1
|
Jia X, Gao X, Zhang S, Inman JT, Hong Y, Singh A, Patel S, Wang MD. Torsion is a Dynamic Regulator of DNA Replication Stalling and Reactivation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.14.618227. [PMID: 39464009 PMCID: PMC11507786 DOI: 10.1101/2024.10.14.618227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
The inherent helical structure of DNA dictates that a replisome must rotate relative to DNA during replication, presenting inevitable topological challenges to replication. However, little is known about how the replisome progresses against torsional stress. Here, we developed a label-free, high-resolution, real-time assay to monitor replisome movement under torsion. We visualized the replisome rotation of DNA and determined how the replisome slows down under torsion. We found that while helicase or DNA polymerase (DNAP) individually is a weak torsional motor, the replisome composed of both enzymes is the most powerful DNA torsional motor studied to date. It generates ~ 22 pN·nm of torque before stalling, twice the stall torque of E. coli RNA polymerase. Upon replisome stalling, the specific interaction between helicase and DNAP stabilizes the fork junction; without it, the fork can regress hundreds of base pairs. We also discovered that prolonged torsion-induced stalling inactivates the replisome. Surprisingly, DNAP exchange, mediated by the helicase, is highly effective in facilitating replication restart, but only if excess DNAP is present during stalling. Thus, helicase and DNA polymerase work synergistically as a powerful torsional motor, and their dynamic and fluid interactions are crucial for maintaining fork integrity under torsional stress. This work demonstrates that torsion is a strong regulator of DNA replication stalling and reactivation.
Collapse
Affiliation(s)
- Xiaomeng Jia
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA
- Department of Physics & LASSP, Cornell University, Ithaca, NY 14853, USA
| | - Xiang Gao
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA
- Department of Physics & LASSP, Cornell University, Ithaca, NY 14853, USA
| | - Shuming Zhang
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA
- Department of Physics & LASSP, Cornell University, Ithaca, NY 14853, USA
| | - James T. Inman
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA
- Department of Physics & LASSP, Cornell University, Ithaca, NY 14853, USA
| | - Yifeng Hong
- Department of Electrical and Computer Engineering, Cornell University, Ithaca, New York 14853, USA
| | - Anupam Singh
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| | - Smita Patel
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| | - Michelle D. Wang
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA
- Department of Physics & LASSP, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
2
|
Zhao X, Vogirala VK, Liu M, Zhou Y, Rhodes D, Sandin S, Yan J. Exploring TRF2-Dependent DNA Distortion Through Single-DNA Manipulation Studies. Commun Biol 2024; 7:148. [PMID: 38310140 PMCID: PMC10838314 DOI: 10.1038/s42003-024-05838-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/20/2024] [Indexed: 02/05/2024] Open
Abstract
TRF2 is a component of shelterin, a telomere-specific protein complex that protects the ends of mammalian chromosomes from DNA damage signaling and improper repair. TRF2 functions as a homodimer and its interaction with telomeric DNA has been studied, but its full-length DNA-binding properties are unknown. This study examines TRF2's interaction with single-DNA strands and focuses on the conformation of the TRF2-DNA complex and TRF2's preference for DNA chirality. The results show that TRF2-DNA can switch between extended and compact conformations, indicating multiple DNA-binding modes, and TRF2's binding does not have a strong preference for DNA supercoiling chirality when DNA is under low tension. Instead, TRF2 induces DNA bending under tension. Furthermore, both the N-terminal domain of TRF2 and the Myb domain enhance its affinity for the telomere sequence, highlighting the crucial role of multivalent DNA binding in enhancing its affinity and specificity for telomere sequence. These discoveries offer unique insights into TRF2's interaction with telomeric DNA.
Collapse
Affiliation(s)
- Xiaodan Zhao
- Department of Physics, National University of Singapore, 117551, Singapore, Singapore
| | - Vinod Kumar Vogirala
- School of Biological Sciences, Nanyang Technology University, 637551, Singapore, Singapore
- Electron Bio-Imaging Centre (eBIC), Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - Meihan Liu
- Mechanobiology Institute, National University of Singapore, 117411, Singapore, Singapore
| | - Yu Zhou
- Mechanobiology Institute, National University of Singapore, 117411, Singapore, Singapore
| | - Daniela Rhodes
- School of Biological Sciences, Nanyang Technology University, 637551, Singapore, Singapore
- NTU Institute of Structural Biology, Nanyang Technology University, 636921, Singapore, Singapore
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, UK
| | - Sara Sandin
- School of Biological Sciences, Nanyang Technology University, 637551, Singapore, Singapore.
- NTU Institute of Structural Biology, Nanyang Technology University, 636921, Singapore, Singapore.
- Umeå university, KBC-huset (KB), Linnaeus väg 10, Umeå, 90187, Sweden.
| | - Jie Yan
- Department of Physics, National University of Singapore, 117551, Singapore, Singapore.
- Mechanobiology Institute, National University of Singapore, 117411, Singapore, Singapore.
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China.
| |
Collapse
|
3
|
Lewis JS, van Oijen AM, Spenkelink LM. Embracing Heterogeneity: Challenging the Paradigm of Replisomes as Deterministic Machines. Chem Rev 2023; 123:13419-13440. [PMID: 37971892 PMCID: PMC10790245 DOI: 10.1021/acs.chemrev.3c00436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/15/2023] [Accepted: 10/20/2023] [Indexed: 11/19/2023]
Abstract
The paradigm of cellular systems as deterministic machines has long guided our understanding of biology. Advancements in technology and methodology, however, have revealed a world of stochasticity, challenging the notion of determinism. Here, we explore the stochastic behavior of multi-protein complexes, using the DNA replication system (replisome) as a prime example. The faithful and timely copying of DNA depends on the simultaneous action of a large set of enzymes and scaffolding factors. This fundamental cellular process is underpinned by dynamic protein-nucleic acid assemblies that must transition between distinct conformations and compositional states. Traditionally viewed as a well-orchestrated molecular machine, recent experimental evidence has unveiled significant variability and heterogeneity in the replication process. In this review, we discuss recent advances in single-molecule approaches and single-particle cryo-EM, which have provided insights into the dynamic processes of DNA replication. We comment on the new challenges faced by structural biologists and biophysicists as they attempt to describe the dynamic cascade of events leading to replisome assembly, activation, and progression. The fundamental principles uncovered and yet to be discovered through the study of DNA replication will inform on similar operating principles for other multi-protein complexes.
Collapse
Affiliation(s)
- Jacob S. Lewis
- Macromolecular
Machines Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Antoine M. van Oijen
- Molecular
Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Lisanne M. Spenkelink
- Molecular
Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
| |
Collapse
|
4
|
Hemphill W, Fenske R, Gooding A, Cech T. PRC2 direct transfer from G-quadruplex RNA to dsDNA has implications for RNA-binding chromatin modifiers. Proc Natl Acad Sci U S A 2023; 120:e2220528120. [PMID: 37252986 PMCID: PMC10266057 DOI: 10.1073/pnas.2220528120] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 05/01/2023] [Indexed: 06/01/2023] Open
Abstract
The chromatin-modifying enzyme, Polycomb Repressive Complex 2 (PRC2), deposits the H3K27me3 epigenetic mark to negatively regulate expression at numerous target genes, and this activity has been implicated in embryonic development, cell differentiation, and various cancers. A biological role for RNA binding in regulating PRC2 histone methyltransferase activity is generally accepted, but the nature and mechanism of this relationship remains an area of active investigation. Notably, many in vitro studies demonstrate that RNA inhibits PRC2 activity on nucleosomes through mutually antagonistic binding, while some in vivo studies indicate that PRC2's RNA-binding activity is critical for facilitating its biological function(s). Here we use biochemical, biophysical, and computational approaches to interrogate PRC2's RNA and DNA-binding kinetics. Our findings demonstrate that PRC2-polynucleotide dissociation rates are dependent on the concentration of free ligand, indicating the potential for direct transfer between nucleic acid ligands without a free-enzyme intermediate. Direct transfer explains the variation in previously reported dissociation kinetics, allows reconciliation of prior in vitro and in vivo studies, and expands the potential mechanisms of RNA-mediated PRC2 regulation. Moreover, simulations indicate that such a direct transfer mechanism could be obligatory for RNA to recruit proteins to chromatin.
Collapse
Affiliation(s)
- Wayne O. Hemphill
- Department of Biochemistry, BioFrontiers Institute, University of Colorado Boulder, Boulder, CO80309
- HHMI, University of Colorado Boulder, Boulder, CO80309
| | - Regan Fenske
- Department of Biochemistry, BioFrontiers Institute, University of Colorado Boulder, Boulder, CO80309
- HHMI, University of Colorado Boulder, Boulder, CO80309
| | - Anne R. Gooding
- Department of Biochemistry, BioFrontiers Institute, University of Colorado Boulder, Boulder, CO80309
- HHMI, University of Colorado Boulder, Boulder, CO80309
| | - Thomas R. Cech
- Department of Biochemistry, BioFrontiers Institute, University of Colorado Boulder, Boulder, CO80309
- HHMI, University of Colorado Boulder, Boulder, CO80309
| |
Collapse
|
5
|
Brown JWP, Alford RG, Walsh JC, Spinney RE, Xu SY, Hertel S, Berengut JF, Spenkelink LM, van Oijen AM, Böcking T, Morris RG, Lee LK. Rapid Exchange of Stably Bound Protein and DNA Cargo on a DNA Origami Receptor. ACS NANO 2022; 16:6455-6467. [PMID: 35316035 DOI: 10.1021/acsnano.2c00699] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Biomolecular complexes can form stable assemblies yet can also rapidly exchange their subunits to adapt to environmental changes. Simultaneously allowing for both stability and rapid exchange expands the functional capacity of biomolecular machines and enables continuous function while navigating a complex molecular world. Inspired by biology, we design and synthesize a DNA origami receptor that exploits multivalent interactions to form stable complexes that are also capable of rapid subunit exchange. The system utilizes a mechanism first outlined in the context of the DNA replisome, known as multisite competitive exchange, and achieves a large separation of time scales between spontaneous subunit dissociation, which requires days, and rapid subunit exchange, which occurs in minutes. In addition, we use the DNA origami receptor to demonstrate stable interactions with rapid exchange of both DNA and protein subunits, thus highlighting the applicability of our approach to arbitrary molecular cargo, an important distinction with canonical toehold exchange between single-stranded DNA. We expect this study to benefit future studies that use DNA origami structures to exploit multivalent interactions for the design and synthesis of a wide range of possible kinetic behaviors.
Collapse
Affiliation(s)
- James W P Brown
- EMBL Australia Node for Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney 2052, Australia
| | - Rokiah G Alford
- EMBL Australia Node for Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney 2052, Australia
| | - James C Walsh
- EMBL Australia Node for Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney 2052, Australia
| | - Richard E Spinney
- EMBL Australia Node for Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney 2052, Australia
- School of Physics, University of New South Wales, Sydney 2052, Australia
| | - Stephanie Y Xu
- EMBL Australia Node for Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney 2052, Australia
| | - Sophie Hertel
- EMBL Australia Node for Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney 2052, Australia
| | - Jonathan F Berengut
- EMBL Australia Node for Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney 2052, Australia
- School of Chemistry, University of Sydney, Sydney 2006, Australia
| | - Lisanne M Spenkelink
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Antoine M van Oijen
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
- Illawarra Health & Medical Research Institute, Wollongong, New South Wales 2522, Australia
| | - Till Böcking
- EMBL Australia Node for Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney 2052, Australia
| | - Richard G Morris
- EMBL Australia Node for Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney 2052, Australia
- School of Physics, University of New South Wales, Sydney 2052, Australia
| | - Lawrence K Lee
- EMBL Australia Node for Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney 2052, Australia
- ARC Centre of Excellence in Synthetic Biology, University of New South Wales, Sydney 2052, Australia
| |
Collapse
|
6
|
Facilitated Dissociation of Nucleoid Associated Proteins from DNA in the Bacterial Confinement. Biophys J 2022; 121:1119-1133. [PMID: 35257784 PMCID: PMC9034294 DOI: 10.1016/j.bpj.2022.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/04/2021] [Accepted: 03/01/2022] [Indexed: 11/20/2022] Open
Abstract
Transcription machinery depends on the temporal formation of protein-DNA complexes. Recent experiments demonstrated that not only the formation but also the lifetime of such complexes can affect the transcriptional machinery. In parallel, in vitro single-molecule studies showed that nucleoid-associated proteins (NAPs) leave the DNA rapidly as the bulk concentration of the protein increases via facilitated dissociation (FD). Nevertheless, whether such a concentration-dependent mechanism is functional in a bacterial cell, in which NAP levels and the 3d chromosomal structure are often coupled, is not clear a priori. Here, by using extensive coarse-grained molecular simulations, we model the unbinding of specific and nonspecific dimeric NAPs from a high-molecular-weight circular DNA molecule in a cylindrical structure mimicking the cellular confinement of a bacterial chromosome. Our simulations confirm that physiologically relevant peak protein levels (tens of micromolar) lead to highly compact chromosomal structures. This compaction results in rapid off rates (shorter DNA residence times) for specifically DNA-binding NAPs, such as the factor for inversion stimulation, which mostly dissociate via a segmental jump mechanism. Contrarily, for nonspecific NAPs, which are more prone to leave their binding sites via 1d sliding, the off rates decrease as the protein levels increase. The simulations with restrained chromosome models reveal that chromosome compaction is in favor of faster dissociation but only for specific proteins, and nonspecific proteins are not affected by the chromosome compaction. Overall, our results suggest that the cellular concentration level of a structural DNA-binding protein can be highly intermingled with its DNA residence time.
Collapse
|
7
|
Erbaş A, Inci F. The Role of Ligand Rebinding and Facilitated Dissociation on the Characterization of Dissociation Rates by Surface Plasmon Resonance (SPR) and Benchmarking Performance Metrics. Methods Mol Biol 2022; 2385:237-253. [PMID: 34888723 DOI: 10.1007/978-1-0716-1767-0_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Surface plasmon resonance (SPR) is a real-time kinetic measurement principle that can probe the kinetic interactions between ligands and their binding sites, and lies at the backbone of pharmaceutical, biosensing, and biomolecular research. The extraction of dissociation rates from SPR-response signals often relies on several commonly adopted assumptions, one of which is the exponential decay of the dissociation part of the response signal. However, certain conditions, such as high density of binding sites or high concentration fluctuations near the surface as compared to the bulk, can lead to non-exponential decays via ligand rebinding or facilitated dissociation. Consequently, fitting the data with an exponential function can underestimate or overestimate the measured dissociation rates. Here, we describe a set of alternative fit functions that can take such effects into consideration along with plasmonic sensor design principles with key performance metrics, thereby suggesting methods for error-free high-precision extraction of the dissociation rates.
Collapse
Affiliation(s)
- Aykut Erbaş
- UNAM-National Nanotechnology Research Center and Institute of Materials Science Nanotechnology, Bilkent University, Ankara, Turkey.
| | - Fatih Inci
- UNAM-National Nanotechnology Research Center and Institute of Materials Science Nanotechnology, Bilkent University, Ankara, Turkey.
| |
Collapse
|
8
|
Natesan R, Gowrishankar K, Kuttippurathu L, Kumar PBS, Rao M. Active Remodeling of Chromatin and Implications for In Vivo Folding. J Phys Chem B 2021; 126:100-109. [DOI: 10.1021/acs.jpcb.1c08655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ramakrishnan Natesan
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Physics, Indian Institute of Technology Madras, Chennai 600036, India
| | | | - Lakshmi Kuttippurathu
- Department of Physics, Indian Institute of Technology Madras, Chennai 600036, India
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, United States
| | - P. B. Sunil Kumar
- Department of Physics, Indian Institute of Technology Madras, Chennai 600036, India
- Department of Physics, Indian Institute of Technology Palakkad, Palakkad 668557, Kerala, India
| | - Madan Rao
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences (TIFR), Bengaluru 560065, India
| |
Collapse
|
9
|
Single-Molecule Fluorescence Methods to Study Protein Exchange Kinetics in Supramolecular Complexes. Methods Mol Biol 2021; 2281:49-65. [PMID: 33847951 DOI: 10.1007/978-1-0716-1290-3_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Recent single-molecule studies have demonstrated that the composition of multi-protein complexes can strike a balance between stability and dynamics. Proteins can dynamically exchange in and out of the complex depending on their concentration in solution. These exchange dynamics are a key determinant of the molecular pathways available to multi-protein complexes. It is therefore important that we develop robust and reproducible assays to study protein exchange. Using DNA replication as an example, we describe three single-molecule fluorescence assays used to study protein exchange dynamics. In the chase exchange assay, fluorescently labeled proteins are challenged by unlabeled proteins, where exchange results in the disappearance of the fluorescence signal. In the FRAP exchange assay, fluorescently labeled proteins are photobleached before exchange is measured by an increase in fluorescence as non-bleached proteins exchange into the complex. Finally, in the two-color exchange assay, proteins are labeled with two different fluorophores and exchange is visualized by detecting changes in color. All three assays compliment in their ability to elucidate the dynamic behavior of proteins in large biological systems.
Collapse
|
10
|
Braun M, Diez S, Lansky Z. Cytoskeletal organization through multivalent interactions. J Cell Sci 2020; 133:133/12/jcs234393. [PMID: 32540925 DOI: 10.1242/jcs.234393] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cytoskeleton consists of polymeric protein filaments with periodic lattices displaying identical binding sites, which establish a multivalent platform for the binding of a plethora of filament-associated ligand proteins. Multivalent ligand proteins can tether themselves to the filaments through one of their binding sites, resulting in an enhanced reaction kinetics for the remaining binding sites. In this Opinion, we discuss a number of cytoskeletal phenomena underpinned by such multivalent interactions, namely (1) generation of entropic forces by filament crosslinkers, (2) processivity of molecular motors, (3) spatial sorting of proteins, and (4) concentration-dependent unbinding of filament-associated proteins. These examples highlight that cytoskeletal filaments constitute the basis for the formation of microenvironments, which cytoskeletal ligand proteins can associate with and, once engaged, can act within at altered reaction kinetics. We thus argue that multivalency is one of the properties crucial for the functionality of the cytoskeleton.
Collapse
Affiliation(s)
- Marcus Braun
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, 25250 Vestec, Prague West, Czech Republic
| | - Stefan Diez
- B CUBE - Center for Molecular Bioengineering, Technische Universität Dresden, Dresden 01307, Germany .,Cluster of Excellence Physics of Life, Technische Universität Dresden, Dresden 01307, Germany.,Max Planck Institute of Molecular Cell Biology and Genetics, Dresden 01307, Germany
| | - Zdenek Lansky
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, 25250 Vestec, Prague West, Czech Republic
| |
Collapse
|
11
|
Erbaş A, Marko JF. How do DNA-bound proteins leave their binding sites? The role of facilitated dissociation. Curr Opin Chem Biol 2019; 53:118-124. [PMID: 31586479 PMCID: PMC6926143 DOI: 10.1016/j.cbpa.2019.08.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 07/11/2019] [Accepted: 08/24/2019] [Indexed: 10/25/2022]
Abstract
Dissociation of a protein from DNA is often assumed to be described by an off rate that is independent of other molecules in solution. Recent experiments and computational analyses have challenged this view by showing that unbinding rates (residence times) of DNA-bound proteins can depend on concentrations of nearby molecules that are competing for binding. This 'facilitated dissociation' (FD) process can occur at the single-binding site level via formation of a ternary complex, and can dominate over 'spontaneous dissociation' at low (submicromolar) concentrations. In the crowded intracellular environment FD introduces new regulatory possibilities at the level of individual biomolecule interactions.
Collapse
Affiliation(s)
- Aykut Erbaş
- UNAM-National Nanotechnology Research Center and Institute of Materials Science & Nanotechnology, Bilkent University, Ankara 06800, Turkey
| | - John F Marko
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA; Department of Physics & Astronomy, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
12
|
Spenkelink LM, Lewis JS, Jergic S, Xu ZQ, Robinson A, Dixon NE, van Oijen AM. Recycling of single-stranded DNA-binding protein by the bacterial replisome. Nucleic Acids Res 2019; 47:4111-4123. [PMID: 30767010 PMCID: PMC6486552 DOI: 10.1093/nar/gkz090] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 01/30/2019] [Accepted: 02/09/2019] [Indexed: 02/06/2023] Open
Abstract
Single-stranded DNA-binding proteins (SSBs) support DNA replication by protecting single-stranded DNA from nucleolytic attack, preventing intra-strand pairing events and playing many other regulatory roles within the replisome. Recent developments in single-molecule approaches have led to a revised picture of the replisome that is much more complex in how it retains or recycles protein components. Here, we visualize how an in vitro reconstituted Escherichia coli replisome recruits SSB by relying on two different molecular mechanisms. Not only does it recruit new SSB molecules from solution to coat newly formed single-stranded DNA on the lagging strand, but it also internally recycles SSB from one Okazaki fragment to the next. We show that this internal transfer mechanism is balanced against recruitment from solution in a manner that is concentration dependent. By visualizing SSB dynamics in live cells, we show that both internal transfer and external exchange mechanisms are physiologically relevant.
Collapse
Affiliation(s)
- Lisanne M Spenkelink
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia.,Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522, Australia.,Zernike Institute for Advanced Materials, University of Groningen, Groningen, 9747 AG, the Netherlands
| | - Jacob S Lewis
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia.,Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522, Australia
| | - Slobodan Jergic
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia.,Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522, Australia
| | - Zhi-Qiang Xu
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia.,Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522, Australia
| | - Andrew Robinson
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia.,Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522, Australia
| | - Nicholas E Dixon
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia.,Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522, Australia
| | - Antoine M van Oijen
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia.,Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522, Australia
| |
Collapse
|
13
|
Tsai MY, Zheng W, Chen M, Wolynes PG. Multiple Binding Configurations of Fis Protein Pairs on DNA: Facilitated Dissociation versus Cooperative Dissociation. J Am Chem Soc 2019; 141:18113-18126. [DOI: 10.1021/jacs.9b08287] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Min-Yeh Tsai
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan (R.O.C.)
| | | | | | | |
Collapse
|
14
|
Dahlke K, Zhao J, Sing CE, Banigan EJ. Force-Dependent Facilitated Dissociation Can Generate Protein-DNA Catch Bonds. Biophys J 2019; 117:1085-1100. [PMID: 31427067 DOI: 10.1016/j.bpj.2019.07.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/08/2019] [Accepted: 07/29/2019] [Indexed: 12/31/2022] Open
Abstract
Cellular structures are continually subjected to forces, which may serve as mechanical signals for cells through their effects on biomolecule interaction kinetics. Typically, molecular complexes interact via "slip bonds," so applied forces accelerate off rates by reducing transition energy barriers. However, biomolecules with multiple dissociation pathways may have considerably more complicated force dependencies. This is the case for DNA-binding proteins that undergo "facilitated dissociation," in which competitor biomolecules from solution enhance molecular dissociation in a concentration-dependent manner. Using simulations and theory, we develop a generic model that shows that proteins undergoing facilitated dissociation can form an alternative type of molecular bond, known as a "catch bond," for which applied forces suppress protein dissociation. This occurs because the binding by protein competitors responsible for the facilitated dissociation pathway can be inhibited by applied forces. Within the model, we explore how the force dependence of dissociation is regulated by intrinsic factors, including molecular sensitivity to force and binding geometry and the extrinsic factor of competitor protein concentration. We find that catch bonds generically emerge when the force dependence of the facilitated unbinding pathway is stronger than that of the spontaneous unbinding pathway. The sharpness of the transition between slip- and catch-bond kinetics depends on the degree to which the protein bends its DNA substrate. This force-dependent kinetics is broadly regulated by the concentration of competitor biomolecules in solution. Thus, the observed catch bond is mechanistically distinct from other known physiological catch bonds because it requires an extrinsic factor-competitor proteins-rather than a specific intrinsic molecular structure. We hypothesize that this mechanism for regulating force-dependent protein dissociation may be used by cells to modulate protein exchange, regulate transcription, and facilitate diffusive search processes.
Collapse
Affiliation(s)
- Katelyn Dahlke
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Jing Zhao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Charles E Sing
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois.
| | - Edward J Banigan
- Institute for Medical Engineering and Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts.
| |
Collapse
|
15
|
Kinetically distinct phases of tau on microtubules regulate kinesin motors and severing enzymes. Nat Cell Biol 2019; 21:1086-1092. [DOI: 10.1038/s41556-019-0374-6] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 07/18/2019] [Indexed: 11/09/2022]
|
16
|
Jiang Z, Tian L, Fang X, Zhang K, Liu Q, Dong Q, Wang E, Wang J. The emergence of the two cell fates and their associated switching for a negative auto-regulating gene. BMC Biol 2019; 17:49. [PMID: 31202264 PMCID: PMC6570905 DOI: 10.1186/s12915-019-0666-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 05/20/2019] [Indexed: 01/24/2023] Open
Abstract
Background Decisions in the cell that lead to its ultimate fate are important for fundamental cellular functions such as proliferation, growth, differentiation, development, and death. These cell fate decisions can be influenced by both the gene regulatory network and also environmental factors and can be modeled using simple gene feedback circuits. Negative auto-regulation is a common feedback motif in the gene circuits. It can act to reduce gene expression noise or induce oscillatory expression and is thought to lead to only one cell fate. Here, we present experimental and modeling data to suggest that a self-repressor circuit can lead to two cell fates under specific conditions. Results We show that the introduction of inducers capable of binding and unbinding to a self-repressing gene product (protein), thus regulating the associated gene, can lead to the emergence of two cell states. We suggest that the inducers can alter the effective regulatory binding and unbinding speed of the self-repressor regulatory protein to its destination DNA without changing the gene itself. The corresponding simulation results are consistent with the experimental findings. We propose physical and quantitative explanations for the origin of the two phenotypic cell fates. Conclusions Our results suggest a mechanism for the emergence of multiple cell fates. This may explain the heterogeneity often observed among cell states, while illustrating that altering gene regulation strength can influence cell fates and their decision-making processes without genetic changes. Electronic supplementary material The online version of this article (10.1186/s12915-019-0666-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhenlong Jiang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.,College of Physics, Jilin University, Changchun, Jilin, 130012, China
| | - Li Tian
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Xiaona Fang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Kun Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Qiong Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Qingzhe Dong
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Erkang Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Jin Wang
- Department of Chemistry, Physics and Applied Mathematics, State University of New York at Stony Brook, Stony Brook, New York, 11794-3400, USA.
| |
Collapse
|
17
|
Dahal YR, Olvera de la Cruz M. Crystallizing protein assemblies via free and grafted linkers. SOFT MATTER 2019; 15:4311-4319. [PMID: 31070663 DOI: 10.1039/c9sm00693a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Porous protein superlattices have plausible catalytic applications in biotechnology and nanotechnology. They are solid yet open structures with the potential for preserving the activity of enzymes. However, there is still a lack of understanding of the design parameters that are required to arrange proteins in a periodic porous fashion. Here, we introduce a coarse-grained molecular dynamics (MD) simulation approach to study the effects of the lengths and geometries of linkers on the stability of 3D crystalline assemblies of metal ion anchored ferritin proteins. By simulating a system of proteins (eight metal ion anchored sites per protein) and linkers (two free ends per linker), we find that there is a range of optimal linker lengths for crystalline order. The optimal linker length is found to depend on the linker to protein concentration ratio and binding energy. We also examine the case of grafted flexible linkers on the protein surface as an alternative route for constructing highly porous crystalline structures. Our study demonstrates that the length of grafted linkers is a better tunable parameter than the length of free linkers to achieve high porosity protein superlattices. The computational study developed here provides guidelines to assemble biomolecules into crystals with high porosity.
Collapse
Affiliation(s)
- Yuba Raj Dahal
- Department of Material Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA.
| | | |
Collapse
|
18
|
Erbaş A, Olvera de la Cruz M, Marko JF. Receptor-Ligand Rebinding Kinetics in Confinement. Biophys J 2019; 116:1609-1624. [PMID: 31029377 PMCID: PMC6506716 DOI: 10.1016/j.bpj.2019.02.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 02/05/2019] [Accepted: 02/19/2019] [Indexed: 10/27/2022] Open
Abstract
Rebinding kinetics of molecular ligands plays a key role in the operation of biomachinery, from regulatory networks to protein transcription, and is also a key factor in design of drugs and high-precision biosensors. In this study, we investigate initial release and rebinding of ligands to their binding sites grafted on a planar surface, a situation commonly observed in single-molecule experiments and that occurs in vivo, e.g., during exocytosis. Via scaling arguments and molecular dynamic simulations, we analyze the dependence of nonequilibrium rebinding kinetics on two intrinsic length scales: the average separation distance between the binding sites and the total diffusible volume (i.e., height of the experimental reservoir in which diffusion takes place or average distance between receptor-bearing surfaces). We obtain time-dependent scaling laws for on rates and for the cumulative number of rebinding events. For diffusion-limited binding, the (rebinding) on rate decreases with time via multiple power-law regimes before the terminal steady-state (constant on-rate) regime. At intermediate times, when particle density has not yet become uniform throughout the diffusible volume, the cumulative number of rebindings exhibits a novel, to our knowledge, plateau behavior because of the three-dimensional escape process of ligands from binding sites. The duration of the plateau regime depends on the average separation distance between binding sites. After the three-dimensional diffusive escape process, a one-dimensional diffusive regime describes on rates. In the reaction-limited scenario, ligands with higher affinity to their binding sites (e.g., longer residence times) delay entry to the power-law regimes. Our results will be useful for extracting hidden timescales in experiments such as kinetic rate measurements for ligand-receptor interactions in microchannels, as well as for cell signaling via diffusing molecules.
Collapse
Affiliation(s)
- Aykut Erbaş
- UNAM-National Nanotechnology Research Center and Institute of Materials Science & Nanotechnology, Bilkent University, Ankara, Turkey.
| | - Monica Olvera de la Cruz
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois; Department of Physics and Astronomy, Northwestern University, Evanston, Illinois; Department of Chemistry, Northwestern University, Evanston, Illinois
| | - John F Marko
- Department of Physics and Astronomy, Northwestern University, Evanston, Illinois; Department of Molecular Biosciences, Northwestern University, Evanston, Illinois.
| |
Collapse
|
19
|
Lebar T, Verbič A, Ljubetič A, Jerala R. Polarized displacement by transcription activator-like effectors for regulatory circuits. Nat Chem Biol 2019; 15:80-87. [PMID: 30455466 DOI: 10.1038/s41589-018-0163-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 10/05/2018] [Indexed: 01/26/2023]
Abstract
The interplay between DNA-binding proteins plays an important role in transcriptional regulation and could increase the precision and complexity of designed regulatory circuits. Here we show that a transcription activator-like effector (TALE) can displace another TALE protein from DNA in a highly polarized manner, displacing only the 3'- but not 5'-bound overlapping or adjacent TALE. We propose that the polarized displacement by TALEs is based on its multipartite nature of binding to DNA. The polarized TALE displacement provides strategies for the specific regulation of gene expression, for construction of all two-input Boolean genetic logic circuits based on the robust propagation of the displacement across multiple neighboring sites, for displacement of zinc finger-based transcription factors and for suppression of Cas9-gRNA-mediated genome cleavage, enriching the synthetic biology toolbox and contributing to the understanding of the underlying principles of the facilitated displacement.
Collapse
Affiliation(s)
- Tina Lebar
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
- EN-FIST Centre of Excellence, Ljubljana, Slovenia
| | - Anže Verbič
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Ajasja Ljubetič
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Roman Jerala
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia.
- EN-FIST Centre of Excellence, Ljubljana, Slovenia.
| |
Collapse
|
20
|
Guttula D, Yao M, Baker K, Yang L, Goult BT, Doyle PS, Yan J. Calcium-mediated Protein Folding and Stabilization of Salmonella Biofilm-associated Protein A. J Mol Biol 2018; 431:433-443. [PMID: 30452884 DOI: 10.1016/j.jmb.2018.11.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 11/10/2018] [Accepted: 11/13/2018] [Indexed: 12/26/2022]
Abstract
Biofilm-associated proteins (BAPs) are important for early biofilm formation (adhesion) by bacteria and are also found in mature biofilms. BapA from Salmonella is a ~386-kDa surface protein, comprising 27 tandem repeats predicted to be bacterial Ig-like (BIg) domains. Such tandem repeats are conserved for BAPs across different bacterial species, but the function of these domains is not completely understood. In this work, we report the first study of the mechanical stability of the BapA protein. Using magnetic tweezers, we show that the folding of BapA BIg domains requires calcium binding and the folded domains have differential mechanical stabilities. Importantly, we identify that >100 nM concentration of calcium is needed for folding of the BIg domains, and the stability of the folded BIg domains is regulated by calcium over a wide concentration range from sub-micromolar (μM) to millimolar (mM). Only at mM calcium concentrations, as found in the extracellular environment, do the BIg domains have the saturated mechanical stability. BapA has been suggested to be involved in Salmonella invasion, and it is likely a crucial mechanical component of biofilms. Therefore, our results provide new insights into the potential roles of BapA as a structural maintenance component of Salmonella biofilm and also Salmonella invasion.
Collapse
Affiliation(s)
- Durgarao Guttula
- BioSystems and Micromechanics (BioSyM) IRG, Singapore-MIT Alliance for Research and Technology (SMART) Centre, 138602, Republic of Singapore; Mechanobiology Institute (MBI), National University of Singapore (NUS), 117411, Republic of Singapore
| | - Mingxi Yao
- Mechanobiology Institute (MBI), National University of Singapore (NUS), 117411, Republic of Singapore
| | - Karen Baker
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
| | - Liang Yang
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Benjamin T Goult
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
| | - Patrick S Doyle
- BioSystems and Micromechanics (BioSyM) IRG, Singapore-MIT Alliance for Research and Technology (SMART) Centre, 138602, Republic of Singapore; Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, 02139, USA.
| | - Jie Yan
- BioSystems and Micromechanics (BioSyM) IRG, Singapore-MIT Alliance for Research and Technology (SMART) Centre, 138602, Republic of Singapore; Mechanobiology Institute (MBI), National University of Singapore (NUS), 117411, Republic of Singapore; Department of Physics, National University of Singapore (NUS), 117542, Republic of Singapore.
| |
Collapse
|
21
|
Xie X, Cheng YS, Wen MH, Calindi A, Yang K, Chiu CW, Chen TY. Quantifying the Oligomeric States of Membrane Proteins in Cells through Super-Resolution Localizations. J Phys Chem B 2018; 122:10496-10504. [PMID: 30384609 DOI: 10.1021/acs.jpcb.8b10402] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Transitions between different oligomeric states of membrane proteins are essential for proper cellular functions. However, the quantification of their oligomeric states in cells is technically challenging. Here we developed a new method to quantify oligomeric state(s) of highly expressed membrane proteins using the probability density function of molecule density ( PDFMD) calculated from super-resolution localizations. We provided the theoretical model of PDFMD, discussed the effects of protein concentration, cell geometry, and photophysics of fluorescent proteins on PDFMD, and provided experimental criteria for proper quantification of oligomeric states. This method was further validated using simulated single-molecule fluorescent movies and applied to two membrane proteins, UhpT and SbmA in E. coli. The study shows that PDFMD is useful in quantifying oligomeric states of membrane proteins in cells that can help in understanding cellular tasks. Potential applications to proteins with higher oligomeric states under high concentration and limitations of our methodology were also discussed.
Collapse
Affiliation(s)
- Xihong Xie
- Department of Chemistry , University of Houston , Houston , Texas 77204 , United States
| | - Yu-Shan Cheng
- Department of Chemistry , University of Houston , Houston , Texas 77204 , United States
| | - Meng-Hsuan Wen
- Department of Chemistry , University of Houston , Houston , Texas 77204 , United States
| | - Aparna Calindi
- Department of Chemistry , University of Houston , Houston , Texas 77204 , United States
| | - Karen Yang
- Department of Chemistry , University of Houston , Houston , Texas 77204 , United States
| | - Chi-Wei Chiu
- Department of Chemistry , University of Houston , Houston , Texas 77204 , United States
| | - Tai-Yen Chen
- Department of Chemistry , University of Houston , Houston , Texas 77204 , United States
| |
Collapse
|
22
|
Connolly M, Arra A, Zvoda V, Steinbach PJ, Rice PA, Ansari A. Static Kinks or Flexible Hinges: Multiple Conformations of Bent DNA Bound to Integration Host Factor Revealed by Fluorescence Lifetime Measurements. J Phys Chem B 2018; 122:11519-11534. [DOI: 10.1021/acs.jpcb.8b07405] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Mitchell Connolly
- Department of Physics, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Aline Arra
- Department of Physics, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Viktoriya Zvoda
- Department of Physics, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Peter J. Steinbach
- Center for Molecular Modeling, Center for Information Technology, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Phoebe A. Rice
- Department of Biochemistry & Molecular Biology, University of Chicago, Chicago, Illinois 60637, United States
| | - Anjum Ansari
- Department of Physics, University of Illinois at Chicago, Chicago, Illinois 60607, United States
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| |
Collapse
|
23
|
Xu ZQ, Dixon NE. Bacterial replisomes. Curr Opin Struct Biol 2018; 53:159-168. [PMID: 30292863 DOI: 10.1016/j.sbi.2018.09.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 09/07/2018] [Accepted: 09/17/2018] [Indexed: 01/18/2023]
Abstract
Bacterial replisomes are dynamic multiprotein DNA replication machines that are inherently difficult for structural studies. However, breakthroughs continue to come. The structures of Escherichia coli DNA polymerase III (core)-clamp-DNA subcomplexes solved by single-particle cryo-electron microscopy in both polymerization and proofreading modes and the discovery of the stochastic nature of the bacterial replisomes represent notable progress. The structures reveal an intricate interaction network in the polymerase-clamp subassembly, providing insights on how replisomes may work. Meantime, ensemble and single-molecule functional assays and fluorescence microscopy show that the bacterial replisomes can work in a decoupled and uncoordinated way, with polymerases quickly exchanging and both leading-strand and lagging-strand polymerases and the helicase working independently, contradictory to the elegant textbook view of a highly coordinated machine.
Collapse
Affiliation(s)
- Zhi-Qiang Xu
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, and Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522, Australia
| | - Nicholas E Dixon
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, and Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522, Australia.
| |
Collapse
|
24
|
Dahlke K, Sing CE. Force-extension behavior of DNA in the presence of DNA-bending nucleoid associated proteins. J Chem Phys 2018; 148:084902. [PMID: 29495783 DOI: 10.1063/1.5016177] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Interactions between nucleoid associated proteins (NAPs) and DNA affect DNA polymer conformation, leading to phenomena such as concentration dependent force-extension behavior. These effects, in turn, also impact the local binding behavior of the protein, such as high forces causing proteins to unbind, or proteins binding favorably to locally bent DNA. We develop a coarse-grained NAP-DNA simulation model that incorporates both force- and concentration-dependent behaviors, in order to study the interplay between NAP binding and DNA conformation. This model system includes multi-state protein binding and unbinding, motivated by prior work, but is now dependent on the local structure of the DNA, which is related to external forces acting on the DNA strand. We observe the expected qualitative binding behavior, where more proteins are bound at lower forces than at higher forces. Our model also includes NAP-induced DNA bending, which affects DNA elasticity. We see semi-quantitative matching of our simulated force-extension behavior to the reported experimental data. By using a coarse-grained simulation, we are also able to look at non-equilibrium behaviors, such as dynamic extension of a DNA strand. We stretch a DNA strand at different rates and at different NAP concentrations to observe how the time scales of the system (such as pulling time and unbinding time) work in concert. When these time scales are similar, we observe measurable rate-dependent changes in the system, which include the number of proteins bound and the force required to extend the DNA molecule. This suggests that the relative time scales of different dynamic processes play an important role in the behavior of NAP-DNA systems.
Collapse
Affiliation(s)
- K Dahlke
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
| | - C E Sing
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
25
|
Chen TY, Cheng YS, Huang PS, Chen P. Facilitated Unbinding via Multivalency-Enabled Ternary Complexes: New Paradigm for Protein-DNA Interactions. Acc Chem Res 2018; 51:860-868. [PMID: 29368512 DOI: 10.1021/acs.accounts.7b00541] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dynamic protein-DNA interactions constitute highly robust cellular machineries to fulfill cellular functions. A vast number of studies have focused on how DNA-binding proteins search for and interact with their target DNA segments and on what cellular cues can regulate protein binding, for which protein concentration is a most obvious one. In contrast, how protein unbinding could be regulated by protein concentration has evaded attention because protein unbinding from DNA is typically a unimolecular reaction and thus concentration independent. Recent single-molecule studies from multiple research groups have uncovered that protein concentration can facilitate the unbinding of DNA-bound proteins, revealing regulation of protein unbinding as another mechanistic paradigm for gene regulation. In this Account, we review these recent in vitro and in vivo single-molecule experiments that uncovered the concentration-facilitated protein unbinding by multiple types of DNA-binding proteins, including sequence-nonspecific DNA-binding proteins (e.g., nucleoid-associated proteins, NAP), sequence-specific DNA-binding proteins (e.g., metal-responsive transcription regulators CueR and ZntR), sequence-neutral single-stranded DNA-binding proteins (e.g., Replication protein A, RPA), and DNA polymerases. For the in vitro experiments, Marko's group investigated the exchange of GFP-tagged DNA-bound NAPs with nontagged NAPs in solution of increasing concentration using single-molecule magnetic-tweezers fluorescence microscopy. The faster fluorescence intensity decrease with higher nontagged NAP concentrations suggests that DNA-bound NAPs undergo faster exchange with higher free NAP concentrations. Chen's group used single-molecule fluorescence resonance energy transfer measurements to study the unbinding of CueR from its cognate oligomeric DNA. The average microscopic dwell times of DNA-bound states become shorter with increasing CueR concentrations in the surroundings, demonstrating that free CueR proteins can facilitate the unbinding of the incumbent one on DNA through either assisted dissociation or direct substitution. Greene's group studied the unbinding of RPAs from single-stranded DNA using total internal reflection fluorescence microscopy and DNA curtain techniques. The fluorescence intensity versus time traces show faster decay with higher wild-type RPA concentrations, indicating that DNA-bound RPAs can undergo a concentration-facilitated exchange when encountering excess free RPA. van Oijen's group investigated the leading/lagging-strand polymerase exchange events in the bacteriophage T7 and E. coli replication systems using a combination of single-molecule fluorescence microscopy and DNA-flow-stretching assay. The processivity was observed to have larger decrease when the concentration of the Y526F polymerase mutant increases, indicating that the unbinding of the polymerase is also concentration-dependent. Using stroboscopic imaging and single-molecule tracking, Chen's group further advanced their study into living bacterial cells. They found CueR, as well as its homologue ZntR, shows concentration-enhanced unbinding from its DNA-binding site in vivo. Mechanistic consensus has emerged from these in vitro and in vivo single-molecule studies that encompass a range of proteins with distinct biological functions. It involves multivalent contacts between protein and DNA. The multivalency enables the formation of ternary complexes as intermediates, which subsequently give rise to concentration-enhanced protein unbinding. As multivalent contacts are ubiquitous among DNA-interacting proteins, this multivalency-enabled facilitated unbinding mechanism thus provides a potentially general mechanistic paradigm in regulating protein-DNA interactions.
Collapse
Affiliation(s)
- Tai-Yen Chen
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Yu-Shan Cheng
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Pei-San Huang
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Peng Chen
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
26
|
Shi X, Reimers JR. Understanding non-linear effects from Hill-type dynamics with application to decoding of p53 signaling. Sci Rep 2018; 8:2147. [PMID: 29391550 PMCID: PMC5795017 DOI: 10.1038/s41598-018-20466-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 01/15/2018] [Indexed: 12/12/2022] Open
Abstract
Analytical equations are derived depicting four possible scenarios resulting from pulsed signaling of a system subject to Hill-type dynamics. Pulsed Hill-type dynamics involves the binding of multiple signal molecules to a receptor and occurs e.g., when transcription factor p53 orchestrates cancer prevention, during calcium signaling, and during circadian rhythms. The scenarios involve: (i) enhancement of high-affinity binders compared to low-affinity ones, (ii) slowing reactions involving high-affinity binders, (iii) transfer of the clocking of low-affinity binders from the signal molecule to the products, and (iv) a unique clocking process that produces incremental increases in the activity of high-affinity binders with each signal pulse. In principle, these mostly non-linear effects could control cellular outcomes. An applications to p53 signaling is developed, with binding to most gene promoters identified as category (iii) responses. However, currently unexplained enhancement of high-affinity promoters such as CDKN1a (p21) by pulsed signaling could be an example of (i). In general, provision for all possible scenarios is required in the design of mathematical models incorporating pulsed Hill-type signaling as some aspect.
Collapse
Affiliation(s)
- Xiaomin Shi
- International Centre for Quantum and Molecular Structures and Mathematics Department, Shanghai University, Shanghai, 200444, China.
| | - Jeffrey R Reimers
- International Centre for Quantum and Molecular Structures and Physics Department, Shanghai University, Shanghai, 200444, China.
- School of Mathematical and Physical Sciences, University of Technology Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
27
|
Erbaş A, de la Cruz MO, Marko JF. Effects of electrostatic interactions on ligand dissociation kinetics. Phys Rev E 2018; 97:022405. [PMID: 29548245 PMCID: PMC5863579 DOI: 10.1103/physreve.97.022405] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Indexed: 11/07/2022]
Abstract
We study unbinding of multivalent cationic ligands from oppositely charged polymeric binding sites sparsely grafted on a flat neutral substrate. Our molecular dynamics simulations are suggested by single-molecule studies of protein-DNA interactions. We consider univalent salt concentrations spanning roughly a 1000-fold range, together with various concentrations of excess ligands in solution. To reveal the ionic effects on unbinding kinetics of spontaneous and facilitated dissociation mechanisms, we treat electrostatic interactions both at a Debye-Hückel (DH) (or implicit ions, i.e., use of an electrostatic potential with a prescribed decay length) level and by the more precise approach of considering all ionic species explicitly in the simulations. We find that the DH approach systematically overestimates unbinding rates, relative to the calculations where all ion pairs are present explicitly in solution, although many aspects of the two types of calculation are qualitatively similar. For facilitated dissociation (FD) (acceleration of unbinding by free ligands in solution) explicit-ion simulations lead to unbinding at lower free-ligand concentrations. Our simulations predict a variety of FD regimes as a function of free-ligand and ion concentrations; a particularly interesting regime is at intermediate concentrations of ligands where nonelectrostatic binding strength controls FD. We conclude that explicit-ion electrostatic modeling is an essential component to quantitatively tackle problems in molecular ligand dissociation, including nucleic-acid-binding proteins.
Collapse
Affiliation(s)
- Aykut Erbaş
- Department of Materials Science and Engineering, Department of Molecular Biosciences, and Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, USA
| | - Monica Olvera de la Cruz
- Department of Materials Science and Engineering, Department of Chemistry, Department of Chemical and Biological Engineering, and Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, USA
| | - John F Marko
- Department of Molecular Biosciences and Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
28
|
Clauß K, Popp AP, Schulze L, Hettich J, Reisser M, Escoter Torres L, Uhlenhaut NH, Gebhardt JCM. DNA residence time is a regulatory factor of transcription repression. Nucleic Acids Res 2017; 45:11121-11130. [PMID: 28977492 PMCID: PMC5737411 DOI: 10.1093/nar/gkx728] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 08/08/2017] [Indexed: 12/21/2022] Open
Abstract
Transcription comprises a highly regulated sequence of intrinsically stochastic processes, resulting in bursts of transcription intermitted by quiescence. In transcription activation or repression, a transcription factor binds dynamically to DNA, with a residence time unique to each factor. Whether the DNA residence time is important in the transcription process is unclear. Here, we designed a series of transcription repressors differing in their DNA residence time by utilizing the modular DNA binding domain of transcription activator-like effectors (TALEs) and varying the number of nucleotide-recognizing repeat domains. We characterized the DNA residence times of our repressors in living cells using single molecule tracking. The residence times depended non-linearly on the number of repeat domains and differed by more than a factor of six. The factors provoked a residence time-dependent decrease in transcript level of the glucocorticoid receptor-activated gene SGK1. Down regulation of transcription was due to a lower burst frequency in the presence of long binding repressors and is in accordance with a model of competitive inhibition of endogenous activator binding. Our single molecule experiments reveal transcription factor DNA residence time as a regulatory factor controlling transcription repression and establish TALE-DNA binding domains as tools for the temporal dissection of transcription regulation.
Collapse
Affiliation(s)
- Karen Clauß
- Institute of Biophysics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Achim P Popp
- Institute of Biophysics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Lena Schulze
- Institute of Biophysics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Johannes Hettich
- Institute of Biophysics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Matthias Reisser
- Institute of Biophysics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Laura Escoter Torres
- Helmholtz Diabetes Center (HMGU) and German Center for Diabetes Research (DZD), IDO, Parkring 13, 85748 Garching, Munich, Germany
| | - N Henriette Uhlenhaut
- Helmholtz Diabetes Center (HMGU) and German Center for Diabetes Research (DZD), IDO, Parkring 13, 85748 Garching, Munich, Germany
| | - J Christof M Gebhardt
- Institute of Biophysics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
29
|
Sánchez H, Paul MW, Grosbart M, van Rossum-Fikkert SE, Lebbink JHG, Kanaar R, Houtsmuller AB, Wyman C. Architectural plasticity of human BRCA2-RAD51 complexes in DNA break repair. Nucleic Acids Res 2017; 45:4507-4518. [PMID: 28168276 PMCID: PMC5416905 DOI: 10.1093/nar/gkx084] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 02/03/2017] [Indexed: 12/05/2022] Open
Abstract
The tumor suppressor BRCA2 is a large multifunctional protein mutated in 50–60% of familial breast cancers. BRCA2 interacts with many partners and includes multiple regions with potentially disordered structure. In homology directed DNA repair BRCA2 delivers RAD51 to DNA resulting in removal of RPA and assembly of a RAD51 nucleoprotein filament. Dynamic rearrangements of BRCA2 likely drive this molecular hand-off initiating DNA strand exchange. We show human BRCA2 forms oligomers which can have an extended shape. Scanning force microscopy and quantitative single molecule fluorescence define the variety of BRCA2 complexes, reveal dramatic rearrangements upon RAD51 binding and the loading of RAD51 patches on single strand DNA. At sites of repair in cell nuclei, super-resolution microscopy shows BRCA2 and RAD51 arranged in largely separate locations. We identified dynamic structural transitions in BRCA2 complexes suggested to facilitate loading of RAD51 onto RPA coated single strand DNA and subsequent release of BRCA2.
Collapse
Affiliation(s)
- Humberto Sánchez
- Department of Molecular Genetics, Cancer Genomics Center Netherlands, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Maarten W Paul
- Erasmus Optical Imaging Centre, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands.,Department of Pathology, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Malgorzata Grosbart
- Department of Molecular Genetics, Cancer Genomics Center Netherlands, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Sarah E van Rossum-Fikkert
- Department of Molecular Genetics, Cancer Genomics Center Netherlands, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands.,Department of Radiation Oncology, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Joyce H G Lebbink
- Department of Molecular Genetics, Cancer Genomics Center Netherlands, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands.,Department of Radiation Oncology, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Roland Kanaar
- Department of Molecular Genetics, Cancer Genomics Center Netherlands, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands.,Department of Radiation Oncology, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Adriaan B Houtsmuller
- Erasmus Optical Imaging Centre, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands.,Department of Pathology, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Claire Wyman
- Department of Molecular Genetics, Cancer Genomics Center Netherlands, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands.,Department of Radiation Oncology, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands
| |
Collapse
|
30
|
Lewis JS, Spenkelink LM, Jergic S, Wood EA, Monachino E, Horan NP, Duderstadt KE, Cox MM, Robinson A, Dixon NE, van Oijen AM. Single-molecule visualization of fast polymerase turnover in the bacterial replisome. eLife 2017; 6. [PMID: 28432790 PMCID: PMC5419744 DOI: 10.7554/elife.23932] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 04/20/2017] [Indexed: 11/13/2022] Open
Abstract
The Escherichia coli DNA replication machinery has been used as a road map to uncover design rules that enable DNA duplication with high efficiency and fidelity. Although the enzymatic activities of the replicative DNA Pol III are well understood, its dynamics within the replisome are not. Here, we test the accepted view that the Pol III holoenzyme remains stably associated within the replisome. We use in vitro single-molecule assays with fluorescently labeled polymerases to demonstrate that the Pol III* complex (holoenzyme lacking the β2 sliding clamp), is rapidly exchanged during processive DNA replication. Nevertheless, the replisome is highly resistant to dilution in the absence of Pol III* in solution. We further show similar exchange in live cells containing labeled clamp loader and polymerase. These observations suggest a concentration-dependent exchange mechanism providing a balance between stability and plasticity, facilitating replacement of replisomal components dependent on their availability in the environment. DOI:http://dx.doi.org/10.7554/eLife.23932.001
Collapse
Affiliation(s)
- Jacob S Lewis
- Centre for Medical and Molecular Bioscience, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia
| | - Lisanne M Spenkelink
- Centre for Medical and Molecular Bioscience, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia.,Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | - Slobodan Jergic
- Centre for Medical and Molecular Bioscience, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia
| | - Elizabeth A Wood
- Department of Biochemistry, University of Wisconsin-Madison, Madison, United States
| | - Enrico Monachino
- Centre for Medical and Molecular Bioscience, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia.,Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | - Nicholas P Horan
- Centre for Medical and Molecular Bioscience, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia
| | - Karl E Duderstadt
- Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands.,Max Planck Institute of Biochemistry, Martinsried, Germany.,Physik Department, Technishche Universität München, Garching, Germany
| | - Michael M Cox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, United States
| | - Andrew Robinson
- Centre for Medical and Molecular Bioscience, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia
| | - Nicholas E Dixon
- Centre for Medical and Molecular Bioscience, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia
| | - Antoine M van Oijen
- Centre for Medical and Molecular Bioscience, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia
| |
Collapse
|
31
|
Facilitated dissociation of transcription factors from single DNA binding sites. Proc Natl Acad Sci U S A 2017; 114:E3251-E3257. [PMID: 28364020 DOI: 10.1073/pnas.1701884114] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The binding of transcription factors (TFs) to DNA controls most aspects of cellular function, making the understanding of their binding kinetics imperative. The standard description of bimolecular interactions posits that TF off rates are independent of TF concentration in solution. However, recent observations have revealed that proteins in solution can accelerate the dissociation of DNA-bound proteins. To study the molecular basis of facilitated dissociation (FD), we have used single-molecule imaging to measure dissociation kinetics of Fis, a key Escherichia coli TF and major bacterial nucleoid protein, from single dsDNA binding sites. We observe a strong FD effect characterized by an exchange rate [Formula: see text], establishing that FD of Fis occurs at the single-binding site level, and we find that the off rate saturates at large Fis concentrations in solution. Although spontaneous (i.e., competitor-free) dissociation shows a strong salt dependence, we find that FD depends only weakly on salt. These results are quantitatively explained by a model in which partially dissociated bound proteins are susceptible to invasion by competitor proteins in solution. We also report FD of NHP6A, a yeast TF with structure that differs significantly from Fis. We further perform molecular dynamics simulations, which indicate that FD can occur for molecules that interact far more weakly than those that we have studied. Taken together, our results indicate that FD is a general mechanism assisting in the local removal of TFs from their binding sites and does not necessarily require cooperativity, clustering, or binding site overlap.
Collapse
|
32
|
Rademacher A, Erdel F, Trojanowski J, Schumacher S, Rippe K. Real-time observation of light-controlled transcription in living cells. J Cell Sci 2017. [DOI: 10.1242/jcs.205534] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Abstract
Gene expression is tightly regulated in space and time. To dissect this process with high temporal resolution, we introduce an optogenetic tool termed BLInCR (Blue Light-Induced Chromatin Recruitment) that combines rapid and reversible light-dependent recruitment of effector proteins with a real-time readout for transcription. We used BLInCR to control the activity of a reporter gene cluster in the human osteosarcoma cell line U2OS by reversibly recruiting the viral transactivator VP16. RNA production was detectable ∼2 minutes after VP16 recruitment and readily decreased when VP16 dissociated from the cluster in the absence of light. Quantitative assessment of the activation process revealed biphasic activation kinetics with a pronounced early phase in cells treated with the histone deacetylase inhibitor SAHA. Comparison with kinetic models for transcription activation suggests that the gene cluster undergoes a maturation process when activated. We anticipate that BLInCR will facilitate the study of transcription dynamics in living cells.
Collapse
Affiliation(s)
- Anne Rademacher
- German Cancer Research Center (DKFZ) and Bioquant, Division of Chromatin Networks, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Fabian Erdel
- German Cancer Research Center (DKFZ) and Bioquant, Division of Chromatin Networks, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Jorge Trojanowski
- German Cancer Research Center (DKFZ) and Bioquant, Division of Chromatin Networks, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Sabrina Schumacher
- German Cancer Research Center (DKFZ) and Bioquant, Division of Chromatin Networks, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Karsten Rippe
- German Cancer Research Center (DKFZ) and Bioquant, Division of Chromatin Networks, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| |
Collapse
|
33
|
Facilitated Dissociation Kinetics of Dimeric Nucleoid-Associated Proteins Follow a Universal Curve. Biophys J 2016; 112:543-551. [PMID: 28012548 DOI: 10.1016/j.bpj.2016.11.3198] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/17/2016] [Accepted: 11/22/2016] [Indexed: 12/15/2022] Open
Abstract
Recent experimental work has demonstrated facilitated dissociation of certain nucleoid-associated proteins that exhibit an unbinding rate that depends on the concentration of freely diffusing proteins or DNA in solution. This concentration dependence arises due to binding competition with these other proteins or DNA. The identity of the binding competitor leads to different qualitative trends, motivating an investigation to understand observed differences in facilitated dissociation. We use a coarse-grained simulation that takes into account the dimeric nature of many nucleoid-associated proteins by allowing an intermediate binding state. The addition of this partially bound state allows the protein to be unbound, partially bound, or fully bound to a DNA strand, leaving opportunities for other molecules in solution to participate in the unbinding mechanism. Previous models postulated symmetric binding energies for each state of the coarse-grained protein corresponding to the symmetry of the dimeric protein; this model relaxes this assumption by assigning different energies for the different steps in the unbinding process. Allowing different unbinding energies not only has equilibrium effects on the system, but kinetic effects as well. We were able to reproduce the unbinding trends seen experimentally for both DNA and protein competitors. All trends collapse to a universal curve regardless of the unbinding energies used or the identity of the dissociation facilitator, suggesting that facilitated dissociation can be described with a single set of scaling parameters that are related to the energy landscape and geometric nature of the competitors.
Collapse
|
34
|
Monachino E, Spenkelink LM, van Oijen AM. Watching cellular machinery in action, one molecule at a time. J Cell Biol 2016; 216:41-51. [PMID: 27979907 PMCID: PMC5223611 DOI: 10.1083/jcb.201610025] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 11/24/2016] [Accepted: 11/29/2016] [Indexed: 12/03/2022] Open
Abstract
Monachino et al. review recent developments in single-molecule biophysical approaches and the cell biological advances they allow. Single-molecule manipulation and imaging techniques have become important elements of the biologist’s toolkit to gain mechanistic insights into cellular processes. By removing ensemble averaging, single-molecule methods provide unique access to the dynamic behavior of biomolecules. Recently, the use of these approaches has expanded to the study of complex multiprotein systems and has enabled detailed characterization of the behavior of individual molecules inside living cells. In this review, we provide an overview of the various force- and fluorescence-based single-molecule methods with applications both in vitro and in vivo, highlighting these advances by describing their applications in studies on cytoskeletal motors and DNA replication. We also discuss how single-molecule approaches have increased our understanding of the dynamic behavior of complex multiprotein systems. These methods have shown that the behavior of multicomponent protein complexes is highly stochastic and less linear and deterministic than previously thought. Further development of single-molecule tools will help to elucidate the molecular dynamics of these complex systems both inside the cell and in solutions with purified components.
Collapse
Affiliation(s)
- Enrico Monachino
- Centre for Medical and Molecular Bioscience, Illawarra Health and Medical Research Institute and University of Wollongong, New South Wales 2522, Australia.,Zernike Institute for Advanced Materials, University of Groningen, Groningen 9747 AG, Netherlands
| | - Lisanne M Spenkelink
- Centre for Medical and Molecular Bioscience, Illawarra Health and Medical Research Institute and University of Wollongong, New South Wales 2522, Australia.,Zernike Institute for Advanced Materials, University of Groningen, Groningen 9747 AG, Netherlands
| | - Antoine M van Oijen
- Centre for Medical and Molecular Bioscience, Illawarra Health and Medical Research Institute and University of Wollongong, New South Wales 2522, Australia
| |
Collapse
|
35
|
Ma CJ, Gibb B, Kwon Y, Sung P, Greene EC. Protein dynamics of human RPA and RAD51 on ssDNA during assembly and disassembly of the RAD51 filament. Nucleic Acids Res 2016; 45:749-761. [PMID: 27903895 PMCID: PMC5314761 DOI: 10.1093/nar/gkw1125] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 10/21/2016] [Accepted: 10/27/2016] [Indexed: 12/31/2022] Open
Abstract
Homologous recombination (HR) is a crucial pathway for double-stranded DNA break (DSB) repair. During the early stages of HR, the newly generated DSB ends are processed to yield long single-stranded DNA (ssDNA) overhangs, which are quickly bound by replication protein A (RPA). RPA is then replaced by the DNA recombinase Rad51, which forms extended helical filaments on the ssDNA. The resulting nucleoprotein filament, known as the presynaptic complex, is responsible for pairing the ssDNA with homologous double-stranded DNA (dsDNA), which serves as the template to guide DSB repair. Here, we use single-molecule imaging to visualize the interplay between human RPA (hRPA) and human RAD51 during presynaptic complex assembly and disassembly. We demonstrate that ssDNA-bound hRPA can undergo facilitated exchange, enabling hRPA to undergo rapid exchange between free and ssDNA-bound states only when free hRPA is present in solution. Our results also indicate that the presence of free hRPA inhibits RAD51 filament nucleation, but has a lesser impact upon filament elongation. This finding suggests that hRPA exerts important regulatory influence over RAD51 and may in turn affect the properties of the assembled RAD51 filament. These experiments provide an important basis for further investigations into the regulation of human presynaptic complex assembly.
Collapse
Affiliation(s)
- Chu Jian Ma
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Bryan Gibb
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - YoungHo Kwon
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Patrick Sung
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Eric C Greene
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY 10032, USA
| |
Collapse
|
36
|
Tsai MY, Zhang B, Zheng W, Wolynes PG. Molecular Mechanism of Facilitated Dissociation of Fis Protein from DNA. J Am Chem Soc 2016; 138:13497-13500. [PMID: 27685351 DOI: 10.1021/jacs.6b08416] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Fis protein is a nucleoid-associated protein that plays many roles in transcriptional regulation and DNA site-specific recombination. In contrast to the naïve expectation based on stoichiometry, recent single-molecule studies have shown that the dissociation of Fis protein from DNA is accelerated by increasing the concentration of the Fis protein. Because the detailed molecular mechanism of facilitated dissociation is still not clear, in this study, we employ computational methods to explore the binding landscapes of Fis:DNA complexes with various stoichiometries. When two Fis molecules are present, simulations uncover a ternary complex, where the originally bound Fis protein is partially dissociated from DNA. The simulations support a three-state sequential kinetic model (N ⇄ I → D) for facilitated dissociation, thus explaining the concentration-dependent dissociation.
Collapse
Affiliation(s)
- Min-Yeh Tsai
- Department of Chemistry, and Center for Theoretical Biological Physics, Rice University , Houston, Texas 77005, United States
| | - Bin Zhang
- Department of Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Weihua Zheng
- Department of Chemistry, and Center for Theoretical Biological Physics, Rice University , Houston, Texas 77005, United States
| | - Peter G Wolynes
- Department of Chemistry, and Center for Theoretical Biological Physics, Rice University , Houston, Texas 77005, United States
| |
Collapse
|
37
|
Abstract
The repair of DNA by homologous recombination is an essential, efficient, and high-fidelity process that mends DNA lesions formed during cellular metabolism; these lesions include double-stranded DNA breaks, daughter-strand gaps, and DNA cross-links. Genetic defects in the homologous recombination pathway undermine genomic integrity and cause the accumulation of gross chromosomal abnormalities-including rearrangements, deletions, and aneuploidy-that contribute to cancer formation. Recombination proceeds through the formation of joint DNA molecules-homologously paired but metastable DNA intermediates that are processed by several alternative subpathways-making recombination a versatile and robust mechanism to repair damaged chromosomes. Modern biophysical methods make it possible to visualize, probe, and manipulate the individual molecules participating in the intermediate steps of recombination, revealing new details about the mechanics of genetic recombination. We review and discuss the individual stages of homologous recombination, focusing on common pathways in bacteria, yeast, and humans, and place particular emphasis on the molecular mechanisms illuminated by single-molecule methods.
Collapse
Affiliation(s)
- Jason C Bell
- Department of Microbiology and Molecular Genetics, and Department of Molecular and Cellular Biology, University of California, Davis, California 95616;
| | - Stephen C Kowalczykowski
- Department of Microbiology and Molecular Genetics, and Department of Molecular and Cellular Biology, University of California, Davis, California 95616;
| |
Collapse
|
38
|
Facilitated Dissociation of a Nucleoid Protein from the Bacterial Chromosome. J Bacteriol 2016; 198:1735-42. [PMID: 27044624 DOI: 10.1128/jb.00225-16] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 03/29/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Off-rates of proteins from the DNA double helix are widely considered to be dependent only on the interactions inside the initially bound protein-DNA complex and not on the concentration of nearby molecules. However, a number of recent single-DNA experiments have shown off-rates that depend on solution protein concentration, or "facilitated dissociation." Here, we demonstrate that this effect occurs for the major Escherichia coli nucleoid protein Fis on isolated bacterial chromosomes. We isolated E. coli nucleoids and showed that dissociation of green fluorescent protein (GFP)-Fis is controlled by solution Fis concentration and exhibits an "exchange" rate constant (kexch) of ≈10(4) M(-1) s(-1), comparable to the rate observed in single-DNA experiments. We also show that this effect is strongly salt dependent. Our results establish that facilitated dissociation can be observed in vitro on chromosomes assembled in vivo IMPORTANCE Bacteria are important model systems for the study of gene regulation and chromosome dynamics, both of which fundamentally depend on the kinetics of binding and unbinding of proteins to DNA. In experiments on isolated E. coli chromosomes, this study showed that the prolific transcription factor and chromosome packaging protein Fis displays a strong dependence of its off-rate from the bacterial chromosome on Fis concentration, similar to that observed in in vitro experiments. Therefore, the free cellular DNA-binding protein concentration can strongly affect lifetimes of proteins bound to the chromosome and must be taken into account in quantitative considerations of gene regulation. These results have particularly profound implications for transcription factors where DNA binding lifetimes can be a critical determinant of regulatory function.
Collapse
|
39
|
Åberg C, Duderstadt KE, van Oijen AM. Stability versus exchange: a paradox in DNA replication. Nucleic Acids Res 2016; 44:4846-54. [PMID: 27112565 PMCID: PMC4889951 DOI: 10.1093/nar/gkw296] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 04/11/2016] [Indexed: 11/14/2022] Open
Abstract
Multi-component biological machines, comprising individual proteins with specialized functions, perform a variety of essential processes in cells. Once assembled, most such complexes are considered very stable, retaining individual constituents as long as required. However, rapid and frequent exchange of individual factors in a range of critical cellular assemblies, including DNA replication machineries, DNA transcription regulators and flagellar motors, has recently been observed. The high stability of a multi-protein complex may appear mutually exclusive with rapid subunit exchange. Here, we describe a multisite competitive exchange mechanism, based on simultaneous binding of a protein to multiple low-affinity sites. It explains how a component can be stably integrated into a complex in the absence of competing factors, while able to rapidly exchange in the presence of competing proteins. We provide a mathematical model for the mechanism and give analytical expressions for the stability of a pre-formed complex, in the absence and presence of competitors. Using typical binding kinetic parameters, we show that the mechanism is operational under physically realistic conditions. Thus, high stability and rapid exchange within a complex can be reconciled and this framework can be used to rationalize previous observations, qualitatively as well as quantitatively.
Collapse
Affiliation(s)
- Christoffer Åberg
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Karl E Duderstadt
- Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Antoine M van Oijen
- Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands School of Chemistry, University of Wollongong, NSW 2522, Australia
| |
Collapse
|
40
|
Stigler J, Rief M. Ligand-induced changes of the apparent transition-state position in mechanical protein unfolding. Biophys J 2016. [PMID: 26200872 DOI: 10.1016/j.bpj.2015.06.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Force-spectroscopic measurements of ligand-receptor systems and the unfolding/folding of nucleic acids or proteins reveal information on the underlying energy landscape along the pulling coordinate. The slope Δx(‡) of the force-dependent unfolding/unbinding rates is interpreted as the distance from the folded/bound state to the transition state for unfolding/unbinding and, hence, often related to the mechanical compliance of the sample molecule. Here we show that in ligand-binding proteins, the experimentally inferred Δx(‡) can depend on the ligand concentration, unrelated to changes in mechanical compliance. We describe the effect in single-molecule, force-spectroscopy experiments of the calcium-binding protein calmodulin and explain it in a simple model where mechanical unfolding and ligand binding occur on orthogonal reaction coordinates. This model predicts changes in the experimentally inferred Δx(‡), depending on ligand concentration and the associated shift of the dominant barrier between the two reaction coordinates. We demonstrate quantitative agreement between experiments and simulations using a realistic six-state kinetic scheme using literature values for calcium-binding kinetics and affinities. Our results have important consequences for the interpretation of force-spectroscopic data of ligand-binding proteins.
Collapse
Affiliation(s)
- Johannes Stigler
- Physik Department E22, Technische Universität München, Garching, Germany.
| | - Matthias Rief
- Physik Department E22, Technische Universität München, Garching, Germany; Munich Center for Integrated Protein Science, München, Germany
| |
Collapse
|
41
|
Almaqwashi AA, Paramanathan T, Rouzina I, Williams MC. Mechanisms of small molecule-DNA interactions probed by single-molecule force spectroscopy. Nucleic Acids Res 2016; 44:3971-88. [PMID: 27085806 PMCID: PMC4872107 DOI: 10.1093/nar/gkw237] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 03/24/2016] [Indexed: 12/31/2022] Open
Abstract
There is a wide range of applications for non-covalent DNA binding ligands, and optimization of such interactions requires detailed understanding of the binding mechanisms. One important class of these ligands is that of intercalators, which bind DNA by inserting aromatic moieties between adjacent DNA base pairs. Characterizing the dynamic and equilibrium aspects of DNA-intercalator complex assembly may allow optimization of DNA binding for specific functions. Single-molecule force spectroscopy studies have recently revealed new details about the molecular mechanisms governing DNA intercalation. These studies can provide the binding kinetics and affinity as well as determining the magnitude of the double helix structural deformations during the dynamic assembly of DNA–ligand complexes. These results may in turn guide the rational design of intercalators synthesized for DNA-targeted drugs, optical probes, or integrated biological self-assembly processes. Herein, we survey the progress in experimental methods as well as the corresponding analysis framework for understanding single molecule DNA binding mechanisms. We discuss briefly minor and major groove binding ligands, and then focus on intercalators, which have been probed extensively with these methods. Conventional mono-intercalators and bis-intercalators are discussed, followed by unconventional DNA intercalation. We then consider the prospects for using these methods in optimizing conventional and unconventional DNA-intercalating small molecules.
Collapse
Affiliation(s)
- Ali A Almaqwashi
- Department of Physics, Northeastern University, Boston, MA 02115, USA
| | | | - Ioulia Rouzina
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH 43210, USA
| | - Mark C Williams
- Department of Physics, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
42
|
Abstract
Chromatin regulatory processes, like all biological reactions, are dynamic and stochastic in nature but can give rise to stable and inheritable changes in gene expression patterns. A molecular understanding of those processes is key for fundamental biological insight into gene regulation, epigenetic inheritance, lineage determination, and therapeutic intervention in the case of disease. In recent years, great progress has been made in identifying important molecular players involved in key chromatin regulatory pathways. Conversely, we are only beginning to understand the dynamic interplay between protein effectors, transcription factors, and the chromatin substrate itself. Single-molecule approaches employing both highly defined chromatin substrates in vitro, as well as direct observation of complex regulatory processes in vivo, open new avenues for a molecular view of chromatin regulation. This review highlights recent applications of single-molecule methods and related techniques to investigate fundamental chromatin regulatory processes.
Collapse
Affiliation(s)
- Beat Fierz
- Laboratory
of Biophysical
Chemistry of Macromolecules, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
43
|
DNA-Segment-Facilitated Dissociation of Fis and NHP6A from DNA Detected via Single-Molecule Mechanical Response. J Mol Biol 2015. [PMID: 26220077 DOI: 10.1016/j.jmb.2015.07.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The rate of dissociation of a DNA-protein complex is often considered to be a property of that complex, without dependence on other nearby molecules in solution. We study the kinetics of dissociation of the abundant Escherichia coli nucleoid protein Fis from DNA, using a single-molecule mechanics assay. The rate of Fis dissociation from DNA is strongly dependent on the solution concentration of DNA. The off-rate (k(off)) of Fis from DNA shows an initially linear dependence on solution DNA concentration, characterized by an exchange rate of k(ex)≈9×10(-4) (ng/μl)(-1) s(-1) for 100 mM univalent salt buffer, with a very small off-rate at zero DNA concentration. The off-rate saturates at approximately k(off,max)≈8×10(-3) s(-1) for DNA concentrations above ≈20 ng/μl. This exchange reaction depends mainly on DNA concentration with little dependence on the length of the DNA molecules in solution or on binding affinity, but this does increase with increasing salt concentration. We also show data for the yeast HMGB protein NHP6A showing a similar DNA-concentration-dependent dissociation effect, with faster rates suggesting generally weaker DNA binding by NHP6A relative to Fis. Our results are well described by a model with an intermediate partially dissociated state where the protein is susceptible to being captured by a second DNA segment, in the manner of "direct transfer" reactions studied for other DNA-binding proteins. This type of dissociation pathway may be important to protein-DNA binding kinetics in vivo where DNA concentrations are large.
Collapse
|
44
|
Concentration- and chromosome-organization-dependent regulator unbinding from DNA for transcription regulation in living cells. Nat Commun 2015; 6:7445. [PMID: 26145755 PMCID: PMC4507017 DOI: 10.1038/ncomms8445] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 05/11/2015] [Indexed: 02/04/2023] Open
Abstract
Binding and unbinding of transcription regulators at operator sites constitute a primary mechanism for gene regulation. While many cellular factors are known to regulate their binding, little is known on how cells can modulate their unbinding for regulation. Using nanometer-precision single-molecule tracking, we study the unbinding kinetics from DNA of two metal-sensing transcription regulators in living Escherichia coli cells. We find that they show unusual concentration-dependent unbinding kinetics from chromosomal recognition sites in both their apo and holo forms. Unexpectedly, their unbinding kinetics further varies with the extent of chromosome condensation, and more surprisingly, varies in opposite ways for their apo-repressor versus holo-activator forms. These findings suggest likely broadly relevant mechanisms for facile switching between transcription activation and deactivation in vivo and in coordinating transcription regulation of resistance genes with the cell cycle. Binding and unbinding of transcription regulators at operator sites regulates gene expression. By single-molecule tracking of metal-sensing regulators, here the authors show that the unbinding kinetics depends on regulator concentration and chromosome condensation, and varies with their metal-binding states.
Collapse
|
45
|
Kilic S, Bachmann AL, Bryan LC, Fierz B. Multivalency governs HP1α association dynamics with the silent chromatin state. Nat Commun 2015; 6:7313. [PMID: 26084584 PMCID: PMC4557296 DOI: 10.1038/ncomms8313] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 04/26/2015] [Indexed: 01/14/2023] Open
Abstract
Multivalent interactions between effector proteins and histone post-translational modifications are an elementary mechanism of dynamic chromatin signalling. Here we elucidate the mechanism how heterochromatin protein 1α (HP1α), a multivalent effector, is efficiently recruited to the silent chromatin state (marked by trimethylated H3 at Lys9, H3K9me3) while remaining highly dynamic. Employing chemically defined nucleosome arrays together with single-molecule total internal reflection fluorescence microscopy (smTIRFM), we demonstrate that the HP1α residence time on chromatin depends on the density of H3K9me3, as dissociated factors can rapidly rebind at neighbouring sites. Moreover, by chemically controlling HP1α dimerization we find that effector multivalency prolongs chromatin retention and, importantly, accelerates the association rate. This effect results from increased avidity together with strengthened nonspecific chromatin interactions of dimeric HP1α. We propose that accelerated chromatin binding is a key feature of effector multivalency, allowing for fast and efficient competition for binding sites in the crowded nuclear compartment. Chromatin effector proteins often employ multivalent interactions with histone post-translational modifications. Here by using chemically defined nucleosome array and single-molecule microscopy, the authors show that effector multivalency prolongs chromatin retention and accelerates the association rate.
Collapse
Affiliation(s)
- Sinan Kilic
- Laboratory of Biophysical Chemistry of Macromolecules, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Andreas L Bachmann
- Laboratory of Biophysical Chemistry of Macromolecules, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Louise C Bryan
- Laboratory of Biophysical Chemistry of Macromolecules, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Beat Fierz
- Laboratory of Biophysical Chemistry of Macromolecules, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
46
|
Qi Z, Redding S, Lee JY, Gibb B, Kwon Y, Niu H, Gaines WA, Sung P, Greene EC. DNA sequence alignment by microhomology sampling during homologous recombination. Cell 2015; 160:856-869. [PMID: 25684365 DOI: 10.1016/j.cell.2015.01.029] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 11/18/2014] [Accepted: 01/09/2015] [Indexed: 11/19/2022]
Abstract
Homologous recombination (HR) mediates the exchange of genetic information between sister or homologous chromatids. During HR, members of the RecA/Rad51 family of recombinases must somehow search through vast quantities of DNA sequence to align and pair single-strand DNA (ssDNA) with a homologous double-strand DNA (dsDNA) template. Here, we use single-molecule imaging to visualize Rad51 as it aligns and pairs homologous DNA sequences in real time. We show that Rad51 uses a length-based recognition mechanism while interrogating dsDNA, enabling robust kinetic selection of 8-nucleotide (nt) tracts of microhomology, which kinetically confines the search to sites with a high probability of being a homologous target. Successful pairing with a ninth nucleotide coincides with an additional reduction in binding free energy, and subsequent strand exchange occurs in precise 3-nt steps, reflecting the base triplet organization of the presynaptic complex. These findings provide crucial new insights into the physical and evolutionary underpinnings of DNA recombination.
Collapse
Affiliation(s)
- Zhi Qi
- Department of Biochemistry and Molecular Biophysics, Columbia University, 650 West 168(th) Street, New York, NY 10032, USA
| | - Sy Redding
- Department of Chemistry, Columbia University, 650 West 168(th) Street, New York, NY 10032, USA
| | - Ja Yil Lee
- Department of Biochemistry and Molecular Biophysics, Columbia University, 650 West 168(th) Street, New York, NY 10032, USA
| | - Bryan Gibb
- Department of Biochemistry and Molecular Biophysics, Columbia University, 650 West 168(th) Street, New York, NY 10032, USA
| | - YoungHo Kwon
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Hengyao Niu
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - William A Gaines
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Patrick Sung
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Eric C Greene
- Department of Biochemistry and Molecular Biophysics, Columbia University, 650 West 168(th) Street, New York, NY 10032, USA; Howard Hughes Medical Institute, Columbia University, 650 West 168(th) Street, New York, NY 10032, USA.
| |
Collapse
|
47
|
Abstract
The function of DNA in cells depends on its interactions with protein molecules, which recognize and act on base sequence patterns along the double helix. These notes aim to introduce basic polymer physics of DNA molecules, biophysics of protein-DNA interactions and their study in single-DNA experiments, and some aspects of large-scale chromosome structure. Mechanisms for control of chromosome topology will also be discussed.
Collapse
Affiliation(s)
- John F Marko
- Department of Physics & Astronomy and Department of Molecular Biosciences, Northwestern University, Evanston, Illinois USA 60208
| |
Collapse
|
48
|
Luo Y, North JA, Poirier MG. Single molecule fluorescence methodologies for investigating transcription factor binding kinetics to nucleosomes and DNA. Methods 2014; 70:108-18. [PMID: 25304387 DOI: 10.1016/j.ymeth.2014.09.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 09/03/2014] [Accepted: 09/30/2014] [Indexed: 11/20/2022] Open
Abstract
Site specific DNA binding complexes must bind their DNA target sites and then reside there for a sufficient amount of time for proper regulation of DNA processing including transcription, replication and DNA repair. In eukaryotes, the occupancy of DNA binding complexes at their target sites is regulated by chromatin structure and dynamics. Methodologies that probe both the binding and dissociation kinetics of DNA binding proteins with naked and nucleosomal DNA are essential for understanding the mechanisms by which these complexes function. Here, we describe single-molecule fluorescence methodologies for quantifying the binding and dissociation kinetics of transcription factors at a target site within DNA, nucleosomes and nucleosome arrays. This approach allowed for the unexpected observation that nucleosomes impact not only binding but also dissociation kinetics of transcription factors and is well-suited for the investigation of numerous DNA processing complexes that directly interact with DNA organized into chromatin.
Collapse
Affiliation(s)
- Yi Luo
- Department of Physics, The Ohio State University, Columbus, OH 43210-1117, United States; Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210-1117, United States
| | - Justin A North
- Department of Physics, The Ohio State University, Columbus, OH 43210-1117, United States
| | - Michael G Poirier
- Department of Physics, The Ohio State University, Columbus, OH 43210-1117, United States; Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210-1117, United States.
| |
Collapse
|
49
|
Gibb B, Ye LF, Kwon Y, Niu H, Sung P, Greene EC. Protein dynamics during presynaptic-complex assembly on individual single-stranded DNA molecules. Nat Struct Mol Biol 2014; 21:893-900. [PMID: 25195049 PMCID: PMC4190069 DOI: 10.1038/nsmb.2886] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 08/12/2014] [Indexed: 01/03/2023]
Abstract
Homologous recombination is a conserved pathway for repairing double-stranded breaks, which are processed to yield single-stranded DNA overhangs that serve as platforms for presynaptic-complex assembly. Here we use single-molecule imaging to reveal the interplay between Saccharomyces cerevisiae RPA, Rad52 and Rad51 during presynaptic-complex assembly. We show that Rad52 binds RPA-ssDNA and suppresses RPA turnover, highlighting an unanticipated regulatory influence on protein dynamics. Rad51 binding extends the ssDNA, and Rad52-RPA clusters remain interspersed along the presynaptic complex. These clusters promote additional binding of RPA and Rad52. Our work illustrates the spatial and temporal progression of the association of RPA and Rad52 with the presynaptic complex and reveals a new RPA-Rad52-Rad51-ssDNA intermediate, with implications for how the activities of Rad52 and RPA are coordinated with Rad51 during the later stages of recombination.
Collapse
Affiliation(s)
- Bryan Gibb
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, USA
| | - Ling F Ye
- Department of Biological Sciences, Columbia University, New York, New York, USA
| | - YoungHo Kwon
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Hengyao Niu
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Patrick Sung
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Eric C Greene
- 1] Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, USA. [2] Howard Hughes Medical Institute, Columbia University, New York, New York, USA
| |
Collapse
|
50
|
Chen C, Bundschuh R. Quantitative models for accelerated protein dissociation from nucleosomal DNA. Nucleic Acids Res 2014; 42:9753-60. [PMID: 25114052 PMCID: PMC4150810 DOI: 10.1093/nar/gku719] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Binding of transcription factors to their binding sites in promoter regions is the fundamental event in transcriptional gene regulation. When a transcription factor binding site is located within a nucleosome, the DNA has to partially unwrap from the nucleosome to allow transcription factor binding. This reduces the rate of transcription factor binding and is a known mechanism for regulation of gene expression via chromatin structure. Recently a second mechanism has been reported where transcription factor off-rates are dramatically increased when binding to target sites within the nucleosome. There are two possible explanations for such an increase in off-rate short of an active role of the nucleosome in pushing the transcription factor off the DNA: (i) for dimeric transcription factors the nucleosome can change the equilibrium between monomeric and dimeric binding or (ii) the nucleosome can change the equilibrium between specific and non-specific binding to the DNA. We explicitly model both scenarios and find that dimeric binding can explain a large increase in off-rate while the non-specific binding model cannot be reconciled with the large, experimentally observed increase. Our results suggest a general mechanism how nucleosomes increase transcription factor dissociation to promote exchange of transcription factors and regulate gene expression.
Collapse
Affiliation(s)
- Cai Chen
- Biophysics Graduate Program, The Ohio State University, Columbus, OH, USA Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | - Ralf Bundschuh
- Biophysics Graduate Program, The Ohio State University, Columbus, OH, USA Departments of Physics and Chemistry & Biochemistry and Division of Hematology, The Ohio State University, Columbus, OH, USA Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|