1
|
Saunders HS, Chio US, Moore CM, Ramani V, Cheng Y, Narlikar GJ. HMGB1 restores a dynamic chromatin environment in the presence of linker histone by deforming nucleosomal DNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.23.609244. [PMID: 39229246 PMCID: PMC11370580 DOI: 10.1101/2024.08.23.609244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The essential architectural protein HMGB1 increases accessibility of nucleosomal DNA and counteracts the effects of linker histone H1. However, HMGB1 is less abundant than H1 and binds nucleosomes more weakly raising the question of how HMGB1 effectively competes with H1. Here, we show that HMGB1 rescues H1's inhibition of nucleosomal DNA accessibility without displacing H1. HMGB1 also increases the dynamics of condensed, H1-bound chromatin. Cryo-EM shows that HMGB1 binds at internal locations on a nucleosome and locally distorts the DNA. These sites, which are away from the binding site of H1, explain how HMGB1 and H1 co-occupy a nucleosome. Our findings lead to a model where HMGB1 counteracts the activity of H1 by distorting nucleosomal DNA and by contacting the H1 C-terminal tail. Compared to direct competition, nucleosome co-occupancy by HMGB1 and H1 allows a greater diversity of dynamic chromatin states and may be generalizable to other chromatin regulators.
Collapse
Affiliation(s)
- Hayden S. Saunders
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
- Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Un Seng Chio
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
- These authors contributed equally
| | - Camille M. Moore
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
- Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
- Gladstone Institute for Data Science & Biotechnology, San Francisco, CA 94158, USA
- These authors contributed equally
| | - Vijay Ramani
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
- Gladstone Institute for Data Science & Biotechnology, San Francisco, CA 94158, USA
| | - Yifan Cheng
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Geeta J Narlikar
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
- Lead contact
| |
Collapse
|
2
|
Crews FT, Coleman LG, Macht VA, Vetreno RP. Alcohol, HMGB1, and Innate Immune Signaling in the Brain. Alcohol Res 2024; 44:04. [PMID: 39135668 PMCID: PMC11318841 DOI: 10.35946/arcr.v44.1.04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024] Open
Abstract
PURPOSE Binge drinking (i.e., consuming enough alcohol to achieve a blood ethanol concentration of 80 mg/dL, approximately 4-5 drinks within 2 hours), particularly in early adolescence, can promote progressive increases in alcohol drinking and alcohol-related problems that develop into compulsive use in the chronic relapsing disease, alcohol use disorder (AUD). Over the past decade, neuroimmune signaling has been discovered to contribute to alcohol-induced changes in drinking, mood, and neurodegeneration. This review presents a mechanistic hypothesis supporting high mobility group box protein 1 (HMGB1) and Toll-like receptor (TLR) signaling as key elements of alcohol-induced neuroimmune signaling across glia and neurons, which shifts gene transcription and synapses, altering neuronal networks that contribute to the development of AUD. This hypothesis may help guide further research on prevention and treatment. SEARCH METHODS The authors used the search terms "HMGB1 protein," "alcohol," and "brain" across PubMed, Scopus, and Embase to find articles published between 1991 and 2023. SEARCH RESULTS The database search found 54 references in PubMed, 47 in Scopus, and 105 in Embase. A total of about 100 articles were included. DISCUSSION AND CONCLUSIONS In the brain, immune signaling molecules play a role in normal development that differs from their functions in inflammation and the immune response, although cellular receptors and signaling are shared. In adults, pro-inflammatory signals have emerged as contributing to brain adaptation in stress, depression, AUD, and neurodegenerative diseases. HMGB1, a cytokine-like signaling protein released from activated cells, including neurons, is hypothesized to activate pro-inflammatory signals through TLRs that contribute to adaptations to binge and chronic heavy drinking. HMGB1 alone and in heteromers with other molecules activates TLRs and other immune receptors that spread signaling across neurons and glia. Both blood and brain levels of HMGB1 increase with ethanol exposure. In rats, an adolescent intermittent ethanol (AIE) binge drinking model persistently increases brain HMGB1 and its receptors; alters microglia, forebrain cholinergic neurons, and neuronal networks; and increases alcohol drinking and anxiety while disrupting cognition. Studies of human postmortem AUD brain have found elevated levels of HMGB1 and TLRs. These signals reduce cholinergic neurons, whereas microglia, the brain's immune cells, are activated by binge drinking. Microglia regulate synapses through complement proteins that can change networks affected by AIE that increase drinking, contributing to risks for AUD. Anti-inflammatory drugs, exercise, cholinesterase inhibitors, and histone deacetylase epigenetic inhibitors prevent and reverse the AIE-induced pathology. Further, HMGB1 antagonists and other anti-inflammatory treatments may provide new therapies for alcohol misuse and AUD. Collectively, these findings suggest that restoring the innate immune signaling balance is central to recovering from alcohol-related pathology.
Collapse
Affiliation(s)
- Fulton T. Crews
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, North Carolina
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
- Department of Psychiatry, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Leon G. Coleman
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, North Carolina
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Victoria A. Macht
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Ryan P. Vetreno
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, North Carolina
- Department of Psychiatry, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| |
Collapse
|
3
|
Jiang J, Sun M, Wang Y, Huang W, Xia L. Deciphering the roles of the HMGB family in cancer: Insights from subcellular localization dynamics. Cytokine Growth Factor Rev 2024; 78:85-104. [PMID: 39019664 DOI: 10.1016/j.cytogfr.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 07/19/2024]
Abstract
The high-mobility group box (HMGB) family consists of four DNA-binding proteins that regulate chromatin structure and function. In addition to their intracellular functions, recent studies have revealed their involvement as extracellular damage-associated molecular patterns (DAMPs), contributing to immune responses and tumor development. The HMGB family promotes tumorigenesis by modulating multiple processes including proliferation, metabolic reprogramming, metastasis, immune evasion, and drug resistance. Due to the predominant focus on HMGB1 in the literature, little is known about the remaining members of this family. This review summarizes the structural, distributional, as well as functional similarities and distinctions among members of the HMGB family, followed by a comprehensive exploration of their roles in tumor development. We emphasize the distributional and functional hierarchy of the HMGB family at both the organizational and subcellular levels, with a focus on their relationship with the tumor immune microenvironment (TIME), aiming to prospect potential strategies for anticancer therapy.
Collapse
Affiliation(s)
- Junqing Jiang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030, China
| | - Mengyu Sun
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030, China
| | - Yufei Wang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030, China
| | - Wenjie Huang
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei 430030, China.
| | - Limin Xia
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030, China; State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi' an 710032, China.
| |
Collapse
|
4
|
Maharati A, Moghbeli M. Role of microRNA-505 during tumor progression and metastasis. Pathol Res Pract 2024; 258:155344. [PMID: 38744001 DOI: 10.1016/j.prp.2024.155344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/23/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024]
Abstract
Late diagnosis of cancer in advanced stages due to the lack of screening methods is considered as the main cause of poor prognosis and high mortality rate among these patients. Therefore, it is necessary to investigate the molecular tumor biology in order to introduce biomarkers that can be used in cancer screening programs and early diagnosis. MicroRNAs (miRNAs) have key roles in regulation of the cellular pathophysiological processes. Due to the high stability of miRNAs in body fluids, they are widely used as the non-invasive tumor markers. According to the numerous reports about miR-505 deregulation in a wide range of cancers, we investigated the role of miR-505 during tumor progression. It was shown that miR-505 mainly has the tumor suppressor functions through the regulation of signaling pathways, chromatin remodeling, and cellular metabolism. This review has an effective role in introducing miR-505 as a suitable marker for the early cancer diagnosis.
Collapse
Affiliation(s)
- Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Wang Y, Wang F, Lu H, Lin R, Liu J, Liu Y, Xu J, Wu Y, Wang Z, Zhou M, Mo X, Wu Z, Shou H, Zheng S, Mao C. Rice chromatin protein OsHMGB1 is involved in phosphate homeostasis and plant growth by affecting chromatin accessibility. THE NEW PHYTOLOGIST 2023; 240:727-743. [PMID: 37553956 DOI: 10.1111/nph.19189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/12/2023] [Indexed: 08/10/2023]
Abstract
Although phosphorus is one of the most important essential elements for plant growth and development, the epigenetic regulation of inorganic phosphate (Pi) signaling is poorly understood. In this study, we investigated the biological function and mode of action of the high-mobility-group box 1 protein OsHMGB1 in rice (Oryza sativa), using molecular and genetic approaches. We determined that OsHMGB1 expression is induced by Pi starvation and encodes a nucleus-localized protein. Phenotypic analysis of Oshmgb1 mutant and OsHMGB1 overexpression transgenic plants showed that OsHMGB1 positively regulates Pi homeostasis and plant growth. Transcriptome deep sequencing and chromatin immunoprecipitation followed by sequencing indicated that OsHMGB1 regulates the expression of a series of phosphate starvation-responsive (PSR) genes by binding to their promoters. Furthermore, an assay for transposase-accessible chromatin followed by sequencing revealed that OsHMGB1 is involved in maintaining chromatin accessibility. Indeed, OsHMGB1 occupancy positively correlated with genome-wide chromatin accessibility and gene expression levels. Our results demonstrate that OsHMGB1 is a transcriptional facilitator that regulates the expression of a set of PSR genes to maintain Pi homeostasis in rice by increasing the chromatin accessibility, revealing a key epigenetic mechanism that fine-tune plant acclimation responses to Pi-limited environments.
Collapse
Affiliation(s)
- Yan Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Fei Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hong Lu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Rongbin Lin
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jiaming Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yu Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jiming Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yunrong Wu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhiye Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ming Zhou
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaorong Mo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhongchang Wu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Huixia Shou
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shaojian Zheng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chuanzao Mao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
- Hainan Institute, Yazhou Bay Science and Technology City, Zhejiang University, Yazhou District, Sanya, Hainan, 572024, China
| |
Collapse
|
6
|
Starkova T, Polyanichko A, Tomilin AN, Chikhirzhina E. Structure and Functions of HMGB2 Protein. Int J Mol Sci 2023; 24:ijms24098334. [PMID: 37176041 PMCID: PMC10179549 DOI: 10.3390/ijms24098334] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
High-Mobility Group (HMG) chromosomal proteins are the most numerous nuclear non-histone proteins. HMGB domain proteins are the most abundant and well-studied HMG proteins. They are involved in variety of biological processes. HMGB1 and HMGB2 were the first members of HMGB-family to be discovered and are found in all studied eukaryotes. Despite the high degree of homology, HMGB1 and HMGB2 proteins differ from each other both in structure and functions. In contrast to HMGB2, there is a large pool of works devoted to the HMGB1 protein whose structure-function properties have been described in detail in our previous review in 2020. In this review, we attempted to bring together diverse data about the structure and functions of the HMGB2 protein. The review also describes post-translational modifications of the HMGB2 protein and its role in the development of a number of diseases. Particular attention is paid to its interaction with various targets, including DNA and protein partners. The influence of the level of HMGB2 expression on various processes associated with cell differentiation and aging and its ability to mediate the differentiation of embryonic and adult stem cells are also discussed.
Collapse
Affiliation(s)
- Tatiana Starkova
- Laboratory of Molecular Biology of Stem Cells, Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Av. 4, 194064 St. Petersburg, Russia
| | - Alexander Polyanichko
- Laboratory of Molecular Biology of Stem Cells, Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Av. 4, 194064 St. Petersburg, Russia
| | - Alexey N Tomilin
- Laboratory of Molecular Biology of Stem Cells, Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Av. 4, 194064 St. Petersburg, Russia
| | - Elena Chikhirzhina
- Laboratory of Molecular Biology of Stem Cells, Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Av. 4, 194064 St. Petersburg, Russia
| |
Collapse
|
7
|
The Role of PARP1 and PAR in ATP-Independent Nucleosome Reorganisation during the DNA Damage Response. Genes (Basel) 2022; 14:genes14010112. [PMID: 36672853 PMCID: PMC9859207 DOI: 10.3390/genes14010112] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
The functioning of the eukaryotic cell genome is mediated by sophisticated protein-nucleic-acid complexes, whose minimal structural unit is the nucleosome. After the damage to genomic DNA, repair proteins need to gain access directly to the lesion; therefore, the initiation of the DNA damage response inevitably leads to local chromatin reorganisation. This review focuses on the possible involvement of PARP1, as well as proteins acting nucleosome compaction, linker histone H1 and non-histone chromatin protein HMGB1. The polymer of ADP-ribose is considered the main regulator during the development of the DNA damage response and in the course of assembly of the correct repair complex.
Collapse
|
8
|
Panigrahi A, O'Malley BW. Mechanisms of enhancer action: the known and the unknown. Genome Biol 2021; 22:108. [PMID: 33858480 PMCID: PMC8051032 DOI: 10.1186/s13059-021-02322-1] [Citation(s) in RCA: 169] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 03/23/2021] [Indexed: 12/13/2022] Open
Abstract
Differential gene expression mechanisms ensure cellular differentiation and plasticity to shape ontogenetic and phylogenetic diversity of cell types. A key regulator of differential gene expression programs are the enhancers, the gene-distal cis-regulatory sequences that govern spatiotemporal and quantitative expression dynamics of target genes. Enhancers are widely believed to physically contact the target promoters to effect transcriptional activation. However, our understanding of the full complement of regulatory proteins and the definitive mechanics of enhancer action is incomplete. Here, we review recent findings to present some emerging concepts on enhancer action and also outline a set of outstanding questions.
Collapse
Affiliation(s)
- Anil Panigrahi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Bert W O'Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
9
|
Chikhirzhina E, Starkova T, Beljajev A, Polyanichko A, Tomilin A. Functional Diversity of Non-Histone Chromosomal Protein HmgB1. Int J Mol Sci 2020; 21:E7948. [PMID: 33114717 PMCID: PMC7662367 DOI: 10.3390/ijms21217948] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 12/27/2022] Open
Abstract
The functioning of DNA in the cell nucleus is ensured by a multitude of proteins, whose interactions with DNA as well as with other proteins lead to the formation of a complicated, organized, and quite dynamic system known as chromatin. This review is devoted to the description of properties and structure of the progenitors of the most abundant non-histone protein of the HMGB family-the HmgB1 protein. The proteins of the HMGB family are also known as "architectural factors" of chromatin, which play an important role in gene expression, transcription, DNA replication, and repair. However, as soon as HmgB1 goes outside the nucleus, it acquires completely different functions, post-translational modifications, and change of its redox state. Despite a lot of evidence of the functional activity of HmgB1, there are still many issues to be solved related to the mechanisms of the influence of HmgB1 on the development and treatment of different diseases-from oncological and cardiovascular diseases to pathologies during pregnancy and childbirth. Here, we describe molecular structure of the HmgB1 protein and discuss general mechanisms of its interactions with other proteins and DNA in cell.
Collapse
Affiliation(s)
| | | | | | - Alexander Polyanichko
- Laboratory of Molecular Biology of Stem Cells, Institute of Cytology of the Russian Academy of Sciences, 194064 St. Petersburg, Tikhoretsky Av. 4, Russia; (T.S.); (A.B.); (A.T.)
| | | |
Collapse
|
10
|
Gao R, Zhang Y, Kang Y, Xu W, Jiang L, Guo T, Huan C. Glycyrrhizin Inhibits PEDV Infection and Proinflammatory Cytokine Secretion via the HMGB1/TLR4-MAPK p38 Pathway. Int J Mol Sci 2020; 21:ijms21082961. [PMID: 32340172 PMCID: PMC7215578 DOI: 10.3390/ijms21082961] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 02/07/2023] Open
Abstract
Our previous study showed that glycyrrhizin (GLY) inhibited porcine epidemic diarrhea virus (PEDV) infection, but the mechanisms of GLY anti-PEDV action remain unclear. In this study, we focused on the anti-PEDV and anti-proinflammatory cytokine secretion mechanisms of GLY. We found that PEDV infection had no effect on toll-like receptor 4 (TLR4) protein and mRNA levels, but that TLR4 regulated PEDV infection and the mRNA levels of proinflammatory cytokines. In addition, we demonstrated that TLR4 regulated p38 phosphorylation but not extracellular regulated protein kinases1/2 (Erk1/2) and c-Jun N-terminal kinases (JNK) phosphorylation, and that GLY inhibited p38 phosphorylation but not Erk1/2 and JNK phosphorylation. Therefore, we further explored the relationship between high mobility group box-1 (HMGB1) and p38. We demonstrated that inhibition of HMGB1 using an antibody, mutation, or knockdown decreased p38 phosphorylation. Thus, HMGB1 participated in activation of p38 through TLR4. Collectively, our data indicated that GLY inhibited PEDV infection and decreased proinflammatory cytokine secretion via the HMGB1/TLR4-mitogen-activated protein kinase (MAPK) p38 pathway.
Collapse
Affiliation(s)
- Ruyi Gao
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (R.G.); (Y.Z.); (Y.K.); (W.X.); (L.J.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou 225009, China
| | - Yongshuai Zhang
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (R.G.); (Y.Z.); (Y.K.); (W.X.); (L.J.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou 225009, China
| | - Yuhui Kang
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (R.G.); (Y.Z.); (Y.K.); (W.X.); (L.J.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou 225009, China
| | - Weiyin Xu
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (R.G.); (Y.Z.); (Y.K.); (W.X.); (L.J.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou 225009, China
| | - Luyao Jiang
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (R.G.); (Y.Z.); (Y.K.); (W.X.); (L.J.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou 225009, China
| | - Tingting Guo
- College of Medicine, Yangzhou University, Yangzhou 225009, China;
| | - Changchao Huan
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (R.G.); (Y.Z.); (Y.K.); (W.X.); (L.J.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou 225009, China
- Correspondence: ; Tel.: +13-585-232-936
| |
Collapse
|
11
|
Rodriguez Y, Horton JK, Wilson SH. Histone H3 Lysine 56 Acetylation Enhances AP Endonuclease 1-Mediated Repair of AP Sites in Nucleosome Core Particles. Biochemistry 2019; 58:3646-3655. [PMID: 31407575 DOI: 10.1021/acs.biochem.9b00433] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Deciphering factors modulating DNA repair in chromatin is of great interest because nucleosomal positioning influences mutation rates. H3K56 acetylation (Ac) is implicated in chromatin landscape regulation, impacting genomic stability, yet the effect of H3K56Ac on DNA base excision repair (BER) remains unclear. We determined whether H3K56Ac plays a role in regulating AP site incision by AP endonuclease 1 (APE1), an early step in BER. Our in vitro studies of acetylated, well-positioned nucleosome core particles (H3K56Ac-601-NCPs) demonstrate APE1 strand incision is enhanced compared with that of unacetylated WT-601-NCPs. The high-mobility group box 1 protein enhances APE1 activity in WT-601-NCPs, but this effect is not observed in H3K56Ac-601-NCPs. Therefore, our results suggest APE1 activity on NCPs can be modulated by H3K56Ac.
Collapse
Affiliation(s)
- Yesenia Rodriguez
- Genome Integrity and Structural Biology Laboratory , National Institute of Environmental Health Sciences , Research Triangle Park , North Carolina 27709 , United States
| | - Julie K Horton
- Genome Integrity and Structural Biology Laboratory , National Institute of Environmental Health Sciences , Research Triangle Park , North Carolina 27709 , United States
| | - Samuel H Wilson
- Genome Integrity and Structural Biology Laboratory , National Institute of Environmental Health Sciences , Research Triangle Park , North Carolina 27709 , United States
| |
Collapse
|
12
|
Kozlova AL, Valieva ME, Maluchenko NV, Studitsky VM. HMGB Proteins as DNA Chaperones That Modulate Chromatin Activity. Mol Biol 2018. [DOI: 10.1134/s0026893318050096] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
13
|
Wang L, Zhang Y, Wang H, Li H, Zhao Z, Wang N, He B, Shi C, Zhang S, Wang J. Repeated abortion in adulthood induces cognition impairment in aged mice. Sci Rep 2018; 8:11396. [PMID: 30061639 PMCID: PMC6065382 DOI: 10.1038/s41598-018-29827-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 07/18/2018] [Indexed: 11/29/2022] Open
Abstract
Age-related cognitive decline is one of the major aspects that impede successful aging in humans. Repeated abortion in adulthood can accelerate or aggravate cognitive deficiency during aging. Here we used repeated abortion in female mice adulthood and investigated the consequences of this treatment on cognitive performance during aging. We observed a substantial impairment of learning memory in 15 months old. This cognitive dysfunction was supported by Aβ elevation in CA region. Repeated abortion mice have uniform estrous cycles and decreased ERα expression in hypothalamus and hippocampus. Furthermore, repeated abortion not only significantly increased the HMGB1 expression in hippocampus but also increased the plasma and hippocampal protein levels of IL-1β, IL-6, and TNF-α. Finally, we identified that MPP-induced cell apoptosis and increased HMGB1 expression as well as IL-1β, IL-6, and TNF-α expression as following Aβ elevation. Taken together, our results identify possible molecular mechanisms underlying cognitive impairment during aging, and demonstrated the repeated abortion in adulthood on cognitive function in aged mice.
Collapse
Affiliation(s)
- Lili Wang
- Graduate School of Peking Union Medical College, Beijing, China.,Department of Cell Biology, National Research Institute for Family Planning, Beijing, China
| | - Ying Zhang
- Department of Cell Biology, National Research Institute for Family Planning, Beijing, China
| | - Haofeng Wang
- Department of Neurology, The Fifth People's Hospital of Jinan, Jinan, China
| | - Hui Li
- Department of Anatomy, Capital Medical University, Beijing, China
| | - Ziying Zhao
- Department of Chinese Medicine, Air Force General Hospital, Beijing, China
| | - Ning Wang
- Department of Cell Biology, National Research Institute for Family Planning, Beijing, China
| | - Bin He
- Department of Cell Biology, National Research Institute for Family Planning, Beijing, China
| | - Cuige Shi
- Department of Cell Biology, National Research Institute for Family Planning, Beijing, China.
| | - Shucheng Zhang
- Department of Cell Biology, National Research Institute for Family Planning, Beijing, China.
| | - Jiedong Wang
- Graduate School of Peking Union Medical College, Beijing, China. .,Department of Cell Biology, National Research Institute for Family Planning, Beijing, China.
| |
Collapse
|
14
|
HMGB proteins involved in TOR signaling as general regulators of cell growth by controlling ribosome biogenesis. Curr Genet 2018; 64:1205-1213. [PMID: 29713761 DOI: 10.1007/s00294-018-0842-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 04/21/2018] [Accepted: 04/24/2018] [Indexed: 12/14/2022]
Abstract
The number of ribosomes and their activity need to be highly regulated because their function is crucial for the cell. Ribosome biogenesis is necessary for cell growth and proliferation in accordance with nutrient availability and other external and intracellular signals. High-mobility group B (HMGB) proteins are conserved from yeasts to human and are decisive in cellular fate. These proteins play critical functions, from the maintenance of chromatin structure, DNA repair, or transcriptional regulation, to facilitation of ribosome biogenesis. They are also involved in cancer and other pathologies. In this review, we summarize evidence of how HMGB proteins contribute to ribosome-biogenesis control, with special emphasis on a common nexus to the target of rapamycin (TOR) pathway, a signaling cascade essential for cell growth and proliferation from yeast to human. Perspectives in this field are also discussed.
Collapse
|
15
|
Chromatin conformation regulates the coordination between DNA replication and transcription. Nat Commun 2018; 9:1590. [PMID: 29686321 PMCID: PMC5913246 DOI: 10.1038/s41467-018-03539-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 02/21/2018] [Indexed: 12/26/2022] Open
Abstract
Chromatin is the template for the basic processes of replication and transcription, making the maintenance of chromosomal integrity critical for cell viability. To elucidate how dividing cells respond to alterations in chromatin structure, here we analyse the replication programme of primary cells with altered chromatin configuration caused by the genetic ablation of the HMGB1 gene, or three histone H1 genes. We find that loss of chromatin compaction in H1-depleted cells triggers the accumulation of stalled forks and DNA damage as a consequence of transcription–replication conflicts. In contrast, reductions in nucleosome occupancy due to the lack of HMGB1 cause faster fork progression without impacting the initiation landscape or fork stability. Thus, perturbations in chromatin integrity elicit a range of responses in the dynamics of DNA replication and transcription, with different consequences on replicative stress. These findings have broad implications for our understanding of how defects in chromatin structure contribute to genomic instability. The maintenance of chromatin integrity during replication is critical for cell viability. Here the authors study how dividing cells respond to alterations in chromatin structure and find that these elicit a range of responses in the dynamics of DNA replication and consequences on replicative stress.
Collapse
|
16
|
Huan CC, Wang HX, Sheng XX, Wang R, Wang X, Liao Y, Liu QF, Tong GZ, Ding C, Fan HJ, Wu JQ, Mao X. Porcine epidemic diarrhea virus nucleoprotein contributes to HMGB1 transcription and release by interacting with C/EBP-β. Oncotarget 2018; 7:75064-75080. [PMID: 27634894 PMCID: PMC5342723 DOI: 10.18632/oncotarget.11991] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 09/02/2016] [Indexed: 01/09/2023] Open
Abstract
Porcine epidemic diarrhea is a devastating swine enteric disease, which is caused by porcine epidemic diarrhea virus (PEDV) infection. Our studies demonstrated that PEDV infection resulted in the up-regulation of proinflammatory cytokines. Meanwhile, PEDV infection and overexpression of viral nucleoprotein resulted in the acetylation and release of high mobility group box 1 proteins in vitro, an important proinflammatory response mediator, which contributes to the pathogenesis of various inflammatory diseases. Our studies also showed that SIRT1, histone acetyltransferase, and NF-κB regulated the acetylation and release of HMGB1. Chromatin immunoprecipitation, dual-luciferase reporter gene assay, and co-immunoprecipitation experiments illustrated that PEDV-N could induce HMGB1 transcription by interacting with C/EBP-β, which could bind to C/EBP motif in HMGB1 promotor region. Collectively, our data indicate PEDV-N contributes to HMGB1 transcription and the subsequent release/acetylation of HMGB1 during PEDV infection.
Collapse
Affiliation(s)
- Chang-Chao Huan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China, 210095
| | - Hua-Xia Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China, 210095
| | - Xiang-Xiang Sheng
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China, 210095
| | - Rui Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China, 210095
| | - Xin Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China, 210095
| | - Ying Liao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China, 200241
| | - Qin-Fang Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China, 200241
| | - Guang-Zhi Tong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China, 200241
| | - Chan Ding
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China, 200241
| | - Hong-Jie Fan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China, 210095
| | - Jia-Qiang Wu
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Shandong Province, China, 250100
| | - Xiang Mao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China, 210095.,Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China, 200241
| |
Collapse
|
17
|
He SJ, Cheng J, Feng X, Yu Y, Tian L, Huang Q. The dual role and therapeutic potential of high-mobility group box 1 in cancer. Oncotarget 2017; 8:64534-64550. [PMID: 28969092 PMCID: PMC5610024 DOI: 10.18632/oncotarget.17885] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 04/24/2017] [Indexed: 12/31/2022] Open
Abstract
High-mobility group box 1 (HMGB1) is an abundant protein in most eukaryocytes. It can bind to several receptors such as advanced glycation end products (RAGE) and Toll-like receptors (TLRs), in direct or indirect way. The biological effects of HMGB1 depend on its expression and subcellular location. Inside the nucleus, HMGB1 is engaged in many DNA events such as DNA repair, transcription, telomere maintenance, and genome stability. While outside the nucleus, it possesses more complicated functions, including regulating cell proliferation, autophagy, inflammation and immunity. During tumor development, HMGB1 has been characterized as both a pro- and anti-tumoral protein by either promoting or suppressing tumor growth, proliferation, angiogenesis, invasion and metastasis. However, the current knowledge concerning the positive and negative effects of HMGB1 on tumor development is not explicit. Here, we evaluate the role of HMGB1 in tumor development and attempt to reconcile the dual effects of HMGB1 in carcinogenesis. Furthermore, we would like to present current strategies targeting against HMGB1, its receptor or release, which have shown potentially therapeutic value in cancer intervention.
Collapse
Affiliation(s)
- Si-Jia He
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jin Cheng
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao Feng
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Yu
- Oncology Department, Henan Provincial People's Hospital, Zhengzhou, China
| | - Ling Tian
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Huang
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
18
|
Balliano A, Hao F, Njeri C, Balakrishnan L, Hayes JJ. HMGB1 Stimulates Activity of Polymerase β on Nucleosome Substrates. Biochemistry 2017; 56:647-656. [PMID: 28098985 PMCID: PMC5679249 DOI: 10.1021/acs.biochem.6b00569] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The process of base excision repair (BER) recognizes and repairs small lesions or inappropriate bases on DNA through either a short-patch or long-patch pathway. The enzymes involved in BER have been well-characterized on DNA substrates, and, somewhat surprisingly, many of these enzymes, including several DNA glycosylases, AP endonuclease (APE), FEN1 endonuclease, and DNA ligases, have been shown to have activity on DNA substrates within nucleosomes. DNA polymerase β (Pol β), however, exhibits drastically reduced or no activity on nucleosomal DNA. Interestingly, acetylation of Pol β, by the acetyltransferase p300, inhibits its 5' dRP-lyase activity and presumably pushes repair of DNA substrates through the long-patch base excision repair (LP-BER) pathway. In addition to the major enzymes involved in BER, a chromatin architectural factor, HMGB1, was found to directly interact with and enhance the activity of APE1 and FEN1, and thus may aid in altering the structure of the nucleosome to be more accessible to BER factors. In this work, we investigated whether acetylation of Pol β, either alone or in conjunction with HMGB1, facilitates its activity on nucleosome substrates. We find acetylated Pol β exhibits enhanced strand displacement synthesis activity on DNA substrates, but, similar to the unmodified enzyme, has little or no activity on nucleosomes. Preincubation of DNA templates with HMGB1 has little or no stimulatory effect on Pol β and even is inhibitory at higher concentrations. In contrast, preincubation of nucleosomes with HMGB1 rescues Pol β gap-filling activity in nucleosomes, suggesting that this factor may help overcome the repressive effects of chromatin.
Collapse
Affiliation(s)
- Angela Balliano
- Department of Biochemistry & Biophysics, University of Rochester Medical Center, Rochester, NY 14642
| | - Fanfan Hao
- Department of Biochemistry & Biophysics, University of Rochester Medical Center, Rochester, NY 14642
- Department of Biology, Indiana University Purdue University Indianapolis 723 W. Michigan St., Indianapolis, IN 46202-5132
| | - Catherine Njeri
- Department of Biology, Indiana University Purdue University Indianapolis 723 W. Michigan St., Indianapolis, IN 46202-5132
| | - Lata Balakrishnan
- Department of Biology, Indiana University Purdue University Indianapolis 723 W. Michigan St., Indianapolis, IN 46202-5132
| | - Jeffrey J. Hayes
- Department of Biochemistry & Biophysics, University of Rochester Medical Center, Rochester, NY 14642
| |
Collapse
|
19
|
de Mendonça Amarante A, Jupatanakul N, de Abreu da Silva IC, Carneiro VC, Vicentino ARR, Dimopolous G, Talyuli OAC, Fantappié MR. The DNA chaperone HMGB1 potentiates the transcriptional activity of Rel1A in the mosquito Aedes aegypti. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 80:32-41. [PMID: 27867076 DOI: 10.1016/j.ibmb.2016.11.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 11/16/2016] [Accepted: 11/17/2016] [Indexed: 06/06/2023]
Abstract
High Mobility Group protein 1 (HMGB1) is a non-histone, chromatin-associated nuclear protein that functions in regulating eukaryotic gene expression. We investigated the influence and mechanism of action of Aedes aegypti HMGB1 (AaHMGB1) on mosquito Rel1A-mediated transcription from target gene promoters. The DNA-binding domain (RHD) of AaRel1A was bacterially expressed and purified, and AaHMGB1 dramatically enhanced RHD binding to consensus NF-kB/Rel DNA response elements. Luciferase reporter analyses using a cecropin gene promoter showed that AaHMGB1 potentiates the transcriptional activity of AaRel1A in Aag-2 cells. Moreover, overexpression of AaHMGB1 in Aag-2 cells led to an increase in mRNA levels of antimicrobial peptide genes. In vitro GST pull-down assays revealed that the presence of DNA is a pre-requisite for assembly of a possible ternary complex containing DNA, AaHMGB1 and AaRel1A. Notably, DNA bending by AaHMGB1 enhanced the binding of AaRel1A to a DNA fragment containing a putative NF-kB/Rel response element. Importantly, AaHMGB1 was identified as a potential immune modulator in A. aegypti through AaHMGB1 overexpression or RNAi silencing in Aag-2 cells followed by bacterial challenge or through AaHMGB1 RNAi knockdown in mosquitoes followed by Dengue virus (DENV) infection. We propose a model in which AaHMGB1 bends NF-kB/Rel target DNA to recruit and allow more efficient AaRel1A binding to activate transcription of effector genes, culminating in a stronger Toll pathway-mediated response against DENV infection.
Collapse
Affiliation(s)
- Anderson de Mendonça Amarante
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Brazil; Instituto Nacional de Entomologia Molecular, Universidade Federal do Rio de Janeiro, Brazil
| | - Natapong Jupatanakul
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, United States
| | - Isabel Caetano de Abreu da Silva
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Brazil; Instituto Nacional de Entomologia Molecular, Universidade Federal do Rio de Janeiro, Brazil
| | - Vitor Coutinho Carneiro
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Brazil; Instituto Nacional de Entomologia Molecular, Universidade Federal do Rio de Janeiro, Brazil
| | - Amanda Roberta Revoredo Vicentino
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Brazil; Instituto Nacional de Entomologia Molecular, Universidade Federal do Rio de Janeiro, Brazil
| | - George Dimopolous
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Brazil; Instituto Nacional de Entomologia Molecular, Universidade Federal do Rio de Janeiro, Brazil; W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, United States
| | - Octávio Augusto C Talyuli
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Brazil; Instituto Nacional de Entomologia Molecular, Universidade Federal do Rio de Janeiro, Brazil
| | - Marcelo Rosado Fantappié
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Brazil; Instituto Nacional de Entomologia Molecular, Universidade Federal do Rio de Janeiro, Brazil.
| |
Collapse
|
20
|
Abstract
Eukaryotic genomes are packaged in chromatin. The higher-order organization of nucleosome core particles is controlled by the association of the intervening linker DNA with either the linker histone H1 or high mobility group box (HMGB) proteins. While H1 is thought to stabilize the nucleosome by preventing DNA unwrapping, the DNA bending imposed by HMGB may propagate to the nucleosome to destabilize chromatin. For metazoan H1, chromatin compaction requires its lysine-rich C-terminal domain, a domain that is buried between globular domains in the previously characterized yeast Saccharomyces cerevisiae linker histone Hho1p. Here, we discuss the functions of S. cerevisiae HMO1, an HMGB family protein unique in containing a terminal lysine-rich domain and in stabilizing genomic DNA. On ribosomal DNA (rDNA) and genes encoding ribosomal proteins, HMO1 appears to exert its role primarily by stabilizing nucleosome-free regions or "fragile" nucleosomes. During replication, HMO1 likewise appears to ensure low nucleosome density at DNA junctions associated with the DNA damage response or the need for topoisomerases to resolve catenanes. Notably, HMO1 shares with the mammalian linker histone H1 the ability to stabilize chromatin, as evidenced by the absence of HMO1 creating a more dynamic chromatin environment that is more sensitive to nuclease digestion and in which chromatin-remodeling events associated with DNA double-strand break repair occur faster; such chromatin stabilization requires the lysine-rich extension of HMO1. Thus, HMO1 appears to have evolved a unique linker histone-like function involving the ability to stabilize both conventional nucleosome arrays as well as DNA regions characterized by low nucleosome density or the presence of noncanonical nucleosomes.
Collapse
|
21
|
High mobility group box 1 (HMGB1): dual functions in the cochlear auditory neurons in response to stress? Histochem Cell Biol 2016; 147:307-316. [PMID: 27704212 DOI: 10.1007/s00418-016-1506-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2016] [Indexed: 12/19/2022]
Abstract
High mobility group box 1 (HMGB1) is a DNA-binding protein that facilitates gene transcription and may act extracellularly as a late mediator of inflammation. The roles of HMGB1 in the pathogenesis of the spiral ganglion neurons (SGNs) of the cochlea are currently unknown. In the present study, we tested the hypothesis that early phenotypical changes in the SGNs of the amikacin-poisoned rat cochlea are mediated by HMGB1. Our results showed that a marked downregulation of HMGB1 had occurred by completion of amikacin treatment, coinciding with acute damage at the dendrite extremities of the SGNs. A few days later, during the recovery of the SGN dendrites, the protein was re-expressed and transiently accumulated within the nuclei of the SGNs. The phosphorylated form of the transcription factor c-Jun (p-c-Jun) was concomitantly detected in the nuclei of the SGNs where it often co-localized with HMGB1, while the anti-apoptotic protein BCL2 was over-expressed in the cytoplasm. In animals co-treated with amikacin and the histone deacetylase inhibitor trichostatin A, both HMGB1 and p-c-Jun were exclusively found within the cytoplasm. The initial disappearance of HMGB1 from the affected SGNs may be due to its release into the external medium, where it may have a cytokine-like function. Once re-expressed and translocated into the nucleus, HMGB1 may facilitate the transcriptional activity of p-c-Jun, which in turn may promote repair mechanisms. Our study therefore suggests that HMGB1 can positively influence the survival of SGNs following ototoxic exposure via both its extracellular and intranuclear functions.
Collapse
|
22
|
Structural aspects of the interaction of anticancer drug Actinomycin-D to the GC rich region of hmgb1 gene. Int J Biol Macromol 2016; 87:433-42. [DOI: 10.1016/j.ijbiomac.2016.02.060] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 02/22/2016] [Accepted: 02/23/2016] [Indexed: 12/18/2022]
|
23
|
Scovell WM. High mobility group protein 1: A collaborator in nucleosome dynamics and estrogen-responsive gene expression. World J Biol Chem 2016; 7:206-222. [PMID: 27247709 PMCID: PMC4877529 DOI: 10.4331/wjbc.v7.i2.206] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 02/19/2016] [Accepted: 03/14/2016] [Indexed: 02/05/2023] Open
Abstract
High mobility group protein 1 (HMGB1) is a multifunctional protein that interacts with DNA and chromatin to influence the regulation of transcription, DNA replication and repair and recombination. We show that HMGB1 alters the structure and stability of the canonical nucleosome (N) in a nonenzymatic, adenosine triphosphate-independent manner. As a result, the canonical nucleosome is converted to two stable, physically distinct nucleosome conformers. Although estrogen receptor (ER) does not bind to its consensus estrogen response element within a nucleosome, HMGB1 restructures the nucleosome to facilitate strong ER binding. The isolated HMGB1-restructured nucleosomes (N’ and N’’) remain stable and exhibit a number of characteristics that are distinctly different from the canonical nucleosome. These findings complement previous studies that showed (1) HMGB1 stimulates in vivo transcriptional activation at estrogen response elements and (2) knock down of HMGB1 expression by siRNA precipitously reduced transcriptional activation. The findings indicate that a major facet of the mechanism of HMGB1 action involves a restructuring of aspects of the nucleosome that appear to relax structural constraints within the nucleosome. The findings are extended to reveal the differences between ER and the other steroid hormone receptors. A working proposal outlines mechanisms that highlight the multiple facets that HMGB1 may utilize in restructuring the nucleosome.
Collapse
|
24
|
Andersson A, Bluwstein A, Kumar N, Teloni F, Traenkle J, Baudis M, Altmeyer M, Hottiger MO. PKCα and HMGB1 antagonistically control hydrogen peroxide-induced poly-ADP-ribose formation. Nucleic Acids Res 2016; 44:7630-45. [PMID: 27198223 PMCID: PMC5027479 DOI: 10.1093/nar/gkw442] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 05/06/2016] [Indexed: 12/20/2022] Open
Abstract
Harmful oxidation of proteins, lipids and nucleic acids is observed when reactive oxygen species (ROS) are produced excessively and/or the antioxidant capacity is reduced, causing ‘oxidative stress’. Nuclear poly-ADP-ribose (PAR) formation is thought to be induced in response to oxidative DNA damage and to promote cell death under sustained oxidative stress conditions. However, what exactly triggers PAR induction in response to oxidative stress is incompletely understood. Using reverse phase protein array (RPPA) and in-depth analysis of key stress signaling components, we observed that PAR formation induced by H2O2 was mediated by the PLC/IP3R/Ca2+/PKCα signaling axis. Mechanistically, H2O2-induced PAR formation correlated with Ca2+-dependent DNA damage, which, however, was PKCα-independent. In contrast, PAR formation was completely lost upon knockdown of PKCα, suggesting that DNA damage alone was not sufficient for inducing PAR formation, but required a PKCα-dependent process. Intriguingly, the loss of PAR formation observed upon PKCα depletion was overcome when the chromatin structure-modifying protein HMGB1 was co-depleted with PKCα, suggesting that activation and nuclear translocation of PKCα releases the inhibitory effect of HMGB1 on PAR formation. Together, these results identify PKCα and HMGB1 as important co-regulators involved in H2O2-induced PAR formation, a finding that may have important relevance for oxidative stress-associated pathophysiological conditions.
Collapse
Affiliation(s)
- Anneli Andersson
- Department of Molecular Mechanisms of Disease, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland Molecular Life Sciences PhD Program, Life Science Zurich Graduate School, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Andrej Bluwstein
- Department of Molecular Mechanisms of Disease, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland Cancer Biology PhD Program, Life Science Zurich Graduate School, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Nitin Kumar
- Institute of Molecular Life Science (IMLS) and Swiss Institute of Bioinformatics (SIB), University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Federico Teloni
- Department of Molecular Mechanisms of Disease, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland Molecular Life Sciences PhD Program, Life Science Zurich Graduate School, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Jens Traenkle
- Bayer Technology Services GmbH, D-51368 Leverkusen, Germany
| | - Michael Baudis
- Institute of Molecular Life Science (IMLS) and Swiss Institute of Bioinformatics (SIB), University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Matthias Altmeyer
- Department of Molecular Mechanisms of Disease, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Michael O Hottiger
- Department of Molecular Mechanisms of Disease, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
25
|
High Mobility Group B Proteins, Their Partners, and Other Redox Sensors in Ovarian and Prostate Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:5845061. [PMID: 26682011 PMCID: PMC4670870 DOI: 10.1155/2016/5845061] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 07/27/2015] [Indexed: 01/02/2023]
Abstract
Cancer cells try to avoid the overproduction of reactive oxygen species by metabolic rearrangements. These cells also develop specific strategies to increase ROS resistance and to express the enzymatic activities necessary for ROS detoxification. Oxidative stress produces DNA damage and also induces responses, which could help the cell to restore the initial equilibrium. But if this is not possible, oxidative stress finally activates signals that will lead to cell death. High mobility group B (HMGB) proteins have been previously related to the onset and progressions of cancers of different origins. The protein HMGB1 behaves as a redox sensor and its structural changes, which are conditioned by the oxidative environment, are associated with different functions of the protein. This review describes recent advances in the role of human HMGB proteins and other proteins interacting with them, in cancerous processes related to oxidative stress, with special reference to ovarian and prostate cancer. Their participation in the molecular mechanisms of resistance to cisplatin, a drug commonly used in chemotherapy, is also revised.
Collapse
|
26
|
Reeves R. High mobility group (HMG) proteins: Modulators of chromatin structure and DNA repair in mammalian cells. DNA Repair (Amst) 2015; 36:122-136. [PMID: 26411874 DOI: 10.1016/j.dnarep.2015.09.015] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
It has been almost a decade since the last review appeared comparing and contrasting the influences that the different families of High Mobility Group proteins (HMGA, HMGB and HMGN) have on the various DNA repair pathways in mammalian cells. During that time considerable progress has been made in our understanding of how these non-histone proteins modulate the efficiency of DNA repair by all of the major cellular pathways: nucleotide excision repair, base excision repair, double-stand break repair and mismatch repair. Although there are often similar and over-lapping biological activities shared by all HMG proteins, members of each of the different families appear to have a somewhat 'individualistic' impact on various DNA repair pathways. This review will focus on what is currently known about the roles that different HMG proteins play in DNA repair processes and discuss possible future research areas in this rapidly evolving field.
Collapse
Affiliation(s)
- Raymond Reeves
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-4660, USA.
| |
Collapse
|
27
|
Panday A, Xiao L, Grove A. Yeast high mobility group protein HMO1 stabilizes chromatin and is evicted during repair of DNA double strand breaks. Nucleic Acids Res 2015; 43:5759-70. [PMID: 25979266 PMCID: PMC4499126 DOI: 10.1093/nar/gkv498] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 05/04/2015] [Indexed: 01/19/2023] Open
Abstract
DNA is packaged into condensed chromatin fibers by association with histones and architectural proteins such as high mobility group (HMGB) proteins. However, this DNA packaging reduces accessibility of enzymes that act on DNA, such as proteins that process DNA after double strand breaks (DSBs). Chromatin remodeling overcomes this barrier. We show here that the Saccharomyces cerevisiae HMGB protein HMO1 stabilizes chromatin as evidenced by faster chromatin remodeling in its absence. HMO1 was evicted along with core histones during repair of DSBs, and chromatin remodeling events such as histone H2A phosphorylation and H3 eviction were faster in absence of HMO1. The facilitated chromatin remodeling in turn correlated with more efficient DNA resection and recruitment of repair proteins; for example, inward translocation of the DNA-end-binding protein Ku was faster in absence of HMO1. This chromatin stabilization requires the lysine-rich C-terminal extension of HMO1 as truncation of the HMO1 C-terminal tail phenocopies hmo1 deletion. Since this is reminiscent of the need for the basic C-terminal domain of mammalian histone H1 in chromatin compaction, we speculate that HMO1 promotes chromatin stability by DNA bending and compaction imposed by its lysine-rich domain and that it must be evicted along with core histones for efficient DSB repair.
Collapse
Affiliation(s)
- Arvind Panday
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - LiJuan Xiao
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Anne Grove
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
28
|
Takizawa T, Shibata M, Kayama Y, Toriumi H, Ebine T, Koh A, Shimizu T, Suzuki N. Temporal profiles of high-mobility group box 1 expression levels after cortical spreading depression in mice. Cephalalgia 2015; 36:44-52. [PMID: 25862357 DOI: 10.1177/0333102415580100] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 02/25/2015] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Cortical spreading depression (CSD) has recently been shown to induce the release of the nuclear protein termed high-mobility group box 1 from neurons, causing activation of the trigeminovascular system. Here, we explored the effects of single and multiple cortical spreading depression inductions on high-mobility group box 1 (HMGB1) transcriptional activity relative to high-mobility group box 1 protein expression levels and intracellular localization in cortical neurons and astrocytes. METHODS Single or multiple cortical spreading depression inductions were achieved by KCl application to the mouse cerebral cortex. The animals were sacrificed at 30 minutes, 3 hours and 24 hours after cortical spreading depression induction. High-mobility group box 1 expression levels were explored with in situ hybridization, Western blotting and immunostaining. RESULTS Cortical spreading depression up-regulated high-mobility group box 1 transcriptional activity in neurons at 3 hours in a manner that was dependent on the number of cortical spreading depression inductions. At 24 hours, the high-mobility group box 1 transcriptional activity had returned to basal levels. Cortical spreading depression induced a reduction in high-mobility group box 1 protein expression at 3 hours, which was also dependent on the number of cortical spreading depression inductions. Following cortical spreading depression, the release of high-mobility group box 1 from the nucleus was observed in a small proportion of neurons, but not in astrocytes. CONCLUSION Cortical spreading depression induced translocation of high-mobility group box 1 from neuronal nuclei, driving transcriptional up-regulation of high-mobility group box 1 to maintain protein levels.
Collapse
Affiliation(s)
- Tsubasa Takizawa
- Department of Neurology, Keio University School of Medicine, Japan
| | - Mamoru Shibata
- Department of Neurology, Keio University School of Medicine, Japan
| | - Yohei Kayama
- Department of Neurology, Keio University School of Medicine, Japan
| | - Haruki Toriumi
- Department of Neurology, Keio University School of Medicine, Japan
| | - Taeko Ebine
- Department of Neurology, Keio University School of Medicine, Japan
| | - Anri Koh
- Department of Neurology, Keio University School of Medicine, Japan
| | | | - Norihiro Suzuki
- Department of Neurology, Keio University School of Medicine, Japan
| |
Collapse
|
29
|
M. Scovell W, R. Joshi S. The changing paradigm: estrogen receptor α recognition on DNA and within the dynamic nature of nucleosomes. AIMS MOLECULAR SCIENCE 2015. [DOI: 10.3934/molsci.2015.2.48] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
30
|
Kang R, Chen R, Zhang Q, Hou W, Wu S, Cao L, Huang J, Yu Y, Fan XG, Yan Z, Sun X, Wang H, Wang Q, Tsung A, Billiar TR, Zeh HJ, Lotze MT, Tang D. HMGB1 in health and disease. Mol Aspects Med 2014; 40:1-116. [PMID: 25010388 PMCID: PMC4254084 DOI: 10.1016/j.mam.2014.05.001] [Citation(s) in RCA: 723] [Impact Index Per Article: 65.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 05/05/2014] [Indexed: 12/22/2022]
Abstract
Complex genetic and physiological variations as well as environmental factors that drive emergence of chromosomal instability, development of unscheduled cell death, skewed differentiation, and altered metabolism are central to the pathogenesis of human diseases and disorders. Understanding the molecular bases for these processes is important for the development of new diagnostic biomarkers, and for identifying new therapeutic targets. In 1973, a group of non-histone nuclear proteins with high electrophoretic mobility was discovered and termed high-mobility group (HMG) proteins. The HMG proteins include three superfamilies termed HMGB, HMGN, and HMGA. High-mobility group box 1 (HMGB1), the most abundant and well-studied HMG protein, senses and coordinates the cellular stress response and plays a critical role not only inside of the cell as a DNA chaperone, chromosome guardian, autophagy sustainer, and protector from apoptotic cell death, but also outside the cell as the prototypic damage associated molecular pattern molecule (DAMP). This DAMP, in conjunction with other factors, thus has cytokine, chemokine, and growth factor activity, orchestrating the inflammatory and immune response. All of these characteristics make HMGB1 a critical molecular target in multiple human diseases including infectious diseases, ischemia, immune disorders, neurodegenerative diseases, metabolic disorders, and cancer. Indeed, a number of emergent strategies have been used to inhibit HMGB1 expression, release, and activity in vitro and in vivo. These include antibodies, peptide inhibitors, RNAi, anti-coagulants, endogenous hormones, various chemical compounds, HMGB1-receptor and signaling pathway inhibition, artificial DNAs, physical strategies including vagus nerve stimulation and other surgical approaches. Future work further investigating the details of HMGB1 localization, structure, post-translational modification, and identification of additional partners will undoubtedly uncover additional secrets regarding HMGB1's multiple functions.
Collapse
Affiliation(s)
- Rui Kang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
| | - Ruochan Chen
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Qiuhong Zhang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Wen Hou
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Sha Wu
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Lizhi Cao
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jin Huang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yan Yu
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xue-Gong Fan
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhengwen Yan
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA; Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Xiaofang Sun
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Experimental Department of Institute of Gynecology and Obstetrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510510, China
| | - Haichao Wang
- Laboratory of Emergency Medicine, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | - Qingde Wang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Allan Tsung
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Herbert J Zeh
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Michael T Lotze
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Daolin Tang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
| |
Collapse
|
31
|
Hepp MI, Alarcon V, Dutta A, Workman JL, Gutiérrez JL. Nucleosome remodeling by the SWI/SNF complex is enhanced by yeast high mobility group box (HMGB) proteins. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:764-72. [PMID: 24972368 DOI: 10.1016/j.bbagrm.2014.06.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 06/16/2014] [Accepted: 06/18/2014] [Indexed: 12/01/2022]
Abstract
The regulation of gene expression at the level of transcription involves the concerted action of several proteins and protein complexes committed to dynamically alter the surrounding chromatin environment of a gene being activated or repressed. ATP-dependent chromatin remodeling complexes are key factors in chromatin remodeling, and the SWI/SNF complex is the founding member. While many studies have linked the action of these complexes to specific transcriptional regulation of a large number of genes and much is known about their catalytic activity, less is known about the nuclear elements that can enhance or modulate their activity. A number of studies have found that certain High Mobility Group (HMG) proteins are able to stimulate ATP-dependent chromatin remodeling activity, but their influence on the different biochemical outcomes of this activity is still unknown. In this work we studied the influence of the yeast Nhp6A, Nhp6B and Hmo1 proteins (HMGB family members) on different biochemical outcomes of yeast SWI/SNF remodeling activity. We found that all these HMG proteins stimulate the sliding activity of ySWI/SNF, while transient exposure of nucleosomal DNA and octamer transfer catalyzed by this complex are only stimulated by Hmo1. Consistently, only Hmo1 stimulates SWI/SNF binding to the nucleosome. Additionally, the sliding activity of another chromatin remodeling complex, ISW1a, is only stimulated by Hmo1. Further analyses show that these differential stimulatory effects of Hmo1 are dependent on the presence of its C-terminal tail, which contains a stretch of acidic and basic residues.
Collapse
Affiliation(s)
- Matias I Hepp
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Barrio Universitario s/n, Concepción 4070043, Chile
| | - Valentina Alarcon
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Barrio Universitario s/n, Concepción 4070043, Chile
| | - Arnob Dutta
- Stowers Institute for Medical Research, 1000 E 50th Street, Kansas City 64110, MO, USA
| | - Jerry L Workman
- Stowers Institute for Medical Research, 1000 E 50th Street, Kansas City 64110, MO, USA
| | - José L Gutiérrez
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Barrio Universitario s/n, Concepción 4070043, Chile.
| |
Collapse
|
32
|
Magnani L, Lupien M. Chromatin and epigenetic determinants of estrogen receptor alpha (ESR1) signaling. Mol Cell Endocrinol 2014; 382:633-641. [PMID: 23684889 DOI: 10.1016/j.mce.2013.04.026] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 04/16/2013] [Accepted: 04/29/2013] [Indexed: 12/30/2022]
Abstract
The oestrogen receptor alpha (ESR1) is a transcription factor that potentiates the response to diverse stimuli, including oestrogen and growth factors, in various tissue types. Its recruitment to the DNA is directly regulated by the chromatin landscape, inclusive of chromatin compaction and epigenetic modifications. In this review we discuss our current understanding of the interplay between ESR1 signaling and the chromatin landscape. We present how the chromatin landscape primes the lineage-specific response and contributes to stimuli-specific signaling. Finally, we discuss recent efforts to decipher the relationship between genetic and epigenetic as it relates to ESR1 signaling in breast cancer.
Collapse
Affiliation(s)
- Luca Magnani
- Ontario Cancer Institute, Princess Margaret Cancer Centre-University Health Network, Canada; Ontario Institute for Cancer Research, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
| | - Mathieu Lupien
- Ontario Cancer Institute, Princess Margaret Cancer Centre-University Health Network, Canada; Ontario Institute for Cancer Research, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
33
|
Morchikh M, Naughtin M, Di Nunzio F, Xavier J, Charneau P, Jacob Y, Lavigne M. TOX4 and NOVA1 proteins are partners of the LEDGF PWWP domain and affect HIV-1 replication. PLoS One 2013; 8:e81217. [PMID: 24312278 PMCID: PMC3842248 DOI: 10.1371/journal.pone.0081217] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 10/10/2013] [Indexed: 12/31/2022] Open
Abstract
PWWP domains are involved in the chromatin attachment of several proteins. They bind to both DNA and proteins and their interaction with specific histone methylation marks define them as a new class of histone code readers. The lens epithelium derived growth factor (LEDGF/p75) contains an N-terminal PWWP domain necessary for its interaction with chromatin but also a C-terminal domain which interacts with several proteins, such as lentiviral integrases. These two domains confer a chromatin-tethering function to LEDGF/p75 and in the case of lentiviral integrases, this tethering participates in the efficiency and site selectivity of integration. Although proteins interacting with LEDGF/p75 C-terminal domain have been extensively studied, no data exist about partners of its PWWP domain regulating its interaction with chromatin. In this study, we report the identification by yeast-two-hybrid of thirteen potential partners of the LEDGF PWWP domain. Five of these interactions were confirmed in mammalian cells, using both a protein complementation assay and co-immunoprecipitation approaches. Three of these partners interact with full length LEDGF/p75, they are specific for PWWP domains of the HDGF family and they require PWWP amino acids essential for the interaction with chromatin. Among them, the transcription activator TOX4 and the splicing cofactor NOVA1 were selected for a more extensive study. These two proteins or their PWWP interacting regions (PIR) colocalize with LEDGF/p75 in Hela cells and interact in vitro in the presence of DNA. Finally, single round VSV-G pseudotyped HIV-1 but not MLV infection is inhibited in cells overexpressing these two PIRs. The observed inhibition of infection can be attributed to a defect in the integration step. Our data suggest that a regulation of LEDGF interaction with chromatin by cellular partners of its PWWP domain could be involved in several processes linked to LEDGF tethering properties, such as lentiviral integration, DNA repair or transcriptional regulation.
Collapse
Affiliation(s)
- Mehdi Morchikh
- Ecole Normale Supérieure, Laboratoire Joliot-Curie, Centre National de la Recherche Scientifique, Lyon, France
- Institut Pasteur, Unité de Virologie Structurale, Centre National de la Recherche Scientifique, Unité de recherche associée, Paris, France
- Université Pierre et Marie Curie, Paris, France
| | - Monica Naughtin
- Ecole Normale Supérieure, Laboratoire Joliot-Curie, Centre National de la Recherche Scientifique, Lyon, France
| | - Francesca Di Nunzio
- Institut Pasteur, Unité de Virologie Moléculaire et Vaccinologie, Centre National de la Recherche Scientifique, Paris, France
| | - Johan Xavier
- Ecole Normale Supérieure, Laboratoire Joliot-Curie, Centre National de la Recherche Scientifique, Lyon, France
| | - Pierre Charneau
- Institut Pasteur, Unité de Virologie Moléculaire et Vaccinologie, Centre National de la Recherche Scientifique, Paris, France
| | - Yves Jacob
- Institut Pasteur, Unité de Génétique Moléculaire des Virus à ARN, Centre National de la Recherche Scientifique, Paris, France
- Center for Cancer Systems Biology and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Marc Lavigne
- Ecole Normale Supérieure, Laboratoire Joliot-Curie, Centre National de la Recherche Scientifique, Lyon, France
- Institut Pasteur, Unité de Virologie Structurale, Centre National de la Recherche Scientifique, Unité de recherche associée, Paris, France
- * E-mail:
| |
Collapse
|
34
|
High mobility group box 1 promotes tumor cell migration through epigenetic silencing of semaphorin 3A. Oncogene 2013; 33:5151-62. [PMID: 24213571 DOI: 10.1038/onc.2013.459] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 08/29/2013] [Accepted: 09/09/2013] [Indexed: 12/18/2022]
Abstract
High mobility group box 1 (HMGB1) is a 25-kDa chromatin-associated protein that aids in transcription and DNA repair by directly binding to DNA and altering its conformation. Additionally, HMGB1 can act as an extracellular ligand. When released from dying or stressed cells, HMGB1 binds to the RAGE receptor and activates the p42/44 MAP kinase (MAPK) cascade. HMGB1 is overexpressed in many types of cancer and frequently associated with tumor stage and metastasis. This has predominantly been attributed to an autocrine function that drives MAPK pathway activity. However, by using tumor cells with activating MAPK pathway mutations, we have identified a role for HMGB1 in promoting metastasis and tumor growth that is independent of this pathway. In the absence of HMGB1, these tumor cells show defective in vitro migration as well as reduced metastasis and tumor growth in vivo despite high p42/44 phosphorylation. We found that semaphorin 3A (SEMA3A), previously shown to act as a suppressor of angiogenesis and migration, was highly increased during expression in the absence of HMGB1. SEMA3A/HMGB1 double knockdown rescued the migration defect in HMGB1 single knockdown cells. HMGB1 bound at the semaphorin 3A genomic locus, promoted hetrochromatin formation, and decreased occupancy of acetylated histones. Based on human tumor gene expression databases, HMGB1 was significantly inversely correlated with SEMA3A, suggesting that this mechanism may be more widely relevant in different cancer types.
Collapse
|
35
|
Watson M, Stott K, Fischl H, Cato L, Thomas JO. Characterization of the interaction between HMGB1 and H3-a possible means of positioning HMGB1 in chromatin. Nucleic Acids Res 2013; 42:848-59. [PMID: 24157840 PMCID: PMC3902940 DOI: 10.1093/nar/gkt950] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
High mobility group protein B1 (HMGB1) binds to the internucleosomal linker DNA in chromatin and abuts the nucleosome. Bending and untwisting of the linker DNA results in transmission of strain to the nucleosome core, disrupting histone/DNA contacts. An interaction between H3 and HMGB1 has been reported. Here we confirm and characterize the interaction of HMGB1 with H3, which lies close to the DNA entry/exit points around the nucleosome dyad, and may be responsible for positioning of HMGB1 on the linker DNA. We show that the interaction is between the N-terminal unstructured tail of H3 and the C-terminal unstructured acidic tail of HMGB1, which are presumably displaced from DNA and the HMG boxes, respectively, in the HMGB1-nucleosome complex. We have characterized the interaction by nuclear magnetic resonance spectroscopy and show that it is extensive for both peptides, and appears not to result in the acquisition of significant secondary structure by either partner.
Collapse
Affiliation(s)
| | | | | | | | - Jean O. Thomas
- *To whom correspondence should be addressed. Tel: +44 1223 333670; Fax: +44 1223 766002;
| |
Collapse
|
36
|
Defective immunogenic cell death of HMGB1-deficient tumors: compensatory therapy with TLR4 agonists. Cell Death Differ 2013; 21:69-78. [PMID: 23811849 DOI: 10.1038/cdd.2013.72] [Citation(s) in RCA: 179] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 05/06/2013] [Accepted: 05/27/2013] [Indexed: 12/22/2022] Open
Abstract
Immunogenic cell death induced by anticancer chemotherapy is characterized by a series of molecular hallmarks that include the exodus of high-mobility group box 1 protein (HMGB1) from dying cells. HMGB1 is a nuclear nonhistone chromatin-binding protein. It is secreted at the late stages of cellular demise and engages Toll-like receptor4 (TLR4) on dendritic cells (DCs) to accelerate the processing of phagocytic cargo in the DC and to facilitate antigen presentation by DC to T cells. The absence of HMGB1 expression by dying tumor cells exposed to anthracyclines or oxaliplatin compromises DC-dependent T-cell priming by tumor-associated antigens. Here, we show that transplantable tumors exhibiting weak expression of nuclear HMGB1 respond to chemotherapy more effectively if the treatment is combined with the local or systemic administration of a highly purified and physiochemically defined and standardized lipopolysaccharide solution, which acts as a high-potency and exclusive TLR4 agonist, called Dendrophilin (DEN). The synergistic antitumor effects mediated by the combination of chemotherapy and immunotherapy relied upon the presence of the MyD88 (myeloid differentiation primary response gene) adapter of TLR4 (but not that of the TIR-domain-containing adapter-inducing interferon-β adapter), in line with the well-characterized action of DEN on the MyD88 signaling pathway. DEN and anthracyclines synergized to induce intratumoral accumulation of interferon-γ-producing CD4(+) and CD8(+) T lymphocytes. Moreover, DEN could restore the immunogenicity of dying tumor cells from which HMGB1 had been depleted by RNA interference. These findings underscore the potential clinical utility of combination regimens involving immunogenic chemotherapy and certain TLR4 agonists in advanced HMGB1-deficient cancers.
Collapse
|