1
|
Dai Y, Liu R, Yue Y, Song N, Jia H, Ma Z, Gao X, Zhang M, Yuan X, Liu Q, Liu X, Li B, Wang W. A c-di-GMP binding effector STM0435 modulates flagellar motility and pathogenicity in Salmonella. Virulence 2024; 15:2331265. [PMID: 38532247 PMCID: PMC10978029 DOI: 10.1080/21505594.2024.2331265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 03/06/2024] [Indexed: 03/28/2024] Open
Abstract
Flagella play a crucial role in the invasion process of Salmonella and function as a significant antigen that triggers host pyroptosis. Regulation of flagellar biogenesis is essential for both pathogenicity and immune escape of Salmonella. We identified the conserved and unknown function protein STM0435 as a new flagellar regulator. The ∆stm0435 strain exhibited higher pathogenicity in both cellular and animal infection experiments than the wild-type Salmonella. Proteomic and transcriptomic analyses demonstrated dramatic increases in almost all flagellar genes in the ∆stm0435 strain compared to wild-type Salmonella. In a surface plasmon resonance assay, purified STM0435 protein-bound c-di-GMP had an affinity of ~8.383 µM. The crystal structures of apo-STM0435 and STM0435&c-di-GMP complex were determined. Structural analysis revealed that R33, R137, and D138 of STM0435 were essential for c-di-GMP binding. A Salmonella with STM1987 (GGDEF protein) or STM4264 (EAL protein) overexpression exhibits completely different motility behaviours, indicating that the binding of c-di-GMP to STM0435 promotes its inhibitory effect on Salmonella flagellar biogenesis.
Collapse
Affiliation(s)
- Yuanji Dai
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Ruirui Liu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yingying Yue
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Nannan Song
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Haihong Jia
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Zhongrui Ma
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xueyan Gao
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Min Zhang
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Xilu Yuan
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Qing Liu
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Xiaoyu Liu
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Bingqing Li
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- Key Lab for Biotech-Drugs of National Health Commission, Shandong First Medical University, Jinan, Shandong, China
- Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong, China
| | - Weiwei Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
2
|
Ishikawa F, Homma M, Tanabe G, Uchihashi T. Protein degradation by a component of the chaperonin-linked protease ClpP. Genes Cells 2024; 29:695-709. [PMID: 38965067 PMCID: PMC11448347 DOI: 10.1111/gtc.13141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/03/2024] [Accepted: 06/19/2024] [Indexed: 07/06/2024]
Abstract
In cells, proteins are synthesized, function, and degraded (dead). Protein synthesis (spring) is important for the life of proteins. However, how proteins die is equally important for organisms. Proteases are secreted from cells and used as nutrients to break down external proteins. Proteases degrade unwanted and harmful cellular proteins. In eukaryotes, a large enzyme complex called the proteasome is primarily responsible for cellular protein degradation. Prokaryotes, such as bacteria, have similar protein degradation systems. In this review, we describe the structure and function of the ClpXP complex in the degradation system, which is an ATP-dependent protease in bacterial cells, with a particular focus on ClpP.
Collapse
Affiliation(s)
| | - Michio Homma
- Department of Biomolecular Engineering, Graduate School of EngineeringNagoya UniversityNagoyaJapan
| | | | - Takayuki Uchihashi
- Division of Material Science, Graduate School of ScienceNagoya UniversityNagoyaJapan
| |
Collapse
|
3
|
Ishikawa F, Homma M, Tanabe G, Uchihashi T. [Protein degradation in bacteria: focus on the ClpP protease]. Nihon Saikingaku Zasshi 2024; 79:1-13. [PMID: 38382970 DOI: 10.3412/jsb.79.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Proteins in the cells are born (synthesized), work, and die (decomposed). In the life of a protein, its birth is obviously important, but how it dies is equally important in living organisms. Proteases secreted into the outside of cells are used to decompose the external proteins and the degradation products are taken as the nutrients. On the other hand, there are also proteases that decompose unnecessary or harmful proteins which are generated in the cells. In eukaryotes, a large enzyme complex called the proteasome is primarily responsible for degradation of such proteins. Bacteria, which are prokaryotes, have a similar system as the proteasome. We would like to explain the bacterial degradation system of proteins or the death of proteins, which is performed by ATP-dependent protease Clp, with a particular focus on the ClpXP complex, and with an aspect as a target for antibiotics against bacteria.
Collapse
Affiliation(s)
| | - Michio Homma
- Division of Physics, Graduate School of Science, Nagoya University
| | | | | |
Collapse
|
4
|
Cho SY, Oh HB, Yoon SI. Hexameric structure of the flagellar master regulator FlhDC from Cupriavidus necator and its interaction with flagellar promoter DNA. Biochem Biophys Res Commun 2023; 672:97-102. [PMID: 37343320 DOI: 10.1016/j.bbrc.2023.06.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 06/09/2023] [Indexed: 06/23/2023]
Abstract
Bacterial flagella are assembled with ∼30 different proteins in a defined order via diverse regulatory systems. In gram-negative bacteria from the Gammaproteobacteria and Betaproteobacteria classes, the transcription of flagellar genes is strictly controlled by the master regulator FlhDC. In Gammaproteobacteria species, the FlhDC complex has been shown to activate flagellar expression by directly interacting with the promoter region in flagellar genes. To obtain the DNA-binding mechanism of FlhDC and determine the conserved and distinct structural features of Betaproteobacteria and Gammaproteobacteria FlhDCs that are necessary for their functions, we determined the crystal structure of Betaproteobacteria Cupriavidus necator FlhDC (cnFlhDC) and biochemically analyzed its DNA-binding capacity. cnFlhDC specifically recognized the promoter DNA of the class II flagellar genes flgB and flhB. cnFlhDC adopts a ring-like heterohexameric structure (cnFlhD4C2) and harbors two Zn-Cys clusters, as observed for Gammaproteobacteria Escherichia coli FlhDC (ecFlhDC). The cnFlhDC structure exhibits positively charged surfaces across two FlhDC subunits as a putative DNA-binding site. Noticeably, the positive patch of cnFlhDC is continuous, in contrast to the separated patches of ecFlhDC. Moreover, the ternary intersection of cnFlhD4C2 behind the Zn-Cys cluster forms a unique protruding neutral structure, which is replaced with a charged cavity in the ecFlhDC structure.
Collapse
Affiliation(s)
- So Yeon Cho
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Han Byeol Oh
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Sung-Il Yoon
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
5
|
Yue Y, Wang W, Ma Y, Song N, Jia H, Li C, Wang Q, Li H, Li B. Cooperative Regulation of Flagellar Synthesis by Two EAL-Like Proteins upon Salmonella Entry into Host Cells. Microbiol Spectr 2023; 11:e0285922. [PMID: 36749049 PMCID: PMC10100727 DOI: 10.1128/spectrum.02859-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 01/12/2023] [Indexed: 02/08/2023] Open
Abstract
When Salmonella enters host cells, the synthesis of flagella is quickly turned off to escape the host immune system. In this study, we investigated the cooperative regulatory mechanism of flagellar synthesis by two EAL-like proteins, STM1344 and STM1697, in Salmonella. We found that Salmonella upregulated the expression of both STM1344 and STM1697 to various degrees upon invading host cells. Importantly, deletion of STM1697 or STM1344 led to failure of Salmonella flagellar control within host cells, suggesting that the two factors are not redundant but indispensable. STM1697 was shown to modulate Salmonella flagellar biogenesis by preventing the flagellar master protein FlhDC from recruiting RNA polymerase. However, STM1344 was identified as a bifunctional factor that inhibits RNA polymerase recruitment of FlhDC at low molar concentrations and the DNA binding activity of FlhDC at high molar concentrations. Structural analysis demonstrated that STM1344-FlhD binds more tightly than STM1697-FlhD, and size exclusion chromatography (SEC) experiments showed that STM1344 could replace STM1697 in a STM1697-FlhDC complex. Our data suggest that STM1697 might be a temporary flagellar control factor upon Salmonella entry into the host cell, while STM1344 plays a more critical role in persistent flagellar control when Salmonella organisms survive and colonize host cells for a long period of time. Our study provides a more comprehensive understanding of the complex flagellar regulatory mechanism of Salmonella based on regulation at the protein level of FlhDC. IMPORTANCE Salmonella infection kills more than 300,000 people every year. After infection, Salmonella mainly parasitizes host cells, as it prevents host cell pyroptosis by turning off the synthesis of flagellar antigen. Previous studies have determined that there are two EAL-like proteins, STM1344 and STM1697, encoded in the Salmonella genome, both of which inhibit flagellar synthesis by interacting with the flagellar master protein FlhDC. However, the expression order and simultaneous mechanism of STM1344 and STM1697 are not clear. In this study, we determined the expression profiles of the two proteins after Salmonella infection and demonstrated the cooperative mechanism of STM1344 and STM1697 interaction with FlhDC. We found that STM1344 might play a more lasting regulatory role than STM1697. Our results reveal a comprehensive flagellar control process after Salmonella entry into host cells.
Collapse
Affiliation(s)
- Yingying Yue
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Pathogen Biology, School of Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Weiwei Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Pathogen Biology, School of Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yue Ma
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Pathogen Biology, School of Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Nannan Song
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Pathogen Biology, School of Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Haihong Jia
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Pathogen Biology, School of Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Cuiling Li
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Pathogen Biology, School of Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Qi Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Pathogen Biology, School of Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Hui Li
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Pathogen Biology, School of Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Bingqing Li
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Pathogen Biology, School of Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Key Lab for Biotech-Drugs of National Health Commission, Jinan, Shandong, China
- Key Lab for Rare and Uncommon Diseases of Shandong Province, Jinan, Shandong, China
- Institute of Clinical Microbiology, Shandong Academy of Clinical Medicine, Jinan, Shandong, China
| |
Collapse
|
6
|
Wang W, Yue Y, Zhang M, Song N, Jia H, Dai Y, Zhang F, Li C, Li B. Host acid signal controls Salmonella flagella biogenesis through CadC-YdiV axis. Gut Microbes 2022; 14:2146979. [PMID: 36456534 PMCID: PMC9728131 DOI: 10.1080/19490976.2022.2146979] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Upon entering host cells, Salmonella quickly turns off flagella biogenesis to avoid recognition by the host immune system. However, it is not clear which host signal(s) Salmonella senses to initiate flagellum control. Here, we demonstrate that the acid signal can suppress flagella synthesis and motility of Salmonella, and this occurs after the transcription of master flagellar gene flhDC and depends on the anti-FlhDC factor YdiV. YdiV expression is activated after acid treatment. A global screen with ydiV promoter DNA and total protein from acid-treated Salmonella revealed a novel regulator of YdiV, the acid-related transcription factor CadC. Further studies showed that CadCC, the DNA binding domain of CadC, directly binds to a 33 nt region of the ydiV promoter with a 0.2 μM KD affinity. Furthermore, CadC could separate H-NS-ydiV promoter DNA complex to form CadC-DNA complex at a low concentration. Structural simulation and mutagenesis assays revealed that H43 and W106 of CadC are essential for ydiV promoter binding. No acid-induced flagellum control phenotype was observed in cadC mutant or ydiV mutant strains, suggesting that flagellum control during acid adaption is dependent on CadC and YdiV. The intracellular survival ability of cadC mutant strain decreased significantly compared with WT strain while the flagellin expression could not be effectively controlled in the cadC mutant strain when surviving within host cells. Together, our results demonstrated that acid stress acts as an important host signal to trigger Salmonella flagellum control through the CadC-YdiV-FlhDC axis, allowing Salmonella to sense a hostile environment and regulate flagellar synthesis during infection.
Collapse
Affiliation(s)
- Weiwei Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China,Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Yingying Yue
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China,Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Min Zhang
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Nannan Song
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China,Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Haihong Jia
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China,Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Yuanji Dai
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Fengyu Zhang
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Qingdao, China
| | - Cuiling Li
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China,Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Bingqing Li
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China,Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China,Shandong First Medical University, Key Lab for Biotech-Drugs of National Health Commission, Jinan, China,KeyLaboratory for Rare & Uncommon Diseases of Shandong Province, Jinan, China,CONTACT Bingqing Li Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan250021Shandong, China
| |
Collapse
|
7
|
Switching off Bacterial Flagellar Biogenesis by YdiU-Mediated UMPylation of FlhDC. mBio 2022; 13:e0024922. [PMID: 35532215 PMCID: PMC9239255 DOI: 10.1128/mbio.00249-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Bacterial flagellin activates the host immune system and triggers pyroptosis. Salmonella reduces flagellin expression when it survives within host cells. Here, we found that the UMPylator YdiU significantly altered the Salmonella flagellar biogenesis process upon host cell entry. The expression levels of class II and class III flagellar genes, but not the class I flagellar genes flhDC, were dramatically increased in a ΔydiU strain compared to wild-type (WT) Salmonella in a host-simulating environment. A direct interaction between YdiU and FlhDC was detected by bacterial two-hybrid assay. Furthermore, YdiU efficiently catalyzed the UMPylation of FlhC but not FlhD, FliA, or FliC. UMPylation of FlhC completely eliminated its DNA-binding activity. In vivo experiments showed that YdiU was required and sufficient for Salmonella flagellar control within host cells. Mice infected with the ΔydiU strain died much earlier than WT strain-infected mice and developed much more severe inflammation and injury in organs and much higher levels of cytokines in blood, demonstrating that early host death induced by the ΔydiU strain is probably due to excessive inflammation. Our results indicate that YdiU acts as an essential factor of Salmonella to mediate host immune escape.
Collapse
|
8
|
Abstract
Iron limitation is a universal strategy of host immunity during bacterial infection. However, the mechanisms by which pathogens antagonize host nutritional immunity have not been fully elucidated. Here, we identified a requirement for the UMPylator YdiU for this process in Salmonella. The expression of YdiU was dramatically induced by the metal starvation signal. The intracellular iron content was much lower in the ΔydiU strain than in wild-type Salmonella, and the ΔydiU strain exhibited severe growth defect under metal deficiency environments. Genome-wide expression analyses revealed significantly decreased expression of iron uptake genes in ΔydiU strain compared with the wild-type strain. Interestingly, YdiU did not affect the expression level of the major iron uptake regulator Fur but directly UMPylated Fur on its H118 residue in vivo and in vitro. UMPylation destroyed the Fur dimer, promoted Fur aggregation, and eliminated the DNA-binding activity of Fur, thus abolishing the ability of Fur to inhibit iron uptake. Restricting Fur to the deUMPylated state dramatically eliminates Salmonella iron uptake in iron deficiency environments. In parallel, YdiU facilitates Salmonella survival within host cells by regulating the iron uptake pathway.
Collapse
|
9
|
Wang W, Yue Y, Zhang M, Song N, Jia H, Dai Y, Zhang F, Li C, Li B. Host acid signal controls Salmonella flagella biogenesis through CadC-YdiV axis. Gut Microbes 2022. [PMID: 36456534 DOI: 10.1080/194909762125747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/30/2023] Open
Abstract
Upon entering host cells, Salmonella quickly turns off flagella biogenesis to avoid recognition by the host immune system. However, it is not clear which host signal(s) Salmonella senses to initiate flagellum control. Here, we demonstrate that the acid signal can suppress flagella synthesis and motility of Salmonella, and this occurs after the transcription of master flagellar gene flhDC and depends on the anti-FlhDC factor YdiV. YdiV expression is activated after acid treatment. A global screen with ydiV promoter DNA and total protein from acid-treated Salmonella revealed a novel regulator of YdiV, the acid-related transcription factor CadC. Further studies showed that CadCC, the DNA binding domain of CadC, directly binds to a 33 nt region of the ydiV promoter with a 0.2 μM KD affinity. Furthermore, CadC could separate H-NS-ydiV promoter DNA complex to form CadC-DNA complex at a low concentration. Structural simulation and mutagenesis assays revealed that H43 and W106 of CadC are essential for ydiV promoter binding. No acid-induced flagellum control phenotype was observed in cadC mutant or ydiV mutant strains, suggesting that flagellum control during acid adaption is dependent on CadC and YdiV. The intracellular survival ability of cadC mutant strain decreased significantly compared with WT strain while the flagellin expression could not be effectively controlled in the cadC mutant strain when surviving within host cells. Together, our results demonstrated that acid stress acts as an important host signal to trigger Salmonella flagellum control through the CadC-YdiV-FlhDC axis, allowing Salmonella to sense a hostile environment and regulate flagellar synthesis during infection.
Collapse
Affiliation(s)
- Weiwei Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Yingying Yue
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Min Zhang
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Nannan Song
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Haihong Jia
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Yuanji Dai
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Fengyu Zhang
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Qingdao, China
| | - Cuiling Li
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Bingqing Li
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- Shandong First Medical University, Key Lab for Biotech-Drugs of National Health Commission, Jinan, China
- KeyLaboratory for Rare & Uncommon Diseases of Shandong Province, Jinan, China
| |
Collapse
|
10
|
Regulation of ydiV-induced biological characteristics permits Escherichia coli evasion of the host STING inflammatory response. Vet Microbiol 2021; 261:109207. [PMID: 34419774 DOI: 10.1016/j.vetmic.2021.109207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/09/2021] [Indexed: 11/21/2022]
Abstract
Mammary gland-derived Escherichia coli (E. coli) is an important pathogen causing dairy cow mastitis. YdiV, with EAL-like domains, inhibits flagellum biogenesis and motility and affects c-di-GMP (eubacterial signaling molecule) concentration changes in bacteria. However, the pathophysiological role of ydiV in host-pathogen cross-talk still needs to be elucidated. In this study, firstly constructed the ydiV mutant (NJ17ΔydiV) and ydiV complementary (cNJ17ΔydiV) E. coli strains to infect mouse mammary epithelial cells (EpH4-Ev) and macrophages (RAW264.7), as well as mouse mammary glands, respectively. Then biological characteristics, adaptor molecules in related signaling pathways, proinflammatory cytokines and the extent of host cell damage was evaluated. Compared with E. coli NJ17 infected mice, the bacterial load in the mammary gland of NJ17ΔydiV was significantly lower and the extent of the damage was alleviated. Notably, the deletion of ydiV significantly aggravated cell damage in RAW264.7 cells and compared with the wild-type strain, NJ17ΔydiV significantly activated the STING/TBK1/IRF3 pathway in macrophages. In EpH4-Ev cells, although STING did not sense E. coli NJ17 invasion, IRF3 was activated by the NJ17ΔydiV strain. Taken together, ydiV deletion significantly affects a variety of biological characteristics and induces severe cell damage, while the STING/TBK1/IRF3 pathway actively participated in pathogen elimination in the host. This study highlights a new role for ydiV in E. coli infection and provides a foundation for further studies to better understand host-bacteria interactions and potential prophylactic strategies for infectious diseases.
Collapse
|
11
|
Abstract
Regulation of flagellum biosynthesis is a hierarchical process that is tightly controlled to allow for efficient tuning of flagellar expression. Flagellum-mediated motility directs Salmonella enterica serovar Typhimurium toward the epithelial surface to enhance gut colonization, but flagella are potent activators of innate immune signaling, so fine-tuning flagellar expression is necessary for immune avoidance. In this work, we evaluate the role of the LysR transcriptional regulator YeiE in regulating flagellum-mediated motility. We show that yeiE is necessary and sufficient for swimming motility. A ΔyeiE mutant is defective for gut colonization in both the calf ligated ileal loop model and the murine colitis model due to its lack of motility. Expression of flagellar class 2 and 3 but not class 1 genes is reduced in the ΔyeiE mutant. We linked the motility dysregulation of the ΔyeiE mutant to repression of the anti-FlhD4C2 factor STM1697. Together, our results indicate that YeiE promotes virulence by enhancing cell motility, thereby providing a new regulatory control point for flagellar expression in Salmonella Typhimurium.
Collapse
|
12
|
Zheng R, Wu S, Sun C. MerF is a novel regulator of deep-sea Pseudomonas stutzeri flagellum biogenesis and motility. Environ Microbiol 2020; 23:110-125. [PMID: 33047460 DOI: 10.1111/1462-2920.15275] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/05/2020] [Accepted: 10/08/2020] [Indexed: 12/17/2022]
Abstract
MerF, a proposed bacterial mercury transporter, was surprisingly found to play key roles in the flagellum biogenesis and motility but not mercuric resistance of the deep-sea bacterium Pseudomonas stutzeri 273 in our previous study. However, the mechanism behind this interesting discovery has not been elucidated. Here, we firstly applied the combined transcriptomic and proteomic analysis to the P. stutzeri 273 wild type and merF deletion mutant. The results showed that expressions of extracellular flagellar components and FliS, a key factor controlling the biogenesis of extracellular flagellar filament, were significantly downregulated in the merF deletion mutant. In combination of genetic and biochemical methods, MerF was further demonstrated to regulate the expression of fliS via directly binding to its promoter, which is consistent with the discovery that MerF is essential for bacterial flagellum biogenesis and motility. Importantly, the expression of merF and fliS could be simultaneously upregulated by different heavy metals and MerF homologues exist in both bacterial and archaeal domains. To the best of our knowledge, this is the first report linking the heavy metal transporter and the flagellum biogenesis and motility in microorganisms, which provides a good model to investigate the unexplored adaptation strategies of deep-sea microbes against harsh conditions.
Collapse
Affiliation(s)
- Rikuan Zheng
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,College of Earth Science, University of Chinese Academy of Sciences, Beijing, China.,Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Shimei Wu
- College of Life Sciences, Qingdao University, Qingdao, China
| | - Chaomin Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
13
|
Zhang F, Li B, Dong H, Chen M, Yao S, Li J, Zhang H, Liu X, Wang H, Song N, Zhang K, Du N, Xu S, Gu L. YdiV regulates Escherichia coli ferric uptake by manipulating the DNA-binding ability of Fur in a SlyD-dependent manner. Nucleic Acids Res 2020; 48:9571-9588. [PMID: 32813023 PMCID: PMC7515728 DOI: 10.1093/nar/gkaa696] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 07/31/2020] [Accepted: 08/13/2020] [Indexed: 12/19/2022] Open
Abstract
Iron is essential for all bacteria. In most bacteria, intracellular iron homeostasis is tightly regulated by the ferric uptake regulator Fur. However, how Fur activates the iron-uptake system during iron deficiency is not fully elucidated. In this study, we found that YdiV, the flagella gene inhibitor, is involved in iron homeostasis in Escherichia coli. Iron deficiency triggers overexpression of YdiV. High levels of YdiV then transforms Fur into a novel form which does not bind DNA in a peptidyl-prolyl cis-trans isomerase SlyD dependent manner. Thus, the cooperation of YdiV, SlyD and Fur activates the gene expression of iron-uptake systems under conditions of iron deficiency. Bacterial invasion assays also demonstrated that both ydiV and slyD are necessary for the survival and growth of uropathogenic E. coli in bladder epithelial cells. This reveals a mechanism where YdiV not only represses flagella expression to make E. coli invisible to the host immune system, but it also promotes iron acquisition to help E. coli overcome host nutritional immunity.
Collapse
Affiliation(s)
- Fengyu Zhang
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, P.R. China
| | - Bingqing Li
- Key Laboratory of Rare and Uncommon Diseases, Department of Microbiology, Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, 18877 Jingshi Road, Jinan 250062, P.R. China
| | - Hongjie Dong
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, P.R. China
| | - Min Chen
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, P.R. China
| | - Shun Yao
- School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao 266237, P.R. China
| | - Jingwen Li
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266237, P.R. China
| | - Honghai Zhang
- Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Basic Medical Sciences, Shandong University, 44 Wenhuaxi Road, Jinan 250012, P. R. China
| | - Xiangguo Liu
- School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao 266237, P.R. China
| | - Hongwei Wang
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, P.R. China
| | - Nannan Song
- Key Laboratory of Rare and Uncommon Diseases, Department of Microbiology, Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, 18877 Jingshi Road, Jinan 250062, P.R. China
| | - Kundi Zhang
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, P.R. China
| | - Ning Du
- School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao 266237, P.R. China
| | - Sujuan Xu
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, P.R. China
| | - Lichuan Gu
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, P.R. China
| |
Collapse
|
14
|
Khan F, Tabassum N, Pham DTN, Oloketuyi SF, Kim YM. Molecules involved in motility regulation in Escherichia coli cells: a review. BIOFOULING 2020; 36:889-908. [PMID: 33028083 DOI: 10.1080/08927014.2020.1826939] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
The initial colonization of the host organism by commensal, probiotic, and pathogenic Escherichia coli strains is an important step in the development of infections and biofilms. Sensing and colonization of host cell surfaces are governed by flagellar and fimbriae/pili appendages, respectively. Biofilm formation confers great advantages on pathogenic E. coli cells such as protection against the host immune system, antimicrobial agents, and several environmental stress factors. The transition from planktonic to sessile physiological states involves several signaling cascades and factors responsible for the regulation of flagellar motility in E. coli cells. These regulatory factors have thus become important targets to control pathogenicity. Hence, attenuation of flagellar motility is considered a potential therapy against pathogenic E. coli. The present review describes signaling pathways and proteins involved in direct or indirect regulation of flagellar motility. Furthermore, application strategies for antimotility natural or synthetic compounds are discussed also.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Institute of Food Science, Pukyong National University, Busan, Republic of Korea
| | - Nazia Tabassum
- Industrial Convergence Bionix Engineering, Pukyong National University, Busan, Republic of Korea
| | - Dung Thuy Nguyen Pham
- Department of Food Science and Technology, Pukyong National University, Busan, Republic of Korea
| | | | - Young-Mog Kim
- Institute of Food Science, Pukyong National University, Busan, Republic of Korea
- Department of Food Science and Technology, Pukyong National University, Busan, Republic of Korea
| |
Collapse
|
15
|
Kim JM, Garcia-Alcala M, Balleza E, Cluzel P. Stochastic transcriptional pulses orchestrate flagellar biosynthesis in Escherichia coli. SCIENCE ADVANCES 2020; 6:eaax0947. [PMID: 32076637 PMCID: PMC7002133 DOI: 10.1126/sciadv.aax0947] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 11/22/2019] [Indexed: 05/28/2023]
Abstract
The classic picture of flagellum biosynthesis in Escherichia coli, inferred from population measurements, depicts a deterministic program where promoters are sequentially up-regulated and are maintained steadily active throughout exponential growth. However, complex regulatory dynamics at the single-cell level can be masked by bulk measurements. Here, we discover that in individual E. coli cells, flagellar promoters are stochastically activated in pulses. These pulses are coordinated within specific classes of promoters and comprise "on" and "off" states, each of which can span multiple generations. We demonstrate that in this pulsing program, the regulatory logic of flagellar assembly dictates which promoters skip pulses. Surprisingly, pulses do not require specific transcriptional or translational regulation of the flagellar master regulator, FlhDC, but instead appears to be essentially governed by an autonomous posttranslational circuit. Our results suggest that even topologically simple transcriptional networks can generate unexpectedly rich temporal dynamics and phenotypic heterogeneities.
Collapse
Affiliation(s)
- J. Mark Kim
- Department of Molecular and Cellular Biology, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Mayra Garcia-Alcala
- Department of Molecular and Cellular Biology, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México
| | - Enrique Balleza
- Department of Molecular and Cellular Biology, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Philippe Cluzel
- Department of Molecular and Cellular Biology, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
16
|
Li B, Yue Y, Yuan Z, Zhang F, Li P, Song N, Lin W, Liu Y, Yang Y, Li Z, Gu L. Salmonella STM1697 coordinates flagella biogenesis and virulence by restricting flagellar master protein FlhD4C2 from recruiting RNA polymerase. Nucleic Acids Res 2017; 45:9976-9989. [PMID: 28973452 PMCID: PMC5622320 DOI: 10.1093/nar/gkx656] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 07/17/2017] [Indexed: 01/04/2023] Open
Abstract
Salmonella reduces flagella biogenesis to avoid detection within host cells by a largely unknown mechanism. We identified an EAL-like protein STM1697 as required and sufficient for this process. STM1697 surges to a high level after Salmonella enters host cells and restrains the expression of flagellar genes by regulating the function of flagellar switch protein FlhD4C2, the transcription activator of all other flagellar genes. Unlike other anti-FlhD4C2 factors, STM1697 does not prevent FlhD4C2 from binding to target DNA. A 2.0 Å resolution STM1697–FlhD structure reveals that STM1697 binds the same region of FlhD as STM1344, but with weaker affinity. Further experiments show that STM1697 regulates flagella biogenesis by restricting FlhD4C2 from recruiting RNA polymerase and the regulatory effect of STM1697 on flagellar biogenesis and virulence are all achieved by interaction with FlhD. Finally, we describe a novel mechanism mediated by STM1697 in which Salmonella can inhibit the production of flagella antigen and escape from the host immune system.
Collapse
Affiliation(s)
- Bingqing Li
- Key Laboratory of Rare and Uncommon Diseases, Department of Microbiology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan 250062, China
| | - Yingying Yue
- Key Laboratory of Rare and Uncommon Diseases, Department of Microbiology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan 250062, China
| | - Zenglin Yuan
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan 250100, China
| | - Fengyu Zhang
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan 250100, China
| | - Peng Li
- Key Laboratory of Rare and Uncommon Diseases, Department of Microbiology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan 250062, China
| | - Nannan Song
- Key Laboratory of Rare and Uncommon Diseases, Department of Microbiology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan 250062, China
| | - Wei Lin
- Key Laboratory of Rare and Uncommon Diseases, Department of Microbiology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan 250062, China
| | - Yan Liu
- Key Laboratory of Rare and Uncommon Diseases, Department of Microbiology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan 250062, China
| | - Yinlong Yang
- Key Laboratory of Rare and Uncommon Diseases, Department of Microbiology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan 250062, China
| | - Zhihui Li
- Key Laboratory of Rare and Uncommon Diseases, Department of Microbiology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan 250062, China.,Clinical Laboratory, Liaocheng People's Hospital of Taishan Medical University, Shandong 252000, China
| | - Lichuan Gu
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan 250100, China
| |
Collapse
|
17
|
Stand-Alone EAL Domain Proteins Form a Distinct Subclass of EAL Proteins Involved in Regulation of Cell Motility and Biofilm Formation in Enterobacteria. J Bacteriol 2017; 199:JB.00179-17. [PMID: 28652301 DOI: 10.1128/jb.00179-17] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 06/16/2017] [Indexed: 12/20/2022] Open
Abstract
The second messenger cyclic dimeric GMP (c-di-GMP) is almost ubiquitous among bacteria as are the c-di-GMP turnover proteins, which mediate the transition between motility and sessility. EAL domain proteins have been characterized as c-di-GMP-specific phosphodiesterases. While most EAL domain proteins contain additional, usually N-terminal, domains, there is a distinct family of proteins with stand-alone EAL domains, exemplified by Salmonella enterica serovar Typhimurium proteins STM3611 (YhjH/PdeH), a c-di-GMP-specific phosphodiesterase, and the enzymatically inactive STM1344 (YdiV/CdgR) and STM1697, which regulate bacterial motility through interaction with the flagellar master regulator, FlhDC. We have analyzed the phylogenetic distribution of EAL-only proteins and their potential functions. Genes encoding EAL-only proteins were found in various bacterial phyla, although most of them were seen in proteobacteria, particularly enterobacteria. Based on the conservation of the active site residues, nearly all stand-alone EAL domains encoded by genomes from phyla other than proteobacteria appear to represent functional phosphodiesterases. Within enterobacteria, EAL-only proteins were found to cluster either with YhjH or with one of the subfamilies of YdiV-related proteins. EAL-only proteins from Shigella flexneri, Klebsiella pneumoniae, and Yersinia enterocolitica were tested for their ability to regulate swimming and swarming motility and formation of the red, dry, and rough (rdar) biofilm morphotype. In these tests, YhjH-related proteins S4210, KPN_01159, KPN_03274, and YE4063 displayed properties typical of enzymatically active phosphodiesterases, whereas S1641 and YE1324 behaved like members of the YdiV/STM1697 subfamily, with Yersinia enterocolitica protein YE1324 shown to downregulate motility in its native host. Of two closely related EAL-only proteins, YE2225 is an active phosphodiesterase, while YE1324 appears to interact with FlhD. These results suggest that in FlhDC-harboring beta- and gammaproteobacteria, some EAL-only proteins evolved to become catalytically inactive and regulate motility and biofilm formation by interacting with FlhDC.IMPORTANCE The EAL domain superfamily consists mainly of proteins with cyclic dimeric GMP-specific phosphodiesterase activity, but individual domains have been classified in three classes according to their functions and conserved amino acid signatures. Proteins that consist solely of stand-alone EAL domains cannot rely on other domains to form catalytically active dimers, and most of them fall into one of two distinct classes: catalytically active phosphodiesterases with well-conserved residues of the active site and the dimerization loop, and catalytically inactive YdiV/CdgR-like proteins that regulate bacterial motility by binding to the flagellar master regulator, FlhDC, and are found primarily in enterobacteria. The presence of apparently inactive EAL-only proteins in the bacteria that do not express FlhD suggests the existence of additional EAL interaction partners.
Collapse
|
18
|
Involvement of Two-Component Signaling on Bacterial Motility and Biofilm Development. J Bacteriol 2017; 199:JB.00259-17. [PMID: 28533218 DOI: 10.1128/jb.00259-17] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Two-component signaling is a specialized mechanism that bacteria use to respond to changes in their environment. Nonpathogenic strains of Escherichia coli K-12 harbor 30 histidine kinases and 32 response regulators, which form a network of regulation that integrates many other global regulators that do not follow the two-component signaling mechanism, as well as signals from central metabolism. The output of this network is a multitude of phenotypic changes in response to changes in the environment. Among these phenotypic changes, many two-component systems control motility and/or the formation of biofilm, sessile communities of bacteria that form on surfaces. Motility is the first reversible attachment phase of biofilm development, followed by a so-called swim or stick switch toward surface organelles that aid in the subsequent phases. In the mature biofilm, motility heterogeneity is generated by a combination of evolutionary and gene regulatory events.
Collapse
|
19
|
Novel genes associated with enhanced motility of Escherichia coli ST131. PLoS One 2017; 12:e0176290. [PMID: 28489862 PMCID: PMC5425062 DOI: 10.1371/journal.pone.0176290] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 04/07/2017] [Indexed: 12/20/2022] Open
Abstract
Uropathogenic Escherichia coli (UPEC) is the cause of ~75% of all urinary tract infections (UTIs) and is increasingly associated with multidrug resistance. This includes UPEC strains from the recently emerged and globally disseminated sequence type 131 (ST131), which is now the dominant fluoroquinolone-resistant UPEC clone worldwide. Most ST131 strains are motile and produce H4-type flagella. Here, we applied a combination of saturated Tn5 mutagenesis and transposon directed insertion site sequencing (TraDIS) as a high throughput genetic screen and identified 30 genes associated with enhanced motility of the reference ST131 strain EC958. This included 12 genes that repress motility of E. coli K-12, four of which (lrhA, ihfA, ydiV, lrp) were confirmed in EC958. Other genes represented novel factors that impact motility, and we focused our investigation on characterisation of the mprA, hemK and yjeA genes. Mutation of each of these genes in EC958 led to increased transcription of flagellar genes (flhD and fliC), increased expression of the FliC flagellin, enhanced flagella synthesis and a hyper-motile phenotype. Complementation restored all of these properties to wild-type level. We also identified Tn5 insertions in several intergenic regions (IGRs) on the EC958 chromosome that were associated with enhanced motility; this included flhDC and EC958_1546. In both of these cases, the Tn5 insertions were associated with increased transcription of the downstream gene(s), which resulted in enhanced motility. The EC958_1546 gene encodes a phage protein with similarity to esterase/deacetylase enzymes involved in the hydrolysis of sialic acid derivatives found in human mucus. We showed that over-expression of EC958_1546 led to enhanced motility of EC958 as well as the UPEC strains CFT073 and UTI89, demonstrating its activity affects the motility of different UPEC strains. Overall, this study has identified and characterised a number of novel factors associated with enhanced UPEC motility.
Collapse
|
20
|
Zhang Z, Kukita C, Humayun MZ, Saier MH. Environment-directed activation of the Escherichia coliflhDC operon by transposons. MICROBIOLOGY-SGM 2017; 163:554-569. [PMID: 28100305 DOI: 10.1099/mic.0.000426] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The flagellar system in Escherichia coli K12 is expressed under the control of the flhDC-encoded master regulator FlhDC. Transposition of insertion sequence (IS) elements to the upstream flhDC promoter region up-regulates transcription of this operon, resulting in a more rapid motility. Wang and Wood (ISME J 2011;5:1517-1525) provided evidence that insertion of IS5 into upstream activating sites occurs at higher rates in semi-solid agar media in which swarming behaviour is allowed as compared with liquid or solid media where swarming cannot occur. We confirm this conclusion and show that three IS elements, IS1, IS3 and IS5, transpose to multiple upstream sites within a 370 bp region of the flhDC operon control region. Hot spots for IS insertion correlate with positions of stress-induced DNA duplex destabilization (SIDD). We show that IS insertion occurs at maximal rates in 0.24 % agar, with rates decreasing dramatically with increasing or decreasing agar concentrations. In mixed cultures, we show that these mutations preferentially arise from the wild-type parent at frequencies of up to 3×10-3 cell-1 day-1 when the inoculated parental and co-existing IS-activated mutant cells are entering the stationary growth phase. We rigorously show that the apparent increased mutation frequencies cannot be accounted for by increased swimming or by increased growth under the selective conditions used. Thus, our data are consistent with the possibility that appropriate environmental conditions, namely those that permit but hinder flagellar rotation, result in the activation of a mutational pathway that involves IS element insertion upstream of the flhDC operon.
Collapse
Affiliation(s)
- Zhongge Zhang
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | - Chika Kukita
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | - M Zafri Humayun
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ 07101-1709, USA
| | - Milton H Saier
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA
| |
Collapse
|
21
|
Progress in Understanding the Molecular Basis Underlying Functional Diversification of Cyclic Dinucleotide Turnover Proteins. J Bacteriol 2017; 199:JB.00790-16. [PMID: 28031279 DOI: 10.1128/jb.00790-16] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cyclic di-GMP was the first cyclic dinucleotide second messenger described, presaging the discovery of additional cyclic dinucleotide messengers in bacteria and eukaryotes. The GGDEF diguanylate cyclase (DGC) and EAL and HD-GYP phosphodiesterase (PDE) domains conduct the turnover of cyclic di-GMP. These three unrelated domains belong to superfamilies that exhibit significant variations in function, and they include both enzymatically active and inactive members, with a subset involved in synthesis and degradation of other cyclic dinucleotides. Here, we summarize current knowledge of sequence and structural variations that underpin the functional diversification of cyclic di-GMP turnover proteins. Moreover, we highlight that superfamily diversification is not restricted to cyclic di-GMP signaling domains, as particular DHH/DHHA1 domain and HD domain proteins have been shown to act as cyclic di-AMP phosphodiesterases. We conclude with a consideration of the current limitations that such diversity of action places on bioinformatic prediction of the roles of GGDEF, EAL, and HD-GYP domain proteins.
Collapse
|
22
|
Li B, Yue Y, Zhang Y, Yuan Z, Li P, Song N, Lin W, Liu Y, Gu L, Meng H. A Novel Enterovirus 71 (EV71) Virulence Determinant: The 69th Residue of 3C Protease Modulates Pathogenicity. Front Cell Infect Microbiol 2017; 7:26. [PMID: 28217559 PMCID: PMC5290453 DOI: 10.3389/fcimb.2017.00026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 01/19/2017] [Indexed: 11/25/2022] Open
Abstract
Human enterovirus type 71 (EV71), the major causative agent of hand-foot-and-mouth disease, has been known to cause fatal neurological complications. Unfortunately, the reason for neurological complications that have been seen in fatal cases of the disease and the relationship between EV71 virulence and viral genetic sequences remains largely undefined. The 3C protease (3Cpro) of EV71 plays an irreplaceable role in segmenting the precursor polyprotein during viral replication, and intervening with host life activity during viral infection. In this study, for the first time, the 69th residue of 3C protease has been identified as a novel virulence determinant of EV71. The recombinant virus with single point variation, in the 69th of 3Cpro, exhibited obvious decline in replication, and virulence. We further determined the crystal structure of 3C N69D at 1.39 Ǻ resolution and found that conformation of 3C N69D demonstrated significant changes compared with a normal 3C protein, in the substrate-binding site and catalytic active site. Strikingly, one of the switch loops, essential in fixing substrates, adopts an open conformation in the 3C N69D-rupintrivir complex. Consistent with this apparent structural disruption, the catalytic activity of 3C N69D decreased sharply for host derived and viral derived substrates, detected for both in vitro and in vivo. Interestingly, in addition to EV71, Asp69 was also found in 3C proteases of other virus strains, such as CAV16, and was conserved in nearly all C type human rhinovirus. Overall, we identified a natural virulence determinant of 3C protease and revealed the mechanism of attenuated virulence is mediated by N69D substitution. Our data provides new insight into the enzymatic mechanism of a subdued 3C protease and suggests a theoretical basis for virulence determinantion of picornaviridae.
Collapse
Affiliation(s)
- Bingqing Li
- Key Laboratory of Rare and Uncommon Diseases, Department of Microbiology, Institute of Basic Medicine, Shandong Academy of Medical SciencesJinan, China
| | - Yingying Yue
- Key Laboratory of Rare and Uncommon Diseases, Department of Microbiology, Institute of Basic Medicine, Shandong Academy of Medical SciencesJinan, China
| | - Yajie Zhang
- Key Laboratory of Rare and Uncommon Diseases, Department of Microbiology, Institute of Basic Medicine, Shandong Academy of Medical SciencesJinan, China
| | - Zenglin Yuan
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong UniversityJinan, China
| | - Peng Li
- Key Laboratory of Rare and Uncommon Diseases, Department of Microbiology, Institute of Basic Medicine, Shandong Academy of Medical SciencesJinan, China
| | - Nannan Song
- Key Laboratory of Rare and Uncommon Diseases, Department of Microbiology, Institute of Basic Medicine, Shandong Academy of Medical SciencesJinan, China
| | - Wei Lin
- Key Laboratory of Rare and Uncommon Diseases, Department of Microbiology, Institute of Basic Medicine, Shandong Academy of Medical SciencesJinan, China
| | - Yan Liu
- Key Laboratory of Rare and Uncommon Diseases, Department of Microbiology, Institute of Basic Medicine, Shandong Academy of Medical SciencesJinan, China
| | - Lichuan Gu
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong UniversityJinan, China
| | - Hong Meng
- Key Laboratory of Rare and Uncommon Diseases, Department of Microbiology, Institute of Basic Medicine, Shandong Academy of Medical SciencesJinan, China
| |
Collapse
|
23
|
Abstract
Cyclic di-GMP (c-di-GMP) synthetases and hydrolases (GGDEF, EAL, and HD-GYP domains) can be readily identified in bacterial genome sequences by using standard bioinformatic tools. In contrast, identification of c-di-GMP receptors remains a difficult task, and the current list of experimentally characterized c-di-GMP-binding proteins is likely incomplete. Several classes of c-di-GMP-binding proteins have been structurally characterized; for some others, the binding sites have been identified; and for several potential c-di-GMP receptors, the binding sites remain to be determined. We present here a comparative structural analysis of c-di-GMP-protein complexes that aims to discern the common themes in the binding mechanisms that allow c-di-GMP receptors to bind it with (sub)micromolar affinities despite the 1,000-fold excess of GTP. The available structures show that most receptors use their Arg and Asp/Glu residues to bind c-di-GMP monomers, dimers, or tetramers with stacked guanine bases. The only exception is the EAL domains that bind c-di-GMP monomers in an extended conformation. We show that in c-di-GMP-binding signature motifs, Arg residues bind to the O-6 and N-7 atoms at the Hoogsteen edge of the guanine base, while Asp/Glu residues bind the N-1 and N-2 atoms at its Watson-Crick edge. In addition, Arg residues participate in stacking interactions with the guanine bases of c-di-GMP and the aromatic rings of Tyr and Phe residues. This may account for the presence of Arg residues in the active sites of every receptor protein that binds stacked c-di-GMP. We also discuss the implications of these structural data for the improved understanding of the c-di-GMP signaling mechanisms.
Collapse
|
24
|
Pérez-Morales D, Bustamante VH. The global regulatory system Csr senses glucose through the phosphoenolpyruvate: carbohydrate phosphotransferase system. Mol Microbiol 2015; 99:623-6. [PMID: 26593223 DOI: 10.1111/mmi.13285] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2015] [Indexed: 12/17/2022]
Abstract
A novel connection between two regulatory systems controlling crucial biological processes in bacteria, the carbon storage regulator (Csr) system and the glucose-specific phosphotransferase system (PTS), is reported by Leng et al. in this issue. This involves the interaction of unphosphorylated EIIA(Glc), a component of the glucose-specific PTS, with the CsrD protein, which accelerates the decay of the CsrB and CsrC small RNAs via RNase E in Escherichia coli. As unphosphorylated EIIA(G) (lc) is generated in the presence of glucose, the PTS thus acts as a sensor of glucose for the Csr system. Interestingly, another pathway can operate for communication between the Csr system and the glucose-specific PTS. The absence of glucose generates phosphorylated EIIA(Glc) , which activates the enzyme adenylate cyclase to produce cyclic adenosine monophosphate (cAMP) that, in turn, binds to the regulator cAMP receptor protein (CRP). Leng et al. show that the complex cAMP-CRP modestly reduces CsrB decay independently of CsrD. On the other hand, a previous study indicates that the complex cAMP-CRP positively regulates the transcription of CsrB and CsrC in Salmonella enterica. Therefore, EIIA(G) (lc) could work as a molecular switch that regulates the activity of the Csr system, in response to its phosphorylation state determined by the presence or absence of glucose, in order to control gene expression.
Collapse
Affiliation(s)
- Deyanira Pérez-Morales
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, México
| | - Víctor H Bustamante
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, México
| |
Collapse
|
25
|
Leng Y, Vakulskas CA, Zere TR, Pickering BS, Watnick PI, Babitzke P, Romeo T. Regulation of CsrB/C sRNA decay by EIIA(Glc) of the phosphoenolpyruvate: carbohydrate phosphotransferase system. Mol Microbiol 2015; 99:627-39. [PMID: 26507976 DOI: 10.1111/mmi.13259] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2015] [Indexed: 02/06/2023]
Abstract
Csr is a conserved global regulatory system, which uses the sequence-specific RNA-binding protein CsrA to activate or repress gene expression by binding to mRNA and altering translation, stability and/or transcript elongation. In Escherichia coli, CsrA activity is regulated by two sRNAs, CsrB and CsrC, which bind to multiple CsrA dimers, thereby sequestering this protein away from its mRNA targets. Turnover of CsrB/C sRNAs is tightly regulated by a GGDEF-EAL domain protein, CsrD, which targets them for cleavage by RNase E. Here, we show that EIIA(Glc) of the glucose-specific PTS system is also required for the normal decay of these sRNAs and that it acts by binding to the EAL domain of CsrD. Only the unphosphorylated form of EIIA(Glc) bound to CsrD in vitro and was capable of activating CsrB/C turnover in vivo. Genetic studies confirmed that this mechanism couples CsrB/C sRNA decay to the availability of a preferred carbon source. These findings reveal a new physiological influence on the workings of the Csr system, a novel function for the EAL domain, and an important new way in which EIIA(Glc) shapes global regulatory circuitry in response to nutritional status.
Collapse
Affiliation(s)
- Yuanyuan Leng
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, 32611-0700, USA
| | - Christopher A Vakulskas
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, 32611-0700, USA
| | - Tesfalem R Zere
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, 32611-0700, USA
| | - Bradley S Pickering
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Paula I Watnick
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Paul Babitzke
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Tony Romeo
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, 32611-0700, USA
| |
Collapse
|
26
|
Identification of novel factors involved in modulating motility of Salmonella enterica serotype typhimurium. PLoS One 2014. [PMID: 25369209 DOI: 10.1371/journal.pone.0111513.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Salmonella enterica serotype Typhimurium can move through liquid using swimming motility, and across a surface by swarming motility. We generated a library of targeted deletion mutants in Salmonella Typhimurium strain ATCC14028, primarily in genes specific to Salmonella, that we have previously described. In the work presented here, we screened each individual mutant from this library for the ability to move away from the site of inoculation on swimming and swarming motility agar. Mutants in genes previously described as important for motility, such as flgF, motA, cheY are do not move away from the site of inoculation on plates in our screens, validating our approach. Mutants in 130 genes, not previously known to be involved in motility, had altered movement of at least one type, 9 mutants were severely impaired for both types of motility, while 33 mutants appeared defective on swimming motility plates but not swarming motility plates, and 49 mutants had reduced ability to move on swarming agar but not swimming agar. Finally, 39 mutants were determined to be hypermotile in at least one of the types of motility tested. Both mutants that appeared non-motile and hypermotile on plates were assayed for expression levels of FliC and FljB on the bacterial surface and many of them had altered levels of these proteins. The phenotypes we report are the first phenotypes ever assigned to 74 of these open reading frames, as they are annotated as 'hypothetical genes' in the Typhimurium genome.
Collapse
|
27
|
Bogomolnaya LM, Aldrich L, Ragoza Y, Talamantes M, Andrews KD, McClelland M, Andrews-Polymenis HL. Identification of novel factors involved in modulating motility of Salmonella enterica serotype typhimurium. PLoS One 2014; 9:e111513. [PMID: 25369209 PMCID: PMC4219756 DOI: 10.1371/journal.pone.0111513] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 09/28/2014] [Indexed: 12/03/2022] Open
Abstract
Salmonella enterica serotype Typhimurium can move through liquid using swimming motility, and across a surface by swarming motility. We generated a library of targeted deletion mutants in Salmonella Typhimurium strain ATCC14028, primarily in genes specific to Salmonella, that we have previously described. In the work presented here, we screened each individual mutant from this library for the ability to move away from the site of inoculation on swimming and swarming motility agar. Mutants in genes previously described as important for motility, such as flgF, motA, cheY are do not move away from the site of inoculation on plates in our screens, validating our approach. Mutants in 130 genes, not previously known to be involved in motility, had altered movement of at least one type, 9 mutants were severely impaired for both types of motility, while 33 mutants appeared defective on swimming motility plates but not swarming motility plates, and 49 mutants had reduced ability to move on swarming agar but not swimming agar. Finally, 39 mutants were determined to be hypermotile in at least one of the types of motility tested. Both mutants that appeared non-motile and hypermotile on plates were assayed for expression levels of FliC and FljB on the bacterial surface and many of them had altered levels of these proteins. The phenotypes we report are the first phenotypes ever assigned to 74 of these open reading frames, as they are annotated as ‘hypothetical genes’ in the Typhimurium genome.
Collapse
Affiliation(s)
- Lydia M. Bogomolnaya
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan, Texas, United States of America
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Lindsay Aldrich
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan, Texas, United States of America
| | - Yuri Ragoza
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan, Texas, United States of America
| | - Marissa Talamantes
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan, Texas, United States of America
| | - Katharine D. Andrews
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan, Texas, United States of America
| | - Michael McClelland
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, California, United States of America
| | - Helene L. Andrews-Polymenis
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan, Texas, United States of America
- * E-mail:
| |
Collapse
|
28
|
Stewart MK, Cookson BT. Mutually repressing repressor functions and multi-layered cellular heterogeneity regulate the bistable Salmonella fliC census. Mol Microbiol 2014; 94:1272-84. [PMID: 25315056 DOI: 10.1111/mmi.12828] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2014] [Indexed: 12/22/2022]
Abstract
Bistable flagellar and virulence gene expression generates specialized Salmonella subpopulations with distinct functions. Repressing flagellar genes allows Salmonella to evade caspase-1 mediated host defenses and enhances systemic colonization. By definition, bistability arises when intermediate states of gene expression are rendered unstable by the underlying genetic circuitry. We demonstrate sustained bistable fliC expression in virulent Salmonella 14028 and document dynamic control of the distribution, or single-cell census, of flagellar gene expression by the mutually repressing repressors YdiV and FliZ. YdiV partitions cells into the fliC-OFF subpopulation, while FliZ partitions cells into the fliC-HIGH subpopulation at late time points during growth. Bistability of ΔfliZ populations and ydiV-independent FliZ control of flagellar gene expression provide evidence that the YdiV-FliZ mutually repressing repressor circuit is not required for bistability. Repression and activation by YdiV and FliZ (respectively) can shape the census of fliC expression independently, and bistability collapses into a predominantly intermediate population in the absence of both regulators. Metered expression of YdiV and FliZ reveals variable sensitivity to these regulators and defines conditions where expression of FliZ enhances fliC expression and where FliZ does not alter the fliC census. Thus, this evolved genetic circuitry coordinates multiple layers of regulatory heterogeneity into a binary response.
Collapse
Affiliation(s)
- Mary K Stewart
- Department of Microbiology, University of Washington, Seattle, WA, 98195, USA
| | | |
Collapse
|
29
|
Sato Y, Takaya A, Mouslim C, Hughes KT, Yamamoto T. FliT selectively enhances proteolysis of FlhC subunit in FlhD4C2 complex by an ATP-dependent protease, ClpXP. J Biol Chem 2014; 289:33001-11. [PMID: 25278020 DOI: 10.1074/jbc.m114.593749] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously reported that the ClpXP ATP-dependent protease specifically recognizes and degrades the flagellar master transcriptional activator complex, FlhD4C2, to negatively control flagellar biogenesis. The flagellum-related protein, FliT, is also a negative regulator of flagellar regulon by inhibiting the binding of FlhD4C2 to the promoter DNA. We have found a novel pathway of FliT inhibition of FlhD4C2 activity connected to ClpXP proteolysis. An in vitro degradation assay using purified proteins shows that FliT selectively increases ClpXP proteolysis of the FlhC subunit in the FlhD4C2 complex. FliT behaves specifically to ClpXP-dependent proteolysis of FlhC. An in vitro interaction assay detects the ternary complex of FliT-FlhD4C2-ClpX. FliT promotes the affinity of ClpX against FlhD4C2 complex, whereas FliT does not directly interact with ClpX. Thus, FliT interacts with the FlhC in FlhD4C2 complex and increases the presentation of the FlhC recognition region to ClpX. The DNA-bound form of FlhD4C2 complex is resistant to ClpXP proteolysis. We suggest that the role of FliT in negatively controlling the flagellar gene expression involves increasing free molecules of FlhD4C2 sensitive to ClpXP proteolysis by inhibiting the binding to the promoter DNA as well as enhancing the selective proteolysis of FlhC subunit by ClpXP.
Collapse
Affiliation(s)
- Yoshiharu Sato
- From the Department of Microbiology and Molecular Genetics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675 Japan and
| | - Akiko Takaya
- From the Department of Microbiology and Molecular Genetics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675 Japan and
| | - Chakib Mouslim
- the Department of Biology, University of Utah, Salt Lake City, Utah 84112
| | - Kelly T Hughes
- the Department of Biology, University of Utah, Salt Lake City, Utah 84112
| | - Tomoko Yamamoto
- From the Department of Microbiology and Molecular Genetics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675 Japan and
| |
Collapse
|
30
|
Distribution, diversity, and activities of sulfur dioxygenases in heterotrophic bacteria. Appl Environ Microbiol 2014; 80:1799-806. [PMID: 24389926 DOI: 10.1128/aem.03281-13] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sulfur oxidation by chemolithotrophic bacteria is well known; however, sulfur oxidation by heterotrophic bacteria is often ignored. Sulfur dioxygenases (SDOs) (EC 1.13.11.18) were originally found in the cell extracts of some chemolithotrophic bacteria as glutathione (GSH)-dependent sulfur dioxygenases. GSH spontaneously reacts with elemental sulfur to generate glutathione persulfide (GSSH), and SDOs oxidize GSSH to sulfite and GSH. However, SDOs have not been characterized for bacteria, including chemolithotrophs. The gene coding for human SDO (human ETHE1 [hETHE1]) in mitochondria was discovered because its mutations lead to a hereditary human disease, ethylmalonic encephalopathy. Using sequence analysis and activity assays, we discovered three subgroups of bacterial SDOs in the proteobacteria and cyanobacteria. Ten selected SDO genes were cloned and expressed in Escherichia coli, and the recombinant proteins were purified. The SDOs used Fe(2+) for catalysis and displayed considerable variations in specific activities. The wide distribution of SDO genes reveals the likely source of the hETHE1 gene and highlights the potential of sulfur oxidation by heterotrophic bacteria.
Collapse
|
31
|
Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Microbiol Mol Biol Rev 2013; 77:1-52. [PMID: 23471616 DOI: 10.1128/mmbr.00043-12] [Citation(s) in RCA: 1228] [Impact Index Per Article: 111.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Twenty-five years have passed since the discovery of cyclic dimeric (3'→5') GMP (cyclic di-GMP or c-di-GMP). From the relative obscurity of an allosteric activator of a bacterial cellulose synthase, c-di-GMP has emerged as one of the most common and important bacterial second messengers. Cyclic di-GMP has been shown to regulate biofilm formation, motility, virulence, the cell cycle, differentiation, and other processes. Most c-di-GMP-dependent signaling pathways control the ability of bacteria to interact with abiotic surfaces or with other bacterial and eukaryotic cells. Cyclic di-GMP plays key roles in lifestyle changes of many bacteria, including transition from the motile to the sessile state, which aids in the establishment of multicellular biofilm communities, and from the virulent state in acute infections to the less virulent but more resilient state characteristic of chronic infectious diseases. From a practical standpoint, modulating c-di-GMP signaling pathways in bacteria could represent a new way of controlling formation and dispersal of biofilms in medical and industrial settings. Cyclic di-GMP participates in interkingdom signaling. It is recognized by mammalian immune systems as a uniquely bacterial molecule and therefore is considered a promising vaccine adjuvant. The purpose of this review is not to overview the whole body of data in the burgeoning field of c-di-GMP-dependent signaling. Instead, we provide a historic perspective on the development of the field, emphasize common trends, and illustrate them with the best available examples. We also identify unresolved questions and highlight new directions in c-di-GMP research that will give us a deeper understanding of this truly universal bacterial second messenger.
Collapse
|
32
|
Ahmad I, Wigren E, Le Guyon S, Vekkeli S, Blanka A, El Mouali Y, Anwar N, Chuah ML, Lünsdorf H, Frank R, Rhen M, Liang ZX, Lindqvist Y, Römling U. The EAL-like protein STM1697 regulates virulence phenotypes, motility and biofilm formation in Salmonella typhimurium. Mol Microbiol 2013; 90:1216-32. [PMID: 24127899 DOI: 10.1111/mmi.12428] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2013] [Indexed: 11/30/2022]
Abstract
The ubiquitous second messenger c-di-GMP regulates the switching of bacterial lifestyles from motility to sessility and acute to chronic virulence to adjust bacterial fitness to altered environmental conditions. Conventionally, EAL proteins being c-di-GMP phosphodiesterases promote motility and acute virulence phenotypes such as invasion into epithelial cells and inhibit biofilm formation. We report here that in contradiction, the EAL-like protein STM1697 of Salmonella typhimurium suppresses motility, invasion into HT-29 epithelial cell line and secretion of the type three secretion system 1 effector protein SipA, whereas it promotes rdar biofilm formation and CsgD expression. STM1697 can, however, functionally replace the EAL-like protein STM1344 and vice versa, whereby both proteins neither degrade nor bind c-di-GMP. Like STM1344, STM1697 suppresses the transcription of class 2 and class 3 flagella regulon genes by binding to FlhD, a component of the master regulator of the flagella regulon FlhD4 C2 and act additively under numerous conditions. Interestingly, the interaction interface of STM1697 with FlhD2 is distinct from its paralogue STM1344. We predict that the stand alone EAL domain proteins STM1697 and STM1344 belong to a subclass of EAL domain proteins in S. typhimurium, which are all involved in motility, biofilm and virulence regulation through interaction with proteins that regulate flagella function.
Collapse
Affiliation(s)
- Irfan Ahmad
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Samanta P, Clark ER, Knutson K, Horne SM, Prüß BM. OmpR and RcsB abolish temporal and spatial changes in expression of flhD in Escherichia coli biofilm. BMC Microbiol 2013; 13:182. [PMID: 23914787 PMCID: PMC3750693 DOI: 10.1186/1471-2180-13-182] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 07/31/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Biofilms are communities of bacteria that are characterized by specific phenotypes, including an increased resistance towards anti-microbials and the host immune system. This calls for the development of novel biofilm prevention and treatment options to combat infectious disease. In Escherichia coli, numerous global regulators have been implicated in the control of biofilm associated cell surface organelles. These include the flagellar regulator FlhD/FlhC, the osmoregulator EnvZ/OmpR, and the colanic acid activator RcsCDB. Using flow cell technology and fluorescence microscopy, we determined the temporal expression from flhD::gfp, ompR::gfp, and rcsB::gfp in E. coli biofilm, as well as the impact of the negative regulation of flhD by OmpR and RcsB. Spatial gene expression was investigated from flhD::gfp. RESULTS The temporal gene expression profile for flhD yielded an early peak at 12 h, a minimum of expression at 35 h, and a second increase in expression towards 51 h of biofilm development. In contrast, the ompR profile showed a peak at 35 h. A mutation in ompR abolished time dependence of flhD expression after the initial growth period of 12 h. Intriguingly, rcsB expression did not correlate inversely with flhD expression, yet a mutation in rcsB abolished time dependence of flhD expression as well. Spatially, expression of flhD was highest in the outermost layer of the biofilm in the parent strain. In ompR and rcsB mutants, flhD was expressed throughout the biofilm. Mutations in both, ompR and rcsB increased flhD expression throughout all temporal and spatial experiments. This increase was paralleled by reductions in biofilm amounts at four tested time points. CONCLUSION Our data lead to the conclusion that FlhD/FlhC and its regulation by OmpR and RcsB may be our first target mechanism for the development of novel biofilm prevention and treatment techniques.
Collapse
|
34
|
The multifunctional protein YdiV represses P fimbria-mediated adherence in uropathogenic Escherichia coli. J Bacteriol 2013; 195:3156-64. [PMID: 23667238 DOI: 10.1128/jb.02254-12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
YdiV, a degenerate EAL domain protein, represses motility by interacting with FlhD to abolish FlhDC interaction with DNA. Here, we demonstrate that deletion of ydiV dysregulates coordinate control of motility and adherence by increasing adherence of Escherichia coli CFT073 to a bladder epithelial cell line by specifically increasing production of P fimbriae. Interestingly, only one of the two P fimbrial operons, pap_2, present in the genome of E. coli CFT073 was upregulated. This derepression of the pap_2 operon is abolished following deletion of either cya or crp, demonstrating cyclic AMP (cAMP)-dependent activation of the P fimbrial operon. However, the absence of YdiV does not affect the gene expression of cya and crp, and loss of SdiA in the ydiV mutant does not affect the derepression of the pap_2 operon, suggesting that YdiV control of adherence acts in response to cAMP levels. Deletion of ydiV increases motility by increasing expression of fliA, suggesting that in E. coli CFT073, YdiV regulates motility by the same mechanism as that described previously for commensal E. coli strains. Furthermore, analysis of site-directed mutations found two putative Mg(2+)-binding residues of four conserved YdiV residues (E29 and Q219) that were involved in regulation of motility and FliC production, while two conserved c-di-GMP-binding residues (D156 and D165) only affected motility. None of the four conserved YdiV residues appeared to affect regulation of adherence. Therefore, we propose a model in which a degenerate EAL, YdiV, utilizes different domains to regulate motility through interaction with FlhD and adherence to epithelial cells through cAMP-dependent effects on the pap_2 promoter.
Collapse
|