1
|
Luo G, Ming T, Yang L, He L, Tao T, Wang Y. Modulators targeting protein-protein interactions in Mycobacterium tuberculosis. Microbiol Res 2024; 284:127675. [PMID: 38636239 DOI: 10.1016/j.micres.2024.127675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 04/20/2024]
Abstract
Tuberculosis (TB) is a chronic infectious disease caused by Mycobacterium tuberculosis (M. tuberculosis), mainly transmitted through droplets to infect the lungs, and seriously affecting patients' health and quality of life. Clinically, anti-TB drugs often entail side effects and lack efficacy against resistant strains. Thus, the exploration and development of novel targeted anti-TB medications are imperative. Currently, protein-protein interactions (PPIs) offer novel avenues for anti-TB drug development, and the study of targeted modulators of PPIs in M. tuberculosis has become a prominent research focus. Furthermore, a comprehensive PPI network has been constructed using computational methods and bioinformatics tools. This network allows for a more in-depth analysis of the structural biology of PPIs and furnishes essential insights for the development of targeted small-molecule modulators. Furthermore, this article provides a detailed overview of the research progress and regulatory mechanisms of PPI modulators in M. tuberculosis, the causative agent of TB. Additionally, it summarizes potential targets for anti-TB drugs and discusses the prospects of existing PPI modulators.
Collapse
Affiliation(s)
- Guofeng Luo
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Tianqi Ming
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Luchuan Yang
- Institute of traditional Chinese medicine, Sichuan College of traditional Chinese Medicine (Sichuan Second Hospital of TCM), Chengdu 610031, China
| | - Lei He
- Institute of traditional Chinese medicine, Sichuan College of traditional Chinese Medicine (Sichuan Second Hospital of TCM), Chengdu 610031, China
| | - Tao Tao
- Institute of traditional Chinese medicine, Sichuan College of traditional Chinese Medicine (Sichuan Second Hospital of TCM), Chengdu 610031, China
| | - Yanmei Wang
- Institute of traditional Chinese medicine, Sichuan College of traditional Chinese Medicine (Sichuan Second Hospital of TCM), Chengdu 610031, China.
| |
Collapse
|
2
|
Smith EL, Goley ED. House of CarDs: Functional insights into the transcriptional regulator CdnL. Mol Microbiol 2024:10.1111/mmi.15268. [PMID: 38664995 PMCID: PMC11502505 DOI: 10.1111/mmi.15268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/12/2024] [Accepted: 04/11/2024] [Indexed: 07/07/2024]
Abstract
Regulation of bacterial transcription is a complex and multi-faceted phenomenon that is critical for growth and adaptation. Proteins in the CarD_CdnL_TRCF family are widespread, often essential, regulators of transcription of genes required for growth and metabolic homeostasis. Research in the last decade has described the mechanistic and structural bases of CarD-CdnL-mediated regulation of transcription initiation. More recently, studies in a range of bacteria have begun to elucidate the physiological roles of CarD-CdnL proteins as well as mechanisms by which these proteins, themselves, are regulated. A theme has emerged wherein regulation of CarD-CdnL proteins is central to bacterial adaptation to stress and/or changing environmental conditions.
Collapse
Affiliation(s)
- Erika L. Smith
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Erin D. Goley
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
3
|
Kompaniiets D, Wang D, Yang Y, Hu Y, Liu B. Structure and molecular mechanism of bacterial transcription activation. Trends Microbiol 2024; 32:379-397. [PMID: 37903670 DOI: 10.1016/j.tim.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/27/2023] [Accepted: 10/03/2023] [Indexed: 11/01/2023]
Abstract
Transcription activation is an important checkpoint of regulation of gene expression which occurs in response to different intracellular and extracellular signals. The key elements in this signal transduction process are transcription activators, which determine when and how gene expression is activated. Recent structural studies on a considerable number of new transcription activation complexes (TACs) revealed the remarkable mechanistic diversity of transcription activation mediated by different factors, necessitating a review and re-evaluation of the transcription activation mechanisms. In this review, we present a comprehensive summary of transcription activation mechanisms and propose a new, elaborate, and systematic classification of transcription activation mechanisms, primarily based on the structural features of diverse TAC components.
Collapse
Affiliation(s)
- Dmytro Kompaniiets
- Section of Transcription and Gene Regulation, The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Dong Wang
- Section of Transcription and Gene Regulation, The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Yang Yang
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA
| | - Yangbo Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Bin Liu
- Section of Transcription and Gene Regulation, The Hormel Institute, University of Minnesota, Austin, MN 55912, USA.
| |
Collapse
|
4
|
Dey U, Olymon K, Banik A, Abbas E, Yella VR, Kumar A. DNA structural properties of DNA binding sites for 21 transcription factors in the mycobacterial genome. Front Cell Infect Microbiol 2023; 13:1147544. [PMID: 37396305 PMCID: PMC10312376 DOI: 10.3389/fcimb.2023.1147544] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/19/2023] [Indexed: 07/04/2023] Open
Abstract
Mycobacterium tuberculosis, the causative agent of tuberculosis, has evolved over time into a multidrug resistance strain that poses a serious global pandemic health threat. The ability to survive and remain dormant within the host macrophage relies on multiple transcription factors contributing to virulence. To date, very limited structural insights from crystallographic and NMR studies are available for TFs and TF-DNA binding events. Understanding the role of DNA structure in TF binding is critical to deciphering MTB pathogenicity and has yet to be resolved at the genome scale. In this work, we analyzed the compositional and conformational preference of 21 mycobacterial TFs, evident at their DNA binding sites, in local and global scales. Results suggest that most TFs prefer binding to genomic regions characterized by unique DNA structural signatures, namely, high electrostatic potential, narrow minor grooves, high propeller twist, helical twist, intrinsic curvature, and DNA rigidity compared to the flanking sequences. Additionally, preference for specific trinucleotide motifs, with clear periodic signals of tetranucleotide motifs, are observed in the vicinity of the TF-DNA interactions. Altogether, our study reports nuanced DNA shape and structural preferences of 21 TFs.
Collapse
Affiliation(s)
- Upalabdha Dey
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, India
| | - Kaushika Olymon
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, India
| | - Anikesh Banik
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, India
| | - Eshan Abbas
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, India
| | - Venkata Rajesh Yella
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Guntur, India
| | - Aditya Kumar
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, India
| |
Collapse
|
5
|
Zhu DX, Stallings CL. Transcription regulation by CarD in mycobacteria is guided by basal promoter kinetics. J Biol Chem 2023; 299:104724. [PMID: 37075846 PMCID: PMC10232725 DOI: 10.1016/j.jbc.2023.104724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/30/2023] [Accepted: 04/11/2023] [Indexed: 04/21/2023] Open
Abstract
Bacterial pathogens like Mycobacterium tuberculosis (Mtb) employ transcription factors to adapt their physiology to the diverse environments within their host. CarD is a conserved bacterial transcription factor that is essential for viability in Mtb. Unlike classical transcription factors that recognize promoters by binding to specific DNA sequence motifs, CarD binds directly to the RNA polymerase to stabilize the open complex intermediate (RPo) during transcription initiation. We previously showed using RNA-sequencing that CarD is capable of both activating and repressing transcription in vivo. However, it is unknown how CarD achieves promoter-specific regulatory outcomes in Mtb despite binding indiscriminate of DNA sequence. We propose a model where CarD's regulatory outcome depends on the promoter's basal RPo stability and test this model using in vitro transcription from a panel of promoters with varying levels of RPo stability. We show that CarD directly activates full-length transcript production from the Mtb ribosomal RNA promoter rrnAP3 (AP3) and that the degree of transcription activation by CarD is negatively correlated with RPo stability. Using targeted mutations in the extended -10 and discriminator region of AP3, we show that CarD directly represses transcription from promoters that form relatively stable RPo. DNA supercoiling also influenced RPo stability and affected the direction of CarD regulation, indicating that the outcome of CarD activity can be regulated by factors beyond promoter sequence. Our results provide experimental evidence for how RNA polymerase-binding transcription factors like CarD can exert specific regulatory outcomes based on the kinetic properties of a promoter.
Collapse
Affiliation(s)
- Dennis X Zhu
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St Louis, Missouri, USA
| | - Christina L Stallings
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St Louis, Missouri, USA.
| |
Collapse
|
6
|
Delbeau M, Omollo EO, Froom R, Koh S, Mooney RA, Lilic M, Brewer JJ, Rock J, Darst SA, Campbell EA, Landick R. Structural and functional basis of the universal transcription factor NusG pro-pausing activity in Mycobacterium tuberculosis. Mol Cell 2023; 83:1474-1488.e8. [PMID: 37116494 PMCID: PMC10231689 DOI: 10.1016/j.molcel.2023.04.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/08/2023] [Accepted: 04/04/2023] [Indexed: 04/30/2023]
Abstract
Transcriptional pauses mediate regulation of RNA biogenesis. DNA-encoded pause signals trigger pausing by stabilizing RNA polymerase (RNAP) swiveling and inhibiting DNA translocation. The N-terminal domain (NGN) of the only universal transcription factor, NusG/Spt5, modulates pausing through contacts to RNAP and DNA. Pro-pausing NusGs enhance pauses, whereas anti-pausing NusGs suppress pauses. Little is known about pausing and NusG in the human pathogen Mycobacterium tuberculosis (Mtb). We report that MtbNusG is pro-pausing. MtbNusG captures paused, swiveled RNAP by contacts to the RNAP protrusion and nontemplate-DNA wedged between the NGN and RNAP gate loop. In contrast, anti-pausing Escherichia coli (Eco) NGN contacts the MtbRNAP gate loop, inhibiting swiveling and pausing. Using CRISPR-mediated genetics, we show that pro-pausing NGN is required for mycobacterial fitness. Our results define an essential function of mycobacterial NusG and the structural basis of pro- versus anti-pausing NusG activity, with broad implications for the function of all NusG orthologs.
Collapse
Affiliation(s)
- Madeleine Delbeau
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY 10065, USA
| | - Expery O Omollo
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Ruby Froom
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY 10065, USA; Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY 10065, USA
| | - Steven Koh
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY 10065, USA
| | - Rachel A Mooney
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Mirjana Lilic
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY 10065, USA
| | - Joshua J Brewer
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY 10065, USA
| | - Jeremy Rock
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY 10065, USA
| | - Seth A Darst
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY 10065, USA.
| | - Elizabeth A Campbell
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY 10065, USA.
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
7
|
Zhu DX, Stallings CL. Transcription regulation by CarD in mycobacteria is guided by basal promoter kinetics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.16.533025. [PMID: 36993566 PMCID: PMC10055060 DOI: 10.1101/2023.03.16.533025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Bacterial pathogens like Mycobacterium tuberculosis ( Mtb ) employ transcription factors to adapt their physiology to the diverse environments within their host. CarD is a conserved bacterial transcription factor that is essential for viability in Mtb . Unlike classical transcription factors that recognize promoters by binding to specific DNA sequence motifs, CarD binds directly to the RNA polymerase (RNAP) to stabilize the open complex intermediate (RP o ) during transcription initiation. We previously showed using RNA-sequencing that CarD is capable of both activating and repressing transcription in vivo . However, it is unknown how CarD achieves promoter specific regulatory outcomes in Mtb despite binding indiscriminate of DNA sequence. We propose a model where CarD's regulatory outcome depends on the promoter's basal RP o stability and test this model using in vitro transcription from a panel of promoters with varying levels of RP o stability. We show that CarD directly activates full-length transcript production from the Mtb ribosomal RNA promoter rrnA P3 (AP3) and that the degree of transcription activation by CarD is negatively correlated with RP o stability. Using targeted mutations in the extended -10 and discriminator region of AP3, we show that CarD directly represses transcription from promoters that form relatively stable RP o . DNA supercoiling also influenced RP o stability and affected the direction of CarD regulation, indicating that the outcome of CarD activity can be regulated by factors beyond promoter sequence. Our results provide experimental evidence for how RNAP-binding transcription factors like CarD can exert specific regulatory outcomes based on the kinetic properties of a promoter.
Collapse
|
8
|
Oh Y, Lee HN, Ko EM, Jeong JA, Park SW, Oh JI. Mycobacterial Regulatory Systems Involved in the Regulation of Gene Expression Under Respiration-Inhibitory Conditions. J Microbiol 2023; 61:297-315. [PMID: 36847970 DOI: 10.1007/s12275-023-00026-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 03/01/2023]
Abstract
Mycobacterium tuberculosis is the causative agent of tuberculosis. M. tuberculosis can survive in a dormant state within the granuloma, avoiding the host-mounting immune attack. M. tuberculosis bacilli in this state show increased tolerance to antibiotics and stress conditions, and thus the transition of M. tuberculosis to the nonreplicating dormant state acts as an obstacle to tuberculosis treatment. M. tuberculosis in the granuloma encounters hostile environments such as hypoxia, nitric oxide, reactive oxygen species, low pH, and nutrient deprivation, etc., which are expected to inhibit respiration of M. tuberculosis. To adapt to and survive in respiration-inhibitory conditions, it is required for M. tuberculosis to reprogram its metabolism and physiology. In order to get clues to the mechanism underlying the entry of M. tuberculosis to the dormant state, it is important to understand the mycobacterial regulatory systems that are involved in the regulation of gene expression in response to respiration inhibition. In this review, we briefly summarize the information regarding the regulatory systems implicated in upregulation of gene expression in mycobacteria exposed to respiration-inhibitory conditions. The regulatory systems covered in this review encompass the DosSR (DevSR) two-component system, SigF partner switching system, MprBA-SigE-SigB signaling pathway, cAMP receptor protein, and stringent response.
Collapse
Affiliation(s)
- Yuna Oh
- Department of Integrated Biological Science, Pusan National University, Busan, 46241, Republic of Korea
| | - Ha-Na Lee
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Eon-Min Ko
- Division of Bacterial Disease Research, Center for Infectious Disease Research, Korea Disease Control and Prevention Agency, National Institute of Infectious Diseases, National Institute of Health, Osong, 28159, Republic of Korea
| | - Ji-A Jeong
- Division of Bacterial Disease Research, Center for Infectious Disease Research, Korea Disease Control and Prevention Agency, National Institute of Infectious Diseases, National Institute of Health, Osong, 28159, Republic of Korea
| | - Sae Woong Park
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Jeong-Il Oh
- Department of Integrated Biological Science, Pusan National University, Busan, 46241, Republic of Korea. .,Microbiological Resource Research Institute, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
9
|
Stephanie F, Tambunan USF, Siahaan TJ. M. tuberculosis Transcription Machinery: A Review on the Mycobacterial RNA Polymerase and Drug Discovery Efforts. Life (Basel) 2022; 12:1774. [PMID: 36362929 PMCID: PMC9695777 DOI: 10.3390/life12111774] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/24/2022] [Accepted: 11/01/2022] [Indexed: 09/08/2023] Open
Abstract
Mycobacterium tuberculosis (MTB) is the main source of tuberculosis (TB), one of the oldest known diseases in the human population. Despite the drug discovery efforts of past decades, TB is still one of the leading causes of mortality and claimed more than 1.5 million lives worldwide in 2020. Due to the emergence of drug-resistant strains and patient non-compliance during treatments, there is a pressing need to find alternative therapeutic agents for TB. One of the important areas for developing new treatments is in the inhibition of the transcription step of gene expression; it is the first step to synthesize a copy of the genetic material in the form of mRNA. This further translates to functional protein synthesis, which is crucial for the bacteria living processes. MTB contains a bacterial DNA-dependent RNA polymerase (RNAP), which is the key enzyme for the transcription process. MTB RNAP has been targeted for designing and developing antitubercular agents because gene transcription is essential for the mycobacteria survival. Initiation, elongation, and termination are the three important sequential steps in the transcription process. Each step is complex and highly regulated, involving multiple transcription factors. This review is focused on the MTB transcription machinery, especially in the nature of MTB RNAP as the main enzyme that is regulated by transcription factors. The mechanism and conformational dynamics that occur during transcription are discussed and summarized. Finally, the current progress on MTB transcription inhibition and possible drug target in mycobacterial RNAP are also described to provide insight for future antitubercular drug design and development.
Collapse
Affiliation(s)
- Filia Stephanie
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok 16424, Indonesia
| | - Usman Sumo Friend Tambunan
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok 16424, Indonesia
| | - Teruna J. Siahaan
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
10
|
Yang X, Wang Y, Liu G, Deng Z, Lin S, Zheng J. Structural basis of Streptomyces transcription activation by zinc uptake regulator. Nucleic Acids Res 2022; 50:8363-8376. [PMID: 35871291 PMCID: PMC9371925 DOI: 10.1093/nar/gkac627] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 06/30/2022] [Accepted: 07/20/2022] [Indexed: 11/30/2022] Open
Abstract
Streptomyces coelicolor (Sc) is a model organism of actinobacteria to study morphological differentiation and production of bioactive metabolites. Sc zinc uptake regulator (Zur) affects both processes by controlling zinc homeostasis. It activates transcription by binding to palindromic Zur-box sequences upstream of −35 elements. Here we deciphered the molecular mechanism by which ScZur interacts with promoter DNA and Sc RNA polymerase (RNAP) by cryo-EM structures and biochemical assays. The ScZur-DNA structures reveal a sequential and cooperative binding of three ScZur dimers surrounding a Zur-box spaced 8 nt upstream from a −35 element. The ScRNAPσHrdB-Zur-DNA structures define protein-protein and protein-DNA interactions involved in the principal housekeeping σHrdB-dependent transcription initiation from a noncanonical promoter with a −10 element lacking the critical adenine residue at position −11 and a TTGCCC −35 element deviating from the canonical TTGACA motif. ScZur interacts with the C-terminal domain of ScRNAP α subunit (αCTD) in a complex structure trapped in an active conformation. Key ScZur-αCTD interfacial residues accounting for ScZur-dependent transcription activation were confirmed by mutational studies. Together, our structural and biochemical results provide a comprehensive model for transcription activation of Zur family regulators.
Collapse
Affiliation(s)
- Xu Yang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , Shanghai 200240, China
| | - Yiqun Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , Shanghai 200240, China
| | - Guiyang Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , Shanghai 200240, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , Shanghai 200240, China
| | - Shuangjun Lin
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , Shanghai 200240, China
| | - Jianting Zheng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , Shanghai 200240, China
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University , Shanghai 200240, China
| |
Collapse
|
11
|
Cao X, Boyaci H, Chen J, Bao Y, Landick R, Campbell EA. Basis of narrow-spectrum activity of fidaxomicin on Clostridioides difficile. Nature 2022; 604:541-545. [PMID: 35388215 PMCID: PMC9635844 DOI: 10.1038/s41586-022-04545-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 02/10/2022] [Indexed: 01/12/2023]
Abstract
Fidaxomicin (Fdx) is widely used to treat Clostridioides difficile (Cdiff) infections, but the molecular basis of its narrow-spectrum activity in the human gut microbiome remains unknown. Cdiff infections are a leading cause of nosocomial deaths1. Fidaxomicin, which inhibits RNA polymerase, targets Cdiff with minimal effects on gut commensals, reducing recurrence of Cdiff infection2,3. Here we present the cryo-electron microscopy structure of Cdiff RNA polymerase in complex with fidaxomicin and identify a crucial fidaxomicin-binding determinant of Cdiff RNA polymerase that is absent in most gut microbiota such as Proteobacteria and Bacteroidetes. By combining structural, biochemical, genetic and bioinformatic analyses, we establish that a single residue in Cdiff RNA polymerase is a sensitizing element for fidaxomicin narrow-spectrum activity. Our results provide a blueprint for targeted drug design against an important human pathogen.
Collapse
Affiliation(s)
- Xinyun Cao
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, United States
| | - Hande Boyaci
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY, United States
| | - James Chen
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY, United States
| | - Yu Bao
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, United States
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, United States.
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States.
| | - Elizabeth A Campbell
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY, United States.
| |
Collapse
|
12
|
Prusa J, Zhu DX, Flynn AJ, Jensen D, Ruiz Manzano A, Galburt EA, Stallings CL. Molecular dissection of RbpA-mediated regulation of fidaxomicin sensitivity in mycobacteria. J Biol Chem 2022; 298:101752. [PMID: 35189142 PMCID: PMC8956947 DOI: 10.1016/j.jbc.2022.101752] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 02/11/2022] [Accepted: 02/13/2022] [Indexed: 01/13/2023] Open
Abstract
RNA polymerase (RNAP) binding protein A (RbpA) is essential for mycobacterial viability and regulates transcription initiation by increasing the stability of the RNAP-promoter open complex (RPo). RbpA consists of four domains: an N-terminal tail (NTT), a core domain (CD), a basic linker, and a sigma interaction domain. We have previously shown that truncation of the RbpA NTT and CD increases RPo stabilization by RbpA, implying that these domains inhibit this activity of RbpA. Previously published structural studies showed that the NTT and CD are positioned near multiple RNAP-σA holoenzyme functional domains and predict that the RbpA NTT contributes specific amino acids to the binding site of the antibiotic fidaxomicin (Fdx), which inhibits the formation of the RPo complex. Furthermore, deletion of the NTT results in decreased Mycobacterium smegmatis sensitivity to Fdx, but whether this is caused by a loss in Fdx binding is unknown. We generated a panel of rbpA mutants and found that the RbpA NTT residues predicted to directly interact with Fdx are partially responsible for RbpA-dependent Fdx activity in vitro, while multiple additional RbpA domains contribute to Fdx activity in vivo. Specifically, our results suggest that the RPo-stabilizing activity of RbpA decreases Fdx activity in vivo. In support of the association between RPo stability and Fdx activity, we find that another factor that promotes RPo stability in bacteria, CarD, also impacts to Fdx sensitivity. Our findings highlight how RbpA and other factors may influence RNAP dynamics to affect Fdx sensitivity.
Collapse
Affiliation(s)
- Jerome Prusa
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Dennis X. Zhu
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Aidan J. Flynn
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Drake Jensen
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Ana Ruiz Manzano
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Eric A. Galburt
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Christina L. Stallings
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA,For correspondence: Christina L. Stallings
| |
Collapse
|
13
|
Li X, Chen F, Liu X, Xiao J, Andongma BT, Tang Q, Cao X, Chou SH, Galperin MY, He J. Clp protease and antisense RNA jointly regulate the global regulator CarD to mediate mycobacterial starvation response. eLife 2022; 11:73347. [PMID: 35080493 PMCID: PMC8820732 DOI: 10.7554/elife.73347] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 01/25/2022] [Indexed: 12/02/2022] Open
Abstract
Under starvation conditions, bacteria tend to slow down their translation rate by reducing rRNA synthesis, but the way they accomplish that may vary in different bacteria. In Mycobacterium species, transcription of rRNA is activated by the RNA polymerase (RNAP) accessory transcription factor CarD, which interacts directly with RNAP to stabilize the RNAP-promoter open complex formed on rRNA genes. The functions of CarD have been extensively studied, but the mechanisms that control its expression remain obscure. Here, we report that the level of CarD was tightly regulated when mycobacterial cells switched from nutrient-rich to nutrient-deprived conditions. At the translational level, an antisense RNA of carD (AscarD) was induced in a SigF-dependent manner to bind with carD mRNA and inhibit CarD translation, while at the post-translational level, the residual intracellular CarD was quickly degraded by the Clp protease. AscarD thus worked synergistically with Clp protease to decrease the CarD level to help mycobacterial cells cope with the nutritional stress. Altogether, our work elucidates the regulation mode of CarD and delineates a new mechanism for the mycobacterial starvation response, which is important for the adaptation and persistence of mycobacterial pathogens in the host environment.
Collapse
Affiliation(s)
- Xinfeng Li
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Fang Chen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiaoyu Liu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jinfeng Xiao
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Binda T Andongma
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qing Tang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiaojian Cao
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shan-Ho Chou
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, United States
| | - Jin He
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
14
|
Müller AU, Kummer E, Schilling CM, Ban N, Weber-Ban E. Transcriptional control of mycobacterial DNA damage response by sigma adaptation. SCIENCE ADVANCES 2021; 7:eabl4064. [PMID: 34851662 PMCID: PMC8635444 DOI: 10.1126/sciadv.abl4064] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/08/2021] [Indexed: 05/23/2023]
Abstract
Transcriptional activator PafBC is the key regulator of the mycobacterial DNA damage response and controls around 150 genes, including genes involved in the canonical SOS response, through an unknown molecular mechanism. Using a combination of biochemistry and cryo–electron microscopy, we demonstrate that PafBC in the presence of single-stranded DNA activates transcription by reprogramming the canonical −10 and −35 promoter specificity of RNA polymerase associated with the housekeeping sigma subunit. We determine the structure of this transcription initiation complex, revealing a unique mode of promoter recognition, which we term “sigma adaptation.” PafBC inserts between DNA and sigma factor to mediate recognition of hybrid promoters lacking the −35 but featuring the canonical −10 and a PafBC-specific −26 element. Sigma adaptation may constitute a more general mechanism of transcriptional control in mycobacteria.
Collapse
|
15
|
Pan L, Gardner CL, Beliakoff R, da Silva D, Zuo R, Pagliai FA, Padgett-Pagliai KA, Merli ML, Bahadiroglu E, Gonzalez CF, Lorca GL. PrbP modulates biofilm formation in Liberibacter crescens. Environ Microbiol 2021; 23:7121-7138. [PMID: 34431209 DOI: 10.1111/1462-2920.15740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/17/2021] [Accepted: 08/22/2021] [Indexed: 12/31/2022]
Abstract
In Liberibacter asiaticus, PrbP is a transcriptional regulatory protein involved in survival and persistence during host infection. Tolfenamic acid was previously found to inhibit interactions between PrbP and the promotor region of rplK, resulting in reduced survival of L. asiaticus in the citrus host. In this study, we performed transcriptome analyses to elucidate the PrbP regulon in L. crescens, as it is phylogenetically the closest related species to L. asiaticus that can be grown in laboratory conditions. Chemical inhibition of PrbP with tolfenamic acid revealed that PrbP is involved in the regulation of diverse cellular processes, including stress response, cell motility, cell cycle and biofilm formation. In vitro DNA binding and bacterial two-hybrid assays also suggested that PrbP is a global regulator of multiple transcription factors (RpoH, VisN, PleD, MucR, MocR and CtrA) at both transcriptional and/or post-transcriptional levels. Sub-lethal concentrations of tolfenamic acid significantly reduced the attachment of L. crescens during biofilm formation and decreased long-term persistence in biofilm structures. Overall, our findings show the importance of PrbP in regulating diverse biological processes through direct and indirect interactions with other transcriptional regulators in L. crescens.
Collapse
Affiliation(s)
- Lei Pan
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, FL, USA
| | - Christopher L Gardner
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, FL, USA
| | - Reagan Beliakoff
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, FL, USA
| | - Danilo da Silva
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, FL, USA
| | - Ran Zuo
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, FL, USA
| | - Fernando A Pagliai
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, FL, USA
| | - Kaylie A Padgett-Pagliai
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, FL, USA
| | - Marcelo L Merli
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, FL, USA
| | - Erol Bahadiroglu
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, FL, USA
| | - Claudio F Gonzalez
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, FL, USA
| | - Graciela L Lorca
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, FL, USA
| |
Collapse
|
16
|
Abstract
Bioinformatic analysis showed previously that a majority of promoters in the photoheterotrophic alphaproteobacterium Rhodobacter sphaeroides lack the thymine at the last position of the -10 element (-7T), a base that is very highly conserved in promoters in bacteria other than alphaproteobacteria. The absence of -7T was correlated with low promoter activity using purified R. sphaeroides RNA polymerase (RNAP), but the transcription factor CarD compensated by activating almost all promoters lacking -7T tested in vitro, including rRNA promoters. Here, we show that a previously uncharacterized R. sphaeroides promoter, the promoter for carD itself, has high basal activity relative to other tested R. sphaeroides promoters despite lacking -7T, and its activity is inhibited rather than activated by CarD. This high basal activity is dependent on a consensus-extended -10 element (TGn) and specific features in the spacer immediately upstream of the extended -10 element. CarD negatively autoregulates its own promoter by producing abortive transcripts, limiting promoter escape, and reducing full-length mRNA synthesis. This mechanism of negative regulation differs from that employed by classical repressors, in which the transcription factor competes with RNA polymerase for binding to the promoter, and with the mechanism of negative regulation used by transcription factors like DksA/ppGpp and TraR that allosterically inhibit the rate of open complex formation. IMPORTANCE R. sphaeroides CarD activates many promoters by binding directly to RNAP and DNA just upstream of the -10 element. In contrast, we show here that CarD inhibits its own promoter using the same interactions with RNAP and DNA used for activation. Inhibition results from increasing abortive transcript formation, thereby decreasing promoter escape and full-length RNA synthesis. We propose that the combined interactions of RNAP with CarD, with the extended -10 element and with features in the adjacent -10/-35 spacer DNA, stabilize the promoter complex, reducing promoter clearance. These findings support previous predictions that the effects of CarD on transcription can be either positive or negative, depending on the kinetic properties of the specific promoter.
Collapse
|
17
|
Lilic M, Darst SA, Campbell EA. Structural basis of transcriptional activation by the Mycobacterium tuberculosis intrinsic antibiotic-resistance transcription factor WhiB7. Mol Cell 2021; 81:2875-2886.e5. [PMID: 34171296 PMCID: PMC8311663 DOI: 10.1016/j.molcel.2021.05.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/22/2021] [Accepted: 05/12/2021] [Indexed: 01/25/2023]
Abstract
In pathogenic mycobacteria, transcriptional responses to antibiotics result in induced antibiotic resistance. WhiB7 belongs to the Actinobacteria-specific family of Fe-S-containing transcription factors and plays a crucial role in inducible antibiotic resistance in mycobacteria. Here, we present cryoelectron microscopy structures of Mycobacterium tuberculosis transcriptional regulatory complexes comprising RNA polymerase σA-holoenzyme, global regulators CarD and RbpA, and WhiB7, bound to a WhiB7-regulated promoter. The structures reveal how WhiB7 interacts with σA-holoenzyme while simultaneously interacting with an AT-rich sequence element via its AT-hook. Evidently, AT-hooks, rare elements in bacteria yet prevalent in eukaryotes, bind to target AT-rich DNA sequences similarly to the nuclear chromosome binding proteins. Unexpectedly, a subset of particles contained a WhiB7-stabilized closed promoter complex, revealing this intermediate's structure, and we apply kinetic modeling and biochemical assays to rationalize how WhiB7 activates transcription. Altogether, our work presents a comprehensive view of how WhiB7 serves to activate gene expression leading to antibiotic resistance.
Collapse
Affiliation(s)
- Mirjana Lilic
- Laboratory of Molecular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Seth A Darst
- Laboratory of Molecular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Elizabeth A Campbell
- Laboratory of Molecular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
18
|
The Context-Dependent Influence of Promoter Sequence Motifs on Transcription Initiation Kinetics and Regulation. J Bacteriol 2021; 203:JB.00512-20. [PMID: 33139481 DOI: 10.1128/jb.00512-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The fitness of an individual bacterial cell is highly dependent upon the temporal tuning of gene expression levels when subjected to different environmental cues. Kinetic regulation of transcription initiation is a key step in modulating the levels of transcribed genes to promote bacterial survival. The initiation phase encompasses the binding of RNA polymerase (RNAP) to promoter DNA and a series of coupled protein-DNA conformational changes prior to entry into processive elongation. The time required to complete the initiation phase can vary by orders of magnitude and is ultimately dictated by the DNA sequence of the promoter. In this review, we aim to provide the required background to understand how promoter sequence motifs may affect initiation kinetics during promoter recognition and binding, subsequent conformational changes which lead to DNA opening around the transcription start site, and promoter escape. By calculating the steady-state flux of RNA production as a function of these effects, we illustrate that the presence/absence of a consensus promoter motif cannot be used in isolation to make conclusions regarding promoter strength. Instead, the entire series of linked, sequence-dependent structural transitions must be considered holistically. Finally, we describe how individual transcription factors take advantage of the broad distribution of sequence-dependent basal kinetics to either increase or decrease RNA flux.
Collapse
|
19
|
Stefan MA, Velazquez GM, Garcia GA. High-throughput screening to discover inhibitors of the CarD·RNA polymerase protein-protein interaction in Mycobacterium tuberculosis. Sci Rep 2020; 10:21309. [PMID: 33277558 PMCID: PMC7718890 DOI: 10.1038/s41598-020-78269-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/23/2020] [Indexed: 12/18/2022] Open
Abstract
Multidrug-resistant Mycobacterium tuberculosis (MDR-TB) accounts for 3.7% of new cases of TB annually worldwide and is a major threat to global public health. Due to the prevalence of the MDR-TB and extensively drug resistant tuberculosis (XDR-TB) cases, there is an urgent need for new drugs with novel mechanisms of action. CarD, a global transcription regulator in MTB, binds RNAP and activates transcription by stabilizing the transcription initiation open-promoter complex (RPo). CarD is required for MTB viability and it has highly conserved homologues in many eubacteria. A fluorescence polarization (FP) assay which monitors the association of MTB RNAP, native rRNA promoter DNA and CarD has been developed. Overall, our objective is to identify and characterize small molecule inhibitors which block the CarD/RNAP interaction and to understand the mechanisms by which CarD interacts with the molecules. We expect that the development of a new and improved anti-TB compound with a novel mechanism of action will relieve the burden of resistance. This CarD FP assay is amenable to HTS and is an enabling tool for future novel therapeutic discovery.
Collapse
Affiliation(s)
- Maxwell A Stefan
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Glory M Velazquez
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - George A Garcia
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
20
|
Direct binding of TFEα opens DNA binding cleft of RNA polymerase. Nat Commun 2020; 11:6123. [PMID: 33257704 PMCID: PMC7704642 DOI: 10.1038/s41467-020-19998-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 10/29/2020] [Indexed: 01/09/2023] Open
Abstract
Opening of the DNA binding cleft of cellular RNA polymerase (RNAP) is necessary for transcription initiation but the underlying molecular mechanism is not known. Here, we report on the cryo-electron microscopy structures of the RNAP, RNAP-TFEα binary, and RNAP-TFEα-promoter DNA ternary complexes from archaea, Thermococcus kodakarensis (Tko). The structures reveal that TFEα bridges the RNAP clamp and stalk domains to open the DNA binding cleft. Positioning of promoter DNA into the cleft closes it while maintaining the TFEα interactions with the RNAP mobile modules. The structures and photo-crosslinking results also suggest that the conserved aromatic residue in the extended winged-helix domain of TFEα interacts with promoter DNA to stabilize the transcription bubble. This study provides a structural basis for the functions of TFEα and elucidates the mechanism by which the DNA binding cleft is opened during transcription initiation in the stalk-containing RNAPs, including archaeal and eukaryotic RNAPs.
Collapse
|
21
|
Henry KK, Ross W, Myers KS, Lemmer KC, Vera JM, Landick R, Donohue TJ, Gourse RL. A majority of Rhodobacter sphaeroides promoters lack a crucial RNA polymerase recognition feature, enabling coordinated transcription activation. Proc Natl Acad Sci U S A 2020; 117:29658-29668. [PMID: 33168725 PMCID: PMC7703639 DOI: 10.1073/pnas.2010087117] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Using an in vitro transcription system with purified RNA polymerase (RNAP) to investigate rRNA synthesis in the photoheterotrophic α-proteobacterium Rhodobacter sphaeroides, we identified a surprising feature of promoters recognized by the major holoenzyme. Transcription from R. sphaeroides rRNA promoters was unexpectedly weak, correlating with absence of -7T, the very highly conserved thymine found at the last position in -10 elements of promoters in most bacterial species. Thymine substitutions for adenine at position -7 in the three rRNA promoters strongly increased intrinsic promoter activity, indicating that R. sphaeroides RNAP can utilize -7T when present. rRNA promoters were activated by purified R. sphaeroides CarD, a transcription factor found in many bacterial species but not in β- and γ-proteobacteria. Overall, CarD increased the activity of 15 of 16 native R. sphaeroides promoters tested in vitro that lacked -7T, whereas it had no effect on three of the four native promoters that contained -7T. Genome-wide bioinformatic analysis of promoters from R. sphaeroides and two other α-proteobacterial species indicated that 30 to 43% contained -7T, whereas 90 to 99% of promoters from non-α-proteobacteria contained -7T. Thus, promoters lacking -7T appear to be widespread in α-proteobacteria and may have evolved away from consensus to enable their coordinated regulation by transcription factors like CarD. We observed a strong reduction in R. sphaeroides CarD levels when cells enter stationary phase, suggesting that reduced activation by CarD may contribute to inhibition of rRNA transcription when cells enter stationary phase, the stage of growth when bacterial ribosome synthesis declines.
Collapse
Affiliation(s)
- Kemardo K Henry
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706
| | - Wilma Ross
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706;
| | - Kevin S Myers
- Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI 53726
| | - Kimberly C Lemmer
- Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI 53726
| | - Jessica M Vera
- Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI 53726
| | - Robert Landick
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706
- Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI 53726
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - Timothy J Donohue
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706
- Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI 53726
| | - Richard L Gourse
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706;
| |
Collapse
|
22
|
Diverse and unified mechanisms of transcription initiation in bacteria. Nat Rev Microbiol 2020; 19:95-109. [PMID: 33122819 DOI: 10.1038/s41579-020-00450-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2020] [Indexed: 12/21/2022]
Abstract
Transcription of DNA is a fundamental process in all cellular organisms. The enzyme responsible for transcription, RNA polymerase, is conserved in general architecture and catalytic function across the three domains of life. Diverse mechanisms are used among and within the different branches to regulate transcription initiation. Mechanistic studies of transcription initiation in bacteria are especially amenable because the promoter recognition and melting steps are much less complicated than in eukaryotes or archaea. Also, bacteria have critical roles in human health as pathogens and commensals, and the bacterial RNA polymerase is a proven target for antibiotics. Recent biophysical studies of RNA polymerases and their inhibition, as well as transcription initiation and transcription factors, have detailed the mechanisms of transcription initiation in phylogenetically diverse bacteria, inspiring this Review to examine unifying and diverse themes in this process.
Collapse
|
23
|
Kaur G, Kapoor S, Kaundal S, Dutta D, Thakur KG. Structure-Guided Designing and Evaluation of Peptides Targeting Bacterial Transcription. Front Bioeng Biotechnol 2020; 8:797. [PMID: 33014990 PMCID: PMC7505949 DOI: 10.3389/fbioe.2020.00797] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/22/2020] [Indexed: 11/17/2022] Open
Abstract
The mycobacterial RNA polymerase (RNAP) is an essential and validated drug target for developing antibacterial drugs. The β-subunit of Mycobacterium tuberculosis (Mtb) RNAP (RpoB) interacts with an essential and global transcription factor, CarD, and confers antibiotic and oxidative stress resistance to Mtb. Compromising the RpoB/CarD interactions results in the killing of mycobacteria, hence disrupting the RpoB/CarD interaction has been proposed as a novel strategy for the development of anti-tubercular drugs. Here, we describe the first approach to rationally design and test the efficacy of the peptide-based inhibitors which specifically target the conserved PPI interface between the bacterial RNAP β/transcription factor complex. We performed in silico protein-peptide docking studies along with biochemical assays to characterize the novel peptide-based inhibitors. Our results suggest that the top ranked peptides are highly stable, soluble in aqueous buffer, and capable of inhibiting transcription with IC50 > 50 μM concentration. Using peptide-based molecules, our study provides the first piece of evidence to target the conserved RNAP β/transcription factor interface for designing new inhibitors. Our results may hence form the basis to further improve the potential of these novel peptides in modulating bacterial gene expression, thus inhibiting bacterial growth and combating bacterial infections.
Collapse
Affiliation(s)
- Gundeep Kaur
- Structural Biology Laboratory, G. N. Ramachandran Protein Centre, Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India
| | - Srajan Kapoor
- Structural Biology Laboratory, G. N. Ramachandran Protein Centre, Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India
| | - Soni Kaundal
- Structural Biology Laboratory, G. N. Ramachandran Protein Centre, Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India
| | - Dipak Dutta
- Molecular Microbiology Laboratory, Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India
| | - Krishan Gopal Thakur
- Structural Biology Laboratory, G. N. Ramachandran Protein Centre, Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India
| |
Collapse
|
24
|
Kosolapova AO, Antonets KS, Belousov MV, Nizhnikov AA. Biological Functions of Prokaryotic Amyloids in Interspecies Interactions: Facts and Assumptions. Int J Mol Sci 2020; 21:E7240. [PMID: 33008049 PMCID: PMC7582709 DOI: 10.3390/ijms21197240] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 02/07/2023] Open
Abstract
Amyloids are fibrillar protein aggregates with an ordered spatial structure called "cross-β". While some amyloids are associated with development of approximately 50 incurable diseases of humans and animals, the others perform various crucial physiological functions. The greatest diversity of amyloids functions is identified within prokaryotic species where they, being the components of the biofilm matrix, function as adhesins, regulate the activity of toxins and virulence factors, and compose extracellular protein layers. Amyloid state is widely used by different pathogenic bacterial species in their interactions with eukaryotic organisms. These amyloids, being functional for bacteria that produce them, are associated with various bacterial infections in humans and animals. Thus, the repertoire of the disease-associated amyloids includes not only dozens of pathological amyloids of mammalian origin but also numerous microbial amyloids. Although the ability of symbiotic microorganisms to produce amyloids has recently been demonstrated, functional roles of prokaryotic amyloids in host-symbiont interactions as well as in the interspecies interactions within the prokaryotic communities remain poorly studied. Here, we summarize the current findings in the field of prokaryotic amyloids, classify different interspecies interactions where these amyloids are involved, and hypothesize about their real occurrence in nature as well as their roles in pathogenesis and symbiosis.
Collapse
Affiliation(s)
- Anastasiia O. Kosolapova
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia (K.S.A.); (M.V.B.)
- Faculty of Biology, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia
| | - Kirill S. Antonets
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia (K.S.A.); (M.V.B.)
- Faculty of Biology, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia
| | - Mikhail V. Belousov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia (K.S.A.); (M.V.B.)
- Faculty of Biology, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia
| | - Anton A. Nizhnikov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia (K.S.A.); (M.V.B.)
- Faculty of Biology, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia
| |
Collapse
|
25
|
Jensen D, Manzano AR, Rammohan J, Stallings CL, Galburt EA. CarD and RbpA modify the kinetics of initial transcription and slow promoter escape of the Mycobacterium tuberculosis RNA polymerase. Nucleic Acids Res 2020; 47:6685-6698. [PMID: 31127308 PMCID: PMC6648326 DOI: 10.1093/nar/gkz449] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/11/2019] [Accepted: 05/09/2019] [Indexed: 12/17/2022] Open
Abstract
The pathogen Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, enacts unique transcriptional regulatory mechanisms when subjected to host-derived stresses. Initiation of transcription by the Mycobacterial RNA polymerase (RNAP) has previously been shown to exhibit different open complex kinetics and stabilities relative to Escherichia coli (Eco) RNAP. However, transcription initiation rates also depend on the kinetics following open complex formation such as initial nucleotide incorporation and subsequent promoter escape. Here, using a real-time fluorescence assay, we present the first in-depth kinetic analysis of initial transcription and promoter escape for the Mtb RNAP. We show that in relation to Eco RNAP, Mtb displays slower initial nucleotide incorporation but faster overall promoter escape kinetics on the Mtb rrnAP3 promoter. Furthermore, in the context of the essential transcription factors CarD and RbpA, Mtb promoter escape is slowed via differential effects on initially transcribing complexes. Finally, based on their ability to increase the rate of open complex formation and decrease the rate of promoter escape, we suggest that CarD and RbpA are capable of activation or repression depending on the rate-limiting step of a given promoter's basal initiation kinetics.
Collapse
Affiliation(s)
- Drake Jensen
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ana Ruiz Manzano
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jayan Rammohan
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Christina L Stallings
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Eric A Galburt
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
26
|
Boyaci H, Saecker RM, Campbell EA. Transcription initiation in mycobacteria: a biophysical perspective. Transcription 2019; 11:53-65. [PMID: 31880185 DOI: 10.1080/21541264.2019.1707612] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Recent biophysical studies of mycobacterial transcription have shed new light on this fundamental process in a group of bacteria that includes deadly pathogens such as Mycobacterium tuberculosis (Mtb), Mycobacterium abscessus (Mab), Mycobacterium leprae (Mlp), as well as the nonpathogenic Mycobacterium smegmatis (Msm). Most of the research has focused on Mtb, the causative agent of tuberculosis (TB), which remains one of the top ten causes of death globally. The enzyme RNA polymerase (RNAP) is responsible for all bacterial transcription and is a target for one of the crucial antibiotics used for TB treatment, rifampicin (Rif). Here, we summarize recent biophysical studies of mycobacterial RNAP that have advanced our understanding of the basic process of transcription, have revealed novel paradigms for regulation, and thus have provided critical information required for developing new antibiotics against this deadly disease.
Collapse
Affiliation(s)
- Hande Boyaci
- Laboratory of Molecular Biophysics, The Rockefeller University , New York, NY, USA
| | - Ruth M Saecker
- Laboratory of Molecular Biophysics, The Rockefeller University , New York, NY, USA
| | - Elizabeth A Campbell
- Laboratory of Molecular Biophysics, The Rockefeller University , New York, NY, USA
| |
Collapse
|
27
|
Zhu DX, Garner AL, Galburt EA, Stallings CL. CarD contributes to diverse gene expression outcomes throughout the genome of Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 2019; 116:13573-13581. [PMID: 31217290 PMCID: PMC6613185 DOI: 10.1073/pnas.1900176116] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The ability to regulate gene expression through transcription initiation underlies the adaptability and survival of all bacteria. Recent work has revealed that the transcription machinery in many bacteria diverges from the paradigm that has been established in Escherichia coliMycobacterium tuberculosis (Mtb) encodes the RNA polymerase (RNAP)-binding protein CarD, which is absent in E. coli but is required to form stable RNAP-promoter open complexes (RPo) and is essential for viability in Mtb The stabilization of RPo by CarD has been proposed to result in activation of gene expression; however, CarD has only been examined on limited promoters that do not represent the typical promoter structure in Mtb In this study, we investigate the outcome of CarD activity on gene expression from Mtb promoters genome-wide by performing RNA sequencing on a panel of mutants that differentially affect CarD's ability to stabilize RPo In all CarD mutants, the majority of Mtb protein encoding transcripts were differentially expressed, demonstrating that CarD had a global effect on gene expression. Contrary to the expected role of CarD as a transcriptional activator, mutation of CarD led to both up- and down-regulation of gene expression, suggesting that CarD can also act as a transcriptional repressor. Furthermore, we present evidence that stabilization of RPo by CarD could lead to transcriptional repression by inhibiting promoter escape, and the outcome of CarD activity is dependent on the intrinsic kinetic properties of a given promoter region. Collectively, our data support CarD's genome-wide role of regulating diverse transcription outcomes.
Collapse
Affiliation(s)
- Dennis X Zhu
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Ashley L Garner
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Eric A Galburt
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110
| | - Christina L Stallings
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110;
| |
Collapse
|
28
|
Structures of an RNA polymerase promoter melting intermediate elucidate DNA unwinding. Nature 2019; 565:382-385. [PMID: 30626968 DOI: 10.1038/s41586-018-0840-5] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 11/28/2018] [Indexed: 01/25/2023]
Abstract
A key regulated step of transcription is promoter melting by RNA polymerase (RNAP) to form the open promoter complex1-3. To generate the open complex, the conserved catalytic core of the RNAP combines with initiation factors to locate promoter DNA, unwind 12-14 base pairs of the DNA duplex and load the template-strand DNA into the RNAP active site. Formation of the open complex is a multi-step process during which transient intermediates of unknown structure are formed4-6. Here we present cryo-electron microscopy structures of bacterial RNAP-promoter DNA complexes, including structures of partially melted intermediates. The structures show that late steps of promoter melting occur within the RNAP cleft, delineate key roles for fork-loop 2 and switch 2-universal structural features of RNAP-in restricting access of DNA to the RNAP active site, and explain why clamp opening is required to allow entry of single-stranded template DNA into the active site. The key roles of fork-loop 2 and switch 2 suggest a common mechanism for late steps in promoter DNA opening to enable gene expression across all domains of life.
Collapse
|
29
|
Galburt EA. The calculation of transcript flux ratios reveals single regulatory mechanisms capable of activation and repression. Proc Natl Acad Sci U S A 2018; 115:E11604-E11613. [PMID: 30463953 PMCID: PMC6294943 DOI: 10.1073/pnas.1809454115] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The regulation of transcription allows cells to adjust the rate of RNA polymerases (RNAPs) initiated in a promoter-specific manner. Classically, transcription factors are directed to a subset of promoters via the recognition of DNA sequence motifs. However, a unique class of regulators is recruited directly through interactions with RNAP. Surprisingly, these factors may still possess promoter specificity, and it has been postulated that the same kinetic mechanism leads to different regulatory outcomes depending on a promoter's basal rate constants. However, mechanistic studies of regulation typically report factor activity in terms of changes in the thermodynamics or kinetics of individual steps or states while qualitatively linking these observations to measured changes in transcript production. Here, I present online calculators that allow for the direct testing of mechanistic hypotheses by calculating the steady-state transcript flux in the presence and absence of a factor as a function of initiation rate constants. By evaluating how the flux ratio of a single kinetic mechanism varies across promoter space, quantitative insights into the potential of a mechanism to generate promoter-specific regulatory outcomes are obtained. Using these calculations, I predict that the mycobacterial transcription factor CarD is capable of repression in addition to its known role as an activator of ribosomal genes. In addition, a modification of the mechanism of the stringent response factors DksA/guanosine 5'-diphosphate 3'-diphosphate (ppGpp) is proposed based on their ability to differentially regulate transcription across promoter space. Overall, I conclude that a multifaceted kinetic mechanism is a requirement for differential regulation by this class of factors.
Collapse
Affiliation(s)
- Eric A Galburt
- Biochemistry and Molecular Biophysics, Washington University in Saint Louis, Saint Louis, MO 63108
| |
Collapse
|
30
|
Šiková M, Janoušková M, Ramaniuk O, Páleníková P, Pospíšil J, Bartl P, Suder A, Pajer P, Kubičková P, Pavliš O, Hradilová M, Vítovská D, Šanderová H, Převorovský M, Hnilicová J, Krásný L. Ms1 RNA increases the amount of RNA polymerase in Mycobacterium smegmatis. Mol Microbiol 2018; 111:354-372. [PMID: 30427073 DOI: 10.1111/mmi.14159] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2018] [Indexed: 01/13/2023]
Abstract
Ms1 is a sRNA recently found in mycobacteria and several other actinobacterial species. Ms1 interacts with the RNA polymerase (RNAP) core devoid of sigma factors, which differs from 6S RNA that binds to RNAP holoenzymes containing the primary sigma factor. Here we show that Ms1 is the most abundant non-rRNA transcript in stationary phase in Mycobacterium smegmatis. The accumulation of Ms1 stems from its high-level synthesis combined with decreased degradation. We identify the Ms1 promoter, PMs1 , and cis-acting elements important for its activity. Furthermore, we demonstrate that PNPase (an RNase) contributes to the differential accumulation of Ms1 during growth. Then, by comparing the transcriptomes of wt and ΔMs1 strains from stationary phase, we reveal that Ms1 affects the intracellular level of RNAP. The absence of Ms1 results in decreased levels of the mRNAs encoding β and β' subunits of RNAP, which is also reflected at the protein level. Thus, the ΔMs1 strain has a smaller pool of RNAPs available when the transcriptional demand increases. This contributes to the inability of the ΔMs1 strain to rapidly react to environmental changes during outgrowth from stationary phase.
Collapse
Affiliation(s)
- Michaela Šiková
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Martina Janoušková
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic.,Faculty of Science, Department of Genetics and Microbiology, Charles University, Prague, Czech Republic
| | - Olga Ramaniuk
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Petra Páleníková
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Jiří Pospíšil
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Pavel Bartl
- Faculty of Nuclear Science and Physical Engineering, Department of Nuclear Chemistry, Czech Technical University in Prague, Prague, Czech Republic
| | - Agnieszka Suder
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Petr Pajer
- Military Health Institute, Military Medical Agency, Prague, Czech Republic
| | - Pavla Kubičková
- Military Health Institute, Military Medical Agency, Prague, Czech Republic
| | - Ota Pavliš
- Military Health Institute, Military Medical Agency, Prague, Czech Republic
| | - Miluše Hradilová
- Department of Genomics and Bioinformatics, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Dragana Vítovská
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Hana Šanderová
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Martin Převorovský
- Faculty of Science, Department of Cell Biology, Charles University, Prague, Czech Republic
| | - Jarmila Hnilicová
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Libor Krásný
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
31
|
Peek J, Lilic M, Montiel D, Milshteyn A, Woodworth I, Biggins JB, Ternei MA, Calle PY, Danziger M, Warrier T, Saito K, Braffman N, Fay A, Glickman MS, Darst SA, Campbell EA, Brady SF. Rifamycin congeners kanglemycins are active against rifampicin-resistant bacteria via a distinct mechanism. Nat Commun 2018; 9:4147. [PMID: 30297823 PMCID: PMC6175910 DOI: 10.1038/s41467-018-06587-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/29/2018] [Indexed: 11/25/2022] Open
Abstract
Rifamycin antibiotics (Rifs) target bacterial RNA polymerases (RNAPs) and are widely used to treat infections including tuberculosis. The utility of these compounds is threatened by the increasing incidence of resistance (RifR). As resistance mechanisms found in clinical settings may also occur in natural environments, here we postulated that bacteria could have evolved to produce rifamycin congeners active against clinically relevant resistance phenotypes. We survey soil metagenomes and identify a tailoring enzyme-rich family of gene clusters encoding biosynthesis of rifamycin congeners (kanglemycins, Kangs) with potent in vivo and in vitro activity against the most common clinically relevant RifR mutations. Our structural and mechanistic analyses reveal the basis for Kang inhibition of RifR RNAP. Unlike Rifs, Kangs function through a mechanism that includes interfering with 5'-initiating substrate binding. Our results suggest that examining soil microbiomes for new analogues of clinically used antibiotics may uncover metabolites capable of circumventing clinically important resistance mechanisms.
Collapse
Affiliation(s)
- James Peek
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Mirjana Lilic
- Laboratory of Molecular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Daniel Montiel
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Aleksandr Milshteyn
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Ian Woodworth
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - John B Biggins
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Melinda A Ternei
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Paula Y Calle
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Michael Danziger
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Thulasi Warrier
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Kohta Saito
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, 10065, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Nathaniel Braffman
- Laboratory of Molecular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Allison Fay
- Immunology Program, Sloan-Kettering Institute, New York, NY, 10065, USA
| | | | - Seth A Darst
- Laboratory of Molecular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Elizabeth A Campbell
- Laboratory of Molecular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA.
| | - Sean F Brady
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
32
|
Chen T, Xiang X, Xu H, Zhang X, Zhou B, Yang Y, Lou Y, Yang XF. LtpA, a CdnL-type CarD regulator, is important for the enzootic cycle of the Lyme disease pathogen. Emerg Microbes Infect 2018; 7:126. [PMID: 29985409 PMCID: PMC6037790 DOI: 10.1038/s41426-018-0122-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/31/2018] [Accepted: 06/04/2018] [Indexed: 01/12/2023]
Abstract
Little is known about how Borrelia burgdorferi, the Lyme disease pathogen, adapts and survives in the tick vector. We previously identified a bacterial CarD N-terminal-like (CdnL) protein, LtpA (BB0355), in B. burgdorferi that is preferably expressed at lower temperatures, which is a surrogate condition mimicking the tick portion of the enzootic cycle of B. burgdorferi. CdnL-family proteins, an emerging class of bacterial RNAP-interacting transcription factors, are essential for the viability of Mycobacterium tuberculosis and Myxococcus xanthus. Previous attempts to inactivate ltpA in B. burgdorferi have not been successful. In this study, we report the construction of a ltpA mutant in the infectious strain of B. burgdorferi, strain B31-5A4NP1. Unlike CdnL in M. tuberculosis and M. xanthus, LtpA is dispensable for the viability of B. burgdorferi. However, the ltpA mutant exhibits a reduced growth rate and a cold-sensitive phenotype. We demonstrate that LtpA positively regulates 16S rRNA expression, which contributes to the growth defects in the ltpA mutant. The ltpA mutant remains capable of infecting mice, albeit with delayed infection. Additionally, the ltpA mutant produces markedly reduced spirochetal loads in ticks and was not able to infect mice via tick infection. Overall, LtpA represents a novel regulator in the CdnL family that has an important role in the enzootic cycle of B. burgdorferi.
Collapse
Affiliation(s)
- Tong Chen
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine, Wenzhou Medical University, 325000, Wenzhou, Zhejiang, China.,Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Xuwu Xiang
- Department of Anesthesiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, 310003, Hangzhou, China
| | - Haijun Xu
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Xuechao Zhang
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Bibi Zhou
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine, Wenzhou Medical University, 325000, Wenzhou, Zhejiang, China.,Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Youyun Yang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Yongliang Lou
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine, Wenzhou Medical University, 325000, Wenzhou, Zhejiang, China.
| | - X Frank Yang
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine, Wenzhou Medical University, 325000, Wenzhou, Zhejiang, China. .,Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
33
|
Mycobacterium tuberculosis CarD, an essential global transcriptional regulator forms amyloid-like fibrils. Sci Rep 2018; 8:10124. [PMID: 29973616 PMCID: PMC6031611 DOI: 10.1038/s41598-018-28290-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 06/21/2018] [Indexed: 02/06/2023] Open
Abstract
CarD is an essential global transcription regulator from Mycobacterium tuberculosis (Mtb) that binds RNA polymerase and activates transcription by stabilizing the transcription initiation complex. Available crystal structures have captured two distinct, monomeric and domain-swapped homodimeric, oligomeric states of CarD. However, the actual oligomeric state of CarD in solution and its biological relevance has remained unclear. Here, we confirm the presence of the homodimeric state of CarD in solution by using synchrotron-based small-angle X-ray scattering. Furthermore, by using biochemical and biophysical experiments, in addition to mass-spectrometry, transmission electron microscopy, and confocal imaging, we show that CarD is the first soluble cytosolic protein in Mtb which displays the tendency to form amyloid-like fibrils both in vitro as well as in vivo. We demonstrate that the deletion of the fourteen N-terminal residues involved in domain-swapping hampers amyloid formation, thus, suggesting that domain-swapping is crucial in amyloidogenesis. The discovery of the amyloidogenic property of an essential cytosolic global transcription regulator, CarD, in a pathogenic bacteria will further open up new frontiers in research.
Collapse
|
34
|
Prusa J, Jensen D, Santiago-Collazo G, Pope SS, Garner AL, Miller JJ, Ruiz Manzano A, Galburt EA, Stallings CL. Domains within RbpA Serve Specific Functional Roles That Regulate the Expression of Distinct Mycobacterial Gene Subsets. J Bacteriol 2018; 200:e00690-17. [PMID: 29686140 PMCID: PMC5996690 DOI: 10.1128/jb.00690-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 04/18/2018] [Indexed: 11/20/2022] Open
Abstract
The RNA polymerase (RNAP) binding protein A (RbpA) contributes to the formation of stable RNAP-promoter open complexes (RPo) and is essential for viability in mycobacteria. Four domains have been identified in the RbpA protein, i.e., an N-terminal tail (NTT) that interacts with RNAP β' and σ subunits, a core domain (CD) that contacts the RNAP β' subunit, a basic linker (BL) that binds DNA, and a σ-interaction domain (SID) that binds group I and group II σ factors. Limited in vivo studies have been performed in mycobacteria, however, and how individual structural domains of RbpA contribute to RbpA function and mycobacterial gene expression remains mostly unknown. We investigated the roles of the RbpA structural domains in mycobacteria using a panel of rbpA mutants that target individual RbpA domains. The function of each RbpA domain was required for Mycobacterium tuberculosis viability and optimal growth in Mycobacterium smegmatis We determined that the RbpA SID is both necessary and sufficient for RbpA interaction with the RNAP, indicating that the primary functions of the NTT and CD are not solely association with the RNAP. We show that the RbpA BL and SID are required for RPo stabilization in vitro, while the NTT and CD antagonize this activity. Finally, RNA-sequencing analyses suggest that the NTT and CD broadly activate gene expression, whereas the BL and SID activate or repress gene expression in a gene-dependent manner for a subset of mycobacterial genes. Our findings highlight specific outcomes for the activities of the individual functional domains in RbpA.IMPORTANCEMycobacterium tuberculosis is the causative agent of tuberculosis and continues to be the most lethal infectious disease worldwide. Improved molecular understanding of the essential proteins involved in M. tuberculosis transcription, such as RbpA, could provide targets for much needed future therapeutic agents aimed at combatting this pathogen. In this study, we expand our understanding of RbpA by identifying the RbpA structural domains responsible for the interaction of RbpA with the RNAP and the effects of RbpA on transcription initiation and gene expression. These experiments expand our knowledge of RbpA while also broadening our understanding of bacterial transcription in general.
Collapse
Affiliation(s)
- Jerome Prusa
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Drake Jensen
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Gustavo Santiago-Collazo
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Steven S Pope
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Ashley L Garner
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Justin J Miller
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Ana Ruiz Manzano
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Eric A Galburt
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Christina L Stallings
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
35
|
Glyde R, Ye F, Jovanovic M, Kotta-Loizou I, Buck M, Zhang X. Structures of Bacterial RNA Polymerase Complexes Reveal the Mechanism of DNA Loading and Transcription Initiation. Mol Cell 2018; 70:1111-1120.e3. [PMID: 29932903 PMCID: PMC6028918 DOI: 10.1016/j.molcel.2018.05.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/25/2018] [Accepted: 05/18/2018] [Indexed: 12/15/2022]
Abstract
Gene transcription is carried out by multi-subunit RNA polymerases (RNAPs). Transcription initiation is a dynamic multi-step process that involves the opening of the double-stranded DNA to form a transcription bubble and delivery of the template strand deep into the RNAP for RNA synthesis. Applying cryoelectron microscopy to a unique transcription system using σ54 (σN), the major bacterial variant sigma factor, we capture a new intermediate state at 4.1 Å where promoter DNA is caught at the entrance of the RNAP cleft. Combining with new structures of the open promoter complex and an initial de novo transcribing complex at 3.4 and 3.7 Å, respectively, our studies reveal the dynamics of DNA loading and mechanism of transcription bubble stabilization that involves coordinated, large-scale conformational changes of the universally conserved features within RNAP and DNA. In addition, our studies reveal a novel mechanism of strand separation by σ54.
Collapse
Affiliation(s)
- Robert Glyde
- Section of Structural Biology, Department of Medicine, Imperial College London, London SW7 2AZ, UK
| | - Fuzhou Ye
- Section of Structural Biology, Department of Medicine, Imperial College London, London SW7 2AZ, UK
| | - Milija Jovanovic
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Ioly Kotta-Loizou
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Martin Buck
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Xiaodong Zhang
- Section of Structural Biology, Department of Medicine, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
36
|
Narayanan A, Vago FS, Li K, Qayyum MZ, Yernool D, Jiang W, Murakami KS. Cryo-EM structure of Escherichia coli σ 70 RNA polymerase and promoter DNA complex revealed a role of σ non-conserved region during the open complex formation. J Biol Chem 2018; 293:7367-7375. [PMID: 29581236 DOI: 10.1074/jbc.ra118.002161] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/13/2018] [Indexed: 11/06/2022] Open
Abstract
First step of gene expression is transcribing the genetic information stored in DNA to RNA by the transcription machinery including RNA polymerase (RNAP). In Escherichia coli, a primary σ70 factor forms the RNAP holoenzyme to express housekeeping genes. The σ70 contains a large insertion between the conserved regions 1.2 and 2.1, the σ non-conserved region (σNCR), but its function remains to be elucidated. In this study, we determined the cryo-EM structures of the E. coli RNAP σ70 holoenzyme and its complex with promoter DNA (open complex, RPo) at 4.2 and 5.75 Å resolutions, respectively, to reveal native conformations of RNAP and DNA. The RPo structure presented here found an interaction between the σNCR and promoter DNA just upstream of the -10 element, which was not observed in a previously determined E. coli RNAP transcription initiation complex (RPo plus short RNA) structure by X-ray crystallography because of restraint of crystal packing effects. Disruption of the σNCR and DNA interaction by the amino acid substitutions (R157A/R157E) influences the DNA opening around the transcription start site and therefore decreases the transcription activity of RNAP. We propose that the σNCR and DNA interaction is conserved in proteobacteria, and RNAP in other bacteria replaces its role with a transcription factor.
Collapse
Affiliation(s)
- Anoop Narayanan
- Department of Biochemistry and Molecular Biology, The Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802; Department of Biological Sciences, Markey Center for Structural Biology, Purdue University, West Lafayette, Indiana 47906
| | - Frank S Vago
- Department of Biological Sciences, Markey Center for Structural Biology, Purdue University, West Lafayette, Indiana 47906
| | - Kunpeng Li
- Department of Biological Sciences, Markey Center for Structural Biology, Purdue University, West Lafayette, Indiana 47906
| | - M Zuhaib Qayyum
- Department of Biochemistry and Molecular Biology, The Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Dinesh Yernool
- Department of Biological Sciences, Markey Center for Structural Biology, Purdue University, West Lafayette, Indiana 47906
| | - Wen Jiang
- Department of Biological Sciences, Markey Center for Structural Biology, Purdue University, West Lafayette, Indiana 47906.
| | - Katsuhiko S Murakami
- Department of Biochemistry and Molecular Biology, The Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802.
| |
Collapse
|
37
|
Boyaci H, Chen J, Lilic M, Palka M, Mooney RA, Landick R, Darst SA, Campbell EA. Fidaxomicin jams Mycobacterium tuberculosis RNA polymerase motions needed for initiation via RbpA contacts. eLife 2018; 7:34823. [PMID: 29480804 PMCID: PMC5837556 DOI: 10.7554/elife.34823] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 02/13/2018] [Indexed: 01/22/2023] Open
Abstract
Fidaxomicin (Fdx) is an antimicrobial RNA polymerase (RNAP) inhibitor highly effective against Mycobacterium tuberculosis RNAP in vitro, but clinical use of Fdx is limited to treating Clostridium difficile intestinal infections due to poor absorption. To identify the structural determinants of Fdx binding to RNAP, we determined the 3.4 Å cryo-electron microscopy structure of a complete M. tuberculosis RNAP holoenzyme in complex with Fdx. We find that the actinobacteria general transcription factor RbpA contacts fidaxomycin, explaining its strong effect on M. tuberculosis. Additional structures define conformational states of M. tuberculosis RNAP between the free apo-holoenzyme and the promoter-engaged open complex ready for transcription. The results establish that Fdx acts like a doorstop to jam the enzyme in an open state, preventing the motions necessary to secure promoter DNA in the active site. Our results provide a structural platform to guide development of anti-tuberculosis antimicrobials based on the Fdx binding pocket. Tuberculosis (TB) is an infectious disease that affects over ten million people every year. The Mycobacterium tuberculosis bacteria that cause the disease spread through the air from one person to another and mainly infect the lungs. Although curable, TB is difficult to eradicate because it is remarkably widespread, with one third of the world’s population estimated to carry the bacteria. Treatment for TB involves a mix of antibiotics that should be taken for several months to a year. The number of multidrug-resistant TB cases, where the infection is not treatable by the common cocktail of antibiotics, is rapidly increasing. There is therefore a need to discover new drugs that can kill the M. tuberculosis bacteria. An antibiotic called fidaxomicin is used to treat intestinal infections. Although it can kill Mycobacterium tuberculosis cells in culture, it is not absorbed from the intestines to the blood and thus cannot reach the lungs to kill the bacteria. It may be possible to change the structure of the drug so that it can enter the bloodstream. Before this can be done, researchers need to understand exactly how fidaxomicin kills the bacteria so that they know which parts of the drug they can alter without making it less effective. Fidaxomicin kills bacterial cells by binding to an enzyme called RNA polymerase. The antibiotic prevents the enzyme from reading and ‘transcribing’ DNA to form molecules that are essential for life. To learn more about how fidaxomicin has this effect, Boyaci, Chen et al. used cryo-electron microscopy to look at structures of the M. tuberculosis RNA polymerase in different states, including when it was bound to fidaxomicin. The structures reveal the chemical details of the interactions between the RNA polymerase and the antibiotic. The two molecules bind to each other through a region of the RNA polymerase that is unique to M. tuberculosis and closely related bacteria. Fidaxomicin acts like a doorstop to jam the RNA polymerase in an open state that cannot bind to DNA and transcribe genes. Medicinal chemists could now build on these findings to develop new drugs that might treat TB, either by modifying fidaxomicin or designing new antibiotics that bind to the same region of the RNA polymerase. Because the fidaxomicin-binding region of the RNA polymerase is specific to M. tuberculosis new antibiotics could be tailored towards the bacteria that have a minimal effect on a patient’s normal gut bacteria.
Collapse
Affiliation(s)
- Hande Boyaci
- The Rockefeller University, New York, United States
| | - James Chen
- The Rockefeller University, New York, United States
| | | | - Margaret Palka
- Department of Biochemistry, University of Wisconsin-Madison, Madison, United States
| | - Rachel Anne Mooney
- Department of Biochemistry, University of Wisconsin-Madison, Madison, United States
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin-Madison, Madison, United States.,Department of Bacteriology, University of Wisconsin-Madison, Madison, United States
| | - Seth A Darst
- The Rockefeller University, New York, United States
| | | |
Collapse
|
38
|
Characterization of a Minimal Type of Promoter Containing the -10 Element and a Guanine at the -14 or -13 Position in Mycobacteria. J Bacteriol 2017; 199:JB.00385-17. [PMID: 28784819 DOI: 10.1128/jb.00385-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 08/03/2017] [Indexed: 11/20/2022] Open
Abstract
Three key promoter elements, i.e., -10, -35, and T-15G-14N, are recognized by the σ subunit of RNA polymerase. Among them, promoters with the -10 element and either -35 or T-15G-14N are known to initiate transcription efficiently, but recent systematic analyses have identified a large group of promoters in Mycobacterium tuberculosis that contain only a -10 consensus. How these promoters initiate transcription remains poorly understood. Here, we show that promoters containing the -10 element and an upstream G located at the -14 or -13 position can successfully initiate transcription in mycobacteria. Importantly, this new type of promoter is active in the absence of other promoter consensuses, suggesting that it is a minimal promoter type. Mutation of the upstream G in promoters decreased the efficiencies of their binding with RNA polymerase and their abilities to initiate transcription in both in vitro and in vivo analyses. A glutamic acid in σ region 3.0 is essential for recognizing G-14 and G-13 and is conserved in both principal and principal-like σ factors in mycobacteria, indicating that recognition of this minimal type of promoter might be a common mechanism for transcription initiation. Consistently, more than 70% of the identified promoters in M. tuberculosis contained G-14 or G-13 upstream of the conserved -10 element, and thousands of promoters in representative mycobacterial species have been predicted using the -10 consensus and G-14 or G-13 Altogether, our study presents a universal mechanism for transcription initiation from a minimal promoter in mycobacteria, which might also be applicable to other bacteria.IMPORTANCE In contrast to the detailed information for recognizing classic promoters in the model organism Escherichia coli, very little is known about how transcription is initiated in the human pathogen Mycobacterium tuberculosis In this study, we characterized a new type of promoter in mycobacteria that requires only a -10 consensus and an upstream G-14 or G-13 Residues important for recognizing the -10 element and the upstream G are conserved in σA and σB from mycobacterial species. According to such features, thousands of promoters in mycobacteria can be predicted using the -10 consensus and G-14 or G-13, which suggests that transcription from this new type of promoter might be widespread. Our findings provide insightful information for characterizing promoters in mycobacteria.
Collapse
|
39
|
Pan L, Gardner CL, Pagliai FA, Gonzalez CF, Lorca GL. Identification of the Tolfenamic Acid Binding Pocket in PrbP from Liberibacter asiaticus. Front Microbiol 2017; 8:1591. [PMID: 28878750 PMCID: PMC5572369 DOI: 10.3389/fmicb.2017.01591] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 08/04/2017] [Indexed: 12/31/2022] Open
Abstract
In Liberibacter asiaticus, PrbP is an important transcriptional accessory protein that was found to regulate gene expression through interactions with the RNA polymerase β-subunit and a specific sequence on the promoter region. It was found that inactivation of PrbP, using the inhibitor tolfenamic acid, resulted in a significant decrease in the overall transcriptional activity of L. asiaticus, and the suppression of L. asiaticus infection in HLB symptomatic citrus seedlings. The molecular interactions between PrbP and tolfenamic acid, however, were yet to be elucidated. In this study, we modeled the structure of PrbP and identified a ligand binding pocket, TaP, located at the interface of the predicted RNA polymerase interaction domain (N-terminus) and the DNA binding domain (C-terminus). The molecular interactions of PrbP with tolfenamic acid were predicted using in silico docking. Site-directed mutagenesis of specific amino acids was followed by electrophoresis mobility shift assays and in vitro transcription assays, where residues N107, G109, and E148 were identified as the primary amino acids involved in interactions with tolfenamic acid. These results provide insight into the binding mechanism of PrbP to a small inhibitory molecule, and a starting scaffold for the identification and development of therapeutics targeting PrbP and other homologs in the CarD_CdnL_TRCF family.
Collapse
Affiliation(s)
| | | | | | | | - Graciela L. Lorca
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Science, University of FloridaGainesville, FL, United States
| |
Collapse
|
40
|
Hubin EA, Lilic M, Darst SA, Campbell EA. Structural insights into the mycobacteria transcription initiation complex from analysis of X-ray crystal structures. Nat Commun 2017; 8:16072. [PMID: 28703128 PMCID: PMC5511352 DOI: 10.1038/ncomms16072] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 05/25/2017] [Indexed: 11/25/2022] Open
Abstract
The mycobacteria RNA polymerase (RNAP) is a target for antimicrobials against tuberculosis, motivating structure/function studies. Here we report a 3.2 Å-resolution crystal structure of a Mycobacterium smegmatis (Msm) open promoter complex (RPo), along with structural analysis of the Msm RPo and a previously reported 2.76 Å-resolution crystal structure of an Msm transcription initiation complex with a promoter DNA fragment. We observe the interaction of the Msm RNAP α-subunit C-terminal domain (αCTD) with DNA, and we provide evidence that the αCTD may play a role in Mtb transcription regulation. Our results reveal the structure of an Actinobacteria-unique insert of the RNAP β′ subunit. Finally, our analysis reveals the disposition of the N-terminal segment of Msm σA, which may comprise an intrinsically disordered protein domain unique to mycobacteria. The clade-specific features of the mycobacteria RNAP provide clues to the profound instability of mycobacteria RPo compared with E. coli. Understanding of the mycobacterial transcription system is useful to the development of therapeutics against tuberculosis infection. Here the authors present the crystal structure of a complete M. smegmatis RNA polymerase open promoter complex that reveals unique features of the mycobacterial polymerase.
Collapse
Affiliation(s)
- Elizabeth A Hubin
- The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| | - Mirjana Lilic
- The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| | - Seth A Darst
- The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| | | |
Collapse
|
41
|
Lin W, Mandal S, Degen D, Liu Y, Ebright YW, Li S, Feng Y, Zhang Y, Mandal S, Jiang Y, Liu S, Gigliotti M, Talaue M, Connell N, Das K, Arnold E, Ebright RH. Structural Basis of Mycobacterium tuberculosis Transcription and Transcription Inhibition. Mol Cell 2017; 66:169-179.e8. [PMID: 28392175 DOI: 10.1016/j.molcel.2017.03.001] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 02/15/2017] [Accepted: 02/28/2017] [Indexed: 01/22/2023]
Abstract
Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis, which kills 1.8 million annually. Mtb RNA polymerase (RNAP) is the target of the first-line antituberculosis drug rifampin (Rif). We report crystal structures of Mtb RNAP, alone and in complex with Rif, at 3.8-4.4 Å resolution. The results identify an Mtb-specific structural module of Mtb RNAP and establish that Rif functions by a steric-occlusion mechanism that prevents extension of RNA. We also report non-Rif-related compounds-Nα-aroyl-N-aryl-phenylalaninamides (AAPs)-that potently and selectively inhibit Mtb RNAP and Mtb growth, and we report crystal structures of Mtb RNAP in complex with AAPs. AAPs bind to a different site on Mtb RNAP than Rif, exhibit no cross-resistance with Rif, function additively when co-administered with Rif, and suppress resistance emergence when co-administered with Rif.
Collapse
Affiliation(s)
- Wei Lin
- Waksman Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Soma Mandal
- Waksman Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - David Degen
- Waksman Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Yu Liu
- Waksman Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Yon W Ebright
- Waksman Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Shengjian Li
- Waksman Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Yu Feng
- Waksman Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Yu Zhang
- Waksman Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Sukhendu Mandal
- Waksman Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Yi Jiang
- Waksman Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Shuang Liu
- Waksman Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Matthew Gigliotti
- Waksman Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Meliza Talaue
- Center for Biodefense and Department of Medicine, New Jersey Medical School, Rutgers University, Newark, NJ 07101, USA
| | - Nancy Connell
- Center for Biodefense and Department of Medicine, New Jersey Medical School, Rutgers University, Newark, NJ 07101, USA
| | - Kalyan Das
- Center for Advanced Biotechnology and Medicine and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Eddy Arnold
- Center for Advanced Biotechnology and Medicine and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Richard H Ebright
- Waksman Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
42
|
Herrera-Asmat O, Lubkowska L, Kashlev M, Bustamante CJ, Guerra DG, Kireeva ML. Production and characterization of a highly pure RNA polymerase holoenzyme from Mycobacterium tuberculosis. Protein Expr Purif 2017; 134:1-10. [PMID: 28323168 DOI: 10.1016/j.pep.2017.03.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/15/2017] [Accepted: 03/16/2017] [Indexed: 10/19/2022]
Abstract
Recent publications have shown that active RNA polymerase (RNAP) from Mycobacterium tuberculosis (MtbRNAP) can be produced by expressing all four subunits in a single recombinant Escherichia coli strain [1-3]. By reducing the number of plasmids and changing the codon usage of the Mtb genes in the co-expression system published by Banerjee et al. [1], we present a simplified, detailed and reproducible protocol for the purification of recombinant MtbRNAP containing the ω subunit. Moreover, we describe the formation of ternary elongation complexes (TECs) with a short fluorescence-labeled RNA primer and DNA oligonucleotides, suitable for transcription elongation studies. The purification of milligram quantities of the pure and highly active holoenzyme omits ammonium sulfate or polyethylene imine precipitation steps [4] and requires only 5 g of wet cells. Our results indicate that subunit assemblies other than α2ββ'ω·σA can be separated by ion-exchange chromatography on Mono Q column and that assemblies with the wrong RNAP subunit stoichiometry lack transcriptional activity. We show that MtbRNAP TECs can be stalled by NTP substrate deprivation and chased upon the addition of missing NTP(s) without the need of any accessory proteins. Finally, we demonstrate the ability of the purified MtbRNAP to initiate transcription from a promoter and establish that its open promoter complexes are stabilized by the M. tuberculosis protein CarD.
Collapse
Affiliation(s)
- Omar Herrera-Asmat
- Jason Choy Laboratory of Single Molecule Biophysics, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA; Laboratorio de Moléculas Individuales, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Av. Honorio Delgado 430, San Martin de Porras, Lima-31, Peru
| | | | | | - Carlos J Bustamante
- Jason Choy Laboratory of Single Molecule Biophysics, Department of Molecular and Cell Biology, Department of Physics and Department of Chemistry, Kavli Energy Nanoscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA.
| | - Daniel G Guerra
- Laboratorio de Moléculas Individuales, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Av. Honorio Delgado 430, San Martin de Porras, Lima-31, Peru.
| | | |
Collapse
|
43
|
Caulobacter crescentus CdnL is a non-essential RNA polymerase-binding protein whose depletion impairs normal growth and rRNA transcription. Sci Rep 2017; 7:43240. [PMID: 28233804 PMCID: PMC5324124 DOI: 10.1038/srep43240] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 01/23/2017] [Indexed: 12/22/2022] Open
Abstract
CdnL is an essential RNA polymerase (RNAP)-binding activator of rRNA transcription in mycobacteria and myxobacteria but reportedly not in Bacillus. Whether its function and mode of action are conserved in other bacteria thus remains unclear. Because virtually all alphaproteobacteria have a CdnL homolog and none of these have been characterized, we studied the homolog (CdnLCc) of the model alphaproteobacterium Caulobacter crescentus. We show that CdnLCc is not essential for viability but that its absence or depletion causes slow growth and cell filamentation. CdnLCc is degraded in vivo in a manner dependent on its C-terminus, yet excess CdnLCc resulting from its stabilization did not adversely affect growth. We find that CdnLCc interacts with itself and with the RNAP β subunit, and localizes to at least one rRNA promoter in vivo, whose activity diminishes upon depletion of CdnLCc. Interestingly, cells expressing CdnLCc mutants unable to interact with the RNAP were cold-sensitive, suggesting that CdnLCc interaction with RNAP is especially required at lower than standard growth temperatures in C. crescentus. Our study indicates that despite limited sequence similarities and regulatory differences compared to its myco/myxobacterial homologs, CdnLCc may share similar biological functions, since it affects rRNA synthesis, probably by stabilizing open promoter-RNAP complexes.
Collapse
|
44
|
Effects of Increasing the Affinity of CarD for RNA Polymerase on Mycobacterium tuberculosis Growth, rRNA Transcription, and Virulence. J Bacteriol 2017; 199:JB.00698-16. [PMID: 27920294 DOI: 10.1128/jb.00698-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 11/23/2016] [Indexed: 01/29/2023] Open
Abstract
CarD is an essential RNA polymerase (RNAP) interacting protein in Mycobacterium tuberculosis that stimulates formation of RNAP-promoter open complexes. CarD plays a complex role in M. tuberculosis growth and virulence that is not fully understood. Therefore, to gain further insight into the role of CarD in M. tuberculosis growth and virulence, we determined the effect of increasing the affinity of CarD for RNAP. Using site-directed mutagenesis guided by crystal structures of CarD bound to RNAP, we identified amino acid substitutions that increase the affinity of CarD for RNAP. Using these substitutions, we show that increasing the affinity of CarD for RNAP increases the stability of the CarD protein in M. tuberculosis In addition, we show that increasing the affinity of CarD for RNAP increases the growth rate in M. tuberculosis without affecting 16S rRNA levels. We further show that increasing the affinity of CarD for RNAP reduces M. tuberculosis virulence in a mouse model of infection despite the improved growth rate in vitro Our findings suggest that the CarD-RNAP interaction protects CarD from proteolytic degradation in M. tuberculosis, establish that growth rate and rRNA levels can be uncoupled in M. tuberculosis and demonstrate that the strength of the CarD-RNAP interaction has been finely tuned to optimize virulence. IMPORTANCE Mycobacterium tuberculosis, the causative agent of tuberculosis, remains a major global health problem. In order to develop new strategies to battle this pathogen, we must gain a better understanding of the molecular processes involved in its survival and pathogenesis. We have previously identified CarD as an essential transcriptional regulator in mycobacteria. In this study, we detail the effects of increasing the affinity of CarD for RNAP on transcriptional regulation, CarD protein stability, and virulence. These studies expand our understanding of the global transcription regulator CarD, provide insight into how CarD activity is regulated, and broaden our understanding of prokaryotic transcription.
Collapse
|
45
|
Hubin EA, Fay A, Xu C, Bean JM, Saecker RM, Glickman MS, Darst SA, Campbell EA. Structure and function of the mycobacterial transcription initiation complex with the essential regulator RbpA. eLife 2017; 6. [PMID: 28067618 PMCID: PMC5302886 DOI: 10.7554/elife.22520] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 01/07/2017] [Indexed: 02/07/2023] Open
Abstract
RbpA and CarD are essential transcription regulators in mycobacteria. Mechanistic analyses of promoter open complex (RPo) formation establish that RbpA and CarD cooperatively stimulate formation of an intermediate (RP2) leading to RPo; formation of RP2 is likely a bottleneck step at the majority of mycobacterial promoters. Once RPo forms, CarD also disfavors its isomerization back to RP2. We determined a 2.76 Å-resolution crystal structure of a mycobacterial transcription initiation complex (TIC) with RbpA as well as a CarD/RbpA/TIC model. Both CarD and RbpA bind near the upstream edge of the −10 element where they likely facilitate DNA bending and impede transcription bubble collapse. In vivo studies demonstrate the essential role of RbpA, show the effects of RbpA truncations on transcription and cell physiology, and indicate additional functions for RbpA not evident in vitro. This work provides a framework to understand the control of mycobacterial transcription by RbpA and CarD. DOI:http://dx.doi.org/10.7554/eLife.22520.001
Collapse
Affiliation(s)
| | - Allison Fay
- Immunology Program, Sloan-Kettering Institute, New York, United States
| | - Catherine Xu
- The Rockefeller University, New York, United States
| | - James M Bean
- Immunology Program, Sloan-Kettering Institute, New York, United States
| | | | - Michael S Glickman
- Immunology Program, Sloan-Kettering Institute, New York, United States.,Division of Infectious Diseases, Memorial Sloan-Kettering Cancer Center, New York, United States
| | - Seth A Darst
- The Rockefeller University, New York, United States
| | | |
Collapse
|
46
|
Lee J, Borukhov S. Bacterial RNA Polymerase-DNA Interaction-The Driving Force of Gene Expression and the Target for Drug Action. Front Mol Biosci 2016; 3:73. [PMID: 27882317 PMCID: PMC5101437 DOI: 10.3389/fmolb.2016.00073] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 10/24/2016] [Indexed: 11/17/2022] Open
Abstract
DNA-dependent multisubunit RNA polymerase (RNAP) is the key enzyme of gene expression and a target of regulation in all kingdoms of life. It is a complex multifunctional molecular machine which, unlike other DNA-binding proteins, engages in extensive and dynamic interactions (both specific and nonspecific) with DNA, and maintains them over a distance. These interactions are controlled by DNA sequences, DNA topology, and a host of regulatory factors. Here, we summarize key recent structural and biochemical studies that elucidate the fine details of RNAP-DNA interactions during initiation. The findings of these studies help unravel the molecular mechanisms of promoter recognition and open complex formation, initiation of transcript synthesis and promoter escape. We also discuss most current advances in the studies of drugs that specifically target RNAP-DNA interactions during transcription initiation and elongation.
Collapse
Affiliation(s)
- Jookyung Lee
- Department of Cell Biology, Rowan University School of Osteopathic Medicine Stratford, NJ, USA
| | - Sergei Borukhov
- Department of Cell Biology, Rowan University School of Osteopathic Medicine Stratford, NJ, USA
| |
Collapse
|
47
|
Gardner CL, Pagliai FA, Pan L, Bojilova L, Torino MI, Lorca GL, Gonzalez CF. Drug Repurposing: Tolfenamic Acid Inactivates PrbP, a Transcriptional Accessory Protein in Liberibacter asiaticus. Front Microbiol 2016; 7:1630. [PMID: 27803694 PMCID: PMC5067538 DOI: 10.3389/fmicb.2016.01630] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 09/30/2016] [Indexed: 01/11/2023] Open
Abstract
CLIBASIA_01510, PrbP, is a predicted RNA polymerase binding protein in Liberibacter asiaticus. PrbP was found to regulate expression of a small subset of ribosomal genes through interactions with the β-subunit of the RNA polymerase and a short, specific sequence on the promoter region. Molecular screening assays were performed to identify small molecules that interact with PrbP in vitro. Chemical hits were analyzed for therapeutic efficacy against L. asiaticus via an infected leaf assay, where the transcriptional activity of L. asiaticus was found to decrease significantly after exposure to tolfenamic acid. Similarly, tolfenamic acid was found to inhibit L. asiaticus infection in highly symptomatic citrus seedlings. Our results indicate that PrbP is an important transcriptional regulator for survival of L. asiaticus in planta, and the chemicals identified by molecular screening assays could be used as a therapeutic treatment for huanglongbing disease.
Collapse
Affiliation(s)
- Christopher L Gardner
- Microbiology and Cell Science Department, Genetics Institute & Institute of Food and Agricultural Science, University of Florida Gainesville, FL, USA
| | - Fernando A Pagliai
- Microbiology and Cell Science Department, Genetics Institute & Institute of Food and Agricultural Science, University of Florida Gainesville, FL, USA
| | - Lei Pan
- Microbiology and Cell Science Department, Genetics Institute & Institute of Food and Agricultural Science, University of Florida Gainesville, FL, USA
| | - Lora Bojilova
- Microbiology and Cell Science Department, Genetics Institute & Institute of Food and Agricultural Science, University of Florida Gainesville, FL, USA
| | - Maria I Torino
- Microbiology and Cell Science Department, Genetics Institute & Institute of Food and Agricultural Science, University of Florida Gainesville, FL, USA
| | - Graciela L Lorca
- Microbiology and Cell Science Department, Genetics Institute & Institute of Food and Agricultural Science, University of Florida Gainesville, FL, USA
| | - Claudio F Gonzalez
- Microbiology and Cell Science Department, Genetics Institute & Institute of Food and Agricultural Science, University of Florida Gainesville, FL, USA
| |
Collapse
|
48
|
Rammohan J, Ruiz Manzano A, Garner AL, Prusa J, Stallings CL, Galburt EA. Cooperative stabilization of Mycobacterium tuberculosis rrnAP3 promoter open complexes by RbpA and CarD. Nucleic Acids Res 2016; 44:7304-13. [PMID: 27342278 PMCID: PMC5009747 DOI: 10.1093/nar/gkw577] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 06/16/2016] [Indexed: 01/24/2023] Open
Abstract
The essential mycobacterial transcriptional regulators RbpA and CarD act to modulate transcription by associating to the initiation complex and increasing the flux of transcript production. Each of these factors interacts directly with the promoter DNA template and with RNA polymerase (RNAP) holoenzyme. We recently reported on the energetics of CarD-mediated open complex stabilization on the Mycobacterium tuberculosis rrnAP3 ribosomal promoter using a stopped-flow fluorescence assay. Here, we apply this approach to RbpA and show that RbpA stabilizes RNAP-promoter open complexes (RPo) via a distinct mechanism from that of CarD. Furthermore, concentration-dependent stopped-flow experiments with both factors reveal positive linkage (cooperativity) between RbpA and CarD with regard to their ability to stabilize RPo The observation of positive linkage between RbpA and CarD demonstrates that the two factors can act on the same transcription initiation complex simultaneously. Lastly, with both factors present, the kinetics of open complex formation is significantly faster than in the presence of either factor alone and approaches that of E. coli RNAP on the same promoter. This work provides a quantitative framework for the molecular mechanisms of these two essential transcription factors and the critical roles they play in the biology and pathology of mycobacteria.
Collapse
Affiliation(s)
- Jayan Rammohan
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ana Ruiz Manzano
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ashley L Garner
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jerome Prusa
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Christina L Stallings
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Eric A Galburt
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
49
|
Blombach F, Smollett KL, Grohmann D, Werner F. Molecular Mechanisms of Transcription Initiation-Structure, Function, and Evolution of TFE/TFIIE-Like Factors and Open Complex Formation. J Mol Biol 2016; 428:2592-2606. [PMID: 27107643 PMCID: PMC7616663 DOI: 10.1016/j.jmb.2016.04.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/06/2016] [Accepted: 04/12/2016] [Indexed: 11/24/2022]
Abstract
Transcription initiation requires that the promoter DNA is melted and the template strand is loaded into the active site of the RNA polymerase (RNAP), forming the open complex (OC). The archaeal initiation factor TFE and its eukaryotic counterpart TFIIE facilitate this process. Recent structural and biophysical studies have revealed the position of TFE/TFIIE within the pre-initiation complex (PIC) and illuminated its role in OC formation. TFE operates via allosteric and direct mechanisms. Firstly, it interacts with the RNAP and induces the opening of the flexible RNAP clamp domain, concomitant with DNA melting and template loading. Secondly, TFE binds physically to single-stranded DNA in the transcription bubble of the OC and increases its stability. The identification of the β-subunit of archaeal TFE enabled us to reconstruct the evolutionary history of TFE/TFIIE-like factors, which is characterised by winged helix (WH) domain expansion in eukaryotes and loss of metal centres including iron-sulfur clusters and Zinc ribbons. OC formation is an important target for the regulation of transcription in all domains of life. We propose that TFE and the bacterial general transcription factor CarD, although structurally and evolutionary unrelated, show interesting parallels in their mechanism to enhance OC formation. We argue that OC formation is used as a way to regulate transcription in all domains of life, and these regulatory mechanisms coevolved with the basal transcription machinery.
Collapse
Affiliation(s)
- Fabian Blombach
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, UK
| | - Katherine L Smollett
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, UK
| | - Dina Grohmann
- Institute of Microbiology, University of Regensburg, Regensburg 93053, Germany
| | - Finn Werner
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, UK.
| |
Collapse
|
50
|
Mycobacterium tuberculosis Transcription Machinery: Ready To Respond to Host Attacks. J Bacteriol 2016; 198:1360-73. [PMID: 26883824 DOI: 10.1128/jb.00935-15] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Regulating responses to stress is critical for all bacteria, whether they are environmental, commensal, or pathogenic species. For pathogenic bacteria, successful colonization and survival in the host are dependent on adaptation to diverse conditions imposed by the host tissue architecture and the immune response. Once the bacterium senses a hostile environment, it must enact a change in physiology that contributes to the organism's survival strategy. Inappropriate responses have consequences; hence, the execution of the appropriate response is essential for survival of the bacterium in its niche. Stress responses are most often regulated at the level of gene expression and, more specifically, transcription. This minireview focuses on mechanisms of regulating transcription initiation that are required by Mycobacterium tuberculosis to respond to the arsenal of defenses imposed by the host during infection. In particular, we highlight how certain features of M. tuberculosis physiology allow this pathogen to respond swiftly and effectively to host defenses. By enacting highly integrated and coordinated gene expression changes in response to stress,M. tuberculosis is prepared for battle against the host defense and able to persist within the human population.
Collapse
|