1
|
Leimkühler S. 2-Thiouridine formation in Escherichia coli: a critical review. J Bacteriol 2025; 207:e0042024. [PMID: 39660893 PMCID: PMC11784392 DOI: 10.1128/jb.00420-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
Modifications of transfer RNA (tRNA) have been shown to play critical roles in the biogenesis, metabolism, structural stability, and function of RNA molecules, and the specific modifications of nucleobases with sulfur atoms in tRNA are present in prokaryotes and eukaryotes. The s2 group of s2U34 stabilizes anticodon structure, confers ribosome-binding ability to tRNA, and improves reading frame maintenance. In particular, specific enzymes catalyze the biosynthesis of sulfur-containing nucleosides of s2U34, such as the L-cysteine desulfurase IscS and the tRNA thiouridylase MnmA in Escherichia coli. Until recently, the mechanism of sulfur transfer in E. coli was considered to involve persulfide chemistry; however, a newly proposed mechanism suggests the involvement of a [4Fe-4S] cluster bound to MnmA. This review provides a critical appraisal of recent evidence for [4Fe-4S]-dependent or [4Fe-4S]-independent tRNA thiolation in 2-thiouridine formation.
Collapse
Affiliation(s)
- Silke Leimkühler
- Department of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Brandenburg, Germany
| |
Collapse
|
2
|
Elahi R, Dinis LR, Swift RP, Liu HB, Prigge ST. tRNA modifying enzymes MnmE and MnmG are essential for Plasmodium falciparum apicoplast maintenance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.21.629855. [PMID: 39763917 PMCID: PMC11702754 DOI: 10.1101/2024.12.21.629855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
The circular genome of the Plasmodium falciparum apicoplast contains a complete minimal set of tRNAs, positioning the apicoplast as an ideal model for studying the fundamental factors required for protein translation. Modifications at tRNA wobble base positions, such as xm5s2U, are critical for accurate protein translation. These modifications are ubiquitously found in tRNAs decoding two-family box codons ending in A or G in prokaryotes and in eukaryotic organelles. Here, we investigated the xm5s2U biosynthetic pathway in the apicoplast organelle of P. falciparum. Through comparative genomics, we identified orthologs of enzymes involved in this process: SufS, MnmA, MnmE, and MnmG. While SufS and MnmA were previously shown to catalyze s2U modifications, we now show that MnmE and MnmG are apicoplast-localized and contain features required for xm5s2U biosynthetic activity. Notably, we found that P. falciparum lacks orthologs of MnmC, MnmL, and MnmM, suggesting that the parasites contain a minimal xm5s2U biosynthetic pathway similar to that found in bacteria with reduced genomes. Deletion of either MnmE or MnmG resulted in apicoplast disruption and parasite death, mimicking the phenotype observed in ΔmnmA and ΔsufS parasites. Our data strongly support the presence and essentiality of xm5s2U modifications in apicoplast tRNAs. This study advances our understanding of the minimal requirements for protein translation in the apicoplast organelle.
Collapse
Affiliation(s)
- Rubayet Elahi
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, Maryland, USA
- The Johns Hopkins Malaria Research Institute, Baltimore, Maryland, USA
| | - Luciana Ribeiro Dinis
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, Maryland, USA
- The Johns Hopkins Malaria Research Institute, Baltimore, Maryland, USA
| | - Russell P. Swift
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, Maryland, USA
- The Johns Hopkins Malaria Research Institute, Baltimore, Maryland, USA
| | - Hans B. Liu
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, Maryland, USA
- The Johns Hopkins Malaria Research Institute, Baltimore, Maryland, USA
| | - Sean T. Prigge
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, Maryland, USA
- The Johns Hopkins Malaria Research Institute, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Lu JL, Dai Y, Ji K, Peng GX, Li H, Yan C, Shen B, Zhou XL. Taurine hypomodification underlies mitochondrial tRNATrp-related genetic diseases. Nucleic Acids Res 2024; 52:13351-13367. [PMID: 39380483 PMCID: PMC11602126 DOI: 10.1093/nar/gkae854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/31/2024] [Accepted: 09/18/2024] [Indexed: 10/10/2024] Open
Abstract
Escherichia coli MnmE and MnmG form a complex (EcMnmEG), generating transfer RNA (tRNA) 5-carboxymethylaminomethyluridine (cmnm5U) modification. Both cmnm5U and equivalent 5-taurinomethyluridine (τm5U, catalyzed by homologous GTPBP3 and MTO1) are found at U34 in several human mitochondrial tRNAs (hmtRNAs). Certain mitochondrial DNA (mtDNA) mutations, including m.3243A > G in tRNALeu(UUR) and m.8344A > G in tRNALys, cause genetic diseases, partially due to τm5U hypomodification. However, whether other mtDNA variants in different tRNAs cause a defect in τm5U biogenesis remains unknown. Here, we purified naturally assembled EcMnmEG from E. coli. Notably, EcMnmEG was able to incorporate both cmnm5U and τm5U into hmtRNATrp (encoded by MT-TW), providing a valuable basis for directly monitoring the effects of mtDNA mutations on U34 modification. In vitro, several clinical hmtRNATrp pathogenic mutations caused U34 hypomodification. A patient harboring an m.5541C > T mutation exhibited hmtRNATrp τm5U hypomodification. Moreover, using mtDNA base editing, we constructed two cell lines carrying m.5532G > A or m.5545C > T mutations, both of which exhibited hmtRNATrp τm5U hypomodification. Taurine supplementation improved mitochondrial translation in patient cells. Our findings describe the third hmtRNA species with mutation-related τm5U-hypomodification and provide new insights into the pathogenesis and intervention strategy for hmtRNATrp-related genetic diseases.
Collapse
Affiliation(s)
- Jia-Li Lu
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Yichen Dai
- State Key Laboratory of Reproductive Medicine and Offspring Health, Women’s Hospital of Nanjing Medical University, Nanjing Women and Children’s Healthcare Hospital, Center for Global Health, Gusu School, Nanjing Medical University, 101 Long-Mian Avenue, Nanjing 211166, China
| | - Kunqian Ji
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 West Wenhua Road, Jinan 250012, China
| | - Gui-Xin Peng
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Hong Li
- Core Facility of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Chuanzhu Yan
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 West Wenhua Road, Jinan 250012, China
- Mitochondrial Medicine Laboratory, Qilu Hospital (Qingdao), Shandong University, 758 Hefei Road, Qingdao 266035, China
| | - Bin Shen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Women’s Hospital of Nanjing Medical University, Nanjing Women and Children’s Healthcare Hospital, Center for Global Health, Gusu School, Nanjing Medical University, 101 Long-Mian Avenue, Nanjing 211166, China
| | - Xiao-Long Zhou
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Xiangshan Sub-Lane, Hangzhou 310024, China
| |
Collapse
|
4
|
Bommisetti P, Bandarian V. Insights into the Mechanism of Installation of 5-Carboxymethylaminomethyl Uridine Hypermodification by tRNA-Modifying Enzymes MnmE and MnmG. J Am Chem Soc 2023; 145:26947-26961. [PMID: 38050996 PMCID: PMC10723064 DOI: 10.1021/jacs.3c10182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/07/2023]
Abstract
The evolutionarily conserved bacterial proteins MnmE and MnmG (and their homologues in Eukarya) install a 5-carboxymethylaminomethyl (cmnm5) or a 5-taurinomethyl (τm5) group onto wobble uridines of several tRNA species. The Escherichia coli MnmE binds guanosine-5'-triphosphate (GTP) and methylenetetrahydrofolate (CH2THF), while MnmG binds flavin adenine dinucleotide (FAD) and a reduced nicotinamide adenine dinucleotide (NADH). Together with glycine, MnmEG catalyzes the installation of cmnm5 in a reaction that also requires hydrolysis of GTP. In this letter, we investigated key steps of the MnmEG reaction using a combination of biochemical techniques. We show multiple lines of evidence supporting flavin-iminium FADH[N5═CH2]+ as a central intermediate in the MnmEG reaction. Using a synthetic FADH[N5═CD2]+ analogue, the intermediacy of the FAD in the transfer of the methylene group from CH2THF to the C5 position of U34 was unambiguously demonstrated. Further, MnmEG reactions containing the deuterated flavin-iminium intermediate and alternate nucleophiles such as taurine and ammonia also led to the formation of the anticipated U34-modified tRNAs, showing FAD[N5═CH2]+ as the universal intermediate for all MnmEG homologues. Additionally, an RNA-protein complex stable to urea-denaturing polyacrylamide gel electrophoresis was identified. Studies involving a series of nuclease (RNase T1) and protease (trypsin) digestions along with reverse transcription experiments suggest that the complex may be noncovalent. While the conserved MnmG cysteine C47 and C277 mutant variants were shown to reduce FAD, they were unable to promote the modified tRNA formation. Overall, this study provides critical insights into the biochemical mechanism underlying tRNA modification by the MnmEG.
Collapse
Affiliation(s)
- Praneeth Bommisetti
- Department of Chemistry, University of Utah, Salt Lake
City, Utah 84112, United States
| | - Vahe Bandarian
- Department of Chemistry, University of Utah, Salt Lake
City, Utah 84112, United States
| |
Collapse
|
5
|
Bommisetti P, Young A, Bandarian V. Elucidation of the substrate of tRNA-modifying enzymes MnmEG leads to in vitro reconstitution of an evolutionarily conserved uridine hypermodification. J Biol Chem 2022; 298:102548. [PMID: 36181794 PMCID: PMC9626948 DOI: 10.1016/j.jbc.2022.102548] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 12/02/2022] Open
Abstract
The evolutionarily conserved bacterial proteins MnmE and MnmG collectively install a carboxymethylaminomethyl (cmnm) group at the fifth position of wobble uridines of several tRNA species. While the reaction catalyzed by MnmEG is one of the central steps in the biosynthesis of the methylaminomethyl (mnm) posttranscriptional tRNA modification, details of the reaction remain elusive. Glycine is known to be the source of the carboxy methylamino moiety of cmnm, and a tetrahydrofolate (THF) analog is thought to supply the one carbon that is appended to the fifth position of U. However, the nature of the folate analog remains unknown. This article reports the in vitro biochemical reconstitution of the MnmEG reaction. Using isotopically labeled methyl and methylene THF analogs, we demonstrate that methylene THF is the true substrate. We also show that reduced FAD is required for the reaction and that DTT can replace the NADH in its role as a reductant. We discuss the implications of these methylene-THF and reductant requirements on the mechanism of this key tRNA modification catalyzed by MnmEG.
Collapse
Affiliation(s)
- Praneeth Bommisetti
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Anthony Young
- Soliome Inc, 479 Jessie Street, San Francisco, CA 94103, United States
| | - Vahe Bandarian
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States.
| |
Collapse
|
6
|
Zhao D, Wang H, Li Z, Han S, Han C, Liu A. LC_Glucose-Inhibited Division Protein Is Required for Motility, Biofilm Formation, and Stress Response in Lysobacter capsici X2-3. Front Microbiol 2022; 13:840792. [PMID: 35369450 PMCID: PMC8969512 DOI: 10.3389/fmicb.2022.840792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/25/2022] [Indexed: 11/17/2022] Open
Abstract
Glucose-inhibited division protein (GidA) plays a critical role in the growth, stress response, and virulence of bacteria. However, how gidA may affect plant growth-promoting bacteria (PGPB) is still not clear. Our study aimed to describe the regulatory function of the gidA gene in Lysobacter capsici, which produces a variety of lytic enzymes and novel antibiotics. Here, we generated an LC_GidA mutant, MT16, and an LC_GidA complemented strain, Com-16, by plasmid integration. The deletion of LC_GidA resulted in an attenuation of the bacterial growth rate, motility, and biofilm formation of L. capsici. Root colonization assays demonstrated that the LC_GidA mutant showed reduced colonization of wheat roots. In addition, disruption of LC_GidA showed a clear diminution of survival in the presence of high temperature, high salt, and different pH conditions. The downregulated expression of genes related to DNA replication, cell division, motility, and biofilm formation was further validated by real-time quantitative PCR (RT–qPCR). Together, understanding the regulatory function of GidA is helpful for improving the biocontrol of crop diseases and has strong potential for biological applications.
Collapse
|
7
|
iTRAQ-based proteomic analysis of the differential effects of digested soy peptides and digested soy protein isolates on Lacticaseibacillus rhamnosus. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
8
|
Peng GX, Zhang Y, Wang QQ, Li QR, Xu H, Wang ED, Zhou XL. The human tRNA taurine modification enzyme GTPBP3 is an active GTPase linked to mitochondrial diseases. Nucleic Acids Res 2021; 49:2816-2834. [PMID: 33619562 PMCID: PMC7969015 DOI: 10.1093/nar/gkab104] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/03/2021] [Accepted: 02/09/2021] [Indexed: 01/03/2023] Open
Abstract
GTPBP3 and MTO1 cooperatively catalyze 5-taurinomethyluridine (τm5U) biosynthesis at the 34th wobble position of mitochondrial tRNAs. Mutations in tRNAs, GTPBP3 or MTO1, causing τm5U hypomodification, lead to various diseases. However, efficient in vitro reconstitution and mechanistic study of τm5U modification have been challenging, in part due to the lack of pure and active enzymes. A previous study reported that purified human GTPBP3 (hGTPBP3) is inactive in GTP hydrolysis. Here, we identified the mature form of hGTPBP3 and showed that hGTPBP3 is an active GTPase in vitro that is critical for tRNA modification in vivo. Unexpectedly, the isolated G domain and a mutant with the N-terminal domain truncated catalyzed GTP hydrolysis to only a limited extent, exhibiting high Km values compared with that of the mature enzyme. We further described several important pathogenic mutations of hGTPBP3, associated with alterations in hGTPBP3 localization, structure and/or function in vitro and in vivo. Moreover, we discovered a novel cytoplasm-localized isoform of hGTPBP3, indicating an unknown potential noncanonical function of hGTPBP3. Together, our findings established, for the first time, the GTP hydrolysis mechanism of hGTPBP3 and laid a solid foundation for clarifying the τm5U modification mechanism and etiology of τm5U deficiency-related diseases.
Collapse
Affiliation(s)
- Gui-Xin Peng
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China.,School of Life Science and Technology, ShanghaiTech University, 393 Middle Hua Xia Road, Shanghai 201210, China
| | - Yong Zhang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Qin-Qin Wang
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Hua Xia Road, Shanghai 201210, China
| | - Qing-Run Li
- CAS Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Sciences, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Hong Xu
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai Municipal Key Clinical Specialty, the International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, 910 Heng Shan Road, Shanghai 200030, China
| | - En-Duo Wang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China.,School of Life Science and Technology, ShanghaiTech University, 393 Middle Hua Xia Road, Shanghai 201210, China
| | - Xiao-Long Zhou
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| |
Collapse
|
9
|
Gao T, Yuan F, Liu Z, Liu W, Zhou D, Yang K, Guo R, Liang W, Zou G, Zhou R, Tian Y. Proteomic and Metabolomic Analyses Provide Insights into the Mechanism on Arginine Metabolism Regulated by tRNA Modification Enzymes GidA and MnmE of Streptococcus suis. Front Cell Infect Microbiol 2020; 10:597408. [PMID: 33425782 PMCID: PMC7793837 DOI: 10.3389/fcimb.2020.597408] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/10/2020] [Indexed: 12/22/2022] Open
Abstract
GidA and MnmE, two important tRNA modification enzymes, are contributed to the addition of the carboxymethylaminomethyl (cmnm) group onto wobble uridine of tRNA. GidA-MnmE modification pathway is evolutionarily conserved among Bacteria and Eukarya, which is crucial in efficient and accurate protein translation. However, its function remains poorly elucidated in zoonotic Streptococcus suis (SS). Here, a gidA and mnmE double knock-out (DKO) strain was constructed to systematically decode regulatory characteristics of GidA-MnmE pathway via proteomic. TMT labelled proteomics analysis identified that many proteins associated with cell divison and growth, fatty acid biosynthesis, virulence, especially arginine deiminase system (ADS) responsible for arginine metabolism were down-regulated in DKO mutant compared with the wild-type (WT) SC19. Accordingly, phenotypic experiments showed that the DKO strain displayed decreased in arginine consumption and ammonia production, deficient growth, and attenuated pathogenicity. Moreover, targeted metabolomic analysis identified that arginine was accumulated in DKO mutant as well. Therefore, these data provide molecular mechanisms for GidA-MnmE modification pathway in regulation of arginine metabolism, cell growth and pathogenicity of SS. Through proteomic and metabolomic analysis, we have identified arginine metabolism that is the links between a framework of protein level and the metabolic level of GidA-MnmE modification pathway perturbation.
Collapse
Affiliation(s)
- Ting Gao
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis, Ministry of Agriculture and Rural Affairs, Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Fangyan Yuan
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis, Ministry of Agriculture and Rural Affairs, Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Zewen Liu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis, Ministry of Agriculture and Rural Affairs, Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Wei Liu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis, Ministry of Agriculture and Rural Affairs, Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Danna Zhou
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis, Ministry of Agriculture and Rural Affairs, Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Keli Yang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis, Ministry of Agriculture and Rural Affairs, Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Rui Guo
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis, Ministry of Agriculture and Rural Affairs, Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Wan Liang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis, Ministry of Agriculture and Rural Affairs, Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Geng Zou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Cooperative Innovation Center of Sustainable Pig Production, Wuhan, China
| | - Rui Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Cooperative Innovation Center of Sustainable Pig Production, Wuhan, China
| | - Yongxiang Tian
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis, Ministry of Agriculture and Rural Affairs, Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
10
|
Ekimoto T, Kokabu Y, Oroguchi T, Ikeguchi M. Combination of coarse-grained molecular dynamics simulations and small-angle X-ray scattering experiments. Biophys Physicobiol 2019; 16:377-390. [PMID: 31984192 PMCID: PMC6976007 DOI: 10.2142/biophysico.16.0_377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 08/11/2019] [Indexed: 12/01/2022] Open
Abstract
The combination of molecular dynamics (MD) simulations and small-angle X-ray scattering (SAXS), called the MD-SAXS method, is efficient for investigating protein dynamics. To overcome the time-scale limitation of all-atom MD simulations, coarse-grained (CG) representations are often utilized for biomolecular simulations. In this study, we propose a method to combine CG MD simulations with SAXS, termed the CG-MD-SAXS method. In the CG-MD-SAXS method, the scattering factors of CG particles for proteins and nucleic acids are evaluated using high-resolution structural data in the Protein Data Bank, and the excluded volume and the hydration shell are modeled using two adjustable parameters to incorporate solvent effects. To avoid overfitting, only the two parameters are adjusted for an entire structure ensemble. To verify the developed method, theoretical SAXS profiles for various proteins, DNA/RNA, and a protein-RNA complex are compared with both experimental profiles and theoretical profiles obtained by the all-atom representation. In the present study, we applied the CG-MD-SAXS method to the Swi5-Sfr1 complex and three types of nucleosomes to obtain reliable ensemble models consistent with the experimental SAXS data.
Collapse
Affiliation(s)
- Toru Ekimoto
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa 230-0045, Japan
| | - Yuichi Kokabu
- Bioscience Department, Mitsui Knowledge Industry Co., Ltd., Minato-ku, Tokyo 105-6215, Japan
| | - Tomotaka Oroguchi
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa 230-0045, Japan.,Department of Physics, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan
| | - Mitsunori Ikeguchi
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa 230-0045, Japan.,Medical Sciences Innovation Hub Program RIKEN, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
11
|
Fislage M, Zhang J, Brown ZP, Mandava CS, Sanyal S, Ehrenberg M, Frank J. Cryo-EM shows stages of initial codon selection on the ribosome by aa-tRNA in ternary complex with GTP and the GTPase-deficient EF-TuH84A. Nucleic Acids Res 2019; 46:5861-5874. [PMID: 29733411 PMCID: PMC6009598 DOI: 10.1093/nar/gky346] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 04/30/2018] [Indexed: 11/25/2022] Open
Abstract
The GTPase EF-Tu in ternary complex with GTP and aminoacyl-tRNA (aa-tRNA) promotes rapid and accurate delivery of cognate aa-tRNAs to the ribosomal A site. Here we used cryo-EM to study the molecular origins of the accuracy of ribosome-aided recognition of a cognate ternary complex and the accuracy-amplifying role of the monitoring bases A1492, A1493 and G530 of the 16S rRNA. We used the GTPase-deficient EF-Tu variant H84A with native GTP, rather than non-cleavable GTP analogues, to trap a near-cognate ternary complex in high-resolution ribosomal complexes of varying codon-recognition accuracy. We found that ribosome complexes trapped by GTPase-deficicent ternary complex due to the presence of EF-TuH84A or non-cleavable GTP analogues have very similar structures. We further discuss speed and accuracy of initial aa-tRNA selection in terms of conformational changes of aa-tRNA and stepwise activation of the monitoring bases at the decoding center of the ribosome.
Collapse
Affiliation(s)
- Marcus Fislage
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Jingji Zhang
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.,Department of Cell and Molecular Biology, Uppsala University, Uppsala 75124, Sweden
| | - Zuben Patrick Brown
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | | | - Suparna Sanyal
- Department of Cell and Molecular Biology, Uppsala University, Uppsala 75124, Sweden
| | - Måns Ehrenberg
- Department of Cell and Molecular Biology, Uppsala University, Uppsala 75124, Sweden
| | - Joachim Frank
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.,Department of Biological Sciences, Columbia University, New York, NY, USA
| |
Collapse
|
12
|
Gao T, Yuan F, Liu Z, Liu W, Zhou D, Yang K, Duan Z, Guo R, Liang W, Hu Q, Tian Y, Zhou R. MnmE, a Central tRNA-Modifying GTPase, Is Essential for the Growth, Pathogenicity, and Arginine Metabolism of Streptococcus suis Serotype 2. Front Cell Infect Microbiol 2019; 9:173. [PMID: 31179247 PMCID: PMC6543552 DOI: 10.3389/fcimb.2019.00173] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/08/2019] [Indexed: 12/11/2022] Open
Abstract
Streptococcus suis is an important pathogen in pigs and can also cause severe infections in humans. However, little is known about proteins associated with cell growth and pathogenicity of S. suis. In this study, a guanosine triphosphatase (GTPase) MnmE homolog was identified in a Chinese isolate (SC19) that drives a tRNA modification reaction. A mnmE deletion strain (ΔmnmE) and a complementation strain (CΔmnmE) were constructed to systematically decode the characteristics and functions of MnmE both in vitro and in vivo studies via proteomic analysis. Phenotypic analysis revealed that the ΔmnmE strain displayed deficient growth, attenuated pathogenicity, and perturbation of the arginine metabolic pathway mediated by the arginine deiminase system (ADS). Consistently, tandem mass tag -based quantitative proteomics analysis confirmed that 365 proteins were differentially expressed (174 up- and 191 down-regulated) between strains ΔmnmE and SC19. Many proteins associated with DNA replication, cell division, and virulence were down-regulated. Particularly, the core enzymes of the ADS were significantly down-regulated in strain ΔmnmE. These data also provide putative molecular mechanisms for MnmE in cell growth and survival in an acidic environment. Therefore, we propose that MnmE, by its function as a central tRNA-modifying GTPase, is essential for cell growth, pathogenicity, as well as arginine metabolism of S. suis.
Collapse
Affiliation(s)
- Ting Gao
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Fangyan Yuan
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Zewen Liu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Wei Liu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Danna Zhou
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Keli Yang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Zhengying Duan
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Rui Guo
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Wan Liang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Qiao Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Cooperative Innovation Center of Sustainable Pig Production, Wuhan, China
| | - Yongxiang Tian
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Rui Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Cooperative Innovation Center of Sustainable Pig Production, Wuhan, China
| |
Collapse
|
13
|
Roig-Solvas B, Brooks D, Makowski L. A direct approach to estimate the anisotropy of protein structures from small-angle X-ray scattering. J Appl Crystallogr 2019. [DOI: 10.1107/s1600576719000918] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
In the field of small-angle X-ray scattering (SAXS), the task of estimating the size of particles in solution is usually synonymous with the Guinier plot. The approximation behind this plot, developed by Guinier in 1939, provides a simple yet accurate characterization of the scattering behavior of particles at low scattering angle or momentum transfer q, together with a computationally efficient way of inferring their radii of gyration R
G. Moreover, this approximation is valid beyond spherical scatterers, making its use ubiquitous in the SAXS world. However, when it is important to estimate further particle characteristics, such as the anisotropy of the scatterer's shape, no similar or extended approximations are available. Existing tools to characterize the shape of scatterers rely either on prior knowledge of the scatterers' geometry or on iterative procedures to infer the particle shape ab initio. In this work, a low-angle approximation of the scattering intensity I(q) for ellipsoids of revolution is developed and it is shown how the size and anisotropy information can be extracted from the parameters of that approximation. The goal of the approximation is not to estimate a particle's full structure in detail, and thus this approach will be less accurate than well known iterative and ab initio reconstruction tools available in the literature. However, it can be considered as an extension of the Guinier approximation and used to generate initial estimates for the aforementioned iterative techniques, which usually rely on R
G and D
max for initialization. This formulation also demonstrates that nonlinearity in the Guinier plot can arise from anisotropy in the scattering particles. Beyond ideal ellipsoids of revolution, it is shown that this approximation can be used to estimate the size and shape of molecules in solution, in both computational and experimental scenarios. The limits of the approach are discussed and the impact of a particle's anisotropy in the Guinier estimate of R
G is assessed.
Collapse
|
14
|
Ruiz-Partida R, Prado S, Villarroya M, Velázquez-Campoy A, Bravo J, Armengod ME. An Alternative Homodimerization Interface of MnmG Reveals a Conformational Dynamics that Is Essential for Its tRNA Modification Function. J Mol Biol 2018; 430:2822-2842. [PMID: 29870725 DOI: 10.1016/j.jmb.2018.05.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 05/25/2018] [Indexed: 01/28/2023]
Abstract
The Escherichia coli homodimeric proteins MnmE and MnmG form a functional complex, MnmEG, that modifies tRNAs using GTP, methylene-tetrahydrofolate, FAD, and glycine or ammonium. MnmE is a tetrahydrofolate- and GTP-binding protein, whereas MnmG is a FAD-binding protein with each protomer composed of the FAD-binding domain, two insertion domains, and the helical C-terminal domain. The detailed mechanism of the MnmEG-mediated reaction remains unclear partially due to incomplete structural information on the free- and substrate-bound forms of the complex. In this study, we show that MnmG can adopt in solution a dimer arrangement (form I) different from that currently considered as the only biologically active (form II). Normal mode analysis indicates that form I can oscillate in a range of open and closed conformations. Using isothermal titration calorimetry and native red electrophoresis, we show that a form-I open conformation, which can be stabilized in vitro by the formation of an interprotomer disulfide bond between the catalytic C277 residues, appears to be involved in the assembly of the MnmEG catalytic center. We also show that residues R196, D253, R436, R554 and E585 are important for the stabilization of form I and the tRNA modification function. We propose that the form I dynamics regulates the alternative access of MnmE and tRNA to the MnmG FAD active site. Finally, we show that the C-terminal region of MnmG contains a sterile alpha motif domain responsible for tRNA-protein and protein-protein interactions.
Collapse
Affiliation(s)
| | - Silvia Prado
- Centro de Investigación Príncipe Felipe, Valencia 46012, Spain
| | | | - Adrián Velázquez-Campoy
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, and Department of Biochemistry and Molecular and Cell Biology, Universidad de Zaragoza, Zaragoza 50018, Spain; Aragon Institute for Health Research (IIS Aragon), Zaragoza, 50009, Spain; Biomedical Research Networking Centre for Liver and Digestive Diseases (CIBERehd), Madrid 28029, Spain; Fundacion ARAID, Government of Aragon, Zaragoza 50018, Spain
| | - Jerónimo Bravo
- Instituto de Biomedicina de Valencia-CSIC, Valencia 46010, Spain
| | - M-Eugenia Armengod
- Centro de Investigación Príncipe Felipe, Valencia 46012, Spain; Biomedical Research Networking Centre for Rare Diseases (CIBERER, Node 721), Valencia, Spain.
| |
Collapse
|
15
|
|
16
|
Gkekas S, Singh RK, Shkumatov AV, Messens J, Fauvart M, Verstraeten N, Michiels J, Versées W. Structural and biochemical analysis of Escherichia coli ObgE, a central regulator of bacterial persistence. J Biol Chem 2017; 292:5871-5883. [PMID: 28223358 DOI: 10.1074/jbc.m116.761809] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 02/03/2017] [Indexed: 12/28/2022] Open
Abstract
The Obg protein family belongs to the TRAFAC (translation factor) class of P-loop GTPases and is conserved from bacteria to eukaryotes. Essential roles in many different cellular processes have been suggested for the Obg protein from Escherichia coli (ObgE), and we recently showed that it is a central regulator of bacterial persistence. Here, we report the first crystal structure of ObgE at 1.85-Å resolution in the GDP-bound state, showing the characteristic N-terminal domain and a central G domain that are common to all Obg proteins. ObgE also contains an intrinsically disordered C-terminal domain, and we show here that this domain specifically contributed to GTP binding, whereas it did not influence GDP binding or GTP hydrolysis. Biophysical analysis, using small angle X-ray scattering and multi-angle light scattering experiments, revealed that ObgE is a monomer in solution, regardless of the bound nucleotide. In contrast to recent suggestions, our biochemical analyses further indicate that ObgE is neither activated by K+ ions nor by homodimerization. However, the ObgE GTPase activity was stimulated upon binding to the ribosome, confirming the ribosome-dependent GTPase activity of the Obg family. Combined, our data represent an important step toward further unraveling the detailed molecular mechanism of ObgE, which might pave the way to further studies into how this GTPase regulates bacterial physiology, including persistence.
Collapse
Affiliation(s)
- Sotirios Gkekas
- From the Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels.,the VIB-VUB Center for Structural Biology, 1050 Brussels
| | - Ranjan Kumar Singh
- From the Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels.,the VIB-VUB Center for Structural Biology, 1050 Brussels
| | - Alexander V Shkumatov
- From the Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels.,the VIB-VUB Center for Structural Biology, 1050 Brussels
| | - Joris Messens
- From the Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels.,the VIB-VUB Center for Structural Biology, 1050 Brussels
| | - Maarten Fauvart
- the Centre of Microbial and Plant Genetics, KU Leuven, University of Leuven, 3001 Leuven, and.,the Department of Life Science Technologies, Smart Systems and Emerging Technologies Unit, IMEC, 3001 Leuven, Belgium
| | - Natalie Verstraeten
- the Centre of Microbial and Plant Genetics, KU Leuven, University of Leuven, 3001 Leuven, and
| | - Jan Michiels
- the Centre of Microbial and Plant Genetics, KU Leuven, University of Leuven, 3001 Leuven, and
| | - Wim Versées
- From the Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, .,the VIB-VUB Center for Structural Biology, 1050 Brussels
| |
Collapse
|
17
|
Fislage M, Wauters L, Versées W. Invited review: MnmE, a GTPase that drives a complex tRNA modification reaction. Biopolymers 2017; 105:568-79. [PMID: 26832457 DOI: 10.1002/bip.22813] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 01/19/2016] [Accepted: 01/27/2016] [Indexed: 01/30/2023]
Abstract
MnmE is a multi-domain GTPase that is conserved from bacteria to man. Together with its partner protein MnmG it is involved in the synthesis of a tRNA wobble uridine modification. The orthologues of these proteins in eukaryotes are targeted to mitochondria and mutations in the encoding genes are associated with severe mitochondrial diseases. While classical small GTP-binding proteins are regulated via auxiliary GEFs and GAPs, the GTPase activity of MnmE is activated via potassium-dependent homodimerization of its G domains. In this review we focus on the catalytic mechanism of GTP hydrolysis by MnmE and the large scale conformational changes that are triggered throughout the GTPase cycle. We also discuss how these conformational changes might be used to drive and tune the complex tRNA modification reaction. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 568-579, 2016.
Collapse
Affiliation(s)
- Marcus Fislage
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, 10032.,Howard Hughes Medical Institute, Columbia University, New York, NY, 10032
| | - Lina Wauters
- Department of Cell Biochemistry, University of Groningen, Nijenborgh 7, Groningen, 9747 AG, Netherlands.,Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, Brussel, 1050, Belgium.,Structural Biology Research Center, VIB, Pleinlaan 2, Brussel, 1050, Belgium
| | - Wim Versées
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, Brussel, 1050, Belgium.,Structural Biology Research Center, VIB, Pleinlaan 2, Brussel, 1050, Belgium
| |
Collapse
|
18
|
Structural studies of RNA-protein complexes: A hybrid approach involving hydrodynamics, scattering, and computational methods. Methods 2016; 118-119:146-162. [PMID: 27939506 DOI: 10.1016/j.ymeth.2016.12.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/01/2016] [Accepted: 12/05/2016] [Indexed: 01/01/2023] Open
Abstract
The diverse functional cellular roles played by ribonucleic acids (RNA) have emphasized the need to develop rapid and accurate methodologies to elucidate the relationship between the structure and function of RNA. Structural biology tools such as X-ray crystallography and Nuclear Magnetic Resonance are highly useful methods to obtain atomic-level resolution models of macromolecules. However, both methods have sample, time, and technical limitations that prevent their application to a number of macromolecules of interest. An emerging alternative to high-resolution structural techniques is to employ a hybrid approach that combines low-resolution shape information about macromolecules and their complexes from experimental hydrodynamic (e.g. analytical ultracentrifugation) and solution scattering measurements (e.g., solution X-ray or neutron scattering), with computational modeling to obtain atomic-level models. While promising, scattering methods rely on aggregation-free, monodispersed preparations and therefore the careful development of a quality control pipeline is fundamental to an unbiased and reliable structural determination. This review article describes hydrodynamic techniques that are highly valuable for homogeneity studies, scattering techniques useful to study the low-resolution shape, and strategies for computational modeling to obtain high-resolution 3D structural models of RNAs, proteins, and RNA-protein complexes.
Collapse
|
19
|
Vestergaard B. Analysis of biostructural changes, dynamics, and interactions – Small-angle X-ray scattering to the rescue. Arch Biochem Biophys 2016; 602:69-79. [DOI: 10.1016/j.abb.2016.02.029] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 02/17/2016] [Accepted: 02/26/2016] [Indexed: 12/27/2022]
|
20
|
A Structure-free Method for Quantifying Conformational Flexibility in proteins. Sci Rep 2016; 6:29040. [PMID: 27358108 PMCID: PMC4928179 DOI: 10.1038/srep29040] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 06/08/2016] [Indexed: 11/24/2022] Open
Abstract
All proteins sample a range of conformations at physiologic temperatures and this inherent flexibility enables them to carry out their prescribed functions. A comprehensive understanding of protein function therefore entails a characterization of protein flexibility. Here we describe a novel approach for quantifying a protein’s flexibility in solution using small-angle X-ray scattering (SAXS) data. The method calculates an effective entropy that quantifies the diversity of radii of gyration that a protein can adopt in solution and does not require the explicit generation of structural ensembles to garner insights into protein flexibility. Application of this structure-free approach to over 200 experimental datasets demonstrates that the methodology can quantify a protein’s disorder as well as the effects of ligand binding on protein flexibility. Such quantitative descriptions of protein flexibility form the basis of a rigorous taxonomy for the description and classification of protein structure.
Collapse
|
21
|
Gao T, Tan M, Liu W, Zhang C, Zhang T, Zheng L, Zhu J, Li L, Zhou R. GidA, a tRNA Modification Enzyme, Contributes to the Growth, and Virulence of Streptococcus suis Serotype 2. Front Cell Infect Microbiol 2016; 6:44. [PMID: 27148493 PMCID: PMC4835480 DOI: 10.3389/fcimb.2016.00044] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 03/27/2016] [Indexed: 11/16/2022] Open
Abstract
Glucose-inhibited division protein (GidA), is a tRNA modification enzyme functioning together with MnmE in the addition of a carboxymethylaminomethyl group to position 5 of the anticodon wobble uridine of tRNA. Here, we report a GidA homolog from a Chinese isolate SC-19 of the zoonotic Streptococcus suis serotype 2 (SS2). gidA disruption led to a defective growth, increased capsule thickness, and reduced hemolytic activity. Moreover, the gidA deletion mutant (ΔgidA) displayed reduced mortality and bacterial loads in mice, reduced ability of adhesion to and invasion in epithelial cells, and increased sensitivity to phagocytosis. The iTRAQ analysis identified 372 differentially expressed (182 up- and 190 down-regulated) proteins in ΔgidA and SC-19. Numerous DNA replication, cell division, and virulence associated proteins were downregulated, whereas many capsule synthesis enzymes were upregulated by gidA disruption. This is consistent with the phenotypes of the mutant. Thus, GidA is a translational regulator that plays an important role in the growth, cell division, capsule biosynthesis, and virulence of SS2. Our findings provide new insight into the regulatory function of GidA in bacterial pathogens.
Collapse
Affiliation(s)
- Ting Gao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China; Veterinary Medicine Laboratory, Institute of Animal Husbandry and Veterinary Science, Hubei Academy of Agricultural ScienceWuhan, China; Wuhan Chopper Biology Co., Ltd.Wuhan, China
| | - Meifang Tan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University Wuhan, China
| | - Wanquan Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University Wuhan, China
| | - Chunyan Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University Wuhan, China
| | - Tengfei Zhang
- Veterinary Medicine Laboratory, Institute of Animal Husbandry and Veterinary Science, Hubei Academy of Agricultural Science Wuhan, China
| | - Linlin Zheng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University Wuhan, China
| | - Jiawen Zhu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University Wuhan, China
| | - Lu Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China; Cooperative Innovation Center of Sustainable Pig ProductionWuhan, China
| | - Rui Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China; Cooperative Innovation Center of Sustainable Pig ProductionWuhan, China
| |
Collapse
|
22
|
Protein-protein interactions: a supra-structural phenomenon demanding trans-disciplinary biophysical approaches. Curr Opin Struct Biol 2015; 35:76-86. [PMID: 26496626 DOI: 10.1016/j.sbi.2015.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 09/01/2015] [Accepted: 09/28/2015] [Indexed: 01/14/2023]
Abstract
Responsive formation of protein:protein interaction (PPI) upon diverse stimuli is a fundament of cellular function. As a consequence, PPIs are complex, adaptive entities, and exist in structurally heterogeneous interplays defined by the energetic states of the free and complexed protomers. The biophysical and structural investigations of PPIs consequently demand hybrid approaches, implementing orthogonal methods and strategies for global data analysis. Currently, impressive developments in hardware and software within several methodologies define a new era for the biostructural community. Data can be obtained at increasing resolution, at relevant time-scales and under increasingly relevant experimental conditions, intricate data are interpreted reliably, and the questions posed and answered grow in complexity. With this review, highlights from the study of PPIs using a multitude of biophysical methods, are reported. The aim is to depict how the elucidation of the interplay of structures requires the interplay of methods.
Collapse
|
23
|
Armengod ME, Meseguer S, Villarroya M, Prado S, Moukadiri I, Ruiz-Partida R, Garzón MJ, Navarro-González C, Martínez-Zamora A. Modification of the wobble uridine in bacterial and mitochondrial tRNAs reading NNA/NNG triplets of 2-codon boxes. RNA Biol 2015; 11:1495-507. [PMID: 25607529 DOI: 10.4161/15476286.2014.992269] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Posttranscriptional modification of the uridine located at the wobble position (U34) of tRNAs is crucial for optimization of translation. Defects in the U34 modification of mitochondrial-tRNAs are associated with a group of rare diseases collectively characterized by the impairment of the oxidative phosphorylation system. Retrograde signaling pathways from mitochondria to nucleus are involved in the pathophysiology of these diseases. These pathways may be triggered by not only the disturbance of the mitochondrial (mt) translation caused by hypomodification of tRNAs, but also as a result of nonconventional roles of mt-tRNAs and mt-tRNA-modifying enzymes. The evolutionary conservation of these enzymes supports their importance for cell and organismal functions. Interestingly, bacterial and eukaryotic cells respond to stress by altering the expression or activity of these tRNA-modifying enzymes, which leads to changes in the modification status of tRNAs. This review summarizes recent findings about these enzymes and sets them within the previous data context.
Collapse
Affiliation(s)
- M Eugenia Armengod
- a Laboratory of RNA Modification and Mitochondrial Diseases ; Centro de Investigación Príncipe Felipe ; Valencia , Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Shippy DC, Fadl AA. RNA modification enzymes encoded by the gid operon: Implications in biology and virulence of bacteria. Microb Pathog 2015; 89:100-7. [PMID: 26427881 DOI: 10.1016/j.micpath.2015.09.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 09/23/2015] [Indexed: 01/10/2023]
Abstract
Ribonucleic acid (RNA) molecules consist of numerous chemically modified nucleosides that are highly conserved in eukarya, archeae, and bacteria, while others are unique to each domain of life. In bacteria, hundreds of RNA modification enzymes have been identified and implicated in biological pathways associated with many cell processes. The glucose-inhibited division (gid) operon encodes genes for two RNA modification enzymes named GidA and GidB. Studies have shown GidA is essential for the proper biosynthesis of 5-methylaminomethyl-2-thiouridine (mnm(5)s(2)U) of bacterial transfer RNA (tRNA) with GidB responsible for the methylation of the 16S ribosomal RNA (rRNA). Furthermore, deletion of gidA and gidB has shown to alter numerous bacterial properties like virulence, stress response, morphology, growth, antibiotic susceptibility, and others. In this review, we discuss the present knowledge of the RNA modification enzymes GidA and GidB, and their potential role in the biology and virulence of bacteria.
Collapse
Affiliation(s)
- Daniel C Shippy
- Department of Animal Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Amin A Fadl
- Department of Animal Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
25
|
Jiménez-García B, Pons C, Svergun DI, Bernadó P, Fernández-Recio J. pyDockSAXS: protein-protein complex structure by SAXS and computational docking. Nucleic Acids Res 2015; 43:W356-61. [PMID: 25897115 PMCID: PMC4489248 DOI: 10.1093/nar/gkv368] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Accepted: 04/02/2015] [Indexed: 11/13/2022] Open
Abstract
Structural characterization of protein–protein interactions at molecular level is essential to understand biological processes and identify new therapeutic opportunities. However, atomic resolution structural techniques cannot keep pace with current advances in interactomics. Low-resolution structural techniques, such as small-angle X-ray scattering (SAXS), can be applied at larger scale, but they miss atomic details. For efficient application to protein–protein complexes, low-resolution information can be combined with theoretical methods that provide energetic description and atomic details of the interactions. Here we present the pyDockSAXS web server (http://life.bsc.es/pid/pydocksaxs) that provides an automatic pipeline for modeling the structure of a protein–protein complex from SAXS data. The method uses FTDOCK to generate rigid-body docking models that are subsequently evaluated by a combination of pyDock energy-based scoring function and their capacity to describe SAXS data. The only required input files are structural models for the interacting partners and a SAXS curve. The server automatically provides a series of structural models for the complex, sorted by the pyDockSAXS scoring function. The user can also upload a previously computed set of docking poses, which opens the possibility to filter the docking solutions by potential interface residues or symmetry restraints. The server is freely available to all users without restriction.
Collapse
Affiliation(s)
- Brian Jiménez-García
- Joint BSC-CRG-IRB Research Program in Computational Biology, Barcelona Supercomputing Center, 08034 Barcelona, Spain
| | - Carles Pons
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Dmitri I Svergun
- European Molecular Biology Laboratory, Hamburg Outstation, 22603 Hamburg, Germany
| | - Pau Bernadó
- Centre de Biochimie Structurale, INSERM U1054, CNRS UMR 5048, Université Montpellier 1 and 2, F-34090 Montpellier, France
| | - Juan Fernández-Recio
- Joint BSC-CRG-IRB Research Program in Computational Biology, Barcelona Supercomputing Center, 08034 Barcelona, Spain
| |
Collapse
|
26
|
Kirby NM, Cowieson NP. Time-resolved studies of dynamic biomolecules using small angle X-ray scattering. Curr Opin Struct Biol 2014; 28:41-6. [PMID: 25108308 DOI: 10.1016/j.sbi.2014.07.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 07/10/2014] [Accepted: 07/18/2014] [Indexed: 12/30/2022]
Abstract
Small angle X-ray scattering (SAXS) of biomacromolecules in solution has become a prominent technique in structural biology. Whilst the majority of current use is for static measurements, the field is also advancing for measurements where the sample at the beam position changes with time, using high throughput systems, chromatography, high speed mixing and pump-probe techniques in particular. Time resolved work is greatly aided by increasingly sophisticated software for acquiring and analysing data, together with developments in X-ray sources, beamline optics and detectors. The exploitation of spatial coherence is under development, with X-ray free electron lasers aiming to provide major advances in single molecule structure reconstruction and time resolution. Here we provide an overview of current developments advancing time resolved solution SAXS.
Collapse
Affiliation(s)
- Nigel M Kirby
- Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168, Australia.
| | - Nathan P Cowieson
- Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168, Australia
| |
Collapse
|