1
|
Su Z, Zhang Y, Tang J, Zhou Y, Long C. Multifunctional acyltransferase HBO1: a key regulatory factor for cellular functions. Cell Mol Biol Lett 2024; 29:141. [PMID: 39543485 PMCID: PMC11566351 DOI: 10.1186/s11658-024-00661-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 10/29/2024] [Indexed: 11/17/2024] Open
Abstract
HBO1, also known as KAT7 or MYST2, is a crucial histone acetyltransferase with diverse cellular functions. It typically forms complexes with protein subunits or cofactors such as MEAF6, ING4, or ING5, and JADE1/2/3 or BRPF1/2/3, where the BRPF or JADE proteins serve as the scaffold targeting histone H3 or H4, respectively. The histone acetylation mediated by HBO1 plays significant roles in DNA replication and gene expression regulation. Additionally, HBO1 catalyzes the modification of proteins through acylation with propionyl, butyryl, crotonyl, benzoyl, and acetoacetyl groups. HBO1 undergoes ubiquitination and degradation by two types of ubiquitin complexes and can also act as an E3 ubiquitin ligase for the estrogen receptor α (ERα). Moreover, HBO1 participates in the expansion of medullary thymic epithelial cells (mTECs) and regulates the expression of peripheral tissue genes (PTGs) mediated by autoimmune regulator (AIRE), thus inducing immune tolerance. Furthermore, HBO1 influences the renewal of hematopoietic stem cells and the development of neural stem cells significantly. Importantly, the overexpression of HBO1 in various cancers suggests its carcinogenic role and potential as a therapeutic target. This review summarizes recent advancements in understanding HBO1's involvement in acylation modification, DNA replication, ubiquitination, immunity, and stem cell renewal.
Collapse
Affiliation(s)
- Zhanhuan Su
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, 410078, Hunan, China
| | - Yang Zhang
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, 410078, Hunan, China
| | - Jingqiong Tang
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Yanhong Zhou
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, 410078, Hunan, China.
| | - Chen Long
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
2
|
Gadgil RY, Rider SD, Shrestha R, Alhawach V, Hitch D, Leffak M. Microsatellite break-induced replication generates highly mutagenized extrachromosomal circular DNAs. NAR Cancer 2024; 6:zcae027. [PMID: 38854437 PMCID: PMC11161834 DOI: 10.1093/narcan/zcae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/17/2024] [Accepted: 05/24/2024] [Indexed: 06/11/2024] Open
Abstract
Extrachromosomal circular DNAs (eccDNAs) are produced from all regions of the eucaryotic genome. We used inverse PCR of non-B microsatellites capable of forming hairpin, triplex, quadruplex and AT-rich structures integrated at a common ectopic chromosomal site to show that these non-B DNAs generate highly mutagenized eccDNAs by replication-dependent mechanisms. Mutagenesis occurs within the non-B DNAs and extends several kilobases bidirectionally into flanking and nonallelic DNA. Each non-B DNA exhibits a different pattern of mutagenesis, while sister clones containing the same non-B DNA also display distinct patterns of recombination, microhomology-mediated template switching and base substitutions. Mutations include mismatches, short duplications, long nontemplated insertions, large deletions and template switches to sister chromatids and nonallelic chromosomes. Drug-induced replication stress or the depletion of DNA repair factors Rad51, the COPS2 signalosome subunit or POLη change the pattern of template switching and alter the eccDNA mutagenic profiles. We propose an asynchronous capture model based on break-induced replication from microsatellite-induced DNA double strand breaks to account for the generation and circularization of mutagenized eccDNAs and the appearance of genomic homologous recombination deficiency (HRD) scars. These results may help to explain the appearance of tumor eccDNAS and their roles in neoantigen production, oncogenesis and resistance to chemotherapy.
Collapse
Affiliation(s)
- Rujuta Yashodhan Gadgil
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - S Dean Rider
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - Resha Shrestha
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - Venicia Alhawach
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - David C Hitch
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - Michael Leffak
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| |
Collapse
|
3
|
Gadgil RY, Rider SD, Shrestha R, Alhawach V, Hitch DC, Leffak M. Microsatellite break-induced replication generates highly mutagenized extrachromosomal circular DNAs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.12.575055. [PMID: 38260482 PMCID: PMC10802558 DOI: 10.1101/2024.01.12.575055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Extrachromosomal circular DNAs (eccDNAs) are produced from all regions of the eucaryotic genome. In tumors, highly transcribed eccDNAs have been implicated in oncogenesis, neoantigen production and resistance to chemotherapy. Here we show that unstable microsatellites capable of forming hairpin, triplex, quadruplex and AT-rich structures generate eccDNAs when integrated at a common ectopic site in human cells. These non-B DNA prone microsatellites form eccDNAs by replication-dependent mechanisms. The microsatellite-based eccDNAs are highly mutagenized and display template switches to sister chromatids and to nonallelic chromosomal sites. High frequency mutagenesis occurs within the eccDNA microsatellites and extends bidirectionally for several kilobases into flanking DNA and nonallelic DNA. Mutations include mismatches, short duplications, longer nontemplated insertions and large deletions. Template switching leads to recurrent deletions and recombination domains within the eccDNAs. Template switching events are microhomology-mediated, but do not occur at all potential sites of complementarity. Each microsatellite exhibits a distinct pattern of recombination, microhomology choice and base substitution signature. Depletion of Rad51, the COPS2 signalosome subunit or POLη alter the eccDNA mutagenic profiles. We propose an asynchronous capture model based on break-induced replication from microsatellite-induced DNA breaks for the generation and circularization of mutagenized eccDNAs and genomic homologous recombination deficiency (HRD) scars.
Collapse
|
4
|
Rider SD, Damewood FJ, Gadgil RY, Hitch DC, Alhawach V, Shrestha R, Shanahan M, Zavada N, Leffak M. Suppressors of Break-Induced Replication in Human Cells. Genes (Basel) 2023; 14:genes14020398. [PMID: 36833325 PMCID: PMC9956954 DOI: 10.3390/genes14020398] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/23/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Short tandem DNA repeats are drivers of genome instability. To identify suppressors of break-induced mutagenesis human cells, unbiased genetic screens were conducted using a lentiviral shRNA library. The recipient cells possessed fragile non-B DNA that could induce DNA double-strand breaks (DSBs), integrated at an ectopic chromosomal site adjacent to a thymidine kinase marker gene. Mutagenesis of the thymidine kinase gene rendered cells resistant to the nucleoside analog ganciclovir (GCV). The screen identified genes that have established roles in DNA replication and repair, chromatin modification, responses to ionizing radiation, and genes encoding proteins enriched at replication forks. Novel loci implicated in BIR included olfactory receptors, the G0S2 oncogene/tumor suppressor axis, the EIF3H-METTL3 translational regulator, and the SUDS3 subunit of the Sin3A corepressor. Consistent with a role in suppressing BIR, siRNA knockdown of selected candidates increased the frequency of the GCVr phenotype and increased DNA rearrangements near the ectopic non-B DNA. Inverse PCR and DNA sequence analyses showed that hits identified in the screen increased genome instability. Further analysis quantitated repeat-induced hypermutagenesis at the ectopic site and showed that knockdown of a primary hit, COPS2, induced mutagenic hotspots, remodeled the replication fork, and increased nonallelic chromosome template switches.
Collapse
|
5
|
Rider SD, Gadgil RY, Hitch DC, Damewood FJ, Zavada N, Shanahan M, Alhawach V, Shrestha R, Shin-Ya K, Leffak M. Stable G-quadruplex DNA structures promote replication-dependent genome instability. J Biol Chem 2022; 298:101947. [PMID: 35447109 PMCID: PMC9142560 DOI: 10.1016/j.jbc.2022.101947] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 10/27/2022] Open
Abstract
G-quadruplex (G4)-prone structures are abundant in mammalian genomes, where they have been shown to influence DNA replication, transcription, and genome stability. In this article, we constructed cells with a single ectopic homopurine/homopyrimidine repeat tract derived from the polycystic kidney disease type 1 (PKD1) locus, which is capable of forming triplex (H3) and G4 DNA structures. We show that ligand stabilization of these G4 structures results in deletions of the G4 consensus sequence, as well as kilobase deletions spanning the G4 and ectopic sites. Furthermore, we show that DNA double-strand breaks at the ectopic site are dependent on the nuclease Mus81. Hypermutagenesis during sister chromatid repair extends several kilobases from the G4 site and breaks at the G4 site resulting in microhomology-mediated translocations. To determine whether H3 or G4 structures are responsible for homopurine/homopyrimidine tract instability, we derived constructs and cell lines from the PKD1 repeat, which can only form H3 or G4 structures. Under normal growth conditions, we found that G4 cell lines lost the G4 consensus sequence early during clonal outgrowth, whereas H3 cells showed DNA instability early during outgrowth but only lost reporter gene expression after prolonged growth. Thus, both the H3 and G4 non-B conformation DNAs exhibit genomic instability, but they respond differently to endogenous replication stress. Our results show that the outcomes of replication-dependent double-strand breaks at non-B-DNAs model the instability observed in microhomology-mediated break-induced replication (BIR). Marked variability in the frequency of mutagenesis during BIR suggests possible dynamic heterogeneity in the BIR replisome.
Collapse
Affiliation(s)
- S Dean Rider
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, Ohio, USA
| | - Rujuta Yashodhan Gadgil
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, Ohio, USA
| | - David C Hitch
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, Ohio, USA
| | - French J Damewood
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, Ohio, USA
| | - Nathen Zavada
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, Ohio, USA
| | - Matilyn Shanahan
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, Ohio, USA
| | - Venicia Alhawach
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, Ohio, USA
| | - Resha Shrestha
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, Ohio, USA
| | - Kazuo Shin-Ya
- Biomedical Information Research Center, National Institute of Advanced Industrial Science and Technology, Koto-ku, Tokyo, Japan
| | - Michael Leffak
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, Ohio, USA.
| |
Collapse
|
6
|
Gadgil RY, Romer EJ, Goodman CC, Rider SD, Damewood FJ, Barthelemy JR, Shin-Ya K, Hanenberg H, Leffak M. Replication stress at microsatellites causes DNA double-strand breaks and break-induced replication. J Biol Chem 2020; 295:15378-15397. [PMID: 32873711 DOI: 10.1074/jbc.ra120.013495] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 08/23/2020] [Indexed: 12/12/2022] Open
Abstract
Short tandemly repeated DNA sequences, termed microsatellites, are abundant in the human genome. These microsatellites exhibit length instability and susceptibility to DNA double-strand breaks (DSBs) due to their tendency to form stable non-B DNA structures. Replication-dependent microsatellite DSBs are linked to genome instability signatures in human developmental diseases and cancers. To probe the causes and consequences of microsatellite DSBs, we designed a dual-fluorescence reporter system to detect DSBs at expanded (CTG/CAG) n and polypurine/polypyrimidine (Pu/Py) mirror repeat structures alongside the c-myc replication origin integrated at a single ectopic chromosomal site. Restriction cleavage near the (CTG/CAG)100 microsatellite leads to homology-directed single-strand annealing between flanking AluY elements and reporter gene deletion that can be detected by flow cytometry. However, in the absence of restriction cleavage, endogenous and exogenous replication stressors induce DSBs at the (CTG/CAG)100 and Pu/Py microsatellites. DSBs map to a narrow region at the downstream edge of the (CTG)100 lagging-strand template. (CTG/CAG) n chromosome fragility is repeat length-dependent, whereas instability at the (Pu/Py) microsatellites depends on replication polarity. Strikingly, restriction-generated DSBs and replication-dependent DSBs are not repaired by the same mechanism. Knockdown of DNA damage response proteins increases (Rad18, polymerase (Pol) η, Pol κ) or decreases (Mus81) the sensitivity of the (CTG/CAG)100 microsatellites to replication stress. Replication stress and DSBs at the ectopic (CTG/CAG)100 microsatellite lead to break-induced replication and high-frequency mutagenesis at a flanking thymidine kinase gene. Our results show that non-B structure-prone microsatellites are susceptible to replication-dependent DSBs that cause genome instability.
Collapse
Affiliation(s)
- Rujuta Yashodhan Gadgil
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, USA
| | - Eric J Romer
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, USA
| | - Caitlin C Goodman
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, USA
| | - S Dean Rider
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, USA
| | - French J Damewood
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, USA
| | - Joanna R Barthelemy
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, USA
| | - Kazuo Shin-Ya
- Biomedical Information Research Center, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
| | - Helmut Hanenberg
- Department of Otorhinolaryngology and Head/Neck Surgery, Heinrich Heine University, Düsseldorf, Germany; Department of Pediatrics III, University Children's Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Michael Leffak
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, USA.
| |
Collapse
|
7
|
Lan R, Wang Q. Deciphering structure, function and mechanism of lysine acetyltransferase HBO1 in protein acetylation, transcription regulation, DNA replication and its oncogenic properties in cancer. Cell Mol Life Sci 2020; 77:637-649. [PMID: 31535175 PMCID: PMC11104888 DOI: 10.1007/s00018-019-03296-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 12/19/2022]
Abstract
HBO1 complexes are major acetyltransferase responsible for histone H4 acetylation in vivo, which belongs to the MYST family. As the core catalytic subunit, HBO1 consists of an N-terminal domain and a C-terminal MYST domain that are in charge of acetyl-CoA binding and acetylation reaction. HBO1 complexes are multimeric and normally consist of two native subunits MEAF6, ING4 or ING5 and two kinds of cofactors as chromatin reader: Jade-1/2/3 and BRPF1/2/3. The choices of subunits to form the HBO1 complexes provide a regulatory switch to potentiate its activity between histone H4 and H3 tails. Thus, HBO1 complexes present multiple functions in histone acetylation, gene transcription, DNA replication, protein ubiquitination, and immune regulation, etc. HBO1 is a co-activator for CDT1 to facilitate chromatin loading of MCM complexes and promotes DNA replication licensing. This process is regulated by mitotic kinases such as CDK1 and PLK1 by phosphorylating HBO1 and modulating its acetyltransferase activity, therefore, connecting histone acetylation to regulations of cell cycle and DNA replication. In addition, both gene amplification and protein overexpression of HBO1 confirmed its oncogenic role in cancers. In this paper, we review the recent advances and discuss our understanding of the multiple functions, activity regulation, and disease relationship of HBO1.
Collapse
Affiliation(s)
- Rongfeng Lan
- Department of Cell Biology and Medical Genetics, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, 518060, China.
| | - Qianqian Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, National Center for Protein Sciences (The PHOENIX Center, Beijing), Beijing, 102206, China
| |
Collapse
|
8
|
Lewis TW, Barthelemy JR, Virts EL, Kennedy FM, Gadgil RY, Wiek C, Linka RM, Zhang F, Andreassen PR, Hanenberg H, Leffak M. Deficiency of the Fanconi anemia E2 ubiqitin conjugase UBE2T only partially abrogates Alu-mediated recombination in a new model of homology dependent recombination. Nucleic Acids Res 2019; 47:3503-3520. [PMID: 30715513 PMCID: PMC6468168 DOI: 10.1093/nar/gkz026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 01/04/2019] [Accepted: 01/30/2019] [Indexed: 12/11/2022] Open
Abstract
The primary function of the UBE2T ubiquitin conjugase is in the monoubiquitination of the FANCI-FANCD2 heterodimer, a central step in the Fanconi anemia (FA) pathway. Genetic inactivation of UBE2T is responsible for the phenotypes of FANCT patients; however, a FANCT patient carrying a maternal duplication and a paternal deletion in the UBE2T loci displayed normal peripheral blood counts and UBE2T protein levels in B-lymphoblast cell lines. To test whether reversion by recombination between UBE2T AluYa5 elements could have occurred in the patient's hematopoietic stem cells despite the defects in homologous recombination (HR) in FA cells, we constructed HeLa cell lines containing the UBE2T AluYa5 elements and neighboring intervening sequences flanked by fluorescent reporter genes. Introduction of a DNA double strand break in the model UBE2T locus in vivo promoted single strand annealing (SSA) between proximal Alu elements and deletion of the intervening color marker gene, recapitulating the reversion of the UBE2T duplication in the FA patient. To test whether UBE2T null cells retain HR activity, the UBE2T genes were knocked out in HeLa cells and U2OS cells. CRISPR/Cas9-mediated genetic knockout of UBE2T only partially reduced HR, demonstrating that UBE2T-independent pathways can compensate for the recombination defect in UBE2T/FANCT null cells.
Collapse
Affiliation(s)
- Todd W Lewis
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - Joanna R Barthelemy
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - Elizabeth L Virts
- Department of Pediatrics and Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Felicia M Kennedy
- Department of Pediatrics and Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Rujuta Y Gadgil
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - Constanze Wiek
- Department of Otorhinolaryngology and Head/Neck Surgery, Heinrich Heine University, 40225 Duüsseldorf, Germany
| | - Rene M Linka
- Department of Otorhinolaryngology and Head/Neck Surgery, Heinrich Heine University, 40225 Duüsseldorf, Germany
| | - Feng Zhang
- Division of Experimental Hematology & Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Paul R Andreassen
- Division of Experimental Hematology & Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Helmut Hanenberg
- Department of Otorhinolaryngology and Head/Neck Surgery, Heinrich Heine University, 40225 Duüsseldorf, Germany
- Department of Pediatrics III, University Children's Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany
| | - Michael Leffak
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| |
Collapse
|
9
|
Utani K, Fu H, Jang SM, Marks AB, Smith OK, Zhang Y, Redon CE, Shimizu N, Aladjem MI. Phosphorylated SIRT1 associates with replication origins to prevent excess replication initiation and preserve genomic stability. Nucleic Acids Res 2017; 45:7807-7824. [PMID: 28549174 PMCID: PMC5570034 DOI: 10.1093/nar/gkx468] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/09/2017] [Accepted: 05/11/2017] [Indexed: 12/31/2022] Open
Abstract
Chromatin structure affects DNA replication patterns, but the role of specific chromatin modifiers in regulating the replication process is yet unclear. We report that phosphorylation of the human SIRT1 deacetylase on Threonine 530 (T530-pSIRT1) modulates DNA synthesis. T530-pSIRT1 associates with replication origins and inhibits replication from a group of 'dormant' potential replication origins, which initiate replication only when cells are subject to replication stress. Although both active and dormant origins bind T530-pSIRT1, active origins are distinguished from dormant origins by their unique association with an open chromatin mark, histone H3 methylated on lysine 4. SIRT1 phosphorylation also facilitates replication fork elongation. SIRT1 T530 phosphorylation is essential to prevent DNA breakage upon replication stress and cells harboring SIRT1 that cannot be phosphorylated exhibit a high prevalence of extrachromosomal elements, hallmarks of perturbed replication. These observations suggest that SIRT1 phosphorylation modulates the distribution of replication initiation events to insure genomic stability.
Collapse
Affiliation(s)
- Koichi Utani
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Haiqing Fu
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sang-Min Jang
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anna B. Marks
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Owen K. Smith
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ya Zhang
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Christophe E. Redon
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Noriaki Shimizu
- Graduate School of Biosphere Science, Hiroshima University, Hiroshima 739-8521, Japan
| | - Mirit I. Aladjem
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
10
|
Aladjem MI, Redon CE. Order from clutter: selective interactions at mammalian replication origins. Nat Rev Genet 2017; 18:101-116. [PMID: 27867195 PMCID: PMC6596300 DOI: 10.1038/nrg.2016.141] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mammalian chromosome duplication progresses in a precise order and is subject to constraints that are often relaxed in developmental disorders and malignancies. Molecular information about the regulation of DNA replication at the chromatin level is lacking because protein complexes that initiate replication seem to bind chromatin indiscriminately. High-throughput sequencing and mathematical modelling have yielded detailed genome-wide replication initiation maps. Combining these maps and models with functional genetic analyses suggests that distinct DNA-protein interactions at subgroups of replication initiation sites (replication origins) modulate the ubiquitous replication machinery and supports an emerging model that delineates how indiscriminate DNA-binding patterns translate into a consistent, organized replication programme.
Collapse
Affiliation(s)
- Mirit I Aladjem
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, 37 Convent Drive, Bethesda, Maryland 20892, USA
| | - Christophe E Redon
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, 37 Convent Drive, Bethesda, Maryland 20892, USA
| |
Collapse
|
11
|
Marks AB, Fu H, Aladjem MI. Regulation of Replication Origins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1042:43-59. [PMID: 29357052 DOI: 10.1007/978-981-10-6955-0_2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In eukaryotes, genome duplication starts concomitantly at many replication initiation sites termed replication origins. The replication initiation program is spatially and temporally coordinated to ensure accurate, efficient DNA synthesis that duplicates the entire genome while maintaining other chromatin-dependent functions. Unlike in prokaryotes, not all potential replication origins in eukaryotes are needed for complete genome duplication during each cell cycle. Instead, eukaryotic cells vary the use of initiation sites so that only a fraction of potential replication origins initiate replication each cell cycle. Flexibility in origin choice allows each eukaryotic cell type to utilize different initiation sites, corresponding to unique nuclear DNA packaging patterns. These patterns coordinate replication with gene expression and chromatin condensation. Budding yeast replication origins share a consensus sequence that marks potential initiation sites. Metazoan origins, on the other hand, lack a consensus sequence. Rather, they are associated with a collection of structural features, chromatin packaging features, histone modifications, transcription, and DNA-DNA/DNA-protein interactions. These features confer cell type-specific replication and expression and play an essential role in maintaining genomic stability.
Collapse
Affiliation(s)
- Anna B Marks
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Haiqing Fu
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Mirit I Aladjem
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA.
| |
Collapse
|
12
|
Barthelemy J, Hanenberg H, Leffak M. FANCJ is essential to maintain microsatellite structure genome-wide during replication stress. Nucleic Acids Res 2016; 44:6803-16. [PMID: 27179029 PMCID: PMC5001596 DOI: 10.1093/nar/gkw433] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 05/06/2016] [Indexed: 12/15/2022] Open
Abstract
Microsatellite DNAs that form non-B structures are implicated in replication fork stalling, DNA double strand breaks (DSBs) and human disease. Fanconi anemia (FA) is an inherited disorder in which mutations in at least nineteen genes are responsible for the phenotypes of genome instability and cancer predisposition. FA pathway proteins are active in the resolution of non-B DNA structures including interstrand crosslinks, G quadruplexes and DNA triplexes. In FANCJ helicase depleted cells, we show that hydroxyurea or aphidicolin treatment leads to loss of microsatellite polymerase chain reaction signals and to chromosome recombination at an ectopic hairpin forming CTG/CAG repeat in the HeLa genome. Moreover, diverse endogenous microsatellite signals were also lost upon replication stress after FANCJ depletion, and in FANCJ null patient cells. The phenotype of microsatellite signal instability is specific for FANCJ apart from the intact FA pathway, and is consistent with DSBs at microsatellites genome-wide in FANCJ depleted cells following replication stress.
Collapse
Affiliation(s)
- Joanna Barthelemy
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - Helmut Hanenberg
- Department of Pediatrics III, University Children's Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany Department of Otorhinolaryngology & Head/Neck Surgery, Heinrich Heine University, 40225 Duesseldorf, Germany
| | - Michael Leffak
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| |
Collapse
|
13
|
Huang Y, Amin A, Qin Y, Wang Z, Jiang H, Liang L, Shi L, Liang C. A Role of hIPI3 in DNA Replication Licensing in Human Cells. PLoS One 2016; 11:e0151803. [PMID: 27057756 PMCID: PMC4825987 DOI: 10.1371/journal.pone.0151803] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 03/06/2016] [Indexed: 01/08/2023] Open
Abstract
The yeast Ipi3p is required for DNA replication and cell viability in Sacharomyces cerevisiae. It is an essential component of the Rix1 complex (Rix1p/Ipi2p-Ipi1p-Ipi3p) that is required for the processing of 35S pre-rRNA in pre-60S ribosomal particles and for the initiation of DNA replication. The human IPI3 homolog is WDR18 (WD repeat domain 18), which shares significant homology with yIpi3p. Here we report that knockdown of hIPI3 resulted in substantial defects in the chromatin association of the MCM complex, DNA replication, cell cycle progression and cell proliferation. Importantly, hIPI3 silencing did not result in a reduction of the protein level of hCDC6, hMCM7, or the ectopically expressed GFP protein, indicating that protein synthesis was not defective in the same time frame of the DNA replication and cell cycle defects. Furthermore, the mRNA and protein levels of hIPI3 fluctuate in the cell cycle, with the highest levels from M phase to early G1 phase, similar to other pre-replicative (pre-RC) proteins. Moreover, hIPI3 interacts with other replication-initiation proteins, co-localizes with hMCM7 in the nucleus, and is important for the nuclear localization of hMCM7. We also found that hIPI3 preferentially binds to the origins of DNA replication including those at the c-Myc, Lamin-B2 and β-Globin loci. These results indicate that hIPI3 is involved in human DNA replication licensing independent of its role in ribosome biogenesis.
Collapse
Affiliation(s)
- Yining Huang
- Biomedical Research Institute, Shenzhen-PKU-HKUST Medical Center, Shenzhen, China
- Division of Life Science, Center for Cancer Research and State Key Lab for Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
- HKUST Fok Ying Tung Research Institute, Guangzhou, China
| | - Aftab Amin
- Division of Life Science, Center for Cancer Research and State Key Lab for Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Yan Qin
- Division of Life Science, Center for Cancer Research and State Key Lab for Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Ziyi Wang
- Biomedical Research Institute, Shenzhen-PKU-HKUST Medical Center, Shenzhen, China
- Division of Life Science, Center for Cancer Research and State Key Lab for Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
- HKUST Fok Ying Tung Research Institute, Guangzhou, China
| | - Huadong Jiang
- Division of Life Science, Center for Cancer Research and State Key Lab for Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Lu Liang
- Division of Life Science, Center for Cancer Research and State Key Lab for Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Linjing Shi
- Division of Life Science, Center for Cancer Research and State Key Lab for Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Chun Liang
- Biomedical Research Institute, Shenzhen-PKU-HKUST Medical Center, Shenzhen, China
- Division of Life Science, Center for Cancer Research and State Key Lab for Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
- HKUST Fok Ying Tung Research Institute, Guangzhou, China
- Intelgen Ltd., Hong Kong-Guangzhou-Foshan, China
- * E-mail:
| |
Collapse
|
14
|
Marks AB, Smith OK, Aladjem MI. Replication origins: determinants or consequences of nuclear organization? Curr Opin Genet Dev 2016; 37:67-75. [PMID: 26845042 PMCID: PMC4914405 DOI: 10.1016/j.gde.2015.11.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 11/24/2015] [Accepted: 11/25/2015] [Indexed: 12/20/2022]
Abstract
Chromosome replication, gene expression and chromatin assembly all occur on the same template, necessitating a tight spatial and temporal coordination to maintain genomic stability. The distribution of replication initiation events is responsive to local and global changes in chromatin structure and is affected by transcriptional activity. Concomitantly, replication origin sequences, which determine the locations of replication initiation events, can affect chromatin structure and modulate transcriptional efficiency. The flexibility observed in the replication initiation landscape might help achieve complete and accurate genome duplication while coordinating the DNA replication program with transcription and other nuclear processes in a cell-type specific manner. This review discusses the relationships among replication origin distribution, local and global chromatin structures and concomitant nuclear metabolic processes.
Collapse
Affiliation(s)
- Anna B Marks
- Developmental Therapeutics Branch, NCI, NIH, Bethesda, MD, USA
| | - Owen K Smith
- Developmental Therapeutics Branch, NCI, NIH, Bethesda, MD, USA
| | - Mirit I Aladjem
- Developmental Therapeutics Branch, NCI, NIH, Bethesda, MD, USA.
| |
Collapse
|
15
|
Yun J, Song SH, Kang JY, Park J, Kim HP, Han SW, Kim TY. Reduced cohesin destabilizes high-level gene amplification by disrupting pre-replication complex bindings in human cancers with chromosomal instability. Nucleic Acids Res 2016; 44:558-72. [PMID: 26420833 PMCID: PMC4737181 DOI: 10.1093/nar/gkv933] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 08/09/2015] [Accepted: 09/08/2015] [Indexed: 01/03/2023] Open
Abstract
Gene amplification is a hallmark of cancer with chromosomal instability although the underlying mechanism by which altered copy numbers are maintained is largely unclear. Cohesin, involved in sister chromatid cohesion, DNA repair, cell cycle progression and transcriptional regulation of key developmental genes, is frequently overexpressed in human cancer. Here we show that cohesin-dependent change in DNA replication controls the copy numbers of amplified genes in cancer cells with chromosomal instability. We found that the down-regulation of elevated cohesin leads to copy number-associated gene expression changes without disturbing chromosomal segregation. Highly amplified genes form typical long-range chromatin interactions, which are stabilized by enriched cohesin. The spatial proximities among cohesin binding sites within amplified genes are decreased by RAD21-knockdown, resulting in the rapid decline of amplified gene expression. After several passages, cohesin depletion inhibits DNA replication initiation by reducing the recruitment of pre-replication complexes such as minichromosome maintenance subunits 7 (MCM7), DNA polymerase α, and CDC45 at replication origins near the amplified regions, and as a result, decreases the DNA copy numbers of highly amplified genes. Collectively, our data demonstrate that cohesin-mediated chromatin organization and DNA replication are important for stabilizing gene amplification in cancer cells with chromosomal instability.
Collapse
Affiliation(s)
- Jiyeon Yun
- Cancer Research Institute, Seoul National University, Seoul 110-799, Republic of Korea Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 110-799, Republic of Korea
| | - Sang-Hyun Song
- Cancer Research Institute, Seoul National University, Seoul 110-799, Republic of Korea
| | - Jee-Youn Kang
- Cancer Research Institute, Seoul National University, Seoul 110-799, Republic of Korea Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 110-799, Republic of Korea
| | - Jinah Park
- Cancer Research Institute, Seoul National University, Seoul 110-799, Republic of Korea
| | - Hwang-Phill Kim
- Cancer Research Institute, Seoul National University, Seoul 110-799, Republic of Korea Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 110-799, Republic of Korea
| | - Sae-Won Han
- Cancer Research Institute, Seoul National University, Seoul 110-799, Republic of Korea Department of Internal Medicine, Seoul National University Hospital, Seoul 110-744, Republic of Korea
| | - Tae-You Kim
- Cancer Research Institute, Seoul National University, Seoul 110-799, Republic of Korea Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 110-799, Republic of Korea Department of Internal Medicine, Seoul National University Hospital, Seoul 110-744, Republic of Korea
| |
Collapse
|
16
|
Hutchins JRA, Aze A, Coulombe P, Méchali M. Characteristics of Metazoan DNA Replication Origins. DNA REPLICATION, RECOMBINATION, AND REPAIR 2016. [PMCID: PMC7120227 DOI: 10.1007/978-4-431-55873-6_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
17
|
Feng Y, Vlassis A, Roques C, Lalonde ME, González-Aguilera C, Lambert JP, Lee SB, Zhao X, Alabert C, Johansen JV, Paquet E, Yang XJ, Gingras AC, Côté J, Groth A. BRPF3-HBO1 regulates replication origin activation and histone H3K14 acetylation. EMBO J 2015; 35:176-92. [PMID: 26620551 DOI: 10.15252/embj.201591293] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 11/03/2015] [Indexed: 12/23/2022] Open
Abstract
During DNA replication, thousands of replication origins are activated across the genome. Chromatin architecture contributes to origin specification and usage, yet it remains unclear which chromatin features impact on DNA replication. Here, we perform a RNAi screen for chromatin regulators implicated in replication control by measuring RPA accumulation upon replication stress. We identify six factors required for normal rates of DNA replication and characterize a function of the bromodomain and PHD finger-containing protein 3 (BRPF3) in replication initiation. BRPF3 forms a complex with HBO1 that specifically acetylates histone H3K14, and genomewide analysis shows high enrichment of BRPF3, HBO1 and H3K14ac at ORC1-binding sites and replication origins found in the vicinity of TSSs. Consistent with this, BRPF3 is necessary for H3K14ac at selected origins and efficient origin activation. CDC45 recruitment, but not MCM2-7 loading, is impaired in BRPF3-depleted cells, identifying a BRPF3-dependent function of HBO1 in origin activation that is complementary to its role in licencing. We thus propose that BRPF3-HBO1 acetylation of histone H3K14 around TSS facilitates efficient activation of nearby replication origins.
Collapse
Affiliation(s)
- Yunpeng Feng
- Biotech Research and Innovation Centre (BRIC) and Center for Epigenetics, University of Copenhagen, Copenhagen, Denmark
| | - Arsenios Vlassis
- Biotech Research and Innovation Centre (BRIC) and Center for Epigenetics, University of Copenhagen, Copenhagen, Denmark
| | - Céline Roques
- St-Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Oncology Axis-CHU de Québec Research Center, Quebec City, QC, Canada
| | - Marie-Eve Lalonde
- St-Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Oncology Axis-CHU de Québec Research Center, Quebec City, QC, Canada
| | - Cristina González-Aguilera
- Biotech Research and Innovation Centre (BRIC) and Center for Epigenetics, University of Copenhagen, Copenhagen, Denmark
| | | | - Sung-Bau Lee
- Biotech Research and Innovation Centre (BRIC) and Center for Epigenetics, University of Copenhagen, Copenhagen, Denmark Master Program for Clinical Pharmacogenomics and Pharmacoproteomics, School of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Xiaobei Zhao
- Bioinformatics Centre Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Constance Alabert
- Biotech Research and Innovation Centre (BRIC) and Center for Epigenetics, University of Copenhagen, Copenhagen, Denmark
| | - Jens V Johansen
- Biotech Research and Innovation Centre (BRIC) and Center for Epigenetics, University of Copenhagen, Copenhagen, Denmark
| | - Eric Paquet
- St-Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Oncology Axis-CHU de Québec Research Center, Quebec City, QC, Canada
| | - Xiang-Jiao Yang
- Department of Medicine, McGill University Health Center, Montréal, QC, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Jacques Côté
- St-Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Oncology Axis-CHU de Québec Research Center, Quebec City, QC, Canada
| | - Anja Groth
- Biotech Research and Innovation Centre (BRIC) and Center for Epigenetics, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
18
|
Lee KY, Dutta A. Initiation of replication in Xenopus egg extracts at a spatially defined origin. Cell Cycle 2015; 14:2391. [PMID: 26091433 DOI: 10.1080/15384101.2015.1063306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- Kyung Yong Lee
- a Department of Biochemistry and Molecular Genetics ; University of Virginia ; Charlottesville , VA USA
| | | |
Collapse
|
19
|
Gao Y, Yao J, Poudel S, Romer E, Abu-Niaaj L, Leffak M. Protein phosphatase 2A and Cdc7 kinase regulate the DNA unwinding element-binding protein in replication initiation. J Biol Chem 2014; 289:35987-6000. [PMID: 25258324 DOI: 10.1074/jbc.m114.589119] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The DNA unwinding element (DUE)-binding protein (DUE-B) binds to replication origins coordinately with the minichromosome maintenance (MCM) helicase and the helicase activator Cdc45 in vivo, and loads Cdc45 onto chromatin in Xenopus egg extracts. Human DUE-B also retains the aminoacyl-tRNA proofreading function of its shorter orthologs in lower organisms. Here we report that phosphorylation of the DUE-B unstructured C-terminal domain unique to higher organisms regulates DUE-B intermolecular binding. Gel filtration analyses show that unphosphorylated DUE-B forms multiple high molecular weight (HMW) complexes. Several aminoacyl-tRNA synthetases and Mcm2-7 proteins were identified by mass spectrometry of the HMW complexes. Aminoacyl-tRNA synthetase binding is RNase A sensitive, whereas interaction with Mcm2-7 is nuclease resistant. Unphosphorylated DUE-B HMW complex formation is decreased by PP2A inhibition or direct DUE-B phosphorylation, and increased by inhibition of Cdc7. These results indicate that the state of DUE-B phosphorylation is maintained by the equilibrium between Cdc7-dependent phosphorylation and PP2A-dependent dephosphorylation, each previously shown to regulate replication initiation. Alanine mutation of the DUE-B C-terminal phosphorylation target sites increases MCM binding but blocks Cdc45 loading in vivo and inhibits cell division. In egg extracts alanine mutation of the DUE-B C-terminal phosphorylation sites blocks Cdc45 loading and inhibits DNA replication. The effects of DUE-B C-terminal phosphorylation reveal a novel S phase kinase regulatory mechanism for Cdc45 loading and MCM helicase activation.
Collapse
Affiliation(s)
- Yanzhe Gao
- From the Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio 45435
| | - Jianhong Yao
- From the Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio 45435
| | - Sumeet Poudel
- From the Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio 45435
| | - Eric Romer
- From the Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio 45435
| | - Lubna Abu-Niaaj
- From the Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio 45435
| | - Michael Leffak
- From the Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio 45435
| |
Collapse
|
20
|
Smith OK, Aladjem MI. Chromatin structure and replication origins: determinants of chromosome replication and nuclear organization. J Mol Biol 2014; 426:3330-41. [PMID: 24905010 DOI: 10.1016/j.jmb.2014.05.027] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 05/22/2014] [Accepted: 05/24/2014] [Indexed: 12/29/2022]
Abstract
The DNA replication program is, in part, determined by the epigenetic landscape that governs local chromosome architecture and directs chromosome duplication. Replication must coordinate with other biochemical processes occurring concomitantly on chromatin, such as transcription and remodeling, to insure accurate duplication of both genetic and epigenetic features and to preserve genomic stability. The importance of genome architecture and chromatin looping in coordinating cellular processes on chromatin is illustrated by two recent sets of discoveries. First, chromatin-associated proteins that are not part of the core replication machinery were shown to affect the timing of DNA replication. These chromatin-associated proteins could be working in concert, or perhaps in competition, with the transcriptional machinery and with chromatin modifiers to determine the spatial and temporal organization of replication initiation events. Second, epigenetic interactions are mediated by DNA sequences that determine chromosomal replication. In this review, we summarize recent findings and current models linking spatial and temporal regulation of the replication program with epigenetic signaling. We discuss these issues in the context of the genome's three-dimensional structure with an emphasis on events occurring during the initiation of DNA replication.
Collapse
Affiliation(s)
- Owen K Smith
- DNA Replication Group, Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Mirit I Aladjem
- DNA Replication Group, Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| |
Collapse
|
21
|
Champeris Tsaniras S, Kanellakis N, Symeonidou IE, Nikolopoulou P, Lygerou Z, Taraviras S. Licensing of DNA replication, cancer, pluripotency and differentiation: an interlinked world? Semin Cell Dev Biol 2014; 30:174-80. [PMID: 24641889 DOI: 10.1016/j.semcdb.2014.03.013] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 03/10/2014] [Indexed: 01/06/2023]
Abstract
Recent findings provide evidence for a functional interplay between DNA replication and the seemingly distinct areas of cancer, development and pluripotency. Protein complexes participating in DNA replication origin licensing are now known to have roles in development, while their deregulation can lead to cancer. Moreover, transcription factors implicated in the maintenance of or reversal to the pluripotent state have links to the pre-replicative machinery. Several studies have shown that overexpression of these factors is associated to cancer.
Collapse
Affiliation(s)
- S Champeris Tsaniras
- Department of Physiology, Medical School, University of Patras, Rio, 26504 Patras, Greece.
| | - N Kanellakis
- Department of Physiology, Medical School, University of Patras, Rio, 26504 Patras, Greece.
| | - I E Symeonidou
- Department of Biology, Medical School, University of Patras, Rio, 26504 Patras, Greece.
| | - P Nikolopoulou
- Department of Physiology, Medical School, University of Patras, Rio, 26504 Patras, Greece.
| | - Z Lygerou
- Department of Biology, Medical School, University of Patras, Rio, 26504 Patras, Greece.
| | - S Taraviras
- Department of Physiology, Medical School, University of Patras, Rio, 26504 Patras, Greece.
| |
Collapse
|