo excretion, compared to wild type, demonstrating that TC-NER does not contribute to urinary 8-oxodGuo levels. These findings call into question whether genomic DNA is the primary source of urinary 8-oxodGuo, which would largely exclude it as a biomarker of DNA oxidation. The urinary 8-oxodGuo levels from the MTH1 mice (both knock-out and hMTH1-Tg) were not significantly different to the wild-type mice. We suggest that these findings are due to redundancy in the process, and that other enzymes substitute for the lack of MTH1, however the present study cannot determine whether or not the 2'-deoxyribonucleotide pool is the source of urinary 8-oxodGuo. On the basis of the above, urinary 8-oxodGuo is most accurately defined as a non-invasive biomarker of oxidative stress, derived from oxidatively generated damage to 2'-deoxyguanosine.
Collapse
Affiliation(s)
- Mark D Evans
- Oxidative Stress Group, University of Leicester, Leicester, United Kingdom.
| | - Vilas Mistry
- Oxidative Stress Group, University of Leicester, Leicester, United Kingdom
| | - Rajinder Singh
- Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester, United Kingdom
| | - Daniel Gackowski
- Department of Clinical Biochemistry, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum, Bydgoszcz, and Nicolaus Copernicus University in Toruń, Poland
| | - Rafał Różalski
- Department of Clinical Biochemistry, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum, Bydgoszcz, and Nicolaus Copernicus University in Toruń, Poland
| | - Agnieszka Siomek-Gorecka
- Department of Clinical Biochemistry, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum, Bydgoszcz, and Nicolaus Copernicus University in Toruń, Poland
| | - David H Phillips
- Section of Molecular Carcinogenesis, Institute of Cancer Research, Sutton, Surrey, United Kingdom
| | - Jie Zuo
- Section of Molecular Carcinogenesis, Institute of Cancer Research, Sutton, Surrey, United Kingdom
| | - Leon Mullenders
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Alex Pines
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Yusaku Nakabeppu
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Kunihiko Sakumi
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | | | - Teruhisa Tsuzuki
- Department of Medical Biophysics and Radiation Biology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Margherita Bignami
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Rome, Italy
| | - Ryszard Oliński
- Department of Clinical Biochemistry, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum, Bydgoszcz, and Nicolaus Copernicus University in Toruń, Poland
| | - Marcus S Cooke
- Oxidative Stress Group, University of Leicester, Leicester, United Kingdom; Department of Genetics, University of Leicester, United Kingdom.
| |
Collapse
|
8
|
Abstract
Nucleotide excision repair (NER) is a versatile pathway that removes helix-distorting DNA lesions from the genomes of organisms across the evolutionary scale, from bacteria to humans. The serial steps in NER involve recognition of lesions, adducts or structures that disrupt the DNA double helix, removal of a short oligonucleotide containing the offending lesion, synthesis of a repair patch copying the opposite undamaged strand, and ligation, to restore the DNA to its original form. Transcription-coupled repair (TCR) is a subpathway of NER dedicated to the repair of lesions that, by virtue of their location on the transcribed strands of active genes, encumber elongation by RNA polymerases. In this review, I report on recent findings that contribute to the elucidation of TCR mechanisms in the bacterium Escherichia coli, the yeast Saccharomyces cerevisiae and human cells. I review general models for the biochemical pathways and how and when cells might choose to utilize TCR or other pathways for repair or bypass of transcription-blocking DNA alterations.
Collapse
Affiliation(s)
- Graciela Spivak
- Biology Department, Stanford University, 385 Serra Mall, Stanford, CA, 94305-5020, USA.
| |
Collapse
|
9
|
Chakraborty A, Wakamiya M, Venkova-Canova T, Pandita RK, Aguilera-Aguirre L, Sarker AH, Singh DK, Hosoki K, Wood TG, Sharma G, Cardenas V, Sarkar PS, Sur S, Pandita TK, Boldogh I, Hazra TK. Neil2-null Mice Accumulate Oxidized DNA Bases in the Transcriptionally Active Sequences of the Genome and Are Susceptible to Innate Inflammation. J Biol Chem 2015; 290:24636-48. [PMID: 26245904 PMCID: PMC4598976 DOI: 10.1074/jbc.m115.658146] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 07/27/2015] [Indexed: 12/11/2022] Open
Abstract
Why mammalian cells possess multiple DNA glycosylases (DGs) with overlapping substrate ranges for repairing oxidatively damaged bases via the base excision repair (BER) pathway is a long-standing question. To determine the biological role of these DGs, null animal models have been generated. Here, we report the generation and characterization of mice lacking Neil2 (Nei-like 2). As in mice deficient in each of the other four oxidized base-specific DGs (OGG1, NTH1, NEIL1, and NEIL3), Neil2-null mice show no overt phenotype. However, middle-aged to old Neil2-null mice show the accumulation of oxidative genomic damage, mostly in the transcribed regions. Immuno-pulldown analysis from wild-type (WT) mouse tissue showed the association of NEIL2 with RNA polymerase II, along with Cockayne syndrome group B protein, TFIIH, and other BER proteins. Chromatin immunoprecipitation analysis from mouse tissue showed co-occupancy of NEIL2 and RNA polymerase II only on the transcribed genes, consistent with our earlier in vitro findings on NEIL2's role in transcription-coupled BER. This study provides the first in vivo evidence of genomic region-specific repair in mammals. Furthermore, telomere loss and genomic instability were observed at a higher frequency in embryonic fibroblasts from Neil2-null mice than from the WT. Moreover, Neil2-null mice are much more responsive to inflammatory agents than WT mice. Taken together, our results underscore the importance of NEIL2 in protecting mammals from the development of various pathologies that are linked to genomic instability and/or inflammation. NEIL2 is thus likely to play an important role in long term genomic maintenance, particularly in long-lived mammals such as humans.
Collapse
Affiliation(s)
- Anirban Chakraborty
- From the Department of Internal Medicine, Sealy Center for Molecular Medicine
| | - Maki Wakamiya
- Departments of Neurology and Neuroscience and Cell Biology, Transgenic Mouse Core Facility, University of Texas Medical Branch, Galveston, Texas 77555
| | | | - Raj K Pandita
- the Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030, and
| | | | - Altaf H Sarker
- the Department of Cancer and DNA Damage Responses, Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Dharmendra Kumar Singh
- the Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030, and
| | - Koa Hosoki
- From the Department of Internal Medicine, Sealy Center for Molecular Medicine
| | | | - Gulshan Sharma
- From the Department of Internal Medicine, Sealy Center for Molecular Medicine
| | - Victor Cardenas
- From the Department of Internal Medicine, Sealy Center for Molecular Medicine
| | | | - Sanjiv Sur
- From the Department of Internal Medicine, Sealy Center for Molecular Medicine
| | - Tej K Pandita
- the Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030, and
| | | | - Tapas K Hazra
- From the Department of Internal Medicine, Sealy Center for Molecular Medicine,
| |
Collapse
|
10
|
Detection of in vivo DNA damage induced by very low doses of mainstream and sidestream smoke extracts using a novel assay. Am J Prev Med 2015; 48:S102-10. [PMID: 25528699 DOI: 10.1016/j.amepre.2014.08.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 08/06/2014] [Accepted: 08/20/2014] [Indexed: 01/03/2023]
Abstract
BACKGROUND Mainstream (MS) smoke, the main smoke inhaled by active smokers, and sidestream (SS) smoke, the main component of secondhand smoke, induce a wide range of DNA lesions. Owing to technical limitations, the in vivo levels of tobacco-induced DNA damage are unknown. Recently, the authors developed a highly sensitive primer-anchored DNA damage detection assay (PADDA) to quantify endogenous and induced DNA damage. PURPOSE To quantify the in vivo levels of DNA damage induced by MS and SS smoke extracts in human cells using PADDA and define the strand-specific patterns of DNA damage and repair following exposure to diverse doses of MS and SS smoke. METHODS Human epithelial cells were exposed to escalating doses of hydrogen peroxide (H2O2), MS, or SS smoke. TP53 gene DNA damage was quantified using PADDA at various time points. DNA double-strand breaks were detected by immunofluorescence analysis of phosphorylated histone H2AX (γ-H2AX). Cell viability was determined by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay. Data were collected and analyzed by t-test in 2012-2014. RESULTS A dose-dependent increase in DNA damage was detected in vivo with increasing doses of H2O2, MS, and SS smoke. Even 1 hour of exposure to very low doses of MS or SS smoke resulted in significant DNA damage (p<0.01). MS and SS smoke induced distinctive strand-specific patterns of DNA damage and DNA repair kinetics. CONCLUSIONS Very low concentrations of MS and SS smoke induce significant DNA damage in human cells. Application of PADDA to population studies has major potential to establish biomarkers of susceptibility to tobacco-induced diseases.
Collapse
|
11
|
Cell-autonomous progeroid changes in conditional mouse models for repair endonuclease XPG deficiency. PLoS Genet 2014; 10:e1004686. [PMID: 25299392 PMCID: PMC4191938 DOI: 10.1371/journal.pgen.1004686] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 08/19/2014] [Indexed: 01/15/2023] Open
Abstract
As part of the Nucleotide Excision Repair (NER) process, the endonuclease XPG is involved in repair of helix-distorting DNA lesions, but the protein has also been implicated in several other DNA repair systems, complicating genotype-phenotype relationship in XPG patients. Defects in XPG can cause either the cancer-prone condition xeroderma pigmentosum (XP) alone, or XP combined with the severe neurodevelopmental disorder Cockayne Syndrome (CS), or the infantile lethal cerebro-oculo-facio-skeletal (COFS) syndrome, characterized by dramatic growth failure, progressive neurodevelopmental abnormalities and greatly reduced life expectancy. Here, we present a novel (conditional) Xpg−/− mouse model which -in a C57BL6/FVB F1 hybrid genetic background- displays many progeroid features, including cessation of growth, loss of subcutaneous fat, kyphosis, osteoporosis, retinal photoreceptor loss, liver aging, extensive neurodegeneration, and a short lifespan of 4–5 months. We show that deletion of XPG specifically in the liver reproduces the progeroid features in the liver, yet abolishes the effect on growth or lifespan. In addition, specific XPG deletion in neurons and glia of the forebrain creates a progressive neurodegenerative phenotype that shows many characteristics of human XPG deficiency. Our findings therefore exclude that both the liver as well as the neurological phenotype are a secondary consequence of derailment in other cell types, organs or tissues (e.g. vascular abnormalities) and support a cell-autonomous origin caused by the DNA repair defect itself. In addition they allow the dissection of the complex aging process in tissue- and cell-type-specific components. Moreover, our data highlight the critical importance of genetic background in mouse aging studies, establish the Xpg−/− mouse as a valid model for the severe form of human XPG patients and segmental accelerated aging, and strengthen the link between DNA damage and aging. Accumulation of DNA damage has been implicated in aging. Many premature aging syndromes are due to defective DNA repair systems. The endonuclease XPG is involved in repair of helix-distorting DNA lesions, and XPG defects cause the cancer-prone condition xeroderma pigmentosum (XP) alone or combined with the severe neurodevelopmental progeroid disorder Cockayne syndrome (CS). Here, we present a novel (conditional) Xpg−/− mouse model which -in a C57BL6/FVB F1 hybrid background- displays many progressive progeroid features, including early cessation of growth, cachexia, kyphosis, osteoporosis, neurodegeneration, liver aging, retinal degeneration, and reduced lifespan. In a constitutive mutant with a complex phenotype it is difficult to dissect cause and consequence. We have therefore generated liver- and forebrain-specific Xpg mutants and demonstrate that they exhibit progressive anisokaryosis and neurodegeneration, respectively, indicating that a cell-intrinsic repair defect in neurons can account for neuronal degeneration. These findings strengthen the link between DNA damage and the complex process of aging.
Collapse
|
12
|
Abstract
A quarter of a century has elapsed since the discovery of transcription-coupled repair (TCR), and yet our fascination with this process has not diminished. Nucleotide excision repair (NER) is a versatile pathway that removes helix-distorting DNA lesions from the genomes of organisms across the evolutionary scale, from bacteria to humans. TCR, defined as a subpathway of NER, is dedicated to the repair of lesions that, by virtue of their location on the transcribed strands of active genes, encumber elongation by RNA polymerases. In this review, we will report on newly identified proteins, protein modifications, and protein complexes that participate in TCR in Escherichia coli and in human cells. We will discuss general models for the biochemical pathways and how and when cells might choose to utilize TCR or other pathways for repair or bypass of transcription-blocking DNA alterations.
Collapse
Affiliation(s)
- Graciela Spivak
- Biology Department, Stanford University, 385 Serra Mall, Stanford, CA 94305-5020, USA.
| | - Ann K Ganesan
- Biology Department, Stanford University, 385 Serra Mall, Stanford, CA 94305-5020, USA.
| |
Collapse
|
13
|
Guo J, Hanawalt PC, Spivak G. Comet-FISH with strand-specific probes reveals transcription-coupled repair of 8-oxoGuanine in human cells. Nucleic Acids Res 2013; 41:7700-12. [PMID: 23775797 PMCID: PMC3763531 DOI: 10.1093/nar/gkt524] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Oxidized bases in DNA have been implicated in cancer, aging and neurodegenerative disease. We have developed an approach combining single-cell gel electrophoresis (comet) with fluorescence in situ hybridization (FISH) that enables the comparative quantification of low, physiologically relevant levels of DNA lesions in the respective strands of defined nucleotide sequences and in the genome overall. We have synthesized single-stranded probes targeting the termini of DNA segments of interest using a polymerase chain reaction-based method. These probes facilitate detection of damage at the single-molecule level, as the lesions are converted to DNA strand breaks by lesion-specific endonucleases or glycosylases. To validate our method, we have documented transcription-coupled repair of cyclobutane pyrimidine dimers in the ataxia telangiectasia-mutated (ATM) gene in human fibroblasts irradiated with 254 nm ultraviolet at 0.1 J/m2, a dose ∼100-fold lower than those typically used. The high specificity and sensitivity of our approach revealed that 7,8-dihydro-8-oxoguanine (8-oxoG) at an incidence of approximately three lesions per megabase is preferentially repaired in the transcribed strand of the ATM gene. We have also demonstrated that the hOGG1, XPA, CSB and UVSSA proteins, as well as actively elongating RNA polymerase II, are required for this process, suggesting cross-talk between DNA repair pathways.
Collapse
Affiliation(s)
- Jia Guo
- Department of Biology, Stanford University, 371 Serra Mall, Stanford, CA 94305-5020, USA
| | | | | |
Collapse
|
14
|
Odell ID, Wallace SS, Pederson DS. Rules of engagement for base excision repair in chromatin. J Cell Physiol 2013; 228:258-66. [PMID: 22718094 DOI: 10.1002/jcp.24134] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Most of the DNA in eukaryotes is packaged in tandemly arrayed nucleosomes that, together with numerous DNA- and nucleosome-associated enzymes and regulatory factors, make up chromatin. Chromatin modifying and remodeling agents help regulate access to selected DNA segments in chromatin, thereby facilitating transcription and DNA replication and repair. Studies of nucleotide excision repair (NER), single strand break repair (SSBR), and the homology-directed repair (HDR), and non-homologous end-joining (NHEJ) double strand break repair pathways have led to an "access-repair-restore" paradigm, in which chromatin in the vicinity of damaged DNA is disrupted, thereby enabling efficient repair and the subsequent repackaging of DNA into nucleosomes. When damage is extensive, these repair processes are accompanied by cell cycle checkpoint activation, which provides cells with sufficient time to either complete the repair or initiate apoptosis. It is not clear, however, if base excision repair (BER) of the ~20,000 or more oxidative DNA damages that occur daily in each nucleated human cell can be viewed through this same lens. Until recently, we did not know if BER requires or is accompanied by nucleosome disruption, and it is not yet clear that anything short of overwhelming oxidative damage (resulting in the shunting of DNA substrates into other repair pathways) results in checkpoint activation. This review highlights studies of how oxidatively damaged DNA in nucleosomes is discovered and repaired, and offers a working model of events associated with BER in chromatin that we hope will have heuristic value.
Collapse
Affiliation(s)
- Ian D Odell
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont 05405, USA
| | | | | |
Collapse
|