1
|
Zhao H, Wu X, Wang Y, Li X, Du Y, Zhou Z, Li Y, Liu Y, Zeng X, Chen G. Histone variant H2AZ1 drives lung cancer progression through the RELA-HIF1A-EGFR signaling pathway. Cell Commun Signal 2024; 22:453. [PMID: 39327549 PMCID: PMC11426080 DOI: 10.1186/s12964-024-01823-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND A growing body of evidence indicates that histone variants play an oncogenic role in cancer progression. However, the role and mechanism of histone variant H2AZ1 in lung cancer remain poorly understood. In this study, we aim to identify novel functions and molecular mechanisms of H2AZ1 in lung cancer. METHODS We analyzed H2AZ1 expression in lung adenocarcinoma using several RNA-seq and microarray datasets. Immunohistochemistry staining for H2AZ1 was performed on two sets of lung cancer tissue microarrays. To study the function of H2AZ1, we conducted assays for cell proliferation, colony formation, invasion, and migration. We employed CUT&Tag-seq, ATAC-seq, RNA-seq, and Western blotting to explore the regulatory patterns and potential mechanisms of H2AZ1 in lung adenocarcinoma. RESULTS Our findings reveal that H2AZ1 is highly expressed in lung cancer and high levels of H2AZ1 mRNA are associated with poor patient survival. Silencing H2AZ1 impaired cell proliferation, colony formation, migration, and invasion. Mechanistically, our CUT&Tag-seq, ATAC-seq, and RNA-seq results showed that H2AZ1 is primarily deposited around TSS and affects multiple oncogenic signaling pathways. Importantly, we uncovered that H2AZ1 may drive lung cancer progression through the RELA-HIF1A-EGFR signaling pathway. CONCLUSION H2AZ1 plays an oncogenic role via several cancer-related pathways, including the RELA-HIF1A-EGFR axis in lung cancer. Intervention targeting H2AZ1 and its related signaling genes may have translational potential for precision therapy.
Collapse
Affiliation(s)
- Huijie Zhao
- Department of Human Cell Biology and Genetics, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, No. 1088, Xueyuan Road, Nanshan District, Shenzhen, Guangdong Province, 518055, China
- Department of Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xing Wu
- Department of Human Cell Biology and Genetics, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, No. 1088, Xueyuan Road, Nanshan District, Shenzhen, Guangdong Province, 518055, China
| | - Yinghan Wang
- Department of Human Cell Biology and Genetics, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, No. 1088, Xueyuan Road, Nanshan District, Shenzhen, Guangdong Province, 518055, China
| | - Xiuling Li
- Department of Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuhui Du
- Department of Human Cell Biology and Genetics, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, No. 1088, Xueyuan Road, Nanshan District, Shenzhen, Guangdong Province, 518055, China
| | - Zhiqing Zhou
- Department of Human Cell Biology and Genetics, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, No. 1088, Xueyuan Road, Nanshan District, Shenzhen, Guangdong Province, 518055, China
| | - Yu Li
- Department of Human Cell Biology and Genetics, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, No. 1088, Xueyuan Road, Nanshan District, Shenzhen, Guangdong Province, 518055, China
| | - Yue Liu
- Department of Human Cell Biology and Genetics, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, No. 1088, Xueyuan Road, Nanshan District, Shenzhen, Guangdong Province, 518055, China
| | - Xiaofei Zeng
- Department of Human Cell Biology and Genetics, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, No. 1088, Xueyuan Road, Nanshan District, Shenzhen, Guangdong Province, 518055, China
- National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, Guangdong, China
| | - Guoan Chen
- Department of Human Cell Biology and Genetics, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, No. 1088, Xueyuan Road, Nanshan District, Shenzhen, Guangdong Province, 518055, China.
- The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
2
|
Sun K, Li Y, Gai Y, Wang J, Jian Y, Liu X, Wu L, Shim WB, Lee YW, Ma Z, Haas H, Yin Y. HapX-mediated H2B deub1 and SreA-mediated H2A.Z deposition coordinate in fungal iron resistance. Nucleic Acids Res 2023; 51:10238-10260. [PMID: 37650633 PMCID: PMC10602907 DOI: 10.1093/nar/gkad708] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 07/26/2023] [Accepted: 08/15/2023] [Indexed: 09/01/2023] Open
Abstract
Plant pathogens are challenged by host-derived iron starvation or excess during infection, but the mechanism through which pathogens counteract iron stress is unclear. Here, we found that Fusarium graminearum encounters iron excess during the colonization of wheat heads. Deletion of heme activator protein X (FgHapX), siderophore transcription factor A (FgSreA) or both attenuated virulence. Further, we found that FgHapX activates iron storage under iron excess by promoting histone H2B deubiquitination (H2B deub1) at the promoter of the responsible gene. Meanwhile, FgSreA is shown to inhibit genes mediating iron acquisition during iron excess by facilitating the deposition of histone variant H2A.Z and histone 3 lysine 27 trimethylation (H3K27 me3) at the first nucleosome after the transcription start site. In addition, the monothiol glutaredoxin FgGrx4 is responsible for iron sensing and control of the transcriptional activity of FgHapX and FgSreA via modulation of their enrichment at target genes and recruitment of epigenetic regulators, respectively. Taken together, our findings elucidated the molecular mechanisms for adaptation to iron excess mediated by FgHapX and FgSreA during infection in F. graminearum and provide novel insights into regulation of iron homeostasis at the chromatin level in eukaryotes.
Collapse
Affiliation(s)
- Kewei Sun
- State Key Laboratory of Rice Biology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Yiqing Li
- State Key Laboratory of Rice Biology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Yunpeng Gai
- School of Grassland Science, Beijing Forestry University, Beijing, China
| | - Jingrui Wang
- State Key Laboratory of Rice Biology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Yunqing Jian
- State Key Laboratory of Rice Biology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Xin Liu
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Liang Wu
- Institute of Crop Science, Zhejiang University, Hangzhou, China
| | - Won-Bo Shim
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, USA
| | - Yin-Won Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | - Zhonghua Ma
- State Key Laboratory of Rice Biology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Hubertus Haas
- Instiute of Molecular Biology, Biocenter, Medical University Innsbruck, Innsbruck A-6020, Austria
| | - Yanni Yin
- State Key Laboratory of Rice Biology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Chierzi S, Kacerovsky JB, Fok AHK, Lahaie S, Shibi Rosen A, Farmer WT, Murai KK. Astrocytes Transplanted during Early Postnatal Development Integrate, Mature, and Survive Long Term in Mouse Cortex. J Neurosci 2023; 43:1509-1529. [PMID: 36669885 PMCID: PMC10008063 DOI: 10.1523/jneurosci.0544-22.2023] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 12/15/2022] [Accepted: 01/06/2023] [Indexed: 01/21/2023] Open
Abstract
Astrocytes have complex structural, molecular, and physiological properties and form specialized microenvironments that support circuit-specific functions in the CNS. To better understand how astrocytes acquire their unique features, we transplanted immature mouse cortical astrocytes into the developing cortex of male and female mice and assessed their integration, maturation, and survival. Within days, transplanted astrocytes developed morphologies and acquired territories and tiling behavior typical of cortical astrocytes. At 35-47 d post-transplantation, astrocytes appeared morphologically mature and expressed levels of EAAT2/GLT1 similar to nontransplanted astrocytes. Transplanted astrocytes also supported excitatory/inhibitory (E/I) presynaptic terminals within their territories, and displayed normal Ca2+ events. Transplanted astrocytes showed initially reduced expression of aquaporin 4 (AQP4) at endfeet and elevated expression of EAAT1/GLAST, with both proteins showing normalized expression by 110 d and one year post-transplantation, respectively. To understand how specific brain regions support astrocytic integration and maturation, we transplanted cortical astrocytes into the developing cerebellum. Cortical astrocytes interlaced with Bergmann glia (BG) in the cerebellar molecular layer to establish discrete territories. However, transplanted astrocytes retained many cortical astrocytic features including higher levels of EAAT2/GLT1, lower levels of EAAT1/GLAST, and the absence of expression of the AMPAR subunit GluA1. Collectively, our findings demonstrate that immature cortical astrocytes integrate, mature, and survive (more than one year) following transplantation and retain cortical astrocytic properties. Astrocytic transplantation can be useful for investigating cell-autonomous (intrinsic) and non-cell-autonomous (environmental) mechanisms contributing to astrocytic development/diversity, and for determining the optimal timing for transplanting astrocytes for cellular delivery or replacement in regenerative medicine.SIGNIFICANCE STATEMENT The mechanisms that enable astrocytes to acquire diverse molecular and structural properties remain to be better understood. In this study, we systematically analyzed the properties of cortical astrocytes following their transplantation to the early postnatal brain. We found that immature cortical astrocytes transplanted into cerebral cortex during early postnatal mouse development integrate and establish normal astrocytic properties, and show long-term survival in vivo (more than one year). In contrast, transplanted cortical astrocytes display reduced or altered ability to integrate into the more mature cerebral cortex or developing cerebellum, respectively. This study demonstrates the developmental potential of transplanted cortical astrocytes and provides an approach to tease apart cell-autonomous (intrinsic) and non-cell-autonomous (environmental) mechanisms that determine the structural, molecular, and physiological phenotype of astrocytes.
Collapse
Affiliation(s)
- Sabrina Chierzi
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec H3G 1A4, Canada
| | - J Benjamin Kacerovsky
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec H3G 1A4, Canada
| | - Albert H K Fok
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec H3G 1A4, Canada
| | - Sylvie Lahaie
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec H3G 1A4, Canada
| | - Arielle Shibi Rosen
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec H3G 1A4, Canada
| | - W Todd Farmer
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec H3G 1A4, Canada
| | - Keith K Murai
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec H3G 1A4, Canada
- Quantitative Life Sciences Graduate Program, McGill University, Montreal, Quebec H3A 2A7, Canada
| |
Collapse
|
4
|
Yu Y, Wang Y, Yao Z, Wang Z, Xia Z, Lee J. Comprehensive Survey of ChIP-Seq Datasets to Identify Candidate Iron Homeostasis Genes Regulated by Chromatin Modifications. Methods Mol Biol 2023; 2665:95-111. [PMID: 37166596 DOI: 10.1007/978-1-0716-3183-6_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Vital biochemical reactions including photosynthesis to respiration require iron, which should be tightly regulated. Although increasing evidence reveals the importance of epigenetic regulation in gene expression and signaling, the role of histone modifications and chromatin remodeling in plant iron homeostasis is not well understood. In this study, we surveyed publicly available ChIP-seq datasets of Arabidopsis wild-type and mutants defective in key enzymes of histone modification and chromatin remodeling and compared the deposition of epigenetic marks on loci of genes involved in iron regulation. Based on the analysis, we compiled a comprehensive list of iron homeostasis genes with differential enrichment of various histone modifications. This report will provide a resource for future studies to investigate epigenetic regulatory mechanisms of iron homeostasis in plants.
Collapse
Affiliation(s)
- Yang Yu
- Division of Natural and Applied Sciences, Duke Kunshan University, Jiangsu, China
| | - Yuxin Wang
- Division of Natural and Applied Sciences, Duke Kunshan University, Jiangsu, China
| | - Zhujun Yao
- Division of Natural and Applied Sciences, Duke Kunshan University, Jiangsu, China
| | - Ziqin Wang
- Division of Natural and Applied Sciences, Duke Kunshan University, Jiangsu, China
| | - Zijun Xia
- Division of Natural and Applied Sciences, Duke Kunshan University, Jiangsu, China
| | - Joohyun Lee
- Division of Natural and Applied Sciences, Duke Kunshan University, Jiangsu, China.
| |
Collapse
|
5
|
Torres-Arciga K, Flores-León M, Ruiz-Pérez S, Trujillo-Pineda M, González-Barrios R, Herrera LA. Histones and their chaperones: Adaptive remodelers of an ever-changing chromatinic landscape. Front Genet 2022; 13:1057846. [PMID: 36468032 PMCID: PMC9709290 DOI: 10.3389/fgene.2022.1057846] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/02/2022] [Indexed: 07/29/2023] Open
Abstract
Chromatin maintenance and remodeling are processes that take place alongside DNA repair, replication, or transcription to ensure the survival and adaptability of a cell. The environment and the needs of the cell dictate how chromatin is remodeled; particularly where and which histones are deposited, thus changing the canonical histone array to regulate chromatin structure and gene expression. Chromatin is highly dynamic, and histone variants and their chaperones play a crucial role in maintaining the epigenetic regulation at different genomic regions. Despite the large number of histone variants reported to date, studies on their roles in physiological processes and pathologies are emerging but continue to be scarce. Here, we present recent advances in the research on histone variants and their chaperones, with a focus on their importance in molecular mechanisms such as replication, transcription, and DNA damage repair. Additionally, we discuss the emerging role they have in transposable element regulation, aging, and chromatin remodeling syndromes. Finally, we describe currently used methods and their limitations in the study of these proteins and highlight the importance of improving the experimental approaches to further understand this epigenetic machinery.
Collapse
Affiliation(s)
- Karla Torres-Arciga
- Doctorado en Ciencias Biológicas, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología (INCan)-Instituto de Investigaciones Biomédicas (IIBO), Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Manuel Flores-León
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas (IIBO), Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Samuel Ruiz-Pérez
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología (INCan)-Instituto de Investigaciones Biomédicas (IIBO), Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Magalli Trujillo-Pineda
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología (INCan)-Instituto de Investigaciones Biomédicas (IIBO), Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Rodrigo González-Barrios
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología (INCan)-Instituto de Investigaciones Biomédicas (IIBO), Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Luis A. Herrera
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología (INCan)-Instituto de Investigaciones Biomédicas (IIBO), Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
- Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| |
Collapse
|
6
|
Kravatsky YV, Chechetkin VR, Tchurikov NA, Kravatskaya GI. Genome-Wide Study of Colocalization between Genomic Stretches: A Method and Applications to the Regulation of Gene Expression. BIOLOGY 2022; 11:1422. [PMID: 36290327 PMCID: PMC9598420 DOI: 10.3390/biology11101422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
In this paper, we describe a method for the study of colocalization effects between stretch-stretch and stretch-point genome tracks based on a set of indices varying within the (-1, +1) interval. The indices combine the distances between the centers of neighboring stretches and their lengths. The extreme boundaries of the interval correspond to the complete colocalization of the genome tracks or its complete absence. We also obtained the relevant criteria of statistical significance for such indices using the complete permutation test. The method is robust with respect to strongly inhomogeneous positioning and length distribution of the genome tracks. On the basis of this approach, we created command-line software, the Genome Track Colocalization Analyzer. The software was tested, compared with other available packages, and applied to particular problems related to gene expression. The package, Genome Track Colocalization Analyzer (GTCA), is freely available to the users. GTCA complements our previous software, the Genome Track Analyzer, intended for the search for pairwise correlations between point-like genome tracks (also freely available). The corresponding details are provided in Data Availability Statement at the end of the text.
Collapse
Affiliation(s)
- Yuri V. Kravatsky
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Vladimir R. Chechetkin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia
| | - Nickolai A. Tchurikov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia
| | - Galina I. Kravatskaya
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia
| |
Collapse
|
7
|
Sales-Gil R, Kommer DC, de Castro IJ, Amin HA, Vinciotti V, Sisu C, Vagnarelli P. Non-redundant functions of H2A.Z.1 and H2A.Z.2 in chromosome segregation and cell cycle progression. EMBO Rep 2021; 22:e52061. [PMID: 34423893 PMCID: PMC8567233 DOI: 10.15252/embr.202052061] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 07/26/2021] [Accepted: 08/03/2021] [Indexed: 12/30/2022] Open
Abstract
H2A.Z is a H2A‐type histone variant essential for many aspects of cell biology, ranging from gene expression to genome stability. From deuterostomes, H2A.Z evolved into two paralogues, H2A.Z.1 and H2A.Z.2, that differ by only three amino acids and are encoded by different genes (H2AFZ and H2AFV, respectively). Despite the importance of this histone variant in development and cellular homeostasis, very little is known about the individual functions of each paralogue in mammals. Here, we have investigated the distinct roles of the two paralogues in cell cycle regulation and unveiled non‐redundant functions for H2A.Z.1 and H2A.Z.2 in cell division. Our findings show that H2A.Z.1 regulates the expression of cell cycle genes such as Myc and Ki‐67 and its depletion leads to a G1 arrest and cellular senescence. On the contrary, H2A.Z.2, in a transcription‐independent manner, is essential for centromere integrity and sister chromatid cohesion regulation, thus playing a key role in chromosome segregation.
Collapse
Affiliation(s)
- Raquel Sales-Gil
- College of Health, Medicine and Life Science, Brunel University London, London, UK
| | - Dorothee C Kommer
- College of Health, Medicine and Life Science, Brunel University London, London, UK
| | - Ines J de Castro
- College of Health, Medicine and Life Science, Brunel University London, London, UK
| | - Hasnat A Amin
- College of Health, Medicine and Life Science, Brunel University London, London, UK
| | - Veronica Vinciotti
- College of Engineering, Design and Physical Sciences, Research Institute for Environment Health and Society, Brunel University London, London, UK
| | - Cristina Sisu
- College of Health, Medicine and Life Science, Brunel University London, London, UK
| | - Paola Vagnarelli
- College of Health, Medicine and Life Science, Brunel University London, London, UK
| |
Collapse
|
8
|
Antontseva EV, Bondar NP. Chromatin remodeling in oligodendrogenesis. Vavilovskii Zhurnal Genet Selektsii 2021; 25:573-579. [PMID: 34595379 PMCID: PMC8453368 DOI: 10.18699/vj21.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 11/19/2022] Open
Abstract
Oligodendrocytes are one type of glial cells responsible for myelination and providing trophic support
for axons in the central nervous system of vertebrates. Thanks to myelin, the speed of electrical-signal conduction
increases several hundred-fold because myelin serves as a kind of electrical insulator of nerve f ibers and allows
for quick saltatory conduction of action potentials through Ranvier nodes, which are devoid of myelin. Given that
different
parts of the central nervous system are myelinated at different stages of development and most regions
contain both myelinated and unmyelinated axons, it is obvious that very precise mechanisms must exist to control
the myelination
of individual axons. As they go through the stages of specif ication and differentiation – from
multipotent neuronal cells in the ventricular zone of the neural tube to mature myelinating oligodendrocytes as
well as during migration along blood vessels to their destination – cells undergo dramatic changes in the pattern
of gene expression. These changes require precisely spatially and temporally coordinated interactions of various
transcription factors and epigenetic events that determine the regulatory landscape of chromatin. Chromatin remodeling
substantially affects transcriptional activity of genes. The main component of chromatin is the nucleosome,
which, in addition to the structural function, performs a regulatory one and serves as a general repressor
of genes. Changes in the type, position, and local density of nucleosomes require the action of specialized ATPdependent
chromatin-remodeling complexes, which use the energy of ATP hydrolysis for their activity. Mutations
in the genes encoding proteins of the remodeling complexes are often accompanied by serious disorders at early
stages of embryogenesis and are frequently identif ied in various cancers. According to the domain arrangement
of the ATP-hydrolyzing subunit, most of the identif ied ATP-dependent chromatin-remodeling complexes are classif
ied into four subfamilies: SWI/SNF, CHD, INO80/SWR, and ISWI. In this review, we discuss the roles of these subunits
of the different subfamilies at different stages of oligodendrogenesis
Collapse
Affiliation(s)
- E V Antontseva
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - N P Bondar
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
9
|
Ferraro AR, Ameri AJ, Lu Z, Kamei M, Schmitz RJ, Lewis ZA. Chromatin accessibility profiling in Neurospora crassa reveals molecular features associated with accessible and inaccessible chromatin. BMC Genomics 2021; 22:459. [PMID: 34147068 PMCID: PMC8214302 DOI: 10.1186/s12864-021-07774-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 06/04/2021] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Regulation of chromatin accessibility and transcription are tightly coordinated processes. Studies in yeast and higher eukaryotes have described accessible chromatin regions, but little work has been done in filamentous fungi. RESULTS Here we present a genome-scale characterization of accessible chromatin regions in Neurospora crassa, which revealed characteristic molecular features of accessible and inaccessible chromatin. We present experimental evidence of inaccessibility within heterochromatin regions in Neurospora, and we examine features of both accessible and inaccessible chromatin, including the presence of histone modifications, types of transcription, transcription factor binding, and relative nucleosome turnover rates. Chromatin accessibility is not strictly correlated with expression level. Accessible chromatin regions in the model filamentous fungus Neurospora are characterized the presence of H3K27 acetylation and commonly associated with pervasive non-coding transcription. Conversely, methylation of H3 lysine-36 catalyzed by ASH1 is correlated with inaccessible chromatin within promoter regions. CONCLUSIONS In N. crassa, H3K27 acetylation is the most predictive histone modification for open chromatin. Conversely, our data show that H3K36 methylation is a key marker of inaccessible chromatin in gene-rich regions of the genome. Our data are consistent with an expanded role for H3K36 methylation in intergenic regions of filamentous fungi compared to the model yeasts, S. cerevisiae and S. pombe, which lack homologs of the ASH1 methyltransferase.
Collapse
Affiliation(s)
- Aileen R Ferraro
- Department of Microbiology, University of Georgia, Athens, GA, 30602, USA
| | - Abigail J Ameri
- Department of Microbiology, University of Georgia, Athens, GA, 30602, USA
| | - Zefu Lu
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA
| | - Masayuki Kamei
- Department of Microbiology, University of Georgia, Athens, GA, 30602, USA
| | - Robert J Schmitz
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA
| | - Zachary A Lewis
- Department of Microbiology, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
10
|
Perfecting DNA double-strand break repair on transcribed chromatin. Essays Biochem 2021; 64:705-719. [PMID: 32309851 DOI: 10.1042/ebc20190094] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/29/2020] [Accepted: 04/01/2020] [Indexed: 02/07/2023]
Abstract
Timely repair of DNA double-strand break (DSB) entails coordination with the local higher order chromatin structure and its transaction activities, including transcription. Recent studies are uncovering how DSBs trigger transient suppression of nearby transcription to permit faithful DNA repair, failing of which leads to elevated chromosomal aberrations and cell hypersensitivity to DNA damage. Here, we summarize the molecular bases for transcriptional control during DSB metabolism, and discuss how the exquisite coordination between the two DNA-templated processes may underlie maintenance of genome stability and cell homeostasis.
Collapse
|
11
|
Welle A, Kasakow CV, Jungmann AM, Gobbo D, Stopper L, Nordström K, Salhab A, Gasparoni G, Scheller A, Kirchhoff F, Walter J. Epigenetic control of region-specific transcriptional programs in mouse cerebellar and cortical astrocytes. Glia 2021; 69:2160-2177. [PMID: 34028094 DOI: 10.1002/glia.24016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 04/23/2021] [Accepted: 04/28/2021] [Indexed: 01/07/2023]
Abstract
Astrocytes from the cerebral cortex (CTX) and cerebellum (CB) share basic molecular programs, but also form distinct spatial and functional subtypes. The regulatory epigenetic layers controlling such regional diversity have not been comprehensively investigated so far. Here, we present an integrated epigenome analysis of methylomes, open chromatin, and transcriptomes of astroglia populations isolated from the cortex or cerebellum of young adult mice. Besides a basic overall similarity in their epigenomic programs, cortical astrocytes and cerebellar astrocytes exhibit substantial differences in their overall open chromatin structure and in gene-specific DNA methylation. Regional epigenetic differences are linked to differences in transcriptional programs encompassing genes of region-specific transcription factor networks centered around Lhx2/Foxg1 in CTX astrocytes and the Zic/Irx families in CB astrocytes. The distinct epigenetic signatures around these transcription factor networks point to a complex interconnected and combinatorial regulation of region-specific transcriptomes. These findings suggest that key transcription factors, previously linked to temporal, regional, and spatial control of neurogenesis, also form combinatorial networks important for astrocytes. Our study provides a valuable resource for the molecular basis of regional astrocyte identity and physiology.
Collapse
Affiliation(s)
- Anna Welle
- Department of Genetics and EpiGenetics, University of Saarland, Saarbrücken, Germany
| | - Carmen V Kasakow
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine, University of Saarland, Homburg, Germany
| | - Annemarie M Jungmann
- Department of Genetics and EpiGenetics, University of Saarland, Saarbrücken, Germany
| | - Davide Gobbo
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine, University of Saarland, Homburg, Germany
| | - Laura Stopper
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine, University of Saarland, Homburg, Germany
| | - Karl Nordström
- Department of Genetics and EpiGenetics, University of Saarland, Saarbrücken, Germany
| | - Abdulrahman Salhab
- Department of Genetics and EpiGenetics, University of Saarland, Saarbrücken, Germany
| | - Gilles Gasparoni
- Department of Genetics and EpiGenetics, University of Saarland, Saarbrücken, Germany
| | - Anja Scheller
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine, University of Saarland, Homburg, Germany
| | - Frank Kirchhoff
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine, University of Saarland, Homburg, Germany
| | - Jörn Walter
- Department of Genetics and EpiGenetics, University of Saarland, Saarbrücken, Germany
| |
Collapse
|
12
|
Courtney AJ, Kamei M, Ferraro AR, Gai K, He Q, Honda S, Lewis ZA. Normal Patterns of Histone H3K27 Methylation Require the Histone Variant H2A.Z in Neurospora crassa. Genetics 2020; 216:51-66. [PMID: 32651262 PMCID: PMC7463285 DOI: 10.1534/genetics.120.303442] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/05/2020] [Indexed: 12/14/2022] Open
Abstract
Neurospora crassa contains a minimal Polycomb repression system, which provides rich opportunities to explore Polycomb-mediated repression across eukaryotes and enables genetic studies that can be difficult in plant and animal systems. Polycomb Repressive Complex 2 is a multi-subunit complex that deposits mono-, di-, and trimethyl groups on lysine 27 of histone H3, and trimethyl H3K27 is a molecular marker of transcriptionally repressed facultative heterochromatin. In mouse embryonic stem cells and multiple plant species, H2A.Z has been found to be colocalized with H3K27 methylation. H2A.Z is required for normal H3K27 methylation in these experimental systems, though the regulatory mechanisms are not well understood. We report here that Neurospora crassa mutants lacking H2A.Z or SWR-1, the ATP-dependent histone variant exchanger, exhibit a striking reduction in levels of H3K27 methylation. RNA-sequencing revealed downregulation of eed, encoding a subunit of PRC2, in an hH2Az mutant compared to wild type, and overexpression of EED in a ΔhH2Az;Δeed background restored most H3K27 methylation. Reduced eed expression leads to region-specific losses of H3K27 methylation, suggesting that differential dependence on EED concentration is critical for normal H3K27 methylation at certain regions in the genome.
Collapse
Affiliation(s)
- Abigail J Courtney
- Department of Microbiology, University of Georgia, Athens, Georgia 30602
| | - Masayuki Kamei
- Department of Microbiology, University of Georgia, Athens, Georgia 30602
| | - Aileen R Ferraro
- Department of Microbiology, University of Georgia, Athens, Georgia 30602
| | - Kexin Gai
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qun He
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shinji Honda
- Division of Chromosome Biology, Faculty of Medical Sciences, University of Fukui, 910-1193, Japan
| | - Zachary A Lewis
- Department of Microbiology, University of Georgia, Athens, Georgia 30602
| |
Collapse
|
13
|
Raja DA, Subramaniam Y, Aggarwal A, Gotherwal V, Babu A, Tanwar J, Motiani RK, Sivasubbu S, Gokhale RS, Natarajan VT. Histone variant dictates fate biasing of neural crest cells to melanocyte lineage. Development 2020; 147:dev.182576. [PMID: 32098766 DOI: 10.1242/dev.182576] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 01/24/2020] [Indexed: 11/20/2022]
Abstract
In the neural crest lineage, progressive fate restriction and stem cell assignment are crucial for both development and regeneration. Whereas fate commitment events have distinct transcriptional footprints, fate biasing is often transitory and metastable, and is thought to be moulded by epigenetic programmes. Therefore, the molecular basis of specification is difficult to define. In this study, we established a role for a histone variant, H2a.z.2, in specification of the melanocyte lineage from multipotent neural crest cells. H2a.z.2 silencing reduces the number of melanocyte precursors in developing zebrafish embryos and from mouse embryonic stem cells in vitro We demonstrate that this histone variant occupies nucleosomes in the promoter of the key melanocyte determinant mitf, and enhances its induction. CRISPR/Cas9-based targeted mutagenesis of this gene in zebrafish drastically reduces adult melanocytes, as well as their regeneration. Thereby, our study establishes the role of a histone variant upstream of the core gene regulatory network in the neural crest lineage. This epigenetic mark is a key determinant of cell fate and facilitates gene activation by external instructive signals, thereby establishing melanocyte fate identity.
Collapse
Affiliation(s)
- Desingu Ayyappa Raja
- Pigment Cell Biology Group, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, 110025, India.,Academy of Scientific and Innovative Research, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh, 201002, India
| | - Yogaspoorthi Subramaniam
- Pigment Cell Biology Group, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, 110025, India.,Academy of Scientific and Innovative Research, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh, 201002, India
| | - Ayush Aggarwal
- Pigment Cell Biology Group, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, 110025, India.,Academy of Scientific and Innovative Research, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh, 201002, India
| | - Vishvabandhu Gotherwal
- Pigment Cell Biology Group, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, 110025, India.,Academy of Scientific and Innovative Research, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh, 201002, India
| | - Aswini Babu
- Pigment Cell Biology Group, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, 110025, India
| | - Jyoti Tanwar
- Pigment Cell Biology Group, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, 110025, India.,Academy of Scientific and Innovative Research, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh, 201002, India
| | - Rajender K Motiani
- Pigment Cell Biology Group, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, 110025, India
| | - Sridhar Sivasubbu
- Pigment Cell Biology Group, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, 110025, India
| | - Rajesh S Gokhale
- Pigment Cell Biology Group, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, 110025, India
| | - Vivek T Natarajan
- Pigment Cell Biology Group, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, 110025, India .,Academy of Scientific and Innovative Research, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh, 201002, India
| |
Collapse
|
14
|
Park H, Kaang BK. Balanced actions of protein synthesis and degradation in memory formation. ACTA ACUST UNITED AC 2019; 26:299-306. [PMID: 31416903 PMCID: PMC6699412 DOI: 10.1101/lm.048785.118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/02/2019] [Indexed: 11/24/2022]
Abstract
Storage of long-term memory requires not only protein synthesis but also protein degradation. In this article, we overview recent publications related to this issue, stressing that the balanced actions of protein synthesis and degradation are critical for long-term memory formation. We particularly focused on the brain-derived neurotrophic factor signaling that leads to protein synthesis; proteasome- and autophagy-dependent protein degradation that removes molecular constraints; the role of Fragile X mental retardation protein in translational suppression; and epigenetic modifications that control gene expression at the genomic level. Numerous studies suggest that an imbalance between protein synthesis and degradation leads to intellectual impairment and cognitive disorders.
Collapse
Affiliation(s)
- Hyungju Park
- Department of Structure and Function of Neural Network, Korea Brain Research Institute (KBRI), Daegu 41062, South Korea.,Department of Brain and Cognitive Sciences, DGIST, Daegu 42988, South Korea
| | - Bong-Kiun Kaang
- School of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| |
Collapse
|
15
|
Shen T, Ji F, Wang Y, Lei X, Zhang D, Jiao J. Brain-specific deletion of histone variant H2A.z results in cortical neurogenesis defects and neurodevelopmental disorder. Nucleic Acids Res 2019; 46:2290-2307. [PMID: 29294103 PMCID: PMC5861433 DOI: 10.1093/nar/gkx1295] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 12/19/2017] [Indexed: 12/14/2022] Open
Abstract
Defects in neurogenesis alter brain circuit formations and may lead to neurodevelopmental disorders such as autism and schizophrenia. Histone H2A.z, a variant of histone H2A, plays critical roles in chromatin structure and epigenetic regulation, but its function and mechanism in brain development remain largely unknown. Here, we find that the deletion of H2A.z results in enhanced proliferation of neural progenitors but reduced neuronal differentiation. In addition, neurons in H2A.z knockout mice exhibit abnormal dendrites during brain development. Furthermore, H2A.zcKO mice exhibit serial behavioral deficits, such as decreased exploratory activity and impaired learning and memory. Mechanistically, H2A.z regulates embryonic neurogenesis by targeting Nkx2–4 through interaction with Setd2, thereby promoting H3K36me3 modification to activate the transcription of Nkx2–4. Furthermore, enforced expression of Nkx2–4 can rescue the defective neurogenesis in the H2A.z-knockdown embryonic brain. Together, our findings implicate the epigenetic regulation by H2A.z in embryonic neurogenesis and provide a framework for understanding how disruption in the H2A.z gene may contribute to neurological disorders.
Collapse
Affiliation(s)
- Tianjin Shen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fen Ji
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanyuan Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuepei Lei
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongming Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianwei Jiao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
16
|
Giaimo BD, Ferrante F, Herchenröther A, Hake SB, Borggrefe T. The histone variant H2A.Z in gene regulation. Epigenetics Chromatin 2019; 12:37. [PMID: 31200754 PMCID: PMC6570943 DOI: 10.1186/s13072-019-0274-9] [Citation(s) in RCA: 191] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 04/23/2019] [Indexed: 01/04/2023] Open
Abstract
The histone variant H2A.Z is involved in several processes such as transcriptional control, DNA repair, regulation of centromeric heterochromatin and, not surprisingly, is implicated in diseases such as cancer. Here, we review the recent developments on H2A.Z focusing on its role in transcriptional activation and repression. H2A.Z, as a replication-independent histone, has been studied in several model organisms and inducible mammalian model systems. Its loading machinery and several modifying enzymes have been recently identified, and some of the long-standing discrepancies in transcriptional activation and/or repression are about to be resolved. The buffering functions of H2A.Z, as supported by genome-wide localization and analyzed in several dynamic systems, are an excellent example of transcriptional control. Posttranslational modifications such as acetylation and ubiquitination of H2A.Z, as well as its specific binding partners, are in our view central players in the control of gene expression. Understanding the key-mechanisms in either turnover or stabilization of H2A.Z-containing nucleosomes as well as defining the H2A.Z interactome will pave the way for therapeutic applications in the future.
Collapse
Affiliation(s)
| | - Francesca Ferrante
- Institute of Biochemistry, University of Giessen, Friedrichstrasse 24, 35392, Giessen, Germany
| | - Andreas Herchenröther
- Institute for Genetics, University of Giessen, Heinrich-Buff-Ring 58-62, 35392, Giessen, Germany
| | - Sandra B Hake
- Institute for Genetics, University of Giessen, Heinrich-Buff-Ring 58-62, 35392, Giessen, Germany
| | - Tilman Borggrefe
- Institute of Biochemistry, University of Giessen, Friedrichstrasse 24, 35392, Giessen, Germany.
| |
Collapse
|
17
|
Taylor R, Long J, Yoon JW, Childs R, Sylvestersen KB, Nielsen ML, Leong KF, Iannaccone S, Walterhouse DO, Robbins DJ, Iannaccone P. Regulation of GLI1 by cis DNA elements and epigenetic marks. DNA Repair (Amst) 2019; 79:10-21. [PMID: 31085420 PMCID: PMC6570425 DOI: 10.1016/j.dnarep.2019.04.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 04/25/2019] [Accepted: 04/29/2019] [Indexed: 12/16/2022]
Abstract
GLI1 is one of three transcription factors (GLI1, GLI2 and GLI3) that mediate the Hedgehog signal transduction pathway and play important roles in normal development. GLI1 and GLI2 form a positive-feedback loop and function as human oncogenes. The mouse and human GLI1 genes have untranslated 5′ exons and large introns 5′ of the translational start. Here we show that Sonic Hedgehog (SHH) stimulates occupancy in the introns by H3K27ac, H3K4me3 and the histone reader protein BRD4. H3K27ac and H3K4me3 occupancy is not significantly changed by removing BRD4 from the human intron and transcription start site (TSS) region. We identified six GLI binding sites (GBS) in the first intron of the human GLI1 gene that are in regions of high sequence conservation among mammals. GLI1 and GLI2 bind all of the GBS in vitro. Elimination of GBS1 and 4 attenuates transcriptional activation by GLI1. Elimination of GBS1, 2, and 4 attenuates transcriptional activation by GLI2. Eliminating all sites essentially eliminates reporter gene activation. Further, GLI1 binds the histone variant H2A.Z. These results suggest that GLI1 and GLI2 can regulate GLI1 expression through protein-protein interactions involving complexes of transcription factors, histone variants, and reader proteins in the regulatory intron of the GLI1 gene. GLI1 acting in trans on the GLI1 intron provides a mechanism for GLI1 positive feedback and auto-regulation. Understanding the combinatorial protein landscape in this locus will be important to interrupting the GLI positive feedback loop and providing new therapeutic approaches to cancers associated with GLI1 overexpression.
Collapse
Affiliation(s)
- Robert Taylor
- Developmental Biology Program, Stanley Manne Children's Research Institute, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital, Northwestern University Feinberg School of Medicine, USA
| | - Jun Long
- The DeWitt Daughtry Family Department of Surgery, Miller School of Medicine, University of Miami, USA
| | - Joon Won Yoon
- Developmental Biology Program, Stanley Manne Children's Research Institute, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital, Northwestern University Feinberg School of Medicine, USA
| | - Ronnie Childs
- Developmental Biology Program, Stanley Manne Children's Research Institute, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital, Northwestern University Feinberg School of Medicine, USA
| | | | | | - King-Fu Leong
- Developmental Biology Program, Stanley Manne Children's Research Institute, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital, Northwestern University Feinberg School of Medicine, USA
| | - Stephen Iannaccone
- Developmental Biology Program, Stanley Manne Children's Research Institute, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital, Northwestern University Feinberg School of Medicine, USA
| | - David O Walterhouse
- Developmental Biology Program, Stanley Manne Children's Research Institute, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital, Northwestern University Feinberg School of Medicine, USA
| | - David J Robbins
- The DeWitt Daughtry Family Department of Surgery, Miller School of Medicine, University of Miami, USA.
| | - Philip Iannaccone
- Developmental Biology Program, Stanley Manne Children's Research Institute, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital, Northwestern University Feinberg School of Medicine, USA.
| |
Collapse
|
18
|
Abstract
The essential liver exocrine and endocrine functions require a precise spatial arrangement of the hepatic lobule consisting of the central vein, portal vein, hepatic artery, intrahepatic bile duct system, and hepatocyte zonation. This allows blood to be carried through the liver parenchyma sampled by all hepatocytes and bile produced by the hepatocytes to be carried out of the liver through the intrahepatic bile duct system composed of cholangiocytes. The molecular orchestration of multiple signaling pathways and epigenetic factors is required to set up lineage restriction of the bipotential hepatoblast progenitor into the hepatocyte and cholangiocyte cell lineages, and to further refine cell fate heterogeneity within each cell lineage reflected in the functional heterogeneity of hepatocytes and cholangiocytes. In addition to the complex molecular regulation, there is a complicated morphogenetic choreography observed in building the refined hepatic epithelial architecture. Given the multifaceted molecular and cellular regulation, it is not surprising that impairment of any of these processes can result in acute and chronic hepatobiliary diseases. To enlighten the development of potential molecular and cellular targets for therapeutic options, an understanding of how the intricate hepatic molecular and cellular interactions are regulated is imperative. Here, we review the signaling pathways and epigenetic factors regulating hepatic cell lineages, fates, and epithelial architecture.
Collapse
Affiliation(s)
- Stacey S Huppert
- Division of Gastroenterology, Hepatology & Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.
| | - Makiko Iwafuchi-Doi
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States; Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| |
Collapse
|
19
|
Su L, Xia W, Shen T, Liang Q, Wang W, Li H, Jiao J. H2A.Z.1 crosstalk with H3K56-acetylation controls gliogenesis through the transcription of folate receptor. Nucleic Acids Res 2018; 46:8817-8831. [PMID: 29982651 PMCID: PMC6158499 DOI: 10.1093/nar/gky585] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/18/2018] [Indexed: 12/11/2022] Open
Abstract
Astrocytes play crucial roles in the central nervous system, and defects in astrocyte function are closely related to many neurological disorders. Studying the mechanism of gliogenesis has important implications for understanding and treating brain diseases. Epigenetic regulations have essential roles during mammalian brain development. Here, we demonstrate that histone H2A.Z.1 is necessary for the specification of multiple neural precursor cells (NPCs) and has specialized functions that regulate gliogenesis. Depletion of H2A.Z.1 suppresses gliogenesis and results in reduced astrocyte differentiation. Additionally, H2A.Z.1 regulates the acetylation of H3K56 (H3K56ac) by cooperating with the chaperone of ASF1a. Furthermore, RNA-seq data indicate that folate receptor 1 (FOLR1) participates in gliogenesis through the JAK–STAT signaling pathway. Taken together, our results demonstrate that H2A.Z.1 is a key regulator of gliogenesis because it interacts with ASF1a to regulate H3K56ac and then directly affects the expression of FOLR1, which acts as a signal-transducing component of the JAK–STAT signaling pathway.
Collapse
Affiliation(s)
- Libo Su
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenlong Xia
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Tianjin Shen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingli Liang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenwen Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Hong Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianwei Jiao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
20
|
Functional crosstalk between histone H2B ubiquitylation and H2A modifications and variants. Nat Commun 2018; 9:1394. [PMID: 29643390 PMCID: PMC5895630 DOI: 10.1038/s41467-018-03895-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/20/2018] [Indexed: 01/30/2023] Open
Abstract
Ubiquitylation of histone H2B at lysine residue 120 (H2BK120ub) is a prominent histone posttranslational modification (PTM) associated with the actively transcribed genome. Although H2BK120ub triggers several critical downstream histone modification pathways and changes in chromatin structure, less is known about the regulation of the ubiquitylation reaction itself, in particular with respect to the modification status of the chromatin substrate. Here we employ an unbiased library screening approach to profile the impact of pre-existing chromatin modifications on de novo ubiquitylation of H2BK120 by the cognate human E2:E3 ligase pair, UBE2A:RNF20/40. Deposition of H2BK120ub is found to be highly sensitive to PTMs on the N-terminal tail of histone H2A, a crosstalk that extends to the common histone variant H2A.Z. Based on a series of biochemical and cell-based studies, we propose that this crosstalk contributes to the spatial organization of H2BK120ub on gene bodies, and is thus important for transcriptional regulation. Ubiquitylation of H2B is associated with transcription and regulation of chromatin structure. Here, the authors perform an unbiased screen to identify the role of chromatin modifications on ubiquitylation of H2BK120 and characterize the crosstalk between H2BK120ub and H2A modifications and variants.
Collapse
|
21
|
Ors A, Papin C, Favier B, Roulland Y, Dalkara D, Ozturk M, Hamiche A, Dimitrov S, Padmanabhan K. Histone H3.3 regulates mitotic progression in mouse embryonic fibroblasts. Biochem Cell Biol 2017; 95:491-499. [DOI: 10.1139/bcb-2016-0190] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
H3.3 is a histone variant that marks transcription start sites as well as telomeres and heterochromatic sites on the genome. The presence of H3.3 is thought to positively correlate with the transcriptional status of its target genes. Using a conditional genetic strategy against H3.3B, combined with short hairpin RNAs against H3.3A, we essentially depleted all H3.3 gene expression in mouse embryonic fibroblasts. Following nearly complete loss of H3.3 in the cells, our transcriptomic analyses show very little impact on global gene expression or on the localization of histone variant H2A.Z. Instead, fibroblasts displayed slower cell growth and an increase in cell death, coincident with large-scale chromosome misalignment in mitosis and large polylobed or micronuclei in interphase cells. Thus, we conclude that H3.3 may have an important under-explored additional role in chromosome segregation, nuclear structure, and the maintenance of genome integrity.
Collapse
Affiliation(s)
- Aysegul Ors
- Université de Grenoble Alpes, Institute for Advanced Biosciences, INSERM U1209/CNRS 5309, 38700 La Tronche, France
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, 06800 Ankara, Turkey
| | - Christophe Papin
- Université de Strasbourg, Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC), CNRS, INSERM, Equipe labélisée Ligue contre le Cancer, 1 rue Laurent Fries, B.P. 10142, 67404 Illkirch Cedex, France
| | - Bertrand Favier
- Université de Grenoble Alpes, Team GREPI, Etablissement Français du Sang, EA 7408, BP35, 38701 La Tronche, France
| | - Yohan Roulland
- Université de Grenoble Alpes, Institute for Advanced Biosciences, INSERM U1209/CNRS 5309, 38700 La Tronche, France
| | - Defne Dalkara
- Université de Grenoble Alpes, Institute for Advanced Biosciences, INSERM U1209/CNRS 5309, 38700 La Tronche, France
| | - Mehmet Ozturk
- Izmir Biomedicine and Genome Center, Faculty of Medicine, Dokuz Eylül University, Izmir, Turkey
| | - Ali Hamiche
- Université de Strasbourg, Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC), CNRS, INSERM, Equipe labélisée Ligue contre le Cancer, 1 rue Laurent Fries, B.P. 10142, 67404 Illkirch Cedex, France
| | - Stefan Dimitrov
- Université de Grenoble Alpes, Institute for Advanced Biosciences, INSERM U1209/CNRS 5309, 38700 La Tronche, France
| | - Kiran Padmanabhan
- Université de Lyon, Institut de Génomique Fonctionnelle de Lyon, CNRS UMR 5242, Ecole normale supérieur de Lyon, Université Claude Bernard Lyon 1, 46 Allée d’Italie, F-69364 Lyon, France
| |
Collapse
|
22
|
Zhang K, Xu W, Wang C, Yi X, Zhang W, Su Z. Differential deposition of H2A.Z in combination with histone modifications within related genes in Oryza sativa callus and seedling. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:264-277. [PMID: 27643852 DOI: 10.1111/tpj.13381] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 08/14/2016] [Accepted: 09/12/2016] [Indexed: 05/19/2023]
Abstract
As a histone variant, H2A.Z is highly conserved among species and plays a significant role in diverse cellular processes. Here, we generated genome-wide maps of H2A.Z in Oryza sativa (rice) callus and seedling by combining chromatin immunoprecipitation using H2A.Z antibody and high-throughput sequencing. We found a significantly high peak and a small peak of H2A.Z distributed at the 5' and 3' ends of highly expressed genes, respectively. H2A.Z was also associated with inactive genes in both tissues. H3 lysine 4 trimethylation was associated with H2A.Z deposition at the 5' end of expressed genes, and H3 lysine 27 trimethylation peaks were partially associated with H2A.Z. In summary, our study provides global analysis data for the distribution of H2A.Z in the rice genome. Our results demonstrate that the differential deposition of H2A.Z might play important roles in gene transcription during rice development.
Collapse
Affiliation(s)
- Kang Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Wenying Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Chunchao Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xin Yi
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Wenli Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production (JCIC-MCP), Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Zhen Su
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
23
|
Yang D, Ioshikhes I. Drosophila H2A and H2A.Z Nucleosome Sequences Reveal Different Nucleosome Positioning Sequence Patterns. J Comput Biol 2016; 24:289-298. [PMID: 27992255 DOI: 10.1089/cmb.2016.0173] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Nucleosomes are implicated in transcriptional regulation as well as in packing and stabilizing the DNA. Nucleosome positions affect the transcription by impeding or facilitating the binding of transcription factors. The DNA sequence, especially the periodic occurrences of dinucleotides, is a major factor that affects the nucleosome positioning. We analyzed the Drosophila DNA sequences bound by H2A and H2A.Z nucleosomes. Periodic patterns of dinucleotides (weak-weak/strong-strong or purine-purine/pyrimidine-pyrimidine) were identified as WW/SS and RR/YY nucleosome positioning sequence (NPS) patterns. The WW/SS NPS pattern of the H2A nucleosome has a 10-bp period of weak-weak/strong-strong (W = A or T; S = G or C) dinucleotides. The 10-bp periodicity, however, is disrupted in the middle of the sequence. At the dyad, the SS dinucleotide is preferred. On the other hand, the RR/YY NPS pattern has an 18-bp periodicity of purine-purine/pyrimidine-pyrimidine (R = A or G; Y = T or C) dinucleotides. The NPS patterns from H2A.Z nucleosomes differ from the NPS patterns from H2A nucleosomes. The RR/YY pattern of H2A.Z nucleosomes has major peaks shifted by 10 bp deviated from the H2A nucleosome pattern. The H2A and H2A.Z nucleosomes have different sequence preferences. The shifted peaks coincide with DNA regions interacting with the histone loops.
Collapse
Affiliation(s)
- Doo Yang
- 1 Ottawa Institute of Systems Biology, University of Ottawa , Ottawa, Ontario, Canada .,2 Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa , Ottawa, Ontario, Canada
| | - Ilya Ioshikhes
- 1 Ottawa Institute of Systems Biology, University of Ottawa , Ottawa, Ontario, Canada .,2 Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa , Ottawa, Ontario, Canada
| |
Collapse
|
24
|
Claveria-Gimeno R, Abian O, Velazquez-Campoy A, Ausió J. MeCP2… Nature’s Wonder Protein or Medicine’s Most Feared One? CURRENT GENETIC MEDICINE REPORTS 2016. [DOI: 10.1007/s40142-016-0107-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
25
|
Iwafuchi-Doi M, Donahue G, Kakumanu A, Watts JA, Mahony S, Pugh BF, Lee D, Kaestner KH, Zaret KS. The Pioneer Transcription Factor FoxA Maintains an Accessible Nucleosome Configuration at Enhancers for Tissue-Specific Gene Activation. Mol Cell 2016; 62:79-91. [PMID: 27058788 PMCID: PMC4826471 DOI: 10.1016/j.molcel.2016.03.001] [Citation(s) in RCA: 271] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 02/05/2016] [Accepted: 02/29/2016] [Indexed: 12/20/2022]
Abstract
Nuclear DNA wraps around core histones to form nucleosomes, which restricts the binding of transcription factors to gene regulatory sequences. Pioneer transcription factors can bind DNA sites on nucleosomes and initiate gene regulatory events, often leading to the local opening of chromatin. However, the nucleosomal configuration of open chromatin and the basis for its regulation is unclear. We combined low and high levels of micrococcal nuclease (MNase) digestion along with core histone mapping to assess the nucleosomal configuration at enhancers and promoters in mouse liver. We find that MNase-accessible nucleosomes, bound by transcription factors, are retained more at liver-specific enhancers than at promoters and ubiquitous enhancers. The pioneer factor FoxA displaces linker histone H1, thereby keeping enhancer nucleosomes accessible in chromatin and allowing other liver-specific transcription factors to bind and stimulate transcription. Thus, nucleosomes are not exclusively repressive to gene regulation when they are retained with, and exposed by, pioneer factors.
Collapse
Affiliation(s)
- Makiko Iwafuchi-Doi
- Department of Cell and Developmental Biology and Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104-5157, USA
| | - Greg Donahue
- Department of Cell and Developmental Biology and Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104-5157, USA
| | - Akshay Kakumanu
- Department of Biochemistry and Molecular Biology and Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jason A Watts
- Department of Cell and Developmental Biology and Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104-5157, USA
| | - Shaun Mahony
- Department of Biochemistry and Molecular Biology and Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
| | - B Franklin Pugh
- Department of Biochemistry and Molecular Biology and Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
| | - Dolim Lee
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104-5157, USA
| | - Klaus H Kaestner
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104-5157, USA
| | - Kenneth S Zaret
- Department of Cell and Developmental Biology and Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104-5157, USA.
| |
Collapse
|
26
|
Walters BJ, Azam AB, Gillon CJ, Josselyn SA, Zovkic IB. Advanced In vivo Use of CRISPR/Cas9 and Anti-sense DNA Inhibition for Gene Manipulation in the Brain. Front Genet 2016; 6:362. [PMID: 26793235 PMCID: PMC4709581 DOI: 10.3389/fgene.2015.00362] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 12/19/2015] [Indexed: 12/28/2022] Open
Abstract
Gene editing tools are essential for uncovering how genes mediate normal brain-behavior relationships and contribute to neurodegenerative and neuropsychiatric disorders. Recent progress in gene editing technology now allows neuroscientists unprecedented access to edit the genome efficiently. Although many important tools have been developed, here we focus on approaches that allow for rapid gene editing in the adult nervous system, particularly CRISPR/Cas9 and anti-sense nucleotide-based techniques. CRISPR/Cas9 is a flexible gene editing tool, allowing the genome to be manipulated in diverse ways. For instance, CRISPR/Cas9 has been successfully used to knockout genes, knock-in mutations, overexpress or inhibit gene activity, and provide scaffolding for recruiting specific epigenetic regulators to individual genes and gene regions. Moreover, the CRISPR/Cas9 system may be modified to target multiple genes at one time, affording simultaneous inhibition and overexpression of distinct genetic targets. Although many of the more advanced applications of CRISPR/Cas9 have not been applied to the nervous system, the toolbox is widely accessible, such that it is poised to help advance neuroscience. Anti-sense nucleotide-based technologies can be used to rapidly knockdown genes in the brain. The main advantage of anti-sense based tools is their simplicity, allowing for rapid gene delivery with minimal technical expertise. Here, we describe the main applications and functions of each of these systems with an emphasis on their many potential applications in neuroscience laboratories.
Collapse
Affiliation(s)
- Brandon J Walters
- Department of Neuroscience and Mental Health, The Hospital for Sick Children Toronto, ON, Canada
| | - Amber B Azam
- Department of Psychology, University of Toronto Mississauga Mississauga, ON, Canada
| | - Colleen J Gillon
- Department of Neuroscience and Mental Health, The Hospital for Sick ChildrenToronto, ON, Canada; Department of Physiology, University of TorontoToronto, ON, Canada
| | - Sheena A Josselyn
- Department of Neuroscience and Mental Health, The Hospital for Sick ChildrenToronto, ON, Canada; Department of Physiology, University of TorontoToronto, ON, Canada
| | - Iva B Zovkic
- Department of Psychology, University of Toronto Mississauga Mississauga, ON, Canada
| |
Collapse
|
27
|
Structural, Synaptic, and Epigenetic Dynamics of Enduring Memories. Neural Plast 2016; 2016:3425908. [PMID: 26933513 PMCID: PMC4736770 DOI: 10.1155/2016/3425908] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 11/23/2015] [Accepted: 11/24/2015] [Indexed: 11/17/2022] Open
Abstract
Our memories are the records of the experiences we gain in our everyday life. Over time, they slowly transform from an initially unstable state into a long-lasting form. Many studies have been investigating from different aspects how a memory could persist for sometimes up to decades. In this review, we highlight three of the greatly addressed mechanisms that play a central role for a given memory to endure: the allocation of the memory to a given neuronal population and what brain areas are recruited for its storage; the structural changes that underlie memory persistence; and finally the epigenetic control of gene expression that might regulate and support memory perseverance. Examining such key properties of a memory is essential towards a finer understanding of its capacity to last.
Collapse
|
28
|
Cieślik M, Bekiranov S. Genome-wide predictors of NF-κB recruitment and transcriptional activity. BioData Min 2015; 8:37. [PMID: 26617673 PMCID: PMC4661973 DOI: 10.1186/s13040-015-0071-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 11/18/2015] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Inducible transcription factors (TFs) mediate transcriptional responses to environmental cues. In response to multiple inflammatory signals active NF-κB dimers enter the nucleus and trigger cell-type-, and stimulus-specific transcriptional programs. Although much is known about NF-κB inducing pathways and about locus-specific mechanisms of transcriptional control, it is poorly understood how the pre-existing chromatin landscape determines NF-κB target selection and activation. Specifically, it is not known which epigenetic marks and pre-bound TFs serve genome-wide as positive (negative) cues for active NF-κB. RESULTS We applied multivariate and combinatorial data mining techniques on a comprehensive dataset of DNA methylation, DNase I hypersensitivity, eight epigenetic marks, and 34 TFs to arrive at genome-wide patterns that predict NF-κB binding. Strikingly, we observed NF-κB recruitment to accessible and nucleosome-bound sites. Within nucleosomal DNA NF-κB binding was primed by H3K4me1 and H2A.Z, but also hyper-methylated DNA outside of promoters and CpG-islands. Many of these predictors showed combinatorial cooperativity and statistically significant interactions. Recruitment to pre-accessible sites was more frequent and influenced by chromatin-associated TFs. We observed that specific TF-combinations are greatly enriched for (or depleted of) NF-κB binding events. CONCLUSIONS We provide evidence of NF-κB binding within genomic regions that lack classical marks of activity. These pioneer binding events are relatively often associated with transcriptional regulation. Further, our predictive models indicate that specific combinations of epigenetic marks and transcription factors predetermine the NF-κB cistrome, supporting the feasibility of using statistical approaches to identify "histone codes".
Collapse
Affiliation(s)
- Marcin Cieślik
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia USA
- Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109 USA
| | - Stefan Bekiranov
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia USA
| |
Collapse
|
29
|
Won KJ, Choi I, LeRoy G, Zee BM, Sidoli S, Gonzales-Cope M, Garcia BA. Proteogenomics analysis reveals specific genomic orientations of distal regulatory regions composed by non-canonical histone variants. Epigenetics Chromatin 2015; 8:13. [PMID: 25878728 PMCID: PMC4397702 DOI: 10.1186/s13072-015-0005-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 03/19/2015] [Indexed: 01/05/2023] Open
Abstract
Background Histone variants play further important roles in DNA packaging and controlling gene expression. However, our understanding about their composition and their functions is limited. Results Integrating proteomic and genomic approaches, we performed a comprehensive analysis of the epigenetic landscapes containing the four histone variants H3.1, H3.3, H2A.Z, and macroH2A. These histones were FLAG-tagged in HeLa cells and purified using chromatin immunoprecipitation (ChIP). By adopting ChIP followed by mass spectrometry (ChIP-MS), we quantified histone post-translational modifications (PTMs) and histone variant nucleosomal ratios in highly purified mononucleosomes. Subsequent ChIP followed by next-generation sequencing (ChIP-seq) was used to map the genome-wide localization of the analyzed histone variants and define their chromatin domains. Finally, we included in our study large datasets contained in the ENCODE database. We newly identified a group of regulatory regions enriched in H3.1 and the histone variant associated with repressive marks macroH2A. Systematic analysis identified both symmetric and asymmetric patterns of histone variant occupancies at intergenic regulatory regions. Strikingly, these directional patterns were associated with RNA polymerase II (PolII). These asymmetric patterns correlated with the enhancer activities measured using global run-on sequencing (GRO-seq) data. Conclusions Our studies show that H2A.Z and H3.3 delineate the orientation of transcription at enhancers as observed at promoters. We also showed that enhancers with skewed histone variant patterns well facilitate enhancer activity. Collectively, our study indicates that histone variants are deposited at regulatory regions to assist gene regulation. Electronic supplementary material The online version of this article (doi:10.1186/s13072-015-0005-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kyoung-Jae Won
- The Institute for Diabetes, Obesity, and Metabolism, Philadelphia, PA 19104 USA.,Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Inchan Choi
- The Institute for Diabetes, Obesity, and Metabolism, Philadelphia, PA 19104 USA.,Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA.,Department of Agricultural Biotechnology, National Academy of Agricultural Science, 370 Nongsaengmyeong-ro, Wansan-gu, Jeonju-si, Jeollabuk-do 560-500 South Korea
| | - Gary LeRoy
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544 USA
| | - Barry M Zee
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544 USA.,Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Simone Sidoli
- Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Michelle Gonzales-Cope
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544 USA.,Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Benjamin A Garcia
- Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| |
Collapse
|
30
|
Abstract
Histone variant Htz1 substitution for H2A plays important roles in diverse DNA transactions. Histone chaperones Chz1 and Nap1 (nucleosome assembly protein 1) are important for the deposition Htz1 into nucleosomes. In literatures, it was suggested that Chz1 is a Htz1–H2B-specific chaperone, and it is relatively unstructured in solution but it becomes structured in complex with the Htz1–H2B histone dimer. Nap1 (nucleosome assembly protein 1) can bind (H3–H4)2 tetramers, H2A–H2B dimers and Htz1–H2B dimers. Nap1 can bind H2A–H2B dimer in the cytoplasm and shuttles the dimer into the nucleus. Moreover, Nap1 functions in nucleosome assembly by competitively interacting with non-nucleosomal histone–DNA. However, the exact roles of these chaperones in assembling Htz1-containing nucleosome remain largely unknown. In this paper, we revealed that Chz1 does not show a physical interaction with chromatin. In contrast, Nap1 binds exactly at the genomic DNA that contains Htz1. Nap1 and Htz1 show a preferential interaction with AG-rich DNA sequences. Deletion of chz1 results in a significantly decreased binding of Htz1 in chromatin, whereas deletion of nap1 dramatically increases the association of Htz1 with chromatin. Furthermore, genome-wide nucleosome-mapping analysis revealed that nucleosome occupancy for Htz1p-bound genes decreases upon deleting htz1 or chz1, suggesting that Htz1 is required for nucleosome structure at the specific genome loci. All together, these results define the distinct roles for histone chaperones Chz1 and Nap1 to regulate Htz1 incorporation into chromatin.
Collapse
|
31
|
Histone H2A.Z subunit exchange controls consolidation of recent and remote memory. Nature 2014; 515:582-6. [PMID: 25219850 DOI: 10.1038/nature13707] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 07/23/2014] [Indexed: 12/11/2022]
Abstract
Memory formation is a multi-stage process that initially requires cellular consolidation in the hippocampus, after which memories are downloaded to the cortex for maintenance, in a process termed systems consolidation. Epigenetic mechanisms regulate both types of consolidation, but histone variant exchange, in which canonical histones are replaced with their variant counterparts, is an entire branch of epigenetics that has received limited attention in the brain and has never, to our knowledge, been studied in relation to cognitive function. Here we show that histone H2A.Z, a variant of histone H2A, is actively exchanged in response to fear conditioning in the hippocampus and the cortex, where it mediates gene expression and restrains the formation of recent and remote memory. Our data provide evidence for H2A.Z involvement in cognitive function and specifically implicate H2A.Z as a negative regulator of hippocampal consolidation and systems consolidation, probably through downstream effects on gene expression. Moreover, alterations in H2A.Z binding at later stages of systems consolidation suggest that this histone has the capacity to mediate stable molecular modifications required for memory retention. Overall, our data introduce histone variant exchange as a novel mechanism contributing to the molecular basis of cognitive function and implicate H2A.Z as a potential therapeutic target for memory disorders.
Collapse
|
32
|
Ausió J, Paz AMD, Esteller M. MeCP2: the long trip from a chromatin protein to neurological disorders. Trends Mol Med 2014; 20:487-98. [DOI: 10.1016/j.molmed.2014.03.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 03/12/2014] [Accepted: 03/14/2014] [Indexed: 12/13/2022]
|
33
|
Yadav VK, Thakur RK, Eckloff B, Baral A, Singh A, Halder R, Kumar A, Alam MP, Kundu TK, Pandita R, Pandita TK, Wieben ED, Chowdhury S. Promoter-proximal transcription factor binding is transcriptionally active when coupled with nucleosome repositioning in immediate vicinity. Nucleic Acids Res 2014; 42:9602-11. [PMID: 25081206 PMCID: PMC4150765 DOI: 10.1093/nar/gku596] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 05/29/2014] [Accepted: 06/21/2014] [Indexed: 11/24/2022] Open
Abstract
Previous studies have analyzed patterns of transcription, transcription factor (TF) binding or mapped nucleosome occupancy across the genome. These suggest that the three aspects are genetically connected but the cause and effect relationships are still unknown. For example, physiologic TF binding studies involve many TFs, consequently, it is difficult to assign nucleosome reorganization to the binding site occupancy of any particular TF. Therefore, several aspects remain unclear: does TF binding influence nucleosome (re)organizations locally or impact the chromatin landscape at a more global level; are all or only a fraction of TF binding a result of reorganization in nucleosome occupancy and do all TF binding and associated changes in nucleosome occupancy result in altered gene expression? With these in mind, following characterization of two states (before and after induction of a single TF of choice) we determined: (i) genomic binding sites of the TF, (ii) promoter nucleosome occupancy and (iii) transcriptome profiles. Results demonstrated that promoter-proximal TF binding influenced expression of the target gene when it was coupled to nucleosome repositioning at or close to its binding site in most cases. In contrast, only in few cases change in target gene expression was found when TF binding occurred without local nucleosome reorganization.
Collapse
Affiliation(s)
- Vinod Kumar Yadav
- GNR Center for Genome Informatics, Institute of Genomics and Integrative Biology, Delhi, India
| | - Ram Krishna Thakur
- Proteomics and Structural Biology Unit, Institute of Genomics and Integrative Biology, Delhi, India
| | - Bruce Eckloff
- Advanced Genomics Technology Center, Mayo Clinic, Rochester, MN, USA
| | - Aradhita Baral
- Proteomics and Structural Biology Unit, Institute of Genomics and Integrative Biology, Delhi, India
| | - Ankita Singh
- Proteomics and Structural Biology Unit, Institute of Genomics and Integrative Biology, Delhi, India
| | - Rashi Halder
- GNR Center for Genome Informatics, Institute of Genomics and Integrative Biology, Delhi, India
| | - Akinchan Kumar
- Proteomics and Structural Biology Unit, Institute of Genomics and Integrative Biology, Delhi, India
| | - Mohammad Parwez Alam
- Dr B.R. Ambedkar Centre for Biomedical Research, University of Delhi, Delhi 110 007, India
| | - Tapas K Kundu
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, India
| | - Raj Pandita
- Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Tej K Pandita
- Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Eric D Wieben
- Advanced Genomics Technology Center, Mayo Clinic, Rochester, MN, USA
| | - Shantanu Chowdhury
- GNR Center for Genome Informatics, Institute of Genomics and Integrative Biology, Delhi, India Proteomics and Structural Biology Unit, Institute of Genomics and Integrative Biology, Delhi, India
| |
Collapse
|
34
|
Reilly PT, Yu Y, Hamiche A, Wang L. Cracking the ANP32 whips: important functions, unequal requirement, and hints at disease implications. Bioessays 2014; 36:1062-71. [PMID: 25156960 PMCID: PMC4270211 DOI: 10.1002/bies.201400058] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The acidic (leucine-rich) nuclear phosphoprotein 32 kDa (ANP32) family is composed of small, evolutionarily conserved proteins characterized by an N-terminal leucine-rich repeat domain and a C-terminal low-complexity acidic region. The mammalian family members (ANP32A, ANP32B, and ANP32E) are ascribed physiologically diverse functions including chromatin modification and remodelling, apoptotic caspase modulation, protein phosphatase inhibition, as well as regulation of intracellular transport. In addition to reviewing the widespread literature on the topic, we present a concept of the ANP32s as having a whip-like structure. We also present hypotheses that ANP32C and other intronless sequences should not currently be considered bona fide family members, that their disparate necessity in development may be due to compensatory mechanisms, that their contrasting roles in cancer are likely context-dependent, along with an underlying hypothesis that ANP32s represent an important node of physiological regulation by virtue of their diverse biochemical activities.
Collapse
Affiliation(s)
- Patrick T Reilly
- Laboratory of Inflammation Biology, National Cancer Centre Singapore, Singapore, Singapore
| | | | | | | |
Collapse
|
35
|
Cieślik M, Bekiranov S. Combinatorial epigenetic patterns as quantitative predictors of chromatin biology. BMC Genomics 2014; 15:76. [PMID: 24472558 PMCID: PMC3922690 DOI: 10.1186/1471-2164-15-76] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 01/15/2014] [Indexed: 01/01/2023] Open
Abstract
Background Chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) is the most widely used method for characterizing the epigenetic states of chromatin on a genomic scale. With the recent availability of large genome-wide data sets, often comprising several epigenetic marks, novel approaches are required to explore functionally relevant interactions between histone modifications. Computational discovery of "chromatin states" defined by such combinatorial interactions enabled descriptive annotations of genomes, but more quantitative approaches are needed to progress towards predictive models. Results We propose non-negative matrix factorization (NMF) as a new unsupervised method to discover combinatorial patterns of epigenetic marks that frequently co-occur in subsets of genomic regions. We show that this small set of combinatorial "codes" can be effectively displayed and interpreted. NMF codes enable dimensionality reduction and have desirable statistical properties for regression and classification tasks. We demonstrate the utility of codes in the quantitative prediction of Pol2-binding and the discrimination between Pol2-bound promoters and enhancers. Finally, we show that specific codes can be linked to molecular pathways and targets of pluripotency genes during differentiation. Conclusions We have introduced and evaluated a new computational approach to represent combinatorial patterns of epigenetic marks as quantitative variables suitable for predictive modeling and supervised machine learning. To foster widespread adoption of this method we make it available as an open-source software-package – epicode at
https://github.com/mcieslik-mctp/epicode.
Collapse
Affiliation(s)
- Marcin Cieślik
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, Virginia, USA.
| | | |
Collapse
|