1
|
Lombardo Z, Mukerji I. Site-Specific Investigation of DNA Holliday Junction Dynamics and Structure with 6-Methylisoxanthopterin, a Fluorescent Guanine Analog. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.19.590264. [PMID: 38659790 PMCID: PMC11042373 DOI: 10.1101/2024.04.19.590264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
DNA Holliday Junction (HJ) formation and resolution is requisite for maintaining genomic stability in processes such as replication fork reversal and double-strand break repair. If HJs are not resolved, chromosome disjunction and aneuploidy result, hallmarks of tumor cells. To understand the structural features that lead to processing of these four-stranded joint molecule structures, we seek to identify structural and dynamic features unique to the central junction core. We incorporate the fluorescent guanine analog 6-methylisoxanthopterin (6-MI) at ten different locations throughout a model HJ structure to obtain site-specific information regarding the structure and dynamics of bases relative to those in a comparable sequence context in duplex DNA. These comparisons were accomplished through measuring fluorescence lifetime, relative brightness, fluorescence anisotropy, and thermodynamic stability, along with fluorescence quenching assays. These time-resolved and steady-state fluorescence measurements demonstrate that the structural distortions imposed by strand crossing result in increased solvent exposure, less stacking of bases and greater extrahelical nature of bases within the junction core. The 6-MI base analogs in the junction reflect these structural changes through an increase in intensity relative to those in the duplex. Molecular dynamics simulations performed using a model HJ indicate the primary sources of deformation are in the shift and twist parameters of the bases at the central junction step. These results suggest that junction-binding proteins may use the unique structure and dynamics of the bases at the core for recognition.
Collapse
Affiliation(s)
- Zane Lombardo
- Department of Molecular Biology and Biochemistry, Molecular Biophysics Program, Wesleyan University, 52 Lawn Ave, Middletown, Connecticut 06459, United States
| | - Ishita Mukerji
- Department of Molecular Biology and Biochemistry, Molecular Biophysics Program, Wesleyan University, 52 Lawn Ave, Middletown, Connecticut 06459, United States
| |
Collapse
|
2
|
Marcus AH, Matsika S, Heussman D, Sorour MI, Maurer J, Albrecht CS, Enkhbaatar L, Herbert P, Kistler KA, von Hippel PH. Spectroscopic approaches for studies of site-specific DNA base and backbone 'breathing' using exciton-coupled dimer-labeled DNA. ARXIV 2024:arXiv:2403.16251v2. [PMID: 38584614 PMCID: PMC10996769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
DNA regulation and repair processes require direct interactions between proteins and DNA at specific sites. Local fluctuations of the sugar-phosphate backbones and bases of DNA (a form of DNA 'breathing') play a central role in such processes. Here we review the development and application of novel spectroscopic methods and analyses - both at the ensemble and single-molecule levels - to study structural and dynamic properties of exciton-coupled cyanine and fluorescent nucleobase analogue dimer-labeled DNA constructs at key positions involved in protein-DNA complex assembly and function. The exciton-coupled dimer probes act as 'sensors' of the local conformations adopted by the sugar-phosphate backbones and bases immediately surrounding the dimer probes. These methods can be used to study the mechanisms of protein binding and function at these sites.
Collapse
Affiliation(s)
- Andrew H. Marcus
- Center for Optical, Molecular and Quantum Science, Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403
- Institute of Molecular Biology, Department of Chemistry and Biochemistry, and University of Oregon, Eugene, Oregon 97403
| | - Spiridoula Matsika
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122
| | - Dylan Heussman
- Center for Optical, Molecular and Quantum Science, Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403
- Institute of Molecular Biology, Department of Chemistry and Biochemistry, and University of Oregon, Eugene, Oregon 97403
| | - Mohammed I. Sorour
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122
| | - Jack Maurer
- Center for Optical, Molecular and Quantum Science, Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403
- Institute of Molecular Biology, Department of Chemistry and Biochemistry, and University of Oregon, Eugene, Oregon 97403
| | - Claire S. Albrecht
- Center for Optical, Molecular and Quantum Science, Department of Physics, University of Oregon, Eugene, Oregon 97403
- Institute of Molecular Biology, Department of Physics, and University of Oregon, Eugene, Oregon 97403
| | - Lulu Enkhbaatar
- Center for Optical, Molecular and Quantum Science, Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403
- Institute of Molecular Biology, Department of Chemistry and Biochemistry, and University of Oregon, Eugene, Oregon 97403
| | - Patrick Herbert
- Center for Optical, Molecular and Quantum Science, Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403
- Institute of Molecular Biology, Department of Chemistry and Biochemistry, and University of Oregon, Eugene, Oregon 97403
| | - Kurt A. Kistler
- Department of Chemistry, Brandywine Campus, The Pennsylvania State University, Media, Pennsylvania 19063
| | - Peter H. von Hippel
- Institute of Molecular Biology, Department of Chemistry and Biochemistry, and University of Oregon, Eugene, Oregon 97403
| |
Collapse
|
3
|
Heussman D, Enkhbaatar L, Sorour MI, Kistler KA, von Hippel PH, Matsika S, Marcus AH. Using transition density models to interpret experimental optical spectra of exciton-coupled cyanine (iCy3)2 dimer probes of local DNA conformations at or near functional protein binding sites. Nucleic Acids Res 2024; 52:1272-1289. [PMID: 38050987 PMCID: PMC10853810 DOI: 10.1093/nar/gkad1163] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/15/2023] [Accepted: 11/18/2023] [Indexed: 12/07/2023] Open
Abstract
Exciton-coupled chromophore dimers are an emerging class of optical probes for studies of site-specific biomolecular interactions. Applying accurate theoretical models for the electrostatic coupling of a molecular dimer probe is a key step for simulating its optical properties and analyzing spectroscopic data. In this work, we compare experimental absorbance and circular dichroism (CD) spectra of 'internally-labeled' (iCy3)2 dimer probes inserted site-specifically into DNA fork constructs to theoretical calculations of the structure and geometry of these exciton-coupled dimers. We compare transition density models of varying levels of approximation to determine conformational parameters of the (iCy3)2 dimer-labeled DNA fork constructs. By applying an atomistically detailed transition charge (TQ) model, we can distinguish between dimer conformations in which the stacking and tilt angles between planar iCy3 monomers are varied. A major strength of this approach is that the local conformations of the (iCy3)2 dimer probes that we determined can be used to infer information about the structures of the DNA framework immediately surrounding the probes at various positions within the constructs, both deep in the duplex DNA sequences and at sites at or near the DNA fork junctions where protein complexes bind to discharge their biological functions.
Collapse
Affiliation(s)
- Dylan Heussman
- Center for Optical, Molecular and Quantum Science, Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR 97403, USA
- Institute of Molecular Biology, Department of Chemistry and Biochemistry, and University of Oregon, Eugene, OR 97403, USA
| | - Lulu Enkhbaatar
- Center for Optical, Molecular and Quantum Science, Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR 97403, USA
- Institute of Molecular Biology, Department of Chemistry and Biochemistry, and University of Oregon, Eugene, OR 97403, USA
| | - Mohammed I Sorour
- Department of Chemistry, Temple University, Philadelphia, PA 19122, USA
| | - Kurt A Kistler
- Department of Chemistry, Brandywine Campus, The Pennsylvania State University, Media, PA 19063, USA
| | - Peter H von Hippel
- Institute of Molecular Biology, Department of Chemistry and Biochemistry, and University of Oregon, Eugene, OR 97403, USA
| | | | - Andrew H Marcus
- Center for Optical, Molecular and Quantum Science, Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR 97403, USA
- Institute of Molecular Biology, Department of Chemistry and Biochemistry, and University of Oregon, Eugene, OR 97403, USA
| |
Collapse
|
4
|
Marcus AH, Heussman D, Maurer J, Albrecht CS, Herbert P, von Hippel PH. Studies of Local DNA Backbone Conformation and Conformational Disorder Using Site-Specific Exciton-Coupled Dimer Probe Spectroscopy. Annu Rev Phys Chem 2023; 74:245-265. [PMID: 36696590 PMCID: PMC10590263 DOI: 10.1146/annurev-physchem-090419-041204] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The processes of genome expression, regulation, and repair require direct interactions between proteins and DNA at specific sites located at and near single-stranded-double-stranded DNA (ssDNA-dsDNA) junctions. Here, we review the application of recently developed spectroscopic methods and analyses that combine linear absorbance and circular dichroism spectroscopy with nonlinear 2D fluorescence spectroscopy to study the local conformations and conformational disorder of the sugar-phosphate backbones of ssDNA-dsDNA fork constructs that have been internally labeled with exciton-coupled cyanine (iCy3)2 dimer probes. With the application of these methods, the (iCy3)2 dimer can serve as a reliable probe of the mean local conformations and conformational distributions of the sugar-phosphate backbones of dsDNA at various critical positions. The results of our studies suggest a possible structural framework for understanding the roles of DNA breathing in driving the processes of protein-DNA complex assembly and function.
Collapse
Affiliation(s)
- Andrew H Marcus
- Center for Optical, Molecular and Quantum Science, University of Oregon, Eugene, Oregon, USA;
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon, USA
- Department of Physics, University of Oregon, Eugene, Oregon, USA
| | - Dylan Heussman
- Center for Optical, Molecular and Quantum Science, University of Oregon, Eugene, Oregon, USA;
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon, USA
| | - Jack Maurer
- Center for Optical, Molecular and Quantum Science, University of Oregon, Eugene, Oregon, USA;
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon, USA
| | - Claire S Albrecht
- Center for Optical, Molecular and Quantum Science, University of Oregon, Eugene, Oregon, USA;
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
- Department of Physics, University of Oregon, Eugene, Oregon, USA
| | - Patrick Herbert
- Center for Optical, Molecular and Quantum Science, University of Oregon, Eugene, Oregon, USA;
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon, USA
| | - Peter H von Hippel
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon, USA
| |
Collapse
|
5
|
Lombardo Z, Mukerji I. Site-specific investigation of DNA Holliday Junction dynamics and structure with 6-Methylisoxanthopterin, a fluorescent guanine analog. TRENDS IN PHOTOCHEMISTRY & PHOTOBIOLOGY 2023; 22:85-102. [PMID: 39371247 PMCID: PMC11450702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
DNA Holliday Junction (HJ) formation and resolution is requisite for maintaining genomic stability in processes such as replication fork reversal and double-strand break repair. If HJs are not resolved, chromosome disjunction and aneuploidy result, hallmarks of tumor cells. To understand the structural features that lead to processing of these four-stranded joint molecule structures, we seek to identify structural and dynamic features unique to the central junction core. We incorporated the fluorescent guanine analog 6-methylisoxanthopterin (6-MI) at ten different locations throughout a model HJ structure to obtain site-specific information regarding the structure and dynamics of bases relative to those in a comparable sequence context in duplex DNA. These comparisons were accomplished through measuring fluorescence lifetime, relative brightness, fluorescence anisotropy, and quenching assays. These time-resolved and steady-state fluorescence measurements demonstrate that the structural distortions imposed by strand crossing result in increased solvent exposure, less stacking of bases and greater extrahelical nature of bases within the junction core. The 6-MI base analogs in the junction reflect these structural changes through an increase in intensity relative to those in the duplex. Molecular dynamics simulations performed using a model HJ indicate that the primary sources of deformation are in the shift and twist parameters of the bases at the central junction step. These results suggest that junction-binding proteins may use the unique structure and dynamics of the bases at the core for recognition.
Collapse
Affiliation(s)
- Zane Lombardo
- Department of Molecular Biology and Biochemistry, Molecular Biophysics Program, Wesleyan University, 52 Lawn Ave, Middletown, Connecticut 06459, USA
| | - Ishita Mukerji
- Department of Molecular Biology and Biochemistry, Molecular Biophysics Program, Wesleyan University, 52 Lawn Ave, Middletown, Connecticut 06459, USA
| |
Collapse
|
6
|
Jose D, Michael MM, Bentsen C, Rosenblum B, Zelaya A. A Spectroscopic Approach to Unravel the Local Conformations of a G-Quadruplex Using CD-Active Fluorescent Base Analogues. Biochemistry 2022; 61:2720-2732. [DOI: 10.1021/acs.biochem.2c00461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Davis Jose
- Department of Chemistry and Physics, Monmouth University, West Long Branch, New Jersey07764, United States
| | - Miya Mary Michael
- Department of Chemistry and Physics, Monmouth University, West Long Branch, New Jersey07764, United States
| | - Christopher Bentsen
- Department of Chemistry and Physics, Monmouth University, West Long Branch, New Jersey07764, United States
| | - Brandon Rosenblum
- Department of Chemistry and Physics, Monmouth University, West Long Branch, New Jersey07764, United States
| | - Adriana Zelaya
- Department of Chemistry and Physics, Monmouth University, West Long Branch, New Jersey07764, United States
| |
Collapse
|
7
|
Determination of two-photon absorption in nucleobase analogues: a QR-DFT perspective. Photochem Photobiol Sci 2022; 21:529-543. [PMID: 35179700 DOI: 10.1007/s43630-022-00182-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 01/27/2022] [Indexed: 10/19/2022]
Abstract
With the prevalence of fluorescence spectroscopy in biological systems, and the benefits of two-photon absorption techniques, presented here is an assessment of the two-photon accessibility of modern fluorescent nucleobase analogues utilising quadratic response DFT. Due to the complex environment experienced by these nucleobases, the two-photon spectra of each analogue has been assessed in the presence of both [Formula: see text]-stacked and hydrogen-bonding interactions involving the canonical nucleobases. Findings suggest that the [Formula: see text]-stacking environment provides a more significant effect on the spectra of the analogues studies than a hydrogen-bonding environment; analogue structures presenting high two-photon cross-section values for one or more states coincide with polycyclic extensions to preserved canonical base structure, as observed in the qA family of analogues, while analogue structures more closely resembling the structure of the base in question present a much more muted spectra in comparison. Results from this investigation have also allowed for the derivation of a number of design rules for the development of potential, two-photon specific, analogues for future use in both imaging and potential photochemical activation.
Collapse
|
8
|
Malcomson T, Paterson MJ. Theoretical determination of two-photon absorption in biologically relevant pterin derivatives. Photochem Photobiol Sci 2020; 19:1538-1547. [PMID: 33029609 DOI: 10.1039/d0pp00255k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Given the prevalence of fluorescence spectroscopy in biological systems, and the prevalence of pterin derivatives throughout biological systems, presented here is an assessment of the two-photon absorption spectroscopy as it applies to a range of the most commonly studied pterin derivatives. QR-CAMB3LYP//ccpVTZ calculations suggest that the use of two-photon spectroscopic methods would enable a more capable differentiation between closely related derivatives in comparison to the one-photon spectra, which show minimal qualitative deviation. Study of short tail derivatives shows that, in most cases, two-photon accessible states solely involve the π* LUMO as the particle orbital, with biopterin, neopterin, and 6-(hydroxymethyl)pterin presenting exceptional potential for targetting. Investigation of derivatives in which the tail contains an aromatic ring resulted in the observation of a series of two-photon accessible states involving charge transfer from the tail to the pterin moiety, the cross sections of which are highly dependent on the adoption of a planar geometry. The observation of these states presents a novel method for tracking the substitution of biologically important molecules such as folic acid and 5-methenyltetrahydrofolylpolyglutamate.
Collapse
Affiliation(s)
- Thomas Malcomson
- Department of Chemistry, Lancaster University, Lancaster, LA1 4YB, UK.
| | - Martin J Paterson
- School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK.
| |
Collapse
|
9
|
Mariam J, Krishnamoorthy G, Anand R. Use of 6‐Methylisoxanthopterin, a Fluorescent Guanine Analog, to Probe Fob1‐Mediated Dynamics at the Stalling Fork Barrier DNA Sequences. Chem Asian J 2019; 14:4760-4766. [DOI: 10.1002/asia.201901061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 09/19/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Jessy Mariam
- Department of ChemistryIndian Institute of Technology Bombay Powai Mumbai 400076 Maharashtra India
| | | | - Ruchi Anand
- Department of ChemistryIndian Institute of Technology Bombay Powai Mumbai 400076 Maharashtra India
| |
Collapse
|
10
|
Ji H, Johnson NP, von Hippel PH, Marcus AH. Local DNA Base Conformations and Ligand Intercalation in DNA Constructs Containing Optical Probes. Biophys J 2019; 117:1101-1115. [PMID: 31474304 PMCID: PMC6818173 DOI: 10.1016/j.bpj.2019.08.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/31/2019] [Accepted: 08/05/2019] [Indexed: 01/18/2023] Open
Abstract
Understanding local conformations of DNA at the level of individual nucleic acid bases and base pairs is important for elucidating molecular processes that depend on DNA sequence. Here, we apply linear absorption and circular dichroism measurements to the study of local DNA conformations, using the guanine base analog 6-methyl isoxanthopterin (6-MI) as a structural probe. We show that the spectroscopic properties of this probe can provide detailed information about the average local base and basepair conformations as a function of the surrounding DNA sequence. Based on these results we apply a simple theoretical model to calculate the circular dichroism spectra of 6-MI-substituted DNA constructs and show that our model can be used to extract information about how the local conformations of the 6-MI probe are influenced by the local base or basepair environment. We also use this probe to examine the pathway for the insertion (intercalation) of a tethered acridine ligand (9-amino-6-chloro methoxyacridine) into duplex DNA. We show that this model intercalator interacts with duplex DNA by a "displacement insertion intercalation" mechanism, whereby the acridine moiety is inserted into the DNA structure and displaces the base located opposite its attachment site. These findings suggest that site-specifically positioned base analog probes can be used to characterize the molecular and structural details of binding ligand effects on local base stacking and unstacking reactions in single- and double-stranded DNA and thus may help to define the molecular mechanisms of DNA-protein interactions that involve the site-specific intercalation of aromatic amino acid side chains into genomic DNA.
Collapse
Affiliation(s)
- Huiying Ji
- Department of Chemistry and Biochemistry, Center for Optical, Molecular and Quantum Science, University of Oregon, Eugene, Oregon
| | - Neil P Johnson
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, University of Oregon, Eugene, Oregon
| | - Peter H von Hippel
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, University of Oregon, Eugene, Oregon
| | - Andrew H Marcus
- Department of Chemistry and Biochemistry, Center for Optical, Molecular and Quantum Science, University of Oregon, Eugene, Oregon; Department of Chemistry and Biochemistry, Institute of Molecular Biology, University of Oregon, Eugene, Oregon.
| |
Collapse
|
11
|
New Size‐Expanded Fluorescent Thymine Analogue: Synthesis, Characterization, and Application. Chemistry 2019; 25:9913-9919. [DOI: 10.1002/chem.201900843] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Indexed: 01/25/2023]
|
12
|
Bood M, Füchtbauer AF, Wranne MS, Ro JJ, Sarangamath S, El-Sagheer AH, Rupert DLM, Fisher RS, Magennis SW, Jones AC, Höök F, Brown T, Kim BH, Dahlén A, Wilhelmsson LM, Grøtli M. Pentacyclic adenine: a versatile and exceptionally bright fluorescent DNA base analogue. Chem Sci 2018; 9:3494-3502. [PMID: 29780479 PMCID: PMC5934695 DOI: 10.1039/c7sc05448c] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 03/01/2018] [Indexed: 12/16/2022] Open
Abstract
A highly fluorescent, non-perturbing, pentacyclic adenine analog was designed, synthesized, incorporated into DNA and photophysical evaluated.
Emissive base analogs are powerful tools for probing nucleic acids at the molecular level. Herein we describe the development and thorough characterization of pentacyclic adenine (pA), a versatile base analog with exceptional fluorescence properties. When incorporated into DNA, pA pairs selectively with thymine without perturbing the B-form structure and is among the brightest nucleobase analogs reported so far. Together with the recently established base analog acceptor qAnitro, pA allows accurate distance and orientation determination via Förster resonance energy transfer (FRET) measurements. The high brightness at emission wavelengths above 400 nm also makes it suitable for fluorescence microscopy, as demonstrated by imaging of single liposomal constructs coated with cholesterol-anchored pA–dsDNA, using total internal reflection fluorescence microscopy. Finally, pA is also highly promising for two-photon excitation at 780 nm, with a brightness (5.3 GM) that is unprecedented for a base analog.
Collapse
Affiliation(s)
- Mattias Bood
- Department of Chemistry and Molecular Biology , University of Gothenburg , SE-412 96 Gothenburg , Sweden .
| | - Anders F Füchtbauer
- Department of Chemistry and Chemical Engineering, Chemistry and Biochemistry , Chalmers University of Technology , SE-412 96 Gothenburg , Sweden .
| | - Moa S Wranne
- Department of Chemistry and Chemical Engineering, Chemistry and Biochemistry , Chalmers University of Technology , SE-412 96 Gothenburg , Sweden .
| | - Jong Jin Ro
- Department of Chemistry , Division of Advanced Materials Science , Pohang University of Science and Technology (POSTECH) , Pohang 37673 , South Korea
| | - Sangamesh Sarangamath
- Department of Chemistry and Chemical Engineering, Chemistry and Biochemistry , Chalmers University of Technology , SE-412 96 Gothenburg , Sweden .
| | - Afaf H El-Sagheer
- Chemistry Branch , Faculty of Petroleum and Mining Engineering , Suez University , Suez 43721 , Egypt
| | - Déborah L M Rupert
- Division of Biological Physics , Department of Physics , Chalmers University of Technology , SE-412 96 Gothenburg , Sweden
| | - Rachel S Fisher
- School of Chemistry , University of Edinburgh , The King's Buildings , Edinburgh EH9 3JJ , UK
| | - Steven W Magennis
- WestCHEM , School of Chemistry , University of Glasgow , Glasgow , G12 8QQ , UK
| | - Anita C Jones
- School of Chemistry , University of Edinburgh , The King's Buildings , Edinburgh EH9 3JJ , UK
| | - Fredrik Höök
- Division of Biological Physics , Department of Physics , Chalmers University of Technology , SE-412 96 Gothenburg , Sweden
| | - Tom Brown
- Department of Chemistry , Chemistry Research Laboratory , University of Oxford , Oxford , OX1 3TA , UK
| | - Byeang Hyean Kim
- Department of Chemistry , Division of Advanced Materials Science , Pohang University of Science and Technology (POSTECH) , Pohang 37673 , South Korea
| | - Anders Dahlén
- AstraZeneca R&D , Innovative Medicines , Cardiovascular & Metabolic Diseases (CVMD) , Pepparedsleden 1, SE-431 83 Mölndal , Gothenburg , Sweden
| | - L Marcus Wilhelmsson
- Department of Chemistry and Chemical Engineering, Chemistry and Biochemistry , Chalmers University of Technology , SE-412 96 Gothenburg , Sweden .
| | - Morten Grøtli
- Department of Chemistry and Molecular Biology , University of Gothenburg , SE-412 96 Gothenburg , Sweden .
| |
Collapse
|
13
|
Menor-Salván C. From the Dawn of Organic Chemistry to Astrobiology: Urea as a Foundational Component in the Origin of Nucleobases and Nucleotides. PREBIOTIC CHEMISTRY AND CHEMICAL EVOLUTION OF NUCLEIC ACIDS 2018. [DOI: 10.1007/978-3-319-93584-3_4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
14
|
Kim HY, Li T, Jung C, Fu R, Cho DY, Park KS, Park HG. Universally applicable, quantitative PCR method utilizing fluorescent nucleobase analogs. RSC Adv 2018; 8:37391-37395. [PMID: 35557795 PMCID: PMC9089284 DOI: 10.1039/c8ra06675b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 10/28/2018] [Indexed: 11/21/2022] Open
Abstract
We herein describe a novel quantitative PCR (qPCR) method, which operates in both signal-off and on manners, by utilizing a unique property of fluorescent nucleobase analogs. The first, signal-off method is developed by designing the primers to contain pyrrolo-dC (PdC), one of the most common fluorescent nucleobase analogs. The specially designed single-stranded primer is extended to form double-stranded DNA during PCR and the fluorescence signal from the PdCs incorporated in the primer is accordingly reduced due to its conformation-dependent fluorescence properties. In addition, the second, signal-on method is devised by designing the primers to contain 5′-overhang sequences complementary to the PdC-incorporated DNA probes. At the initial phase, the PdC-incorporated DNA probes are hybridized to the 5′-overhang sequences of the primer, exhibiting the significantly quenched fluorescence signal, but are detached by either hydrolysis or strand displacement reaction during PCR, leading to the highly enhanced fluorescence signal. This method is more advanced than the first one since it produces signal-on fluorescence response and permits the use of a single PdC-incorporated DNA probe for the detection of multiple target nucleic acids, remarkably decreasing the assay cost. With these novel qPCR methods, we successfully quantified target nucleic acids derived from sexually transmitted disease (STD) pathogens with high accuracy. Importantly, the proposed strategies overcome the major drawbacks in the current SYBR Green and TaqMan probe-based qPCR methods such as low specificity and high assay cost. A novel quantitative PCR (qPCR) method was developed by utilizing a unique property of fluorescent nucleobase analogs (PdCs).![]()
Collapse
Affiliation(s)
- Hyo Yong Kim
- Department of Chemical and Biomolecular Engineering (BK21 Program)
- KAIST
- Daejeon 305-701
- Republic of Korea
| | - Taihua Li
- College of Biology and the Environment
- Co-Innovation Centre for Sustainable Forestry in Southern China
- Nanjing Forestry University
- Nanjing
- China
| | - Cheulhee Jung
- Department of Chemical and Biomolecular Engineering (BK21 Program)
- KAIST
- Daejeon 305-701
- Republic of Korea
| | - Rongzhan Fu
- Department of Chemical and Biomolecular Engineering (BK21 Program)
- KAIST
- Daejeon 305-701
- Republic of Korea
| | - Dae-Yeon Cho
- Labgenomics Clinical Research Institute
- Labgenomics Co. Ltd
- Yong-In
- Republic of Korea
| | - Ki Soo Park
- Department of Biological Engineering
- College of Engineering
- Konkuk University
- Seoul 05029
- Republic of Korea
| | - Hyun Gyu Park
- Department of Chemical and Biomolecular Engineering (BK21 Program)
- KAIST
- Daejeon 305-701
- Republic of Korea
| |
Collapse
|
15
|
Park JH, Lee HS, Jang MD, Han SW, Kim SK, Lee YA. Enantioselective light switch effect of Δ- and Λ-[Ru(phenanthroline)2 dipyrido[3,2-a:2′, 3′-c]phenazine]2+ bound to G-quadruplex DNA. J Biomol Struct Dyn 2017. [DOI: 10.1080/07391102.2017.1345324] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Jin Ha Park
- Department of Chemistry, Yeungnam University, Gyeongsan, Gyeong-buk, 38541, Republic of Korea
| | - Hyun Suk Lee
- Department of Chemistry, Yeungnam University, Gyeongsan, Gyeong-buk, 38541, Republic of Korea
| | - Myung Duk Jang
- Department of Materials and Engineering, Kyungwoon University, Kumi City, Gyeong-buk, 39253, Republic of Korea
| | - Sung Wook Han
- Department of Health & Biotechnology, Kyungwoon University, Kumi City, Gyeong-buk, 39253, Republic of Korea
| | - Seog K. Kim
- Department of Chemistry, Yeungnam University, Gyeongsan, Gyeong-buk, 38541, Republic of Korea
| | - Young-Ae Lee
- Department of Chemistry, Yeungnam University, Gyeongsan, Gyeong-buk, 38541, Republic of Korea
| |
Collapse
|
16
|
Han JH, Chitrapriya N, Lee HS, Lee YA, Kim SK, Jung MJ. Behavior of the Guanine Base in G-quadruplexes Probed by the Fluorescent Guanine Analog, 6-Methyl Isoxanthopterin. B KOREAN CHEM SOC 2017. [DOI: 10.1002/bkcs.11060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ji Hoon Han
- Department of Chemistry; Yeungnam University; Gyeongsan 38541 Republic of Korea
| | - Nataraj Chitrapriya
- Department of Chemistry; Yeungnam University; Gyeongsan 38541 Republic of Korea
| | - Hyun Suk Lee
- Department of Chemistry; Yeungnam University; Gyeongsan 38541 Republic of Korea
| | - Young-Ae Lee
- Department of Chemistry; Yeungnam University; Gyeongsan 38541 Republic of Korea
| | - Seog K. Kim
- Department of Chemistry; Yeungnam University; Gyeongsan 38541 Republic of Korea
| | - Maeng-Joon Jung
- Department of Chemistry; Kyungpook National University; Daegu 41566 Republic of Korea
| |
Collapse
|
17
|
Altaf AA, Hashmat U, Yousaf M, Lal B, Ullah S, Holder AA, Badshah A. Synthesis and characterization of azo-guanidine based alcoholic media naked eye DNA sensor. ROYAL SOCIETY OPEN SCIENCE 2016; 3:160351. [PMID: 28018613 PMCID: PMC5180111 DOI: 10.1098/rsos.160351] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 09/28/2016] [Indexed: 06/06/2023]
Abstract
DNA sensing always has an open meadow of curiosity for biotechnologists and other researchers. Recently, in this field, we have introduced an emerging class of molecules containing azo and guanidine functionalities. In this study, we have synthesized three new compounds (UA1, UA6 and UA7) for potential application in DNA sensing in alcoholic medium. The synthesized materials were characterized by elemental analysis, FTIR, UV-visible, 1H NMR and 13C NMR spectroscopies. Their DNA sensing potential were investigated by UV-visible spectroscopy. The insight of interaction with DNA was further investigated by electrochemical (cyclic voltammetry) and hydrodynamic (viscosity) studies. The results showed that compounds have moderate DNA binding properties, with the binding constants range being 7.2 × 103, 2.4 × 103 and 0.2 × 103 M-1, for UA1, UA6 and UA7, respectively. Upon binding with DNA, there was a change in colour (a blue shift in the λmax value) which was observable with a naked eye. These results indicated the potential of synthesized compounds as DNA sensors with detection limit 1.8, 5.8 and 4.0 ng µl-1 for UA1, UA6 and UA7, respectively.
Collapse
Affiliation(s)
- Ataf Ali Altaf
- Department of Chemistry, University of Gujrat, Hafiz Hayat Campus, Gujrat 50700, Pakistan
| | - Uzma Hashmat
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Muhammad Yousaf
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Bhajan Lal
- Department of Energy Systems Engineering, Sukkur Institute of Business Administration, Sukkur, Pakistan
| | - Shafiq Ullah
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Alvin A. Holder
- Department of Chemistry and Biochemistry, Old-Dominion University, Norfolk, USA
| | - Amin Badshah
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| |
Collapse
|
18
|
Gogichaishvili S, Johnson J, Gvarjaladze D, Lomidze L, Kankia B. Isothermal amplification of DNA using quadruplex primers with fluorescent pteridine base analogue 3-methyl isoxanthopterin. Biopolymers 2016; 101:583-90. [PMID: 24122726 DOI: 10.1002/bip.22421] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 09/24/2013] [Indexed: 11/08/2022]
Abstract
We previously developed a method, known as quadruplex priming amplification (QPA), which greatly simplifies DNA amplification and quantification assays. QPA employs specific primers based on GGGTGGGTGGGTGGG (G3T) sequence, which upon polymerase elongation spontaneously dissociates from the target and folds into a stable quadruplex. Fluorescent nucleotide analogs, when incorporated into these primers, emit light upon quadruplex formation and permit simple, specific, and sensitive quantification without the attachment of probe molecules. Here, we studied optical [fluorescence and circular dichroism (CD)] and thermodynamic properties of the G3T sequence and variants incorporating 3-methylisoxanthopterin (3MI), a highly fluorescent nucleotide analog suitable for QPA. CD studies demonstrate that the incorporation of 3MI does not change the overall tertiary structure of G3T; however, thermal unfolding experiments revealed that it significantly destabilizes the quadruplex. Enzymatic studies revealed that Taq and Bst are practically unable to incorporate any nucleotides opposite to template 3MI. Based on this knowledge, we designed QPA assays with truncated targets that demonstrate efficient amplification around 55°C. Overall, these studies suggest that 3MI-based QPA is a useful assay for DNA amplification and detection.
Collapse
Affiliation(s)
- Shota Gogichaishvili
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210; Andronikashvili Institute of Physics, Tbilisi, 0177, Republic of Georgia
| | | | | | | | | |
Collapse
|
19
|
Partskhaladze T, Taylor A, Lomidze L, Gvarjaladze D, Kankia B. Exponential quadruplex priming amplification for DNA-based isothermal diagnostics. Biopolymers 2016; 103:88-95. [PMID: 25269836 DOI: 10.1002/bip.22557] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Revised: 07/27/2014] [Accepted: 08/14/2014] [Indexed: 01/14/2023]
Abstract
Polymerase chain reaction (PCR) is a method of choice for molecular diagnostics. However, PCR relies on thermal cycling, which is not compatible with the goals of point-of-care diagnostics. A simple strategy to turn PCR into an isothermal method would be to use specific primers, which upon polymerase elongation can self-dissociate from the primer-binding sites. We recently demonstrated that a monomolecular DNA quadruplex, GGGTGGGTGGGTGGG, meets these requirements, which led to the development of the linear versions of quadruplex priming amplification (QPA). Here we demonstrate exponential version of isothermal QPA, which allows an unprecedented 10(10)-fold amplification of DNA signal in less than 40 min.
Collapse
Affiliation(s)
- Tamar Partskhaladze
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210
| | | | | | | | | |
Collapse
|
20
|
von Hippel PH, Johnson NP, Marcus AH. Fifty years of DNA "breathing": Reflections on old and new approaches. Biopolymers 2016; 99:923-54. [PMID: 23840028 DOI: 10.1002/bip.22347] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 07/02/2013] [Indexed: 12/20/2022]
Abstract
The coding sequences for genes, and much other regulatory information involved in genome expression, are located 'inside' the DNA duplex. Thus the "macromolecular machines" that read-out this information from the base sequence of the DNA must somehow access the DNA "interior." Double-stranded (ds) DNA is a highly structured and cooperatively stabilized system at physiological temperatures, but is also only marginally stable and undergoes a cooperative "melting phase transition" at temperatures not far above physiological. Furthermore, due to its length and heterogeneous sequence, with AT-rich segments being less stable than GC-rich segments, the DNA genome 'melts' in a multistate fashion. Therefore the DNA genome must also manifest thermally driven structural ("breathing") fluctuations at physiological temperatures that should reflect the heterogeneity of the dsDNA stability near the melting temperature. Thus many of the breathing fluctuations of dsDNA are likely also to be sequence dependent, and could well contain information that should be "readable" and useable by regulatory proteins and protein complexes in site-specific binding reactions involving dsDNA "opening." Our laboratory has been involved in studying the breathing fluctuations of duplex DNA for about 50 years. In this "Reflections" article we present a relatively chronological overview of these studies, starting with the use of simple chemical probes (such as hydrogen exchange, formaldehyde, and simple DNA "melting" proteins) to examine the local stability of the dsDNA structure, and culminating in sophisticated spectroscopic approaches that can be used to monitor the breathing-dependent interactions of regulatory complexes with their duplex DNA targets in "real time."
Collapse
Affiliation(s)
- Peter H von Hippel
- Institute of Molecular Biology, University of Oregon, Eugene, OR, 97403; Department of Chemistry, University of Oregon, Eugene, OR, 97403
| | | | | |
Collapse
|
21
|
Johnson NP, Ji H, Steinberg TH, von Hippel PH, Marcus AH. Sequence-Dependent Conformational Heterogeneity and Proton-Transfer Reactivity of the Fluorescent Guanine Analogue 6-Methyl Isoxanthopterin (6-MI) in DNA. J Phys Chem B 2015; 119:12798-807. [PMID: 26368400 DOI: 10.1021/acs.jpcb.5b06361] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The local conformations of individual nucleic acid bases in DNA are important components in processes fundamental to gene regulation. Fluorescent nucleic acid base analogues, which can be substituted for natural bases in DNA, can serve as useful spectroscopic probes of average local base conformation and conformational heterogeneity. Here we report excitation-emission peak shift (EES) measurements of the fluorescent guanine (G) analogue 6-methyl isoxanthoptherin (6-MI), both as a ribonucleotide monophosphate (NMP) in solution and as a site-specific substituent for G in various DNA constructs. Changes in the peak positions of the fluorescence spectra as a function of excitation energy indicate that distinct subpopulations of conformational states exist in these samples on time scales longer than the fluorescence lifetime. Our pH-dependent measurements of the 6-MI NMP in solution show that these states can be identified as protonated and deprotonated forms of the 6-MI fluorescent probe. We implement a simple two-state model, which includes four vibrationally coupled electronic levels to estimate the free energy change, the free energy of activation, and the equilibrium constant for the proton transfer reaction. These parameters vary in single-stranded and duplex DNA constructs, and also depend on the sequence context of flanking bases. Our results suggest that proton transfer in 6-MI-substituted DNA constructs is coupled to conformational heterogeneity of the probe base, and can be interpreted to suggest that Watson-Crick base pairing between 6-MI and its complementary cytosine in duplex DNA involves a "low-barrier-hydrogen-bond". These findings may be important in using the 6-MI probe to understand local base conformational fluctuations, which likely play a central role in protein-DNA and ligand-DNA interactions.
Collapse
Affiliation(s)
- Neil P Johnson
- Institute of Molecular Biology and Department of Chemistry and Biochemistry, University of Oregon , Eugene, Oregon 97403, United States.,Oregon Center for Optics and Department of Chemistry and Biochemistry, University of Oregon , Eugene, Oregon 97403, United States
| | - Huiying Ji
- Institute of Molecular Biology and Department of Chemistry and Biochemistry, University of Oregon , Eugene, Oregon 97403, United States.,Oregon Center for Optics and Department of Chemistry and Biochemistry, University of Oregon , Eugene, Oregon 97403, United States
| | - Thomas H Steinberg
- Institute of Molecular Biology and Department of Chemistry and Biochemistry, University of Oregon , Eugene, Oregon 97403, United States
| | - Peter H von Hippel
- Institute of Molecular Biology and Department of Chemistry and Biochemistry, University of Oregon , Eugene, Oregon 97403, United States
| | - Andrew H Marcus
- Institute of Molecular Biology and Department of Chemistry and Biochemistry, University of Oregon , Eugene, Oregon 97403, United States.,Oregon Center for Optics and Department of Chemistry and Biochemistry, University of Oregon , Eugene, Oregon 97403, United States
| |
Collapse
|
22
|
Jose D, Weitzel SE, Baase WA, Michael MM, von Hippel PH. Mapping the interactions of the single-stranded DNA binding protein of bacteriophage T4 (gp32) with DNA lattices at single nucleotide resolution: polynucleotide binding and cooperativity. Nucleic Acids Res 2015; 43:9291-305. [PMID: 26275774 PMCID: PMC4627071 DOI: 10.1093/nar/gkv818] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 07/31/2015] [Indexed: 11/16/2022] Open
Abstract
We here use our site-specific base analog mapping approach to study the interactions and binding equilibria of cooperatively-bound clusters of the single-stranded DNA binding protein (gp32) of the T4 DNA replication complex with longer ssDNA (and dsDNA) lattices. We show that in cooperatively bound clusters the binding free energy appears to be equi-partitioned between the gp32 monomers of the cluster, so that all bind to the ssDNA lattice with comparable affinity, but also that the outer domains of the gp32 monomers at the ends of the cluster can fluctuate on and off the lattice and that the clusters of gp32 monomers can slide along the ssDNA. We also show that at very low binding densities gp32 monomers bind to the ssDNA lattice at random, but that cooperatively bound gp32 clusters bind preferentially at the 5′-end of the ssDNA lattice. We use these results and the gp32 monomer-binding results of the companion paper to propose a detailed model for how gp32 might bind to and interact with ssDNA lattices in its various binding modes, and also consider how these clusters might interact with other components of the T4 DNA replication complex.
Collapse
Affiliation(s)
- Davis Jose
- Institute of Molecular Biology and Department of Chemistry, University of Oregon, Eugene, OR 97403-1229, USA
| | - Steven E Weitzel
- Institute of Molecular Biology and Department of Chemistry, University of Oregon, Eugene, OR 97403-1229, USA
| | - Walter A Baase
- Institute of Molecular Biology and Department of Chemistry, University of Oregon, Eugene, OR 97403-1229, USA
| | - Miya M Michael
- Institute of Molecular Biology and Department of Chemistry, University of Oregon, Eugene, OR 97403-1229, USA
| | - Peter H von Hippel
- Institute of Molecular Biology and Department of Chemistry, University of Oregon, Eugene, OR 97403-1229, USA
| |
Collapse
|
23
|
Saif M, Widom JR, Xu S, Abbey ER, Liu SY, Marcus AH. Electric Dipole Transition Moments and Solvent-Dependent Interactions of Fluorescent Boron-Nitrogen Substituted Indole Derivatives. J Phys Chem B 2015; 119:7985-93. [PMID: 26000556 DOI: 10.1021/acs.jpcb.5b03485] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fluorescent analogues of the indole side chain of tryptophan can be useful spectroscopic probes of protein-protein and protein-DNA interactions. Here we present linear dichroism and solvent-dependent spectroscopic studies of two fluorescent analogues of indole, in which the organic C═C unit is substituted with the isosteric inorganic B-N unit. We studied the so-called "external" BN indole, which has C2v symmetry, and the "fused" BN indole with Cs symmetry. We performed a combination of absorption and fluorescence spectroscopy, ultraviolet linear dichroism (UV-LD) in stretched poly(ethylene) (PE) films, and quantum chemical calculations on both BN indole compounds. Our measurements allowed us to characterize the degree of alignment for both molecules in stretched PE films. We thus determined the orientations and magnitudes of the two lowest energy electric dipole transition moments (EDTMs) for external BN indole, and the two lowest energy EDTMs for fused BN indole within the 30 000-45 000 cm(-1) spectral range. We compared our experimental results to those of quantum chemical calculations using standard density functional theory (DFT). Our theoretical predictions for the low-energy EDTMs are in good agreement with our experimental data. The absorption and fluorescence spectra of the external and the fused BN indoles are sensitive to solvent polarity. Our results indicate that the fused BN indole experiences much greater solvation interactions with polar solvents than does the external BN indole.
Collapse
Affiliation(s)
- Mari Saif
- †Department of Chemistry and Biochemistry, Oregon Center for Optics, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, United States
| | - Julia R Widom
- ‡Department of Chemistry, University of Michigan at Ann Arbor, Ann Arbor, Michigan 48109, United States
| | - Senmiao Xu
- §Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Suzhou, Jiangsu 215000, China
| | - Eric R Abbey
- ∥Chemistry Department, Eastern Washington University, Cheney, Washington 99004, United States
| | - Shih-Yuan Liu
- ⊥Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Andrew H Marcus
- †Department of Chemistry and Biochemistry, Oregon Center for Optics, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, United States
| |
Collapse
|
24
|
Adams NM, Wang KKA, Caprioli AC, Thomas LC, Kankia B, Haselton FR, Wright DW. Quadruplex priming amplification for the detection of mRNA from surrogate patient samples. Analyst 2014; 139:1644-52. [PMID: 24503712 DOI: 10.1039/c3an02261g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Simple and rapid methods for detecting mRNA biomarkers from patient samples are valuable in settings with limited access to laboratory resources. In this report, we describe the development and evaluation of a self-contained assay to extract and quantify mRNA biomarkers from complex samples using a novel nucleic acid-based molecular sensor called quadruplex priming amplification (QPA). QPA is a simple and robust isothermal nucleic acid amplification method that exploits the stability of the G-quadruplex nucleotide structure to drive spontaneous strand melting from a specific DNA template sequence. Quantification of mRNA was enabled by integrating QPA with a magnetic bead-based extraction method using an mRNA-QPA interface reagent. The assay was found to maintain >90% of the maximum signal over a 4 °C range of operational temperatures (64-68 °C). QPA had a dynamic range spanning four orders of magnitude, with a limit of detection of ~20 pM template molecules using a highly controlled heating and optical system and a limit of detection of ~250 pM using a less optimal water bath and plate reader. These results demonstrate that this integrated approach has potential as a simple and effective mRNA biomarker extraction and detection assay for use in limited resource settings.
Collapse
Affiliation(s)
- N M Adams
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, USA.
| | | | | | | | | | | | | |
Collapse
|
25
|
Raymer MG, Marcus AH, Widom JR, Vitullo DLP. Entangled Photon-Pair Two-Dimensional Fluorescence Spectroscopy (EPP-2DFS). J Phys Chem B 2013; 117:15559-75. [DOI: 10.1021/jp405829n] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- M. G. Raymer
- Oregon
Center for Optics and Department of Physics, University of Oregon, Eugene, Oregon 97403, United States
| | - Andrew H. Marcus
- Oregon
Center for Optics, Institute of Molecular Biology and Department of
Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Julia R. Widom
- Oregon
Center for Optics, Institute of Molecular Biology and Department of
Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Dashiell L. P. Vitullo
- Oregon
Center for Optics and Department of Physics, University of Oregon, Eugene, Oregon 97403, United States
| |
Collapse
|
26
|
Barlev A, Sen D. Catalytic DNAs that harness violet light to repair thymine dimers in a DNA substrate. J Am Chem Soc 2013; 135:2596-603. [PMID: 23347049 DOI: 10.1021/ja309638j] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
UV1C is an in vitro selected catalytic DNA that shows efficient photolyase activity, using light of <310 nm wavelength to photo-reactivate CPD thymine dimers within a substrate DNA. We show here that a minimal mutational strategy of substituting a guanine analogue, 6MI, for single guanine residues within UV1C extends the DNAzyme's activity into the violet region of the spectrum. These 6MI point mutant DNAzymes fall into three distinct functional classes, which photo-reactivate the thymine dimer along different pathways. Cumulatively, they reveal the modus operandi of the original UV1C DNAzyme to be a surprisingly versatile one. The interchangeable properties of no less than six of the G→6MI point mutants highlight UV1C's built-in functional flexibility, which may serve as a starting point for the creation of efficient, visible light-harnessing, photolyase DNAzymes for either the prophylaxis or therapy of UV damage to human skin.
Collapse
Affiliation(s)
- Adam Barlev
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | | |
Collapse
|
27
|
Widom JR, Rappoport D, Perdomo-Ortiz A, Thomsen H, Johnson NP, von Hippel PH, Aspuru-Guzik A, Marcus AH. Electronic transition moments of 6-methyl isoxanthopterin--a fluorescent analogue of the nucleic acid base guanine. Nucleic Acids Res 2012. [PMID: 23185042 PMCID: PMC3553960 DOI: 10.1093/nar/gks1148] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Fluorescent nucleic acid base analogues are important spectroscopic tools for understanding local structure and dynamics of DNA and RNA. We studied the orientations and magnitudes of the electric dipole transition moments (EDTMs) of 6-methyl isoxanthopterin (6-MI), a fluorescent analogue of guanine that has been particularly useful in biological studies. Using a combination of absorption spectroscopy, linear dichroism (LD) and quantum chemical calculations, we identified six electronic transitions that occur within the 25 000–50 000 cm−1 spectral range. Our results indicate that the two experimentally observed lowest-energy transitions, which occur at 29 687 cm−1 (337 nm) and 34 596 cm−1 (289 nm), are each polarized within the plane of the 6-MI base. A third in-plane polarized transition is experimentally observed at 47 547 cm−1 (210 nm). The theoretically predicted orientation of the lowest-energy transition moment agrees well with experiment. Based on these results, we constructed an exciton model to describe the absorption spectra of a 6-MI dinucleotide–substituted double-stranded DNA construct. This model is in good agreement with the experimental data. The orientations and intensities of the low-energy electronic transitions of 6-MI reported here should be useful for studying local conformations of DNA and RNA in biologically important complexes.
Collapse
Affiliation(s)
- Julia R Widom
- Oregon Center for Optics, Department of Chemistry, Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Isothermal quadruplex priming amplification for DNA-based diagnostics. Biophys Chem 2012; 171:1-8. [PMID: 23232099 DOI: 10.1016/j.bpc.2012.11.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 11/05/2012] [Accepted: 11/06/2012] [Indexed: 01/12/2023]
Abstract
We previously developed a method, known as quadruplex priming amplification (QPA), which permits isothermal amplification of DNA. The assay is based on a DNA quadruplex formed by the GGGTGGGTGGGTGGG (G3T) sequence. G3T has three unique properties that are fundamental for QPA; (i) G3T forms a quadruplex with significantly more favorable thermodynamics than the corresponding DNA duplexes; (ii) removal of guanines at the 3'-end inhibits quadruplex formation; and (iii) incorporated fluorescent nucleotides, such as 2-aminopurine (2AP) or 6-methylisoxanthopterin (6MI), which are quenched by neighboring nucleotides, regain maximum emission upon quadruplex formation. New model studies carried out here with primers missing one, two and three guanines reveal that the driving force for QPA comes from the difference in thermal stability between the primer/template and the product complexes. Primers missing one and two guanines are able to self-dissociate from the template upon elongation, whereas QPA is not observed when the primer lacks three 3'-nucleotides. QPA reaches its maximum rate at temperatures slightly higher than the T(m) of the primer/template complex and is more efficient in the presence of only dGTP. QPA-based assays also revealed that Taq is able to incorporate thymidines opposite template 2AP, while no significant incorporation was observed opposite template 6MI.
Collapse
|
29
|
Riedl J, Pohl R, Rulíšek L, Hocek M. Synthesis and photophysical properties of biaryl-substituted nucleos(t)ides. Polymerase synthesis of DNA probes bearing solvatochromic and pH-sensitive dual fluorescent and 19F NMR labels. J Org Chem 2011; 77:1026-44. [PMID: 22148188 DOI: 10.1021/jo202321g] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The design of four new fluorinated biaryl fluorescent labels and their attachment to nucleosides and nucleoside triphosphates (dNTPs) by the aqueous cross-coupling reactions of biarylboronates is reported. The modified dNTPs were good substrates for KOD XL polymerase and were enzymatically incorporated into DNA probes. The photophysical properties of the biaryl-modified nucleosides, dNTPs, and DNA were studied systematically. The different substitution pattern of the biaryls was used for tuning of emission maxima in the broad range of 366-565 nm. Using methods of computational chemistry the emission maxima were reproduced with a satisfactory degree of accuracy, and it was shown that the large solvatochromic shifts observed for the studied probes are proportional to the differences in dipole moments of the ground (S(0)) and excited (S(1)) states that add on top of smaller shifts predicted already for these systems in vacuo. Thus, we present a set of compounds that may serve as multipurpose base-discriminating fluorophores for sensing of hairpins, deletions, and mismatches by the change of emission maxima and intensities of fluorescence and that can be also conviently studied by (19)F NMR spectroscopy. In addition, aminobenzoxazolyl-fluorophenyl-labeled nucleotides and DNA also exert dual pH-sensitive and solvatochromic fluorescence, which may imply diverse applications.
Collapse
Affiliation(s)
- Jan Riedl
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences & IOCB Research Center, Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic
| | | | | | | |
Collapse
|
30
|
|