1
|
Chatterjee P, Ghosal P, Shit S, Biswas A, Mallik S, Allabun S, Othman M, Ali AH, Elshiekh E, Soufiene BO. Ribosomal computing: implementation of the computational method. BMC Bioinformatics 2024; 25:321. [PMID: 39358680 PMCID: PMC11448306 DOI: 10.1186/s12859-024-05945-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Several computational and mathematical models of protein synthesis have been explored to accomplish the quantitative analysis of protein synthesis components and polysome structure. The effect of gene sequence (coding and non-coding region) in protein synthesis, mutation in gene sequence, and functional model of ribosome needs to be explored to investigate the relationship among protein synthesis components further. Ribosomal computing is implemented by imitating the functional property of protein synthesis. RESULT In the proposed work, a general framework of ribosomal computing is demonstrated by developing a computational model to present the relationship between biological details of protein synthesis and computing principles. Here, mathematical abstractions are chosen carefully without probing into intricate chemical details of the micro-operations of protein synthesis for ease of understanding. This model demonstrates the cause and effect of ribosome stalling during protein synthesis and the relationship between functional protein and gene sequence. Moreover, it also reveals the computing nature of ribosome molecules and other protein synthesis components. The effect of gene mutation on protein synthesis is also explored in this model. CONCLUSION The computational model for ribosomal computing is implemented in this work. The proposed model demonstrates the relationship among gene sequences and protein synthesis components. This model also helps to implement a simulation environment (a simulator) for generating protein chains from gene sequences and can spot the problem during protein synthesis. Thus, this simulator can identify a disease that can happen due to a protein synthesis problem and suggest precautions for it.
Collapse
Affiliation(s)
| | | | - Sahadeb Shit
- Kazi Nazrul University, Asansol, West Bengal, India
| | | | - Saurav Mallik
- Department of Environmental Health, Harvard T H Chan School of Public Health, Boston, USA
- Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ, 02115, USA
| | - Sarah Allabun
- Department of Medical Education, College of Medicine, Princess Nourah bint Abdulrahman University, P.O.Box 84428, Riyadh, 11671, Saudi Arabia
| | - Manal Othman
- Department of Medical Education, College of Medicine, Princess Nourah bint Abdulrahman University, P.O.Box 84428, Riyadh, 11671, Saudi Arabia
| | - Almubarak Hassan Ali
- Division of Radiology, Department of Medicine, College of Medicine and surgery, King Khalid University (KKU), Abha, Aseer, Kingdom of Saudi Arabia
| | - E Elshiekh
- Department of Radiological Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Ben Othman Soufiene
- PRINCE Laboratory Research, ISITcom, Hammam Sousse, University of Sousse, Sousse, Tunisia.
| |
Collapse
|
2
|
Shah AN, Leesch F, Lorenzo-Orts L, Grundmann L, Novatchkova M, Haselbach D, Calo E, Pauli A. A dual ribosomal system in the zebrafish soma and germline. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.29.610041. [PMID: 39257781 PMCID: PMC11383705 DOI: 10.1101/2024.08.29.610041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Protein synthesis during vertebrate embryogenesis is driven by ribosomes of two distinct origins: maternal ribosomes synthesized during oogenesis and stored in the egg, and somatic ribosomes, produced by the developing embryo after zygotic genome activation (ZGA). In zebrafish, these two ribosome types are expressed from different genomic loci and also differ in their ribosomal RNA (rRNA) sequence. To characterize this dual ribosome system further, we examined the expression patterns of maternal and somatic rRNAs during embryogenesis and in adult tissues. We found that maternal rRNAs are not only expressed during oogenesis but are continuously produced in the zebrafish germline. Proteomic analyses of maternal and somatic ribosomes unveiled differences in core ribosomal protein composition. Most nucleotide differences between maternal and somatic rRNAs are located in the flexible, structurally not resolved expansion segments. Our in vivo data demonstrated that both maternal and somatic ribosomes can be translationally active in the embryo. Using transgenically tagged maternal or somatic ribosome subunits, we experimentally confirm the presence of hybrid 80S ribosomes composed of 40S and 60S subunits from both origins and demonstrate the preferential in vivo association of maternal ribosomes with germline-specific transcripts. Our study identifies a distinct type of ribosomes in the zebrafish germline and thus presents a foundation for future explorations into possible regulatory mechanisms and functional roles of heterogeneous ribosomes.
Collapse
Affiliation(s)
- Arish N. Shah
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| | - Friederike Leesch
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Laura Lorenzo-Orts
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Lorenz Grundmann
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Maria Novatchkova
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - David Haselbach
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Eliezer Calo
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, United States
| | - Andrea Pauli
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| |
Collapse
|
3
|
Holvec S, Barchet C, Lechner A, Fréchin L, De Silva SNT, Hazemann I, Wolff P, von Loeffelholz O, Klaholz BP. The structure of the human 80S ribosome at 1.9 Å resolution reveals the molecular role of chemical modifications and ions in RNA. Nat Struct Mol Biol 2024; 31:1251-1264. [PMID: 38844527 DOI: 10.1038/s41594-024-01274-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 03/14/2024] [Indexed: 08/17/2024]
Abstract
The ribosomal RNA of the human protein synthesis machinery comprises numerous chemical modifications that are introduced during ribosome biogenesis. Here we present the 1.9 Å resolution cryo electron microscopy structure of the 80S human ribosome resolving numerous new ribosomal RNA modifications and functionally important ions such as Zn2+, K+ and Mg2+, including their associated individual water molecules. The 2'-O-methylation, pseudo-uridine and base modifications were confirmed by mass spectrometry, resulting in a complete investigation of the >230 sites, many of which could not be addressed previously. They choreograph key interactions within the RNA and at the interface with proteins, including at the ribosomal subunit interfaces of the fully assembled 80S ribosome. Uridine isomerization turns out to be a key mechanism for U-A base pair stabilization in RNA in general. The structural environment of chemical modifications and ions is primordial for the RNA architecture of the mature human ribosome, hence providing a structural framework to address their role in healthy states and in human diseases.
Collapse
Affiliation(s)
- Samuel Holvec
- Centre for Integrative Biology, Department of Integrated Structural Biology, Institute of Genetics and of Molecular and Cellular Biology, Illkirch, France
- Centre National de la Recherche Scientifique UMR, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - Charles Barchet
- Centre for Integrative Biology, Department of Integrated Structural Biology, Institute of Genetics and of Molecular and Cellular Biology, Illkirch, France
- Centre National de la Recherche Scientifique UMR, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - Antony Lechner
- Centre for Integrative Biology, Department of Integrated Structural Biology, Institute of Genetics and of Molecular and Cellular Biology, Illkirch, France
- Centre National de la Recherche Scientifique UMR, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch, France
- Université de Strasbourg, Strasbourg, France
- Architecture et Réactivité de l'ARN, CNRS UPR9002, Institute of Molecular and Cellular Biology, Université de Strasbourg, Strasbourg, France
| | - Léo Fréchin
- Centre for Integrative Biology, Department of Integrated Structural Biology, Institute of Genetics and of Molecular and Cellular Biology, Illkirch, France
- Centre National de la Recherche Scientifique UMR, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - S Nimali T De Silva
- Centre for Integrative Biology, Department of Integrated Structural Biology, Institute of Genetics and of Molecular and Cellular Biology, Illkirch, France
- Centre National de la Recherche Scientifique UMR, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - Isabelle Hazemann
- Centre for Integrative Biology, Department of Integrated Structural Biology, Institute of Genetics and of Molecular and Cellular Biology, Illkirch, France
- Centre National de la Recherche Scientifique UMR, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - Philippe Wolff
- Architecture et Réactivité de l'ARN, CNRS UPR9002, Institute of Molecular and Cellular Biology, Université de Strasbourg, Strasbourg, France
| | - Ottilie von Loeffelholz
- Centre for Integrative Biology, Department of Integrated Structural Biology, Institute of Genetics and of Molecular and Cellular Biology, Illkirch, France
- Centre National de la Recherche Scientifique UMR, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - Bruno P Klaholz
- Centre for Integrative Biology, Department of Integrated Structural Biology, Institute of Genetics and of Molecular and Cellular Biology, Illkirch, France.
- Centre National de la Recherche Scientifique UMR, Illkirch, France.
- Institut National de la Santé et de la Recherche Médicale, Illkirch, France.
- Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
4
|
Barchet C, Fréchin L, Holvec S, Hazemann I, von Loeffelholz O, Klaholz BP. Focused classifications and refinements in high-resolution single particle cryo-EM analysis. J Struct Biol 2023; 215:108015. [PMID: 37659578 DOI: 10.1016/j.jsb.2023.108015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 06/27/2023] [Accepted: 08/17/2023] [Indexed: 09/04/2023]
Abstract
Recent advances in cryo electron microscopy (cryo-EM) and image processing provide new opportunities to analyse drug targets at high resolution. However, structural heterogeneity limits resolution in many practical cases, hence restricting the level at which structural details can be analysed and drug design be performed. As structural disorder is not spread throughout the entire structure of a given macromolecular complex but instead is found in certain regions that move with respect to others and covering molecular scales from domain conformational changes up to the level of side chain conformations in ligand binding pockets, it is possible to focus the attention on those regions and the associated relative movements. Here we show how the usage of focused classifications and refinements provide insights into global conformational arrangements, exemplified on the human ribosome and on the cannabinoid G protein coupled receptor (GPCR), and how they can improve the local map resolution from an essentially disordered region to the 3-4 Å and finally to the 2 Å resolution range. A systematic analysis with variable spherical masks during focused refinement is presented showing that the choice of an optimal mask size helps refining to high resolution. This study covers several practical approaches on 4 examples illustrating how important mask size & shape and including neighbouring structural elements are for a focused analysis of a macromolecular complex. Such methods will be crucial for cryo-EM structure-based drug design of various medical targets and are applicable to single particle cryo-EM and electron tomography data.
Collapse
Affiliation(s)
- Charles Barchet
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, Illkirch, France; Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale (Inserm) U964, Illkirch, France; Université de Strasbourg, Strasbourg, France
| | - Léo Fréchin
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, Illkirch, France; Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale (Inserm) U964, Illkirch, France; Université de Strasbourg, Strasbourg, France
| | - Samuel Holvec
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, Illkirch, France; Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale (Inserm) U964, Illkirch, France; Université de Strasbourg, Strasbourg, France
| | - Isabelle Hazemann
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, Illkirch, France; Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale (Inserm) U964, Illkirch, France; Université de Strasbourg, Strasbourg, France
| | - Ottilie von Loeffelholz
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, Illkirch, France; Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale (Inserm) U964, Illkirch, France; Université de Strasbourg, Strasbourg, France
| | - Bruno P Klaholz
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, Illkirch, France; Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale (Inserm) U964, Illkirch, France; Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
5
|
Grove DJ, Levine DJ, Kearse MG. Increased levels of eIF2A inhibit translation by sequestering 40S ribosomal subunits. Nucleic Acids Res 2023; 51:9983-10000. [PMID: 37602404 PMCID: PMC10570035 DOI: 10.1093/nar/gkad683] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 08/03/2023] [Accepted: 08/09/2023] [Indexed: 08/22/2023] Open
Abstract
eIF2A was the first eukaryotic initiator tRNA carrier discovered but its exact function has remained enigmatic. Uncharacteristic of translation initiation factors, eIF2A is reported to be non-cytosolic in multiple human cancer cell lines. Attempts to study eIF2A mechanistically have been limited by the inability to achieve high yield of soluble recombinant protein. Here, we developed a purification paradigm that yields ∼360-fold and ∼6000-fold more recombinant human eIF2A from Escherichia coli and insect cells, respectively, than previous reports. Using a mammalian in vitro translation system, we found that increased levels of recombinant human eIF2A inhibit translation of multiple reporter mRNAs, including those that are translated by cognate and near-cognate start codons, and does so prior to start codon recognition. eIF2A also inhibited translation directed by all four types of cap-independent viral IRESs, including the CrPV IGR IRES that does not require initiation factors or initiator tRNA, suggesting excess eIF2A sequesters 40S subunits. Supplementation with additional 40S subunits prevented eIF2A-mediated inhibition and pull-down assays demonstrated direct binding between recombinant eIF2A and purified 40S subunits. These data support a model that eIF2A must be kept away from the translation machinery to avoid sequestering 40S ribosomal subunits.
Collapse
Affiliation(s)
- Daisy J Grove
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
- Department of Biological Chemistry and Pharmacology, Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Daniel J Levine
- Department of Biological Chemistry and Pharmacology, Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Michael G Kearse
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
- Department of Biological Chemistry and Pharmacology, Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
6
|
Fréchin L, Holvec S, von Loeffelholz O, Hazemann I, Klaholz BP. High-resolution cryo-EM performance comparison of two latest-generation cryo electron microscopes on the human ribosome. J Struct Biol 2023; 215:107905. [PMID: 36241135 DOI: 10.1016/j.jsb.2022.107905] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 09/23/2022] [Accepted: 10/05/2022] [Indexed: 11/29/2022]
Abstract
Recent technological advances in cryo electron microscopy (cryo-EM) have led to new opportunities in the structural biology field. Here we benchmark the performance of two 300 kV latest-generation cryo electron microscopes, Titan Krios G4 from Thermofisher Scientific and CRYO ARM 300 from Jeol, with regards to achieving high resolution single particle reconstructions on a real case sample. We compare potentially limiting factors such as drift rates, astigmatism & coma aberrations and performance during image processing and show that both microscopes, while comprising rather different technical setups & parameter settings and equipped with different types of energy filters & cameras, achieve a resolution of around 2 Å on the human ribosome, a non-symmetric object which constitutes a key drug target. Astigmatism correction, CTF refinement and correction of higher order aberrations through refinement in separate optics groups helped to account for astigmatism/coma caused by beam tilting during multi-spot and multi-hole acquisition in neighbouring holes without stage movement. The obtained maps resolve Mg2+ ions, water molecules, inhibitors and side-chains including chemical modifications. The fact that both instruments can resolve such detailed features will greatly facilitate understanding molecular mechanisms of various targets and helps in cryo-EM structure based drug design. The methods and analysis tools used here will be useful also to characterize existing instruments and optimize data acquisition settings and are applicable broadly to other drug targets in structural biology.
Collapse
Affiliation(s)
- Léo Fréchin
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, Illkirch, France; Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale (Inserm) U964, Illkirch, France; Université de Strasbourg, Strasbourg, France
| | - Samuel Holvec
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, Illkirch, France; Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale (Inserm) U964, Illkirch, France; Université de Strasbourg, Strasbourg, France
| | - Ottilie von Loeffelholz
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, Illkirch, France; Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale (Inserm) U964, Illkirch, France; Université de Strasbourg, Strasbourg, France
| | - Isabelle Hazemann
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, Illkirch, France; Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale (Inserm) U964, Illkirch, France; Université de Strasbourg, Strasbourg, France
| | - Bruno P Klaholz
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, Illkirch, France; Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale (Inserm) U964, Illkirch, France; Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
7
|
Elliff J, Biswas A, Roshan P, Kuppa S, Patterson A, Mattice J, Chinnaraj M, Burd R, Walker SE, Pozzi N, Antony E, Bothner B, Origanti S. Dynamic states of eIF6 and SDS variants modulate interactions with uL14 of the 60S ribosomal subunit. Nucleic Acids Res 2023; 51:1803-1822. [PMID: 36651285 PMCID: PMC9976893 DOI: 10.1093/nar/gkac1266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 01/19/2023] Open
Abstract
Assembly of ribosomal subunits into active ribosomal complexes is integral to protein synthesis. Release of eIF6 from the 60S ribosomal subunit primes 60S to associate with the 40S subunit and engage in translation. The dynamics of eIF6 interaction with the uL14 (RPL23) interface of 60S and its perturbation by somatic mutations acquired in Shwachman-Diamond Syndrome (SDS) is yet to be clearly understood. Here, by using a modified strategy to obtain high yields of recombinant human eIF6 we have uncovered the critical interface entailing eight key residues in the C-tail of uL14 that is essential for physical interactions between 60S and eIF6. Disruption of the complementary binding interface by conformational changes in eIF6 disease variants provide a mechanism for weakened interactions of variants with the 60S. Hydrogen-deuterium exchange mass spectrometry (HDX-MS) analyses uncovered dynamic configurational rearrangements in eIF6 induced by binding to uL14 and exposed an allosteric interface regulated by the C-tail of eIF6. Disrupting key residues in the eIF6-60S binding interface markedly limits proliferation of cancer cells, which highlights the significance of therapeutically targeting this interface. Establishing these key interfaces thus provide a therapeutic framework for targeting eIF6 in cancers and SDS.
Collapse
Affiliation(s)
- Jonah Elliff
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA
- Department of Immunology, The University of Iowa, Iowa City, IA 52242, USA
| | - Aparna Biswas
- Department of Biology, Saint Louis University, St. Louis, MO 63103, USA
| | - Poonam Roshan
- Department of Biology, Saint Louis University, St. Louis, MO 63103, USA
| | - Sahiti Kuppa
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, MO 63104, USA
| | - Angela Patterson
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Jenna Mattice
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Mathivanan Chinnaraj
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, MO 63104, USA
| | - Ryan Burd
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA
| | - Sarah E Walker
- Department of Biological Sciences, State University of New York, Buffalo, NY 14260, USA
| | - Nicola Pozzi
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, MO 63104, USA
| | - Edwin Antony
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, MO 63104, USA
| | - Brian Bothner
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Sofia Origanti
- Department of Biology, Saint Louis University, St. Louis, MO 63103, USA
| |
Collapse
|
8
|
Leesch F, Lorenzo-Orts L, Pribitzer C, Grishkovskaya I, Roehsner J, Chugunova A, Matzinger M, Roitinger E, Belačić K, Kandolf S, Lin TY, Mechtler K, Meinhart A, Haselbach D, Pauli A. A molecular network of conserved factors keeps ribosomes dormant in the egg. Nature 2023; 613:712-720. [PMID: 36653451 PMCID: PMC7614339 DOI: 10.1038/s41586-022-05623-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 12/02/2022] [Indexed: 01/20/2023]
Abstract
Ribosomes are produced in large quantities during oogenesis and are stored in the egg. However, the egg and early embryo are translationally repressed1-4. Here, using mass spectrometry and cryo-electron microscopy analyses of ribosomes isolated from zebrafish (Danio rerio) and Xenopus laevis eggs and embryos, we provide molecular evidence that ribosomes transition from a dormant state to an active state during the first hours of embryogenesis. Dormant ribosomes are associated with four conserved factors that form two modules, consisting of Habp4-eEF2 and death associated protein 1b (Dap1b) or Dap in complex with eIF5a. Both modules occupy functionally important sites and act together to stabilize ribosomes and repress translation. Dap1b (also known as Dapl1 in mammals) is a newly discovered translational inhibitor that stably inserts into the polypeptide exit tunnel. Addition of recombinant zebrafish Dap1b protein is sufficient to block translation and reconstitute the dormant egg ribosome state in a mammalian translation extract in vitro. Thus, a developmentally programmed, conserved ribosome state has a key role in ribosome storage and translational repression in the egg.
Collapse
Affiliation(s)
- Friederike Leesch
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Laura Lorenzo-Orts
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria.
| | - Carina Pribitzer
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Irina Grishkovskaya
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Josef Roehsner
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Anastasia Chugunova
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Manuel Matzinger
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Elisabeth Roitinger
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Katarina Belačić
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Susanne Kandolf
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Tzi-Yang Lin
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Karl Mechtler
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Anton Meinhart
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - David Haselbach
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria.
| | - Andrea Pauli
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria.
| |
Collapse
|
9
|
Transcriptome Sequencing and Bioinformatics Analysis of Ovarian Tissues from Pomacea canaliculata in Guangdong and Hunan. Mediators Inflamm 2022; 2022:3917036. [PMID: 35431656 PMCID: PMC9007660 DOI: 10.1155/2022/3917036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/04/2022] [Accepted: 03/21/2022] [Indexed: 11/17/2022] Open
Abstract
In this study, the fecundity of Pomacea canaliculata was studied by collecting egg masses from Guangdong and Hunan using field egg collection and indoor propagation. Through high-throughput RNA sequencing (RNA-seq), we analyzed the ovarian tissue of the snails in Guangdong (G_O) and those in Hunan (H_O) using comparative analysis of transcription. Moreover, we used bioinformatics methods to screen the key pathways and genes that affect the fecundity of snails from the two locations. Results. The results showed that the absolute fecundity and weight-relative fecundity of Pomacea canaliculata in Guangdong were significantly higher than those in Hunan. We found 1,546 differential genes through differential gene screening (528 genes upregulated in snails from Guangdong and 1018 in snails from Hunan). The ribosomal signaling pathway and rpl23a, uba52 are critical pathways and essential genes that affect the fecundity of snails. Conclusions. The 27 differential genes in the ribosome signaling pathway, collected from H_O, were all downregulated. As a result, ovarian tissue protein synthesis is impaired, which is an important mechanism that affects snails' ability to reproduce.
Collapse
|
10
|
Trainor BM, Pestov DG, Shcherbik N. Development, validation, and application of the ribosome separation and reconstitution system for protein translation in vitro. RNA (NEW YORK, N.Y.) 2021; 27:1602-1616. [PMID: 34452990 PMCID: PMC8594471 DOI: 10.1261/rna.078852.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
Stress-induced molecular damage to ribosomes can impact protein synthesis in cells, but cell-based assays do not provide a clear way to distinguish the effects of ribosome damage from stress responses and damage to other parts of the translation machinery. Here we describe a detailed protocol for the separation of yeast ribosomes from other translational machinery constituents, followed by reconstitution of the translation mixture in vitro. This technique, which we refer to as ribosome separation and reconstitution (RSR), allows chemical modifications of yeast ribosomes without compromising other key translational components. In addition to the characterization of stress-induced ribosome damage, RSR can be applied to a broad range of experimental problems in studies of yeast translation.
Collapse
Affiliation(s)
- Brandon M Trainor
- Department of Cell Biology and Neuroscience, Rowan University, School of Osteopathic Medicine, Stratford, New Jersey 08084, USA
- Graduate School of Biomedical Sciences, Rowan University, Stratford, New Jersey 08084, USA
| | - Dimitri G Pestov
- Department of Cell Biology and Neuroscience, Rowan University, School of Osteopathic Medicine, Stratford, New Jersey 08084, USA
| | - Natalia Shcherbik
- Department of Cell Biology and Neuroscience, Rowan University, School of Osteopathic Medicine, Stratford, New Jersey 08084, USA
| |
Collapse
|
11
|
Mendez AS, Ly M, González-Sánchez AM, Hartenian E, Ingolia NT, Cate JH, Glaunsinger BA. The N-terminal domain of SARS-CoV-2 nsp1 plays key roles in suppression of cellular gene expression and preservation of viral gene expression. Cell Rep 2021; 37:109841. [PMID: 34624207 PMCID: PMC8481097 DOI: 10.1016/j.celrep.2021.109841] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/16/2021] [Accepted: 09/24/2021] [Indexed: 01/23/2023] Open
Abstract
Nonstructural protein 1 (nsp1) is a coronavirus (CoV) virulence factor that restricts cellular gene expression by inhibiting translation through blocking the mRNA entry channel of the 40S ribosomal subunit and by promoting mRNA degradation. We perform a detailed structure-guided mutational analysis of severe acute respiratory syndrome (SARS)-CoV-2 nsp1, revealing insights into how it coordinates these activities against host but not viral mRNA. We find that residues in the N-terminal and central regions of nsp1 not involved in docking into the 40S mRNA entry channel nonetheless stabilize its association with the ribosome and mRNA, both enhancing its restriction of host gene expression and enabling mRNA containing the SARS-CoV-2 leader sequence to escape translational repression. These data support a model in which viral mRNA binding functionally alters the association of nsp1 with the ribosome, which has implications for drug targeting and understanding how engineered or emerging mutations in SARS-CoV-2 nsp1 could attenuate the virus.
Collapse
Affiliation(s)
- Aaron S Mendez
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Michael Ly
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Angélica M González-Sánchez
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA; Comparative Biochemistry Graduate Program, University of California, Berkeley, Berkeley, CA, USA
| | - Ella Hartenian
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Nicholas T Ingolia
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA; California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA
| | - Jamie H Cate
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA; California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA; Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA; Molecular Biophysics & Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Britt A Glaunsinger
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA; California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA; Howard Hughes Medical Institute, Berkeley, CA, USA.
| |
Collapse
|
12
|
Soni K, Kempf G, Manalastas-Cantos K, Hendricks A, Flemming D, Guizetti J, Simon B, Frischknecht F, Svergun DI, Wild K, Sinning I. Structural analysis of the SRP Alu domain from Plasmodium falciparum reveals a non-canonical open conformation. Commun Biol 2021; 4:600. [PMID: 34017052 PMCID: PMC8137916 DOI: 10.1038/s42003-021-02132-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 04/22/2021] [Indexed: 12/25/2022] Open
Abstract
The eukaryotic signal recognition particle (SRP) contains an Alu domain, which docks into the factor binding site of translating ribosomes and confers translation retardation. The canonical Alu domain consists of the SRP9/14 protein heterodimer and a tRNA-like folded Alu RNA that adopts a strictly 'closed' conformation involving a loop-loop pseudoknot. Here, we study the structure of the Alu domain from Plasmodium falciparum (PfAlu), a divergent apicomplexan protozoan that causes human malaria. Using NMR, SAXS and cryo-EM analyses, we show that, in contrast to its prokaryotic and eukaryotic counterparts, the PfAlu domain adopts an 'open' Y-shaped conformation. We show that cytoplasmic P. falciparum ribosomes are non-discriminative and recognize both the open PfAlu and closed human Alu domains with nanomolar affinity. In contrast, human ribosomes do not provide high affinity binding sites for either of the Alu domains. Our analyses extend the structural database of Alu domains to the protozoan species and reveal species-specific differences in the recognition of SRP Alu domains by ribosomes.
Collapse
Affiliation(s)
- Komal Soni
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Georg Kempf
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | | | - Astrid Hendricks
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Dirk Flemming
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Julien Guizetti
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Bernd Simon
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Friedrich Frischknecht
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Klemens Wild
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Irmgard Sinning
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany.
| |
Collapse
|
13
|
Bhaskar V, Desogus J, Graff-Meyer A, Schenk AD, Cavadini S, Chao JA. Dynamic association of human Ebp1 with the ribosome. RNA (NEW YORK, N.Y.) 2021; 27:411-419. [PMID: 33479117 PMCID: PMC7962488 DOI: 10.1261/rna.077602.120] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 01/02/2021] [Indexed: 05/09/2023]
Abstract
Ribosomes are the macromolecular machines at the heart of protein synthesis; however, their function can be modulated by a variety of additional protein factors that directly interact with them. Here, we report the cryo-EM structure of human Ebp1 (p48 isoform) bound to the human 80S ribosome at 3.3 Å resolution. Ebp1 binds in the vicinity of the peptide exit tunnel on the 80S ribosome, and this binding is enhanced upon puromycin-mediated translational inhibition. The association of Ebp1 with the 80S ribosome centers around its interaction with ribosomal proteins eL19 and uL23 and the 28S rRNA. Further analysis of the Ebp1-ribosome complex suggests that Ebp1 can rotate around its insert domain, which may enable it to assume a wide range of conformations while maintaining its interaction with the ribosome. Structurally, Ebp1 shares homology with the methionine aminopeptidase 2 family of enzymes; therefore, this inherent flexibility may also be conserved.
Collapse
Affiliation(s)
- Varun Bhaskar
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland
| | - Jessica Desogus
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland
- University of Basel, CH-4003 Basel, Switzerland
| | | | - Andreas D Schenk
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland
| | - Simone Cavadini
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland
| | - Jeffrey A Chao
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland
| |
Collapse
|
14
|
Wild K, Aleksić M, Lapouge K, Juaire KD, Flemming D, Pfeffer S, Sinning I. MetAP-like Ebp1 occupies the human ribosomal tunnel exit and recruits flexible rRNA expansion segments. Nat Commun 2020; 11:776. [PMID: 32034140 PMCID: PMC7005732 DOI: 10.1038/s41467-020-14603-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 01/20/2020] [Indexed: 12/13/2022] Open
Abstract
Human Ebp1 is a member of the proliferation-associated 2G4 (PA2G4) family and plays an important role in cancer regulation. Ebp1 shares the methionine aminopeptidase (MetAP) fold and binds to mature 80S ribosomes for translational control. Here, we present a cryo-EM single particle analysis reconstruction of Ebp1 bound to non-translating human 80S ribosomes at a resolution range from 3.3 to ~8 Å. Ebp1 blocks the tunnel exit with major interactions to the general uL23/uL29 docking site for nascent chain-associated factors complemented by eukaryote-specific eL19 and rRNA helix H59. H59 is defined as dynamic adaptor undergoing significant remodeling upon Ebp1 binding. Ebp1 recruits rRNA expansion segment ES27L to the tunnel exit via specific interactions with rRNA consensus sequences. The Ebp1-ribosome complex serves as a template for MetAP binding and provides insights into the structural principles for spatial coordination of co-translational events and molecular triage at the ribosomal tunnel exit. The ErbB3 receptor binding protein Ebp1 binds to ribosomes and is linked to translational control. Here, the authors present the cryo-EM structure of human Ebp1 bound to a non-translating 80S ribosome and find that Ebp1 blocks the tunnel exit and recruits the rRNA expansion segment ES27L to the tunnel exit.
Collapse
Affiliation(s)
- Klemens Wild
- Biochemiezentrum der Universität Heidelberg (BZH), INF 328, D-69120, Heidelberg, Germany
| | - Milan Aleksić
- Zentrum für Molekulare Biologie der Universität Heidelberg, INF282, D-69120, Heidelberg, Germany
| | - Karine Lapouge
- Biochemiezentrum der Universität Heidelberg (BZH), INF 328, D-69120, Heidelberg, Germany
| | - Keven D Juaire
- Biochemiezentrum der Universität Heidelberg (BZH), INF 328, D-69120, Heidelberg, Germany
| | - Dirk Flemming
- Biochemiezentrum der Universität Heidelberg (BZH), INF 328, D-69120, Heidelberg, Germany
| | - Stefan Pfeffer
- Zentrum für Molekulare Biologie der Universität Heidelberg, INF282, D-69120, Heidelberg, Germany.
| | - Irmgard Sinning
- Biochemiezentrum der Universität Heidelberg (BZH), INF 328, D-69120, Heidelberg, Germany.
| |
Collapse
|
15
|
Harding HP, Ordonez A, Allen F, Parts L, Inglis AJ, Williams RL, Ron D. The ribosomal P-stalk couples amino acid starvation to GCN2 activation in mammalian cells. eLife 2019; 8:50149. [PMID: 31749445 PMCID: PMC6919976 DOI: 10.7554/elife.50149] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 11/20/2019] [Indexed: 12/14/2022] Open
Abstract
The eukaryotic translation initiation factor 2α (eIF2α) kinase GCN2 is activated by amino acid starvation to elicit a rectifying physiological program known as the Integrated Stress Response (ISR). A role for uncharged tRNAs as activating ligands of yeast GCN2 is supported experimentally. However, mouse GCN2 activation has recently been observed in circumstances associated with ribosome stalling with no global increase in uncharged tRNAs. We report on a mammalian CHO cell-based CRISPR-Cas9 mutagenesis screen for genes that contribute to ISR activation by amino acid starvation. Disruption of genes encoding components of the ribosome P-stalk, uL10 and P1, selectively attenuated GCN2-mediated ISR activation by amino acid starvation or interference with tRNA charging without affecting the endoplasmic reticulum unfolded protein stress-induced ISR, mediated by the related eIF2α kinase PERK. Wildtype ribosomes isolated from CHO cells, but not those with P-stalk lesions, stimulated GCN2-dependent eIF2α phosphorylation in vitro. These observations support a model whereby lack of a cognate charged tRNA exposes a latent capacity of the ribosome P-stalk to activate GCN2 in cells and help explain the emerging link between ribosome stalling and ISR activation.
Collapse
Affiliation(s)
- Heather P Harding
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Adriana Ordonez
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Felicity Allen
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Leopold Parts
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Alison J Inglis
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Roger L Williams
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - David Ron
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
16
|
Wild K, Juaire KD, Soni K, Shanmuganathan V, Hendricks A, Segnitz B, Beckmann R, Sinning I. Reconstitution of the human SRP system and quantitative and systematic analysis of its ribosome interactions. Nucleic Acids Res 2019; 47:3184-3196. [PMID: 30649417 PMCID: PMC6451106 DOI: 10.1093/nar/gky1324] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 12/20/2018] [Accepted: 01/02/2019] [Indexed: 12/22/2022] Open
Abstract
Co-translational protein targeting to membranes depends on the regulated interaction of two ribonucleoprotein particles (RNPs): the ribosome and the signal recognition particle (SRP). Human SRP is composed of an SRP RNA and six proteins with the SRP GTPase SRP54 forming the targeting complex with the heterodimeric SRP receptor (SRαβ) at the endoplasmic reticulum membrane. While detailed structural and functional data are available especially for the bacterial homologs, the analysis of human SRP was impeded by the unavailability of recombinant SRP. Here, we describe the large-scale production of all human SRP components and the reconstitution of homogeneous SRP and SR complexes. Binding to human ribosomes is determined by microscale thermophoresis for individual components, assembly intermediates and entire SRP, and binding affinities are correlated with structural information available for all ribosomal contacts. We show that SRP RNA does not bind to the ribosome, while SRP binds with nanomolar affinity involving a two-step mechanism of the key-player SRP54. Ultrasensitive binding of SRP68/72 indicates avidity by multiple binding sites that are dominated by the C-terminus of SRP72. Our data extend the experimental basis to understand the mechanistic principles of co-translational targeting in mammals and may guide analyses of complex RNP–RNP interactions in general.
Collapse
Affiliation(s)
- Klemens Wild
- Heidelberg University Biochemistry Center (BZH), INF 328, D-69120 Heidelberg, Germany
| | - Keven D Juaire
- Heidelberg University Biochemistry Center (BZH), INF 328, D-69120 Heidelberg, Germany
| | - Komal Soni
- Heidelberg University Biochemistry Center (BZH), INF 328, D-69120 Heidelberg, Germany
| | - Vivekanandan Shanmuganathan
- Gene Center and Center for Integrated Protein Science Munich, Department of Biochemistry, University of Munich, Feodor-Lynen-Str. 25, D-81377 Munich, Germany
| | - Astrid Hendricks
- Heidelberg University Biochemistry Center (BZH), INF 328, D-69120 Heidelberg, Germany
| | - Bernd Segnitz
- Heidelberg University Biochemistry Center (BZH), INF 328, D-69120 Heidelberg, Germany
| | - Roland Beckmann
- Gene Center and Center for Integrated Protein Science Munich, Department of Biochemistry, University of Munich, Feodor-Lynen-Str. 25, D-81377 Munich, Germany
| | - Irmgard Sinning
- Heidelberg University Biochemistry Center (BZH), INF 328, D-69120 Heidelberg, Germany
| |
Collapse
|
17
|
Fission Yeast Asc1 Stabilizes the Interaction between Eukaryotic Initiation Factor 3a and Rps0A/uS2 for Protein Synthesis. Mol Cell Biol 2019; 39:MCB.00161-19. [PMID: 31285271 DOI: 10.1128/mcb.00161-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/29/2019] [Indexed: 12/17/2022] Open
Abstract
Aminoacyl-tRNA synthetase cofactors play important roles in coordinating aminoacylation and translation. In this study, we describe an additional function of the fission yeast aminoacyl-tRNA synthetase cofactor 1 (Asc1) in translation. We found that Asc1 directly binds and stabilizes the interaction between small ribosomal protein Rps0A/uS2 and eukaryotic initiation factor 3a (eIF3a). In the absence of Asc1, the interaction between eIF3a and Rps0A/uS2 was compromised. The interaction between Rps0A/uS2 and eIF3a mediated the 40S ribosomal subunit binding of eIF3 in 43S preinitiation complex formation to stimulate translation initiation. Keeping with this idea, in an asc1 mutant, the association of mRNA with the 40S ribosomal subunit was defective and protein synthesis was compromised. To show that Asc1 is directly involved in translation, we demonstrate that the addition of recombinant Asc1 is able to rescue the translation defect of the asc1 mutant in a cell-free system. Furthermore, this function of Asc1 is likely to be evolutionarily conserved, as a similar interaction with eIF3a and Rps0A/uS2 could be identified in the budding yeast Saccharomyces cerevisiae and human aminoacyl-tRNA synthetase cofactors. Together, these results identify a function of aminoacyl-tRNA synthetase cofactors in translation preinitiation complex formation, which adds significantly to the expanded functions associated with aminoacyl-tRNA synthetases and their cofactors.
Collapse
|
18
|
Kute PM, Ramakrishna S, Neelagandan N, Chattarji S, Muddashetty RS. NMDAR mediated translation at the synapse is regulated by MOV10 and FMRP. Mol Brain 2019; 12:65. [PMID: 31291981 PMCID: PMC6617594 DOI: 10.1186/s13041-019-0473-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/08/2019] [Indexed: 01/08/2023] Open
Abstract
Protein synthesis is crucial for maintaining synaptic plasticity and synaptic signalling. Here we have attempted to understand the role of RNA binding proteins, Fragile X Mental Retardation Protein (FMRP) and Moloney Leukemia Virus 10 (MOV10) protein in N-Methyl-D-Aspartate Receptor (NMDAR) mediated translation regulation. We show that FMRP is required for translation downstream of NMDAR stimulation and MOV10 is the key specificity factor in this process. In rat cortical synaptoneurosomes, MOV10 in association with FMRP and Argonaute 2 (AGO2) forms the inhibitory complex on a subset of NMDAR responsive mRNAs. On NMDAR stimulation, MOV10 dissociates from AGO2 and promotes the translation of its target mRNAs. FMRP is required to form MOV10-AGO2 inhibitory complex and to promote translation of MOV10 associated mRNAs. Phosphorylation of FMRP appears to be the potential switch for NMDAR mediated translation and in the absence of FMRP, the distinct translation response to NMDAR stimulation is lost. Thus, FMRP and MOV10 have an important regulatory role in NMDAR mediated translation at the synapse.
Collapse
Affiliation(s)
- Preeti Madhav Kute
- Centre for Brain Development and Repair (CBDR), Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, 560065, India.,School of Chemical and Biotechnology, Shanmugha Arts, Science and Technology & Research Academy (SASTRA) University, Thanjavur, 613401, India
| | - Sarayu Ramakrishna
- Centre for Brain Development and Repair (CBDR), Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, 560065, India.,The University of Trans-Disciplinary Health Sciences and Technology, Bangalore, 560064, India
| | - Nagammal Neelagandan
- Centre for Brain Development and Repair (CBDR), Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, 560065, India
| | - Sumantra Chattarji
- Centre for Brain Development and Repair (CBDR), Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, 560065, India.,National Centre for Biological Sciences (NCBS), Bangalore, 560065, India.,Centre for Discovery Brain Sciences, Deanery of Biomedical Sciences, University of Edinburgh, Edinburgh, EH89XD, UK
| | - Ravi S Muddashetty
- Centre for Brain Development and Repair (CBDR), Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, 560065, India.
| |
Collapse
|
19
|
Purification and characterization of native human elongation factor 2. Protein Expr Purif 2019; 158:15-19. [PMID: 30742898 DOI: 10.1016/j.pep.2019.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/04/2018] [Accepted: 02/05/2019] [Indexed: 11/20/2022]
Abstract
Human elongation factor 2 is the translocase that is responsible for the movement of tRNA from the A- to P- and P- to E-site on the ribosome during the elongation phase of translation. Being a vital factor of protein biosynthesis, its function is highly controlled and regulated. It has been implicated in numerous diseases and pathologies, and as such it is important to have a source for isolated pure and active protein for biomedical and biochemical studies. Here we report development of a purification protocol for native human elongation factor 2 from HEK-293S cells. The resulting protein is active, pure, has an intact diphtamide and is obtainable in yields suitable for functional and structural studies.
Collapse
|
20
|
Collins JC, Ghalei H, Doherty JR, Huang H, Culver RN, Karbstein K. Ribosome biogenesis factor Ltv1 chaperones the assembly of the small subunit head. J Cell Biol 2018; 217:4141-4154. [PMID: 30348748 PMCID: PMC6279377 DOI: 10.1083/jcb.201804163] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 08/17/2018] [Accepted: 09/20/2018] [Indexed: 11/22/2022] Open
Abstract
Collins et al. use yeast genetics, biochemistry, and structure probing to dissect the role of the assembly factor Ltv1 in 40S ribosome maturation. Ribosomes from Ltv1-deficient cells have substoichiometric amounts of Rps10 and Asc1 and misfolded head rRNA, leading to defects in translational fidelity and ribosome-mediated RNA quality control, demonstrating a role for Ltv1 in chaperoning the assembly of the subunit head. The correct assembly of ribosomes from ribosomal RNAs (rRNAs) and ribosomal proteins (RPs) is critical, as indicated by the diseases caused by RP haploinsufficiency and loss of RP stoichiometry in cancer cells. Nevertheless, how assembly of each RP is ensured remains poorly understood. We use yeast genetics, biochemistry, and structure probing to show that the assembly factor Ltv1 facilitates the incorporation of Rps3, Rps10, and Asc1/RACK1 into the small ribosomal subunit head. Ribosomes from Ltv1-deficient yeast have substoichiometric amounts of Rps10 and Asc1 and show defects in translational fidelity and ribosome-mediated RNA quality control. These defects provide a growth advantage under some conditions but sensitize the cells to oxidative stress. Intriguingly, relative to glioma cell lines, breast cancer cells have reduced levels of LTV1 and produce ribosomes lacking RPS3, RPS10, and RACK1. These data describe a mechanism to ensure RP assembly and demonstrate how cancer cells circumvent this mechanism to generate diverse ribosome populations that can promote survival under stress.
Collapse
Affiliation(s)
- Jason C Collins
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, FL
| | - Homa Ghalei
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, FL
| | - Joanne R Doherty
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, FL
| | - Haina Huang
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, FL
| | - Rebecca N Culver
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, FL
| | - Katrin Karbstein
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, FL
| |
Collapse
|
21
|
Muto A, Sugihara Y, Shibakawa M, Oshima K, Matsuda T, Nadano D. The mRNA-binding protein Serbp1 as an auxiliary protein associated with mammalian cytoplasmic ribosomes. Cell Biochem Funct 2018; 36:312-322. [PMID: 30039520 DOI: 10.1002/cbf.3350] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 04/23/2018] [Accepted: 06/26/2018] [Indexed: 01/27/2023]
Abstract
While transcription plays an obviously important role in gene expression, translation has recently been emerged as a key step that defines the composition and quality of the proteome in the cell of higher eukaryotes including mammals. Selective translation is supposed to be regulated by the structural heterogeneity of cytoplasmic ribosomes including differences in protein composition and chemical modifications. However, the current knowledge on the heterogeneity of mammalian ribosomes is limited. Here, we report mammalian Serbp1 as a ribosome-associated protein. The translated products of Serbp1 gene, including the longest isoform, were found to be localized in the nucleolus as well as in the cytoplasm. Subcellular fractionation indicated that most of cytoplasmic Serbp1 molecules were precipitated by ultracentrifugation. Proteomic analysis identified Serbp1 in the cytoplasmic ribosomes of the rodent testis. Polysome profiling suggested that Serbp1, as a component of the small 40S subunit, was included in translating ribosomes (polysomes). Cosedimentation of Serbp1 with the 40S subunit was observed after dissociation of the ribosomal subunits. Serbp1 was also included in the ribosomes of human cancer cells, which may lead to a mechanistic understanding of an emerging link between Serbp1 and tumour progression. SIGNIFICANCE OF THE STUDY In mammalian cells, the final protein output of their genetic program is determined not only by controlling transcription but also by regulating the posttranscriptional events. Although mRNA-binding proteins and the cytoplasmic ribosome have long been recognized as central players in the posttranscriptional regulation, their physical and functional interactions are still far from a complete understanding. Here, we describe the intracellular localization of Serbp1, an mRNA-binding protein, and the inclusion of this protein in actively translating ribosomes in normal and cancer cells. These findings shed a new light into molecular mechanisms underlying Serbp1 action in translational gene regulation and tumour progression.
Collapse
Affiliation(s)
- Akiko Muto
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Yoshihiko Sugihara
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Minami Shibakawa
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Kenzi Oshima
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Tsukasa Matsuda
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Daita Nadano
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
22
|
von Loeffelholz O, Papai G, Danev R, Myasnikov AG, Natchiar SK, Hazemann I, Ménétret JF, Klaholz BP. Volta phase plate data collection facilitates image processing and cryo-EM structure determination. J Struct Biol 2018; 202:191-199. [DOI: 10.1016/j.jsb.2018.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/22/2017] [Accepted: 01/05/2018] [Indexed: 10/18/2022]
|
23
|
Abstract
Ribosomopathies are a group of human disorders most commonly caused by ribosomal protein haploinsufficiency or defects in ribosome biogenesis. These conditions manifest themselves as physiological defects in specific cell and tissue types. We review current molecular models to explain ribosomopathies and attempt to reconcile the tissue specificity of these disorders with the ubiquitous requirement for ribosomes in all cells. Ribosomopathies as a group are diverse in their origins and clinical manifestations; we use the well-described Diamond-Blackfan anemia (DBA) as a specific example to highlight some common features. We discuss ribosome homeostasis as an overarching principle that governs the sensitivity of specific cells and tissue types to ribosomal protein mutations. Mathematical models and experimental insights rationalize how even subtle shifts in the availability of ribosomes, such as those created by ribosome haploinsufficiency, can drive messenger RNA-specific effects on protein expression. We discuss recently identified roles played by ribosome rescue and recycling factors in regulating ribosome homeostasis.
Collapse
Affiliation(s)
- Eric W Mills
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Rachel Green
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
24
|
Visualization of chemical modifications in the human 80S ribosome structure. Nature 2017; 551:472-477. [PMID: 29143818 DOI: 10.1038/nature24482] [Citation(s) in RCA: 238] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 10/03/2017] [Indexed: 12/18/2022]
Abstract
Chemical modifications of human ribosomal RNA (rRNA) are introduced during biogenesis and have been implicated in the dysregulation of protein synthesis, as is found in cancer and other diseases. However, their role in this phenomenon is unknown. Here we visualize more than 130 individual rRNA modifications in the three-dimensional structure of the human ribosome, explaining their structural and functional roles. In addition to a small number of universally conserved sites, we identify many eukaryote- or human-specific modifications and unique sites that form an extended shell in comparison to bacterial ribosomes, and which stabilize the RNA. Several of the modifications are associated with the binding sites of three ribosome-targeting antibiotics, or are associated with degenerate states in cancer, such as keto alkylations on nucleotide bases reminiscent of specialized ribosomes. This high-resolution structure of the human 80S ribosome paves the way towards understanding the role of epigenetic rRNA modifications in human diseases and suggests new possibilities for designing selective inhibitors and therapeutic drugs.
Collapse
|
25
|
Kournoutou GG, Giannopoulou PC, Sazakli E, Leotsinidis M, Kalpaxis DL. Oxidative damage of 18S and 5S ribosomal RNA in digestive gland of mussels exposed to trace metals. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 192:136-147. [PMID: 28957715 DOI: 10.1016/j.aquatox.2017.09.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/28/2017] [Accepted: 09/04/2017] [Indexed: 06/07/2023]
Abstract
Numerous studies have shown the ability of trace metals to accumulate in marine organisms and cause oxidative stress that leads to perturbations in many important intracellular processes, including protein synthesis. This study is mainly focused on the exploration of structural changes, like base modifications, scissions, and conformational changes, caused in 18S and 5S ribosomal RNA (rRNA) isolated from the mussel Mytilus galloprovincialis exposed to 40μg/L Cu, 30μg/L Hg, or 100μg/L Cd, for 5 or 15days. 18S rRNA and 5S rRNA are components of the small and large ribosomal subunit, respectively, found in complex with ribosomal proteins, translation factors and other auxiliary components (metal ions, toxins etc). 18S rRNA plays crucial roles in all stages of protein synthesis, while 5S rRNA serves as a master signal transducer between several functional regions of 28S rRNA. Therefore, structural changes in these ribosomal constituents could affect the basic functions of ribosomes and hence the normal metabolism of cells. Especially, 18S rRNA along with ribosomal proteins forms the decoding centre that ensures the correct codon-anticodon pairing. As exemplified by ELISA, primer extension analysis and DMS footprinting analysis, each metal caused oxidative damage to rRNA, depending on the nature of metal ion and the duration of exposure. Interestingly, exposure of mussels to Cu or Hg caused structural alterations in 5S rRNA, localized in paired regions and within loops A, B, C, and E, leading to a continuous progressive loss of the 5S RNA structural integrity. In contrast, structural impairments of 5S rRNA in mussels exposed to Cd were accumulating for the initial 5days, and then progressively decreased to almost the normal level by day 15, probably due to the parallel elevation of metallothionein content that depletes the pools of free Cd. Regions of interest in 18S rRNA, such as the decoding centre, sites implicated in the binding of tRNAs (A- and P-sites) or translation factors, and areas related to translation fidelity, were found to undergo significant metal-induced conformational alterations, leading either to loosening of their structure or to more compact folding. These modifications were associated with parallel alterations in the translation process at multiple levels, a fact suggesting that structural perturbations in ribosomes, caused by metals, pose significant hurdles in translational efficiency and fidelity.
Collapse
MESH Headings
- 8-Hydroxy-2'-Deoxyguanosine
- Animal Structures/drug effects
- Animal Structures/metabolism
- Animals
- Base Sequence
- Biomarkers/metabolism
- DNA/metabolism
- Deoxyguanosine/analogs & derivatives
- Deoxyguanosine/metabolism
- Mytilus/drug effects
- Mytilus/metabolism
- Nucleic Acid Conformation
- Oxidative Stress/drug effects
- Protein Biosynthesis/drug effects
- RNA, Ribosomal, 18S/chemistry
- RNA, Ribosomal, 18S/genetics
- RNA, Ribosomal, 18S/metabolism
- RNA, Ribosomal, 5S/chemistry
- RNA, Ribosomal, 5S/genetics
- RNA, Ribosomal, 5S/metabolism
- Ribosomes/drug effects
- Ribosomes/metabolism
- Trace Elements/toxicity
- Water Pollutants, Chemical/toxicity
Collapse
Affiliation(s)
- Georgia G Kournoutou
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | | | - Eleni Sazakli
- Laboratory of Public Health, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Michel Leotsinidis
- Laboratory of Public Health, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Dimitrios L Kalpaxis
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece.
| |
Collapse
|
26
|
Optimized method for isolation of immature intracytoplasmic retroviral particles from mammalian cells. J Virol Methods 2017; 248:19-25. [PMID: 28619602 DOI: 10.1016/j.jviromet.2017.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 06/01/2017] [Accepted: 06/08/2017] [Indexed: 12/29/2022]
Abstract
To biochemically and structurally characterize viral intracytoplasmic particles (ICAPs), a sample of high purity and homogeneity is usually required. Production of ICAPs in the system closely related to their natural host cells is crucial for the analysis of host-cell binding proteins involved in ICAPs assembly, transport and budding. However, this approach is often hampered by problems with low yield of the ICAPs due to either low expression or fast release from the host cell. Another obstacle may be a low stability or fragility of the intracellular particles. The published methods for ICAPs isolation often involved several time-consuming centrifugation steps yielding damaged particles. Other papers describe the ICAPs production in non-natural host cells. Here, we optimized the method for purification of unstable Mason-Pfizer monkey virus (M-PMV) ICAPs from non-human primate derived cells, commonly used to study MPMV replication i.e. African green monkey kidney fibroblast cell line (COS-1). Our simple and rapid procedure involved separation of the intracytoplasmic particles from the cell debris and organelles by differential, low-speed centrifugation, their purification using sucrose velocity gradient and final concentrating by low-speed centrifugation. Importantly, the method was established for unstable and fragile M-PMV intracytoplasmic particles. Therefore, it may be suitable for isolation of ICAPs of other viruses.
Collapse
|
27
|
Friesen WJ, Trotta CR, Tomizawa Y, Zhuo J, Johnson B, Sierra J, Roy B, Weetall M, Hedrick J, Sheedy J, Takasugi J, Moon YC, Babu S, Baiazitov R, Leszyk JD, Davis TW, Colacino JM, Peltz SW, Welch EM. The nucleoside analog clitocine is a potent and efficacious readthrough agent. RNA (NEW YORK, N.Y.) 2017; 23:567-577. [PMID: 28096517 PMCID: PMC5340919 DOI: 10.1261/rna.060236.116] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 01/05/2017] [Indexed: 06/01/2023]
Abstract
Nonsense mutations resulting in a premature stop codon in an open reading frame occur in critical tumor suppressor genes in a large number of the most common forms of cancers and are known to cause or contribute to the progression of disease. Low molecular weight compounds that induce readthrough of nonsense mutations offer a new means of treating patients with genetic disorders or cancers resulting from nonsense mutations. We have identified the nucleoside analog clitocine as a potent and efficacious suppressor of nonsense mutations. We determined that incorporation of clitocine into RNA during transcription is a prerequisite for its readthrough activity; the presence of clitocine in the third position of a premature stop codon directly induces readthrough. We demonstrate that clitocine can induce the production of p53 protein in cells harboring p53 nonsense-mutated alleles. In these cells, clitocine restored production of full-length and functional p53 as evidenced by induced transcriptional activation of downstream p53 target genes, progression of cells into apoptosis, and impeded growth of nonsense-containing human ovarian cancer tumors in xenograft tumor models. Thus, clitocine induces readthrough of nonsense mutations by a previously undescribed mechanism and represents a novel therapeutic modality to treat cancers and genetic diseases caused by nonsense mutations.
Collapse
Affiliation(s)
| | | | - Yuki Tomizawa
- PTC Therapeutics, Inc., South Plainfield, New Jersey 07080, USA
| | - Jin Zhuo
- PTC Therapeutics, Inc., South Plainfield, New Jersey 07080, USA
| | - Briana Johnson
- PTC Therapeutics, Inc., South Plainfield, New Jersey 07080, USA
| | - Jairo Sierra
- PTC Therapeutics, Inc., South Plainfield, New Jersey 07080, USA
| | - Bijoyita Roy
- PTC Therapeutics, Inc., South Plainfield, New Jersey 07080, USA
| | - Marla Weetall
- PTC Therapeutics, Inc., South Plainfield, New Jersey 07080, USA
| | - Jean Hedrick
- PTC Therapeutics, Inc., South Plainfield, New Jersey 07080, USA
| | | | - James Takasugi
- PTC Therapeutics, Inc., South Plainfield, New Jersey 07080, USA
| | | | - Suresh Babu
- PTC Therapeutics, Inc., South Plainfield, New Jersey 07080, USA
| | - Ramil Baiazitov
- PTC Therapeutics, Inc., South Plainfield, New Jersey 07080, USA
| | - John D Leszyk
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01655-0122, USA
| | - Thomas W Davis
- PTC Therapeutics, Inc., South Plainfield, New Jersey 07080, USA
| | | | - Stuart W Peltz
- PTC Therapeutics, Inc., South Plainfield, New Jersey 07080, USA
| | - Ellen M Welch
- PTC Therapeutics, Inc., South Plainfield, New Jersey 07080, USA
| |
Collapse
|
28
|
Selective stalling of human translation through small-molecule engagement of the ribosome nascent chain. PLoS Biol 2017; 15:e2001882. [PMID: 28323820 PMCID: PMC5360235 DOI: 10.1371/journal.pbio.2001882] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 02/22/2017] [Indexed: 01/12/2023] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) plays a key role in regulating the levels of plasma low-density lipoprotein cholesterol (LDL-C). Here, we demonstrate that the compound PF-06446846 inhibits translation of PCSK9 by inducing the ribosome to stall around codon 34, mediated by the sequence of the nascent chain within the exit tunnel. We further show that PF-06446846 reduces plasma PCSK9 and total cholesterol levels in rats following oral dosing. Using ribosome profiling, we demonstrate that PF-06446846 is highly selective for the inhibition of PCSK9 translation. The mechanism of action employed by PF-06446846 reveals a previously unexpected tunability of the human ribosome that allows small molecules to specifically block translation of individual transcripts. Many disease-mediating proteins have proven difficult to target with traditional small-molecule pharmaceuticals. In this paper, we report that a small molecule, PF-06446846, directly inhibits translation of one such protein, proprotein convertase subtilisin/kexin type 9 (PCSK9), by acting on the translating human ribosome. PF-06446846 causes the translating ribosome to stall soon after translating the PCSK9 signal sequence. We further show that PF-06446846 activity is dependent on the amino acid sequence of the nascent chain inside the ribosome exit tunnel. In a rat safety study, we observe decreases in plasma PCSK9, total cholesterol, and low-density lipoprotein (LDL) cholesterol. Using mass spectrometry in cell culture and ribosome profiling, we demonstrate that despite acting on the ribosome, which synthesizes every protein in the cell, PF-06446846 displays a high level of selectivity for PCSK9. This unexpected potential for small molecules to selectively inhibit the human ribosome opens the possibility for future development of small molecules targeting disease-mediating proteins that were previously thought to be undruggable.
Collapse
|
29
|
Leonarski F, D'Ascenzo L, Auffinger P. Mg2+ ions: do they bind to nucleobase nitrogens? Nucleic Acids Res 2017; 45:987-1004. [PMID: 27923930 PMCID: PMC5314772 DOI: 10.1093/nar/gkw1175] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 11/10/2016] [Accepted: 11/14/2016] [Indexed: 01/28/2023] Open
Abstract
Given the many roles proposed for Mg2+ in nucleic acids, it is essential to accurately determine their binding modes. Here, we surveyed the PDB to classify Mg2+ inner-sphere binding patterns to nucleobase imine N1/N3/N7 atoms. Among those, purine N7 atoms are considered to be the best nucleobase binding sites for divalent metals. Further, Mg2+ coordination to N7 has been implied in several ribozyme catalytic mechanisms. We report that Mg2+ assigned near imine nitrogens derive mostly from poor interpretations of electron density patterns and are most often misidentified Na+, K+, NH4+ ions, water molecules or spurious density peaks. Consequently, apart from few documented exceptions, Mg2+ ions do not bind to N7 atoms. Without much of a surprise, Mn2+, Zn2+ and Cd2+, which have a higher affinity for nitrogens, may contact N7 atoms when present in crystallization buffers. In this respect, we describe for the first time a potential Zn2+ ribosomal binding site involving two purine N7 atoms. Further, we provide a set of guidelines to help in the assignment of Mg2+ in crystallographic, cryo-EM, NMR and model building practices and discuss implications of our findings related to ion substitution experiments.
Collapse
Affiliation(s)
- Filip Leonarski
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR9002, F-67000 Strasbourg, France
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Luigi D'Ascenzo
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR9002, F-67000 Strasbourg, France
| | - Pascal Auffinger
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR9002, F-67000 Strasbourg, France
| |
Collapse
|
30
|
Orlov I, Myasnikov AG, Andronov L, Natchiar SK, Khatter H, Beinsteiner B, Ménétret JF, Hazemann I, Mohideen K, Tazibt K, Tabaroni R, Kratzat H, Djabeur N, Bruxelles T, Raivoniaina F, Pompeo LD, Torchy M, Billas I, Urzhumtsev A, Klaholz BP. The integrative role of cryo electron microscopy in molecular and cellular structural biology. Biol Cell 2016; 109:81-93. [PMID: 27730650 DOI: 10.1111/boc.201600042] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 10/04/2016] [Accepted: 10/05/2016] [Indexed: 01/10/2023]
Abstract
After gradually moving away from preparation methods prone to artefacts such as plastic embedding and negative staining for cell sections and single particles, the field of cryo electron microscopy (cryo-EM) is now heading off at unprecedented speed towards high-resolution analysis of biological objects of various sizes. This 'revolution in resolution' is happening largely thanks to new developments of new-generation cameras used for recording the images in the cryo electron microscope which have much increased sensitivity being based on complementary metal oxide semiconductor devices. Combined with advanced image processing and 3D reconstruction, the cryo-EM analysis of nucleoprotein complexes can provide unprecedented insights at molecular and atomic levels and address regulatory mechanisms in the cell. These advances reinforce the integrative role of cryo-EM in synergy with other methods such as X-ray crystallography, fluorescence imaging or focussed-ion beam milling as exemplified here by some recent studies from our laboratory on ribosomes, viruses, chromatin and nuclear receptors. Such multi-scale and multi-resolution approaches allow integrating molecular and cellular levels when applied to purified or in situ macromolecular complexes, thus illustrating the trend of the field towards cellular structural biology.
Collapse
Affiliation(s)
- Igor Orlov
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Illkirch, France.,Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Alexander G Myasnikov
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Illkirch, France.,Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Leonid Andronov
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Illkirch, France.,Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - S Kundhavai Natchiar
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Illkirch, France.,Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Heena Khatter
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Illkirch, France.,Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Brice Beinsteiner
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Illkirch, France.,Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Jean-François Ménétret
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Illkirch, France.,Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Isabelle Hazemann
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Illkirch, France.,Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Kareem Mohideen
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Illkirch, France.,Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Karima Tazibt
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Illkirch, France.,Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Rachel Tabaroni
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Illkirch, France.,Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Hanna Kratzat
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Illkirch, France.,Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Nadia Djabeur
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Illkirch, France.,Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Tatiana Bruxelles
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Illkirch, France.,Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Finaritra Raivoniaina
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Illkirch, France.,Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Lorenza di Pompeo
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Illkirch, France.,Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Morgan Torchy
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Illkirch, France.,Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Isabelle Billas
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Illkirch, France.,Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Alexandre Urzhumtsev
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Illkirch, France.,Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Bruno P Klaholz
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Illkirch, France.,Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| |
Collapse
|
31
|
A Small-Molecule Anti-secretagogue of PCSK9 Targets the 80S Ribosome to Inhibit PCSK9 Protein Translation. Cell Chem Biol 2016; 23:1362-1371. [DOI: 10.1016/j.chembiol.2016.08.016] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 08/06/2016] [Accepted: 08/10/2016] [Indexed: 01/25/2023]
|
32
|
Structure and assembly model for the Trypanosoma cruzi 60S ribosomal subunit. Proc Natl Acad Sci U S A 2016; 113:12174-12179. [PMID: 27791004 DOI: 10.1073/pnas.1614594113] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ribosomes of trypanosomatids, a family of protozoan parasites causing debilitating human diseases, possess multiply fragmented rRNAs that together are analogous to 28S rRNA, unusually large rRNA expansion segments, and r-protein variations compared with other eukaryotic ribosomes. To investigate the architecture of the trypanosomatid ribosomes, we determined the 2.5-Å structure of the Trypanosoma cruzi ribosome large subunit by single-particle cryo-EM. Examination of this structure and comparative analysis of the yeast ribosomal assembly pathway allowed us to develop a stepwise assembly model for the eight pieces of the large subunit rRNAs and a number of ancillary "glue" proteins. This model can be applied to the characterization of Trypanosoma brucei and Leishmania spp. ribosomes as well. Together with other details, our atomic-level structure may provide a foundation for structure-based design of antitrypanosome drugs.
Collapse
|
33
|
Structure-function insights reveal the human ribosome as a cancer target for antibiotics. Nat Commun 2016; 7:12856. [PMID: 27665925 PMCID: PMC5052680 DOI: 10.1038/ncomms12856] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 08/04/2016] [Indexed: 01/25/2023] Open
Abstract
Many antibiotics in clinical use target the bacterial ribosome by interfering with the protein synthesis machinery. However, targeting the human ribosome in the case of protein synthesis deregulations such as in highly proliferating cancer cells has not been investigated at the molecular level up to now. Here we report the structure of the human 80S ribosome with a eukaryote-specific antibiotic and show its anti-proliferative effect on several cancer cell lines. The structure provides insights into the detailed interactions in a ligand-binding pocket of the human ribosome that are required for structure-assisted drug design. Furthermore, anti-proliferative dose response in leukaemic cells and interference with synthesis of c-myc and mcl-1 short-lived protein markers reveals specificity of a series of eukaryote-specific antibiotics towards cytosolic rather than mitochondrial ribosomes, uncovering the human ribosome as a promising cancer target. The ribosome of bacteria and other unicellular pathogens is a common target for antibiotic drugs. Here the authors determine a structure of the human ribosome bound to the translation inhibitor cycloheximide, and provide evidence that targeting the ribosome is a promising avenue for cancer therapy.
Collapse
|
34
|
Ferguson A, Wang L, Altman RB, Terry DS, Juette MF, Burnett BJ, Alejo JL, Dass RA, Parks MM, Vincent CT, Blanchard SC. Functional Dynamics within the Human Ribosome Regulate the Rate of Active Protein Synthesis. Mol Cell 2015; 60:475-86. [PMID: 26593721 PMCID: PMC4660248 DOI: 10.1016/j.molcel.2015.09.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 07/24/2015] [Accepted: 09/16/2015] [Indexed: 01/09/2023]
Abstract
The regulation of protein synthesis contributes to gene expression in both normal physiology and disease, yet kinetic investigations of the human translation mechanism are currently lacking. Using single-molecule fluorescence imaging methods, we have quantified the nature and timing of structural processes in human ribosomes during single-turnover and processive translation reactions. These measurements reveal that functional complexes exhibit dynamic behaviors and thermodynamic stabilities distinct from those observed for bacterial systems. Structurally defined sub-states of pre- and post-translocation complexes were sensitive to specific inhibitors of the eukaryotic ribosome, demonstrating the utility of this platform to probe drug mechanism. The application of three-color single-molecule fluorescence resonance energy transfer (smFRET) methods further revealed a long-distance allosteric coupling between distal tRNA binding sites within ribosomes bearing three tRNAs, which contributed to the rate of processive translation.
Collapse
Affiliation(s)
- Angelica Ferguson
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065, USA; Tri-Institutional Training Program in Chemical Biology, Weill Cornell Medical College, Rockefeller University, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Leyi Wang
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065, USA
| | - Roger B Altman
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065, USA
| | - Daniel S Terry
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065, USA
| | - Manuel F Juette
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065, USA
| | - Benjamin J Burnett
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065, USA
| | - Jose L Alejo
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065, USA
| | - Randall A Dass
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065, USA
| | - Matthew M Parks
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065, USA
| | - C Theresa Vincent
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065, USA; Department of Pharmacology and Physiology, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Scott C Blanchard
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065, USA; Tri-Institutional Training Program in Chemical Biology, Weill Cornell Medical College, Rockefeller University, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
35
|
Quade N, Boehringer D, Leibundgut M, van den Heuvel J, Ban N. Cryo-EM structure of Hepatitis C virus IRES bound to the human ribosome at 3.9-Å resolution. Nat Commun 2015; 6:7646. [PMID: 26155016 PMCID: PMC4510694 DOI: 10.1038/ncomms8646] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 05/27/2015] [Indexed: 01/10/2023] Open
Abstract
Hepatitis C virus (HCV), a widespread human pathogen, is dependent on a highly structured 5'-untranslated region of its mRNA, referred to as internal ribosome entry site (IRES), for the translation of all of its proteins. The HCV IRES initiates translation by directly binding to the small ribosomal subunit (40S), circumventing the need for many eukaryotic translation initiation factors required for mRNA scanning. Here we present the cryo-EM structure of the human 40S ribosomal subunit in complex with the HCV IRES at 3.9 Å resolution, determined by focused refinement of an 80S ribosome-HCV IRES complex. The structure reveals the molecular details of the interactions between the IRES and the 40S, showing that expansion segment 7 (ES7) of the 18S rRNA acts as a central anchor point for the HCV IRES. The structural data rationalizes previous biochemical and genetic evidence regarding the initiation mechanism of the HCV and other related IRESs.
Collapse
Affiliation(s)
- Nick Quade
- Department of Biology, Institute of Molecular Biology and Biophysics, Otto-Stern-Weg 5, ETH Zürich, Zürich 8093, Switzerland
| | - Daniel Boehringer
- Department of Biology, Institute of Molecular Biology and Biophysics, Otto-Stern-Weg 5, ETH Zürich, Zürich 8093, Switzerland
| | - Marc Leibundgut
- Department of Biology, Institute of Molecular Biology and Biophysics, Otto-Stern-Weg 5, ETH Zürich, Zürich 8093, Switzerland
| | - Joop van den Heuvel
- Research Group Recombinant Protein Expression, Helmholtz Centre for Infection Research, Inhoffenstraße 7, Braunschweig 38124, Germany
| | - Nenad Ban
- Department of Biology, Institute of Molecular Biology and Biophysics, Otto-Stern-Weg 5, ETH Zürich, Zürich 8093, Switzerland
| |
Collapse
|
36
|
Khatter H, Myasnikov AG, Natchiar SK, Klaholz BP. Structure of the human 80S ribosome. Nature 2015; 520:640-5. [PMID: 25901680 DOI: 10.1038/nature14427] [Citation(s) in RCA: 334] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 03/26/2015] [Indexed: 01/21/2023]
Abstract
Ribosomes are translational machineries that catalyse protein synthesis. Ribosome structures from various species are known at the atomic level, but obtaining the structure of the human ribosome has remained a challenge; efforts to address this would be highly relevant with regard to human diseases. Here we report the near-atomic structure of the human ribosome derived from high-resolution single-particle cryo-electron microscopy and atomic model building. The structure has an average resolution of 3.6 Å, reaching 2.9 Å resolution in the most stable regions. It provides unprecedented insights into ribosomal RNA entities and amino acid side chains, notably of the transfer RNA binding sites and specific molecular interactions with the exit site tRNA. It reveals atomic details of the subunit interface, which is seen to remodel strongly upon rotational movements of the ribosomal subunits. Furthermore, the structure paves the way for analysing antibiotic side effects and diseases associated with deregulated protein synthesis.
Collapse
Affiliation(s)
- Heena Khatter
- 1] Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, 67404 Illkirch, France [2] Centre National de la Recherche Scientifique (CNRS), UMR 7104, 67404 Illkirch, France [3] Institut National de la Santé et de la Recherche Médicale (INSERM) U964, 67404 Illkirch, France [4] Université de Strasbourg, 67081 Strasbourg, France
| | - Alexander G Myasnikov
- 1] Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, 67404 Illkirch, France [2] Centre National de la Recherche Scientifique (CNRS), UMR 7104, 67404 Illkirch, France [3] Institut National de la Santé et de la Recherche Médicale (INSERM) U964, 67404 Illkirch, France [4] Université de Strasbourg, 67081 Strasbourg, France
| | - S Kundhavai Natchiar
- 1] Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, 67404 Illkirch, France [2] Centre National de la Recherche Scientifique (CNRS), UMR 7104, 67404 Illkirch, France [3] Institut National de la Santé et de la Recherche Médicale (INSERM) U964, 67404 Illkirch, France [4] Université de Strasbourg, 67081 Strasbourg, France
| | - Bruno P Klaholz
- 1] Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, 67404 Illkirch, France [2] Centre National de la Recherche Scientifique (CNRS), UMR 7104, 67404 Illkirch, France [3] Institut National de la Santé et de la Recherche Médicale (INSERM) U964, 67404 Illkirch, France [4] Université de Strasbourg, 67081 Strasbourg, France
| |
Collapse
|
37
|
Anton H, Taha N, Boutant E, Richert L, Khatter H, Klaholz B, Rondé P, Réal E, de Rocquigny H, Mély Y. Investigating the cellular distribution and interactions of HIV-1 nucleocapsid protein by quantitative fluorescence microscopy. PLoS One 2015; 10:e0116921. [PMID: 25723396 PMCID: PMC4344342 DOI: 10.1371/journal.pone.0116921] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 12/16/2014] [Indexed: 12/12/2022] Open
Abstract
The nucleocapsid protein (NCp7) of the Human immunodeficiency virus type 1 (HIV-1) is a small basic protein containing two zinc fingers. About 2000 NCp7 molecules coat the genomic RNA in the HIV-1 virion. After infection of a target cell, the viral core enters into the cytoplasm, where NCp7 chaperones the reverse transcription of the genomic RNA into the proviral DNA. As a consequence of their much lower affinity for double-stranded DNA as compared to single-stranded RNAs, NCp7 molecules are thought to be released in the cytoplasm and the nucleus of infected cells in the late steps of reverse transcription. Yet, little is known on the cellular distribution of the released NCp7 molecules and on their possible interactions with cell components. Hence, the aim of this study was to identify potential cellular partners of NCp7 and to monitor its intracellular distribution and dynamics by means of confocal fluorescence microscopy, fluorescence lifetime imaging microscopy, fluorescence recovery after photobleaching, fluorescence correlation and cross-correlation spectroscopy, and raster imaging correlation spectroscopy. HeLa cells transfected with eGFP-labeled NCp7 were used as a model system. We found that NCp7-eGFP localizes mainly in the cytoplasm and the nucleoli, where it binds to cellular RNAs, and notably to ribosomal RNAs which are the most abundant. The binding of NCp7 to ribosomes was further substantiated by the intracellular co-diffusion of NCp7 with the ribosomal protein 26, a component of the large ribosomal subunit. Finally, gradient centrifugation experiments demonstrate a direct association of NCp7 with purified 80S ribosomes. Thus, our data suggest that NCp7 molecules released in newly infected cells may primarily bind to ribosomes, where they may exert a new potential role in HIV-1 infection.
Collapse
Affiliation(s)
- Halina Anton
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
- * E-mail: (YM); (HA)
| | - Nedal Taha
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Emmanuel Boutant
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Ludovic Richert
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Heena Khatter
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, UMR 7104 CNRS, U964 Inserm, Université de Strasbourg, Illkirch, France
| | - Bruno Klaholz
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, UMR 7104 CNRS, U964 Inserm, Université de Strasbourg, Illkirch, France
| | - Philippe Rondé
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Eléonore Réal
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Hugues de Rocquigny
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Yves Mély
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
- * E-mail: (YM); (HA)
| |
Collapse
|
38
|
Myasnikov AG, Afonina ZA, Ménétret JF, Shirokov VA, Spirin AS, Klaholz BP. The molecular structure of the left-handed supra-molecular helix of eukaryotic polyribosomes. Nat Commun 2014; 5:5294. [PMID: 25376914 DOI: 10.1038/ncomms6294] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 09/17/2014] [Indexed: 01/07/2023] Open
Abstract
During protein synthesis, several ribosomes bind to a single messenger RNA (mRNA) forming large macromolecular assemblies called polyribosomes. Here we report the detailed molecular structure of a 100 MDa eukaryotic poly-ribosome complex derived from cryo electron tomography, sub-tomogram averaging and pseudo-atomic modelling by crystal structure fitting. The structure allowed the visualization of the three functional parts of the polysome assembly, the central core region that forms a rather compact left-handed supra-molecular helix, and the more open regions that harbour the initiation and termination sites at either ends. The helical region forms a continuous mRNA channel where the mRNA strand bridges neighbouring exit and entry sites of the ribosomes and prevents mRNA looping between ribosomes. This structure provides unprecedented insights into protein- and RNA-mediated inter-ribosome contacts that involve conserved sites through 40S subunits and long protruding RNA expansion segments, suggesting a role in stabilizing the overall polyribosomal assembly.
Collapse
Affiliation(s)
- Alexander G Myasnikov
- 1] Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, BP 10142, 67404 Illkirch, France [2] Centre National de la Recherche Scientifique (CNRS) UMR 7104, 67404 Illkirch, France [3] Institut National de la Santé et de la Recherche Médicale (INSERM), 67404 Illkirch, France [4] Université de Strasbourg, 67400 Strasbourg, France
| | - Zhanna A Afonina
- Institute of Protein Research, Russian Academy of Sciences, 142290 Moscow, Russia
| | - Jean-François Ménétret
- 1] Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, BP 10142, 67404 Illkirch, France [2] Centre National de la Recherche Scientifique (CNRS) UMR 7104, 67404 Illkirch, France [3] Institut National de la Santé et de la Recherche Médicale (INSERM), 67404 Illkirch, France [4] Université de Strasbourg, 67400 Strasbourg, France
| | - Vladimir A Shirokov
- Institute of Protein Research, Russian Academy of Sciences, 142290 Moscow, Russia
| | - Alexander S Spirin
- Institute of Protein Research, Russian Academy of Sciences, 142290 Moscow, Russia
| | - Bruno P Klaholz
- 1] Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, BP 10142, 67404 Illkirch, France [2] Centre National de la Recherche Scientifique (CNRS) UMR 7104, 67404 Illkirch, France [3] Institut National de la Santé et de la Recherche Médicale (INSERM), 67404 Illkirch, France [4] Université de Strasbourg, 67400 Strasbourg, France
| |
Collapse
|