1
|
Kozlova S, Morozova N, Ispolatov Y, Severinov K. Dependence of post-segregational killing mediated by Type II restriction-modification systems on the lifetime of restriction endonuclease effective activity. mBio 2024; 15:e0140824. [PMID: 38980007 PMCID: PMC11324026 DOI: 10.1128/mbio.01408-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 06/10/2024] [Indexed: 07/10/2024] Open
Abstract
Plasmid-borne Type II restriction-modification (RM) systems mediate post-segregational killing (PSK). PSK is thought to be caused by the dilution of restriction and modification enzymes during cell division, resulting in accumulation of unmethylated DNA recognition sites and their cleavage by restriction endonucleases. PSK is the likely reason for stabilization of plasmids carrying RM systems in the absence of selection for plasmid maintenance. In this study, we developed a CRISPR interference-based method to eliminate RM-carrying plasmids and study PSK-related phenomena with minimal perturbation to the Escherichia coli host. Plasmids carrying the EcoRV, Eco29kI, and EcoRI RM systems were highly stable, and their loss resulted in SOS response and PSK. In contrast, plasmids carrying the Esp1396I system were poorly stabilized; their loss led to a temporary cessation of growth, followed by full recovery. We demonstrate that this unusual behavior is due to a limited lifetime of the Esp1396I restriction endonuclease activity, which, upon Esp1396I plasmid loss, disappears approximately after two cycles of cell division, i.e., before unmethylated sites appear in significant numbers. Our results indicate that whenever PSK induced by a loss of RM systems, and, possibly, other toxin-antitoxin systems, is considered, the lifetimes of individual system components and the growth rate of host cells shall be taken in account. Mathematical modeling shows, that unlike the situation with classical toxin-antitoxin systems, RM system-mediated PSK is possible when the lifetimes of restriction endonuclease and methyltransferase activities are similar, as long as the toxic restriction endonuclease activity persists for more than two chromosome replication cycles.IMPORTANCEIt is widely accepted that many Type II restriction-modification (RM) systems mediate post-segregational killing (PSK) if plasmids that encode them are lost. In this study, we harnessed an inducible CRISPR-Cas system to remove RM plasmids from Escherichia coli cells to study PSK while minimally perturbing cell physiology. We demonstrate that PSK depends on restriction endonuclease activity lifetime and is not observed when it is less than two replication cycles. We present a mathematical model that explains experimental data and shows that unlike the case of toxin-antitoxin-mediated PSK, the loss of an RM system induced PSK even when the RM enzymes have identical lifetimes.
Collapse
Affiliation(s)
- Svetlana Kozlova
- Skolkovo Institute of
Science and Technology, Center for Molecular and Cellular
Biology, Moscow,
Russia
| | - Natalia Morozova
- Peter the Great St.
Petersburg Polytechnic University,
St. Petersburg, Russia
| | - Yaroslav Ispolatov
- Physics Department,
University of Santiago of Chile, Center for Interdisciplinary Research
in Astrophysics and Space Science,
Santiago, Chile
| | - Konstantin Severinov
- Waksman Institute for
Microbiology and Department of Molecular Biology and Biochemistry,
Rutgers, State University of New
Jersey, Piscataway, New
Jersey, USA
- Institute of Gene
Biology, Moscow,
Russia
| |
Collapse
|
2
|
Abstract
RNA-guided CRISPR-Cas nucleases efficiently protect bacterial cells from phage infection and plasmid transformation. Yet, the efficiency of CRISPR-Cas defense is not absolute. Mutations in either CRISPR-Cas components of the host or mobile genetic elements regions targeted by CRISPR-Cas inactivate the defensive action. Here, we show that even at conditions of active CRISPR-Cas and unaltered targeted plasmids, a kinetic equilibrium between CRISPR-Cas nucleases action and plasmid replication processes allows for existence of a small subpopulation of plasmid-bearing cells on the background of cells that have been cured from the plasmid. In nature, the observed diversification of phenotypes may allow rapid changes in the population structure to meet the demands of the environment. CRISPR-Cas systems provide prokaryotes with an RNA-guided defense against foreign mobile genetic elements (MGEs) such as plasmids and viruses. A common mechanism by which MGEs avoid interference by CRISPR consists of acquisition of escape mutations in regions targeted by CRISPR. Here, using microbiological, live microscopy and microfluidics analyses we demonstrate that plasmids can persist for multiple generations in some Escherichia coli cell lineages at conditions of continuous targeting by the type I-E CRISPR-Cas system. We used mathematical modeling to show how plasmid persistence in a subpopulation of cells mounting CRISPR interference is achieved due to the stochastic nature of CRISPR interference and plasmid replication events. We hypothesize that the observed complex dynamics provides bacterial populations with long-term benefits due to continuous maintenance of mobile genetic elements in some cells, which leads to diversification of phenotypes in the entire community and allows rapid changes in the population structure to meet the demands of a changing environment.
Collapse
|
3
|
Maikova A, Boudry P, Shiriaeva A, Vasileva A, Boutserin A, Medvedeva S, Semenova E, Severinov K, Soutourina O. Protospacer-Adjacent Motif Specificity during Clostridioides difficile Type I-B CRISPR-Cas Interference and Adaptation. mBio 2021; 12:e0213621. [PMID: 34425703 PMCID: PMC8406132 DOI: 10.1128/mbio.02136-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 07/26/2021] [Indexed: 12/26/2022] Open
Abstract
CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) systems provide prokaryotes with efficient protection against foreign nucleic acid invaders. We have recently demonstrated the defensive interference function of a CRISPR-Cas system from Clostridioides (Clostridium) difficile, a major human enteropathogen, and showed that it could be harnessed for efficient genome editing in this bacterium. However, molecular details are still missing on CRISPR-Cas function for adaptation and sequence requirements for both interference and new spacer acquisition in this pathogen. Despite accumulating knowledge on the individual CRISPR-Cas systems in various prokaryotes, no data are available on the adaptation process in bacterial type I-B CRISPR-Cas systems. Here, we report the first experimental evidence that the C. difficile type I-B CRISPR-Cas system acquires new spacers upon overexpression of its adaptation module. The majority of new spacers are derived from a plasmid expressing Cas proteins required for adaptation or from regions of the C. difficile genome where generation of free DNA termini is expected. Results from protospacer-adjacent motif (PAM) library experiments and plasmid conjugation efficiency assays indicate that C. difficile CRISPR-Cas requires the YCN consensus PAM for efficient interference. We revealed a functional link between the adaptation and interference machineries, since newly adapted spacers are derived from sequences associated with a CCN PAM, which fits the interference consensus. The definition of functional PAMs and establishment of relative activity levels of each of the multiple C. difficile CRISPR arrays in present study are necessary for further CRISPR-based biotechnological and medical applications involving this organism. IMPORTANCE CRISPR-Cas systems provide prokaryotes with adaptive immunity for defense against foreign nucleic acid invaders, such as viruses or phages and plasmids. The CRISPR-Cas systems are highly diverse, and detailed studies of individual CRISPR-Cas subtypes are important for our understanding of various aspects of microbial adaptation strategies and for the potential applications. The significance of our work is in providing the first experimental evidence for type I-B CRISPR-Cas system adaptation in the emerging human enteropathogen Clostridioides difficile. This bacterium needs to survive in phage-rich gut communities, and its active CRISPR-Cas system might provide efficient antiphage defense by acquiring new spacers that constitute memory for further invader elimination. Our study also reveals a functional link between the adaptation and interference CRISPR machineries. The definition of all possible functional trinucleotide motifs upstream protospacers within foreign nucleic acid sequences is important for CRISPR-based genome editing in this pathogen and for developing new drugs against C. difficile infections.
Collapse
Affiliation(s)
- Anna Maikova
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
- Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, Russia
| | - Pierre Boudry
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Anna Shiriaeva
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
- Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, Russia
| | - Aleksandra Vasileva
- Institute of Gene Biology, Centre for Precision Genome Editing and Genetic Technologies for Biomedicine, Russian Academy of Sciences, Moscow, Russia
| | - Anaïs Boutserin
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Sofia Medvedeva
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Ekaterina Semenova
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Konstantin Severinov
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Olga Soutourina
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
- Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
4
|
Prespacers formed during primed adaptation associate with the Cas1-Cas2 adaptation complex and the Cas3 interference nuclease-helicase. Proc Natl Acad Sci U S A 2021; 118:2021291118. [PMID: 34035168 PMCID: PMC8179228 DOI: 10.1073/pnas.2021291118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Primed adaptation allows rapid acquisition of protective spacers derived from foreign mobile genetic elements into CRISPR arrays of the host. Primed adaptation requires ongoing CRISPR interference that destroys foreign genetic elements, but the nature of this requirement is unknown. Using the Escherichia coli I-E CRISPR-Cas as a model, we show that prespacers, short fragments of foreign DNA on their way to become incorporated into CRISPR arrays as spacers, are associated with both the adaptation integrase Cas1 and the interference nuclease Cas3, implying physical association of the interference and adaptation machineries during priming. For Type I CRISPR-Cas systems, a mode of CRISPR adaptation named priming has been described. Priming allows specific and highly efficient acquisition of new spacers from DNA recognized (primed) by the Cascade-crRNA (CRISPR RNA) effector complex. Recognition of the priming protospacer by Cascade-crRNA serves as a signal for engaging the Cas3 nuclease–helicase required for both interference and primed adaptation, suggesting the existence of a primed adaptation complex (PAC) containing the Cas1–Cas2 adaptation integrase and Cas3. To detect this complex in vivo, we here performed chromatin immunoprecipitation with Cas3-specific and Cas1-specific antibodies using cells undergoing primed adaptation. We found that prespacers are bound by both Cas1 (presumably, as part of the Cas1–Cas2 integrase) and Cas3, implying direct physical association of the interference and adaptation machineries as part of PAC.
Collapse
|
5
|
Abstract
CRISPR-Cas systems are immune systems that protect bacteria and archaea against their viruses, bacteriophages. Immunity is achieved through the acquisition of short DNA fragments from the viral invader’s genome. CRISPR-Cas immune systems adapt to new threats by acquiring new spacers from invading nucleic acids such as phage genomes. However, some CRISPR-Cas loci lack genes necessary for spacer acquisition despite variation in spacer content between microbial strains. It has been suggested that such loci may use acquisition machinery from cooccurring CRISPR-Cas systems within the same strain. Here, following infection by a virulent phage with a double-stranded DNA (dsDNA) genome, we observed spacer acquisition in the native host Flavobacterium columnare that carries an acquisition-deficient CRISPR-Cas subtype VI-B system and a complete subtype II-C system. We show that the VI-B locus acquires spacers from both the bacterial and phage genomes, while the newly acquired II-C spacers mainly target the viral genome. Both loci preferably target the terminal end of the phage genome, with priming-like patterns around a preexisting II-C protospacer. Through gene deletion, we show that the RNA-cleaving VI-B system acquires spacers in trans using acquisition machinery from the DNA-cleaving II-C system. Our observations support the concept of cross talk between CRISPR-Cas systems and raise further questions regarding the plasticity of adaptation modules.
Collapse
|
6
|
Wiegand T, Semenova E, Shiriaeva A, Fedorov I, Datsenko K, Severinov K, Wiedenheft B. Reproducible Antigen Recognition by the Type I-F CRISPR-Cas System. CRISPR J 2020; 3:378-387. [PMID: 33095052 PMCID: PMC7580607 DOI: 10.1089/crispr.2020.0069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
CRISPR-associated proteins 1 and 2 (Cas1-2) are necessary and sufficient for new spacer acquisition in some CRISPR-Cas systems (e.g., type I-E), but adaptation in other systems (e.g., type II-A) involves the crRNA-guided surveillance complex. Here we show that the type I-F Cas1-2/3 proteins are necessary and sufficient to produce low levels of spacer acquisition, but the presence of the type I-F crRNA-guided surveillance complex (Csy) improves the efficiency of adaptation and significantly increases the fidelity of protospacer adjacent motif selection. Sequences selected for integration are preferentially derived from specific regions of extrachromosomal DNA, and patterns of spacer selection are highly reproducible between independent biological replicates. This work helps define the role of the Csy complex in I-F adaptation and reveals that actively replicating mobile genetic elements have antigenic signatures that facilitate their integration during CRISPR adaptation.
Collapse
Affiliation(s)
- Tanner Wiegand
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana, USA; Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina Semenova
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA; Russian Academy of Sciences, Moscow, Russia
| | - Anna Shiriaeva
- Skolkovo Institute of Science and Technology, Skolkovo, Russia; Russian Academy of Sciences, Moscow, Russia
- Department of Molecular Microbiology, Peter the Great St. Petersburg Polytechnic University, Saint-Petersburg, Russia; Russian Academy of Sciences, Moscow, Russia
| | - Ivan Fedorov
- Skolkovo Institute of Science and Technology, Skolkovo, Russia; Russian Academy of Sciences, Moscow, Russia
| | - Kirill Datsenko
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA; Russian Academy of Sciences, Moscow, Russia
| | - Konstantin Severinov
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA; Russian Academy of Sciences, Moscow, Russia
- Skolkovo Institute of Science and Technology, Skolkovo, Russia; Russian Academy of Sciences, Moscow, Russia
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia; and Russian Academy of Sciences, Moscow, Russia
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Blake Wiedenheft
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana, USA; Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
7
|
Real-time observation of CRISPR spacer acquisition by Cas1-Cas2 integrase. Nat Struct Mol Biol 2020; 27:489-499. [PMID: 32367067 PMCID: PMC7241818 DOI: 10.1038/s41594-020-0415-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/16/2020] [Indexed: 01/13/2023]
Abstract
Cas1 integrase associates with Cas2 to insert short DNA fragments into a CRISPR array, establishing nucleic acid memory in prokaryotes. Here we applied single-molecule FRET methods to the Enterococcus faecalis (Efa) Cas1–Cas2 system to establish a kinetic framework describing target-searching, integration, and post-synapsis events. EfaCas1–Cas2 on its own is not able to find the CRISPR repeat in the CRISPR array; it only does so after prespacer loading. The leader sequence adjacent to the repeat further stabilizes EfaCas1–Cas2 contacts, enabling leader-side integration and subsequent spacer-side integration. The resulting post-synaptic complex has a surprisingly short mean lifetime. Remarkably, transcription efficiently resolves the postsynaptic complex and we predict that this is a conserved mechanism that ensures efficient and directional spacer integration in many CRISPR systems. Overall, our study provides a complete model of spacer acquisition, which can be harnessed for DNA-based information storage and cell lineage tracing technologies.
Collapse
|
8
|
Detection of CRISPR adaptation. Biochem Soc Trans 2020; 48:257-269. [PMID: 32010936 PMCID: PMC7054753 DOI: 10.1042/bst20190662] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/26/2019] [Accepted: 01/03/2020] [Indexed: 12/12/2022]
Abstract
Prokaryotic adaptive immunity is built when short DNA fragments called spacers are acquired into CRISPR (clustered regularly interspaced short palindromic repeats) arrays. CRISPR adaptation is a multistep process which comprises selection, generation, and incorporation of prespacers into arrays. Once adapted, spacers provide immunity through the recognition of complementary nucleic acid sequences, channeling them for destruction. To prevent deleterious autoimmunity, CRISPR adaptation must therefore be a highly regulated and infrequent process, at least in the absence of genetic invaders. Over the years, ingenious methods to study CRISPR adaptation have been developed. In this paper, we discuss and compare methods that detect CRISPR adaptation and its intermediates in vivo and propose suppressing PCR as a simple modification of a popular assay to monitor spacer acquisition with increased sensitivity.
Collapse
|
9
|
Selective loading and processing of prespacers for precise CRISPR adaptation. Nature 2020; 579:141-145. [PMID: 32076262 DOI: 10.1038/s41586-020-2018-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 12/19/2019] [Indexed: 01/08/2023]
Abstract
CRISPR-Cas immunity protects prokaryotes against invading genetic elements1. It uses the highly conserved Cas1-Cas2 complex to establish inheritable memory (spacers)2-5. How Cas1-Cas2 acquires spacers from foreign DNA fragments (prespacers) and integrates them into the CRISPR locus in the correct orientation is unclear6,7. Here, using the high spatiotemporal resolution of single-molecule fluorescence, we show that Cas1-Cas2 selects precursors of prespacers from DNA in various forms-including single-stranded DNA and partial duplexes-in a manner that depends on both the length of the DNA strand and the presence of a protospacer adjacent motif (PAM) sequence. We also identify DnaQ exonucleases as enzymes that process the Cas1-Cas2-loaded prespacer precursors into mature prespacers of a suitable size for integration. Cas1-Cas2 protects the PAM sequence from maturation, which results in the production of asymmetrically trimmed prespacers and the subsequent integration of spacers in the correct orientation. Our results demonstrate the kinetic coordination of prespacer precursor selection and PAM trimming, providing insight into the mechanisms that underlie the integration of functional spacers in the CRISPR loci.
Collapse
|
10
|
Ramachandran A, Summerville L, Learn BA, DeBell L, Bailey S. Processing and integration of functionally oriented prespacers in the Escherichia coli CRISPR system depends on bacterial host exonucleases. J Biol Chem 2019; 295:3403-3414. [PMID: 31914418 DOI: 10.1074/jbc.ra119.012196] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/20/2019] [Indexed: 12/22/2022] Open
Abstract
CRISPR-Cas systems provide bacteria with adaptive immunity against viruses. During spacer adaptation, the Cas1-Cas2 complex selects fragments of foreign DNA, called prespacers, and integrates them into CRISPR arrays in an orientation that provides functional immunity. Cas4 is involved in both the trimming of prespacers and the cleavage of protospacer adjacent motif (PAM) in several type I CRISPR-Cas systems, but how the prespacers are processed in systems lacking Cas4, such as the type I-E and I-F systems, is not understood. In Escherichia coli, which has a type I-E system, Cas1-Cas2 preferentially selects prespacers with 3' overhangs via specific recognition of a PAM, but how these prespacers are integrated in a functional orientation in the absence of Cas4 is not known. Using a biochemical approach with purified proteins, as well as integration, prespacer protection, sequencing, and quantitative PCR assays, we show here that the bacterial 3'-5' exonucleases DnaQ and ExoT can trim long 3' overhangs of prespacers and promote integration in the correct orientation. We found that trimming by these exonucleases results in an asymmetric intermediate, because Cas1-Cas2 protects the PAM sequence, which helps to define spacer orientation. Our findings implicate the E. coli host 3'-5' exonucleases DnaQ and ExoT in spacer adaptation and reveal a mechanism by which spacer orientation is defined in E. coli.
Collapse
Affiliation(s)
- Anita Ramachandran
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205
| | - Lesley Summerville
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205
| | - Brian A Learn
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205
| | - Lily DeBell
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205
| | - Scott Bailey
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205; Department of Biophysics and Biophysical Chemistry, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205.
| |
Collapse
|
11
|
Yoganand KN, Muralidharan M, Nimkar S, Anand B. Fidelity of prespacer capture and processing is governed by the PAM-mediated interactions of Cas1-2 adaptation complex in CRISPR-Cas type I-E system. J Biol Chem 2019; 294:20039-20053. [PMID: 31748409 PMCID: PMC6937570 DOI: 10.1074/jbc.ra119.009438] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 11/18/2019] [Indexed: 12/11/2022] Open
Abstract
Prokaryotes deploy CRISPR-Cas-based RNA-guided adaptive immunity to fend off mobile genetic elements such as phages and plasmids. During CRISPR adaptation, which is the first stage of CRISPR immunity, the Cas1-2 integrase complex captures invader-derived prespacer DNA and specifically integrates it at the leader-repeat junction as spacers. For this integration, several variants of CRISPR-Cas systems use Cas4 as an indispensable nuclease for selectively processing the protospacer adjacent motif (PAM) containing prespacers to a defined length. Surprisingly, however, a few CRISPR-Cas systems, such as type I-E, are bereft of Cas4. Despite the absence of Cas4, how the prespacers show impeccable conservation for length and PAM selection in type I-E remains intriguing. Here, using in vivo and in vitro integration assays, deep sequencing, and exonuclease footprinting, we show that Cas1-2/I-E-via the type I-E-specific extended C-terminal tail of Cas1-displays intrinsic affinity for PAM containing prespacers of variable length in Escherichia coli Although Cas1-2/I-E does not prune the prespacers, its binding protects the prespacer boundaries from exonuclease action. This ensures the pruning of exposed ends by exonucleases to aptly sized substrates for integration into the CRISPR locus. In summary, our work reveals that in a few CRISPR-Cas variants, such as type I-E, the specificity of PAM selection resides with Cas1-2, whereas the prespacer processing is co-opted by cellular non-Cas exonucleases, thereby offsetting the need for Cas4.
Collapse
Affiliation(s)
- Kakimani Nagarajan Yoganand
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Manasasri Muralidharan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Siddharth Nimkar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Baskaran Anand
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| |
Collapse
|
12
|
Genome Maintenance Proteins Modulate Autoimmunity Mediated Primed Adaptation by the Escherichia coli Type I-E CRISPR-Cas System. Genes (Basel) 2019; 10:genes10110872. [PMID: 31683605 PMCID: PMC6896009 DOI: 10.3390/genes10110872] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 10/22/2019] [Accepted: 10/28/2019] [Indexed: 12/21/2022] Open
Abstract
Bacteria and archaea use CRISPR-Cas adaptive immunity systems to interfere with viruses, plasmids, and other mobile genetic elements. During the process of adaptation, CRISPR-Cas systems acquire immunity by incorporating short fragments of invaders’ genomes into CRISPR arrays. The acquisition of fragments of host genomes leads to autoimmunity and may drive chromosomal rearrangements, negative cell selection, and influence bacterial evolution. In this study, we investigated the role of proteins involved in genome stability maintenance in spacer acquisition by the Escherichia coli type I-E CRISPR-Cas system targeting its own genome. We show here, that the deletion of recJ decreases adaptation efficiency and affects accuracy of spacers incorporation into CRISPR array. Primed adaptation efficiency is also dramatically inhibited in double mutants lacking recB and sbcD but not in single mutants suggesting independent involvement and redundancy of RecBCD and SbcCD pathways in spacer acquisition. While the presence of at least one of two complexes is crucial for efficient primed adaptation, RecBCD and SbcCD affect the pattern of acquired spacers. Overall, our data suggest distinct roles of the RecBCD and SbcCD complexes and of RecJ in spacer precursor selection and insertion into CRISPR array and highlight the functional interplay between CRISPR-Cas systems and host genome maintenance mechanisms.
Collapse
|
13
|
Detection of spacer precursors formed in vivo during primed CRISPR adaptation. Nat Commun 2019; 10:4603. [PMID: 31601800 PMCID: PMC6787059 DOI: 10.1038/s41467-019-12417-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 09/08/2019] [Indexed: 02/03/2023] Open
Abstract
Type I CRISPR-Cas loci provide prokaryotes with a nucleic-acid-based adaptive immunity against foreign DNA. Immunity involves adaptation, the integration of ~30-bp DNA fragments, termed prespacers, into the CRISPR array as spacers, and interference, the targeted degradation of DNA containing a protospacer. Interference-driven DNA degradation can be coupled with primed adaptation, in which spacers are acquired from DNA surrounding the targeted protospacer. Here we develop a method for strand-specific, high-throughput sequencing of DNA fragments, FragSeq, and apply this method to identify DNA fragments accumulated in Escherichia coli cells undergoing robust primed adaptation by a type I-E or type I-F CRISPR-Cas system. The detected fragments have sequences matching spacers acquired during primed adaptation and function as spacer precursors when introduced exogenously into cells by transformation. The identified prespacers contain a characteristic asymmetrical structure that we propose is a key determinant of integration into the CRISPR array in an orientation that confers immunity. Primed adaptation in the CRISPR-Cas system helps recognition of previously encountered sequence elements and promotes the formation of new memories. Here the authors characterized spacer precursors of type I-E and type I-F CRISPR-Cas system using in vivo models.
Collapse
|
14
|
Krivoy A, Rutkauskas M, Kuznedelov K, Musharova O, Rouillon C, Severinov K, Seidel R. Primed CRISPR adaptation in Escherichia coli cells does not depend on conformational changes in the Cascade effector complex detected in Vitro. Nucleic Acids Res 2019; 46:4087-4098. [PMID: 29596641 PMCID: PMC5934681 DOI: 10.1093/nar/gky219] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 03/14/2018] [Indexed: 11/13/2022] Open
Abstract
In type I CRISPR-Cas systems, primed adaptation of new spacers into CRISPR arrays occurs when the effector Cascade-crRNA complex recognizes imperfectly matched targets that are not subject to efficient CRISPR interference. Thus, primed adaptation allows cells to acquire additional protection against mobile genetic elements that managed to escape interference. Biochemical and biophysical studies suggested that Cascade-crRNA complexes formed on fully matching targets (subject to efficient interference) and on partially mismatched targets that promote primed adaption are structurally different. Here, we probed Escherichia coli Cascade-crRNA complexes bound to matched and mismatched DNA targets using a magnetic tweezers assay. Significant differences in complex stabilities were observed consistent with the presence of at least two distinct conformations. Surprisingly, in vivo analysis demonstrated that all mismatched targets stimulated robust primed adaptation irrespective of conformational states observed in vitro. Our results suggest that primed adaptation is a direct consequence of a reduced interference efficiency and/or rate and is not a consequence of distinct effector complex conformations on target DNA.
Collapse
Affiliation(s)
- Andrey Krivoy
- Center for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute of Science and Technology, Moscow 143028, Russia.,Molecular Biophysics Group, Peter Debye Institute for Soft Matter Physics, Universität Leipzig, Leipzig 04103, Germany
| | - Marius Rutkauskas
- Molecular Biophysics Group, Peter Debye Institute for Soft Matter Physics, Universität Leipzig, Leipzig 04103, Germany
| | - Konstantin Kuznedelov
- Waksman Institute, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Olga Musharova
- Center for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute of Science and Technology, Moscow 143028, Russia.,Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
| | - Christophe Rouillon
- Molecular Biophysics Group, Peter Debye Institute for Soft Matter Physics, Universität Leipzig, Leipzig 04103, Germany
| | - Konstantin Severinov
- Center for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute of Science and Technology, Moscow 143028, Russia.,Waksman Institute, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA.,Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
| | - Ralf Seidel
- Molecular Biophysics Group, Peter Debye Institute for Soft Matter Physics, Universität Leipzig, Leipzig 04103, Germany
| |
Collapse
|
15
|
Musharova O, Sitnik V, Vlot M, Savitskaya E, Datsenko KA, Krivoy A, Fedorov I, Semenova E, Brouns SJJ, Severinov K. Systematic analysis of Type I-E Escherichia coli CRISPR-Cas PAM sequences ability to promote interference and primed adaptation. Mol Microbiol 2019; 111:1558-1570. [PMID: 30875129 PMCID: PMC6568314 DOI: 10.1111/mmi.14237] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2019] [Indexed: 01/05/2023]
Abstract
CRISPR interference occurs when a protospacer recognized by the CRISPR RNA is destroyed by Cas effectors. In Type I CRISPR‐Cas systems, protospacer recognition can lead to «primed adaptation» – acquisition of new spacers from in cis located sequences. Type I CRISPR‐Cas systems require the presence of a trinucleotide protospacer adjacent motif (PAM) for efficient interference. Here, we investigated the ability of each of 64 possible trinucleotides located at the PAM position to induce CRISPR interference and primed adaptation by the Escherichia coli Type I‐E CRISPR‐Cas system. We observed clear separation of PAM variants into three groups: those unable to cause interference, those that support rapid interference and those that lead to reduced interference that occurs over extended periods of time. PAM variants unable to support interference also did not support primed adaptation; those that supported rapid interference led to no or low levels of adaptation, while those that caused attenuated levels of interference consistently led to highest levels of adaptation. The results suggest that primed adaptation is fueled by the products of CRISPR interference. Extended over time interference with targets containing «attenuated» PAM variants provides a continuous source of new spacers leading to high overall level of spacer acquisition.
Collapse
Affiliation(s)
- Olga Musharova
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, 121205, Russia.,Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia
| | - Vasily Sitnik
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, 121205, Russia
| | - Marnix Vlot
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Stippeneng 4, Wageningen, 6708 WE, The Netherlands
| | - Ekaterina Savitskaya
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, 121205, Russia.,Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia
| | - Kirill A Datsenko
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Andrey Krivoy
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, 121205, Russia
| | - Ivan Fedorov
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, 121205, Russia
| | - Ekaterina Semenova
- Waksman Institute, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Stan J J Brouns
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Stippeneng 4, Wageningen, 6708 WE, The Netherlands.,Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, Delft, 2629 HZ, The Netherlands
| | - Konstantin Severinov
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, 121205, Russia.,Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia.,Waksman Institute, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| |
Collapse
|
16
|
Loureiro A, da Silva GJ. CRISPR-Cas: Converting A Bacterial Defence Mechanism into A State-of-the-Art Genetic Manipulation Tool. Antibiotics (Basel) 2019; 8:E18. [PMID: 30823430 PMCID: PMC6466564 DOI: 10.3390/antibiotics8010018] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/14/2019] [Accepted: 02/27/2019] [Indexed: 12/12/2022] Open
Abstract
Bacteriophages are pervasive viruses that infect bacteria, relying on their genetic machinery to replicate. In order to protect themselves from this kind of invader, bacteria developed an ingenious adaptive defence system, clustered regularly interspaced short palindromic repeats (CRISPR). Researchers soon realised that a specific type of CRISPR system, CRISPR-Cas9, could be modified into a simple and efficient genetic engineering technology, with several improvements over currently used systems. This discovery set in motion a revolution in genetics, with new and improved CRISPR systems being used in plenty of in vitro and in vivo experiments in recent years. This review illustrates the mechanisms behind CRISPR-Cas systems as a means of bacterial immunity against phage invasion and how these systems were engineered to originate new genetic manipulation tools. Newfound CRISPR-Cas technologies and the up-and-coming applications of these systems on healthcare and other fields of science are also discussed.
Collapse
Affiliation(s)
- Alexandre Loureiro
- Laboratory of Microbiology, Faculty of Pharmacy, University of Coimbra, Health Sciences Campus, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.
| | - Gabriela Jorge da Silva
- Laboratory of Microbiology, Faculty of Pharmacy, University of Coimbra, Health Sciences Campus, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.
- Center for Neurosciences Cell Biology, University of Coimbra, 3000-548 Coimbra, Portugal.
| |
Collapse
|
17
|
Xue C, Sashital DG. Mechanisms of Type I-E and I-F CRISPR-Cas Systems in Enterobacteriaceae. EcoSal Plus 2019; 8:10.1128/ecosalplus.ESP-0008-2018. [PMID: 30724156 PMCID: PMC6368399 DOI: 10.1128/ecosalplus.esp-0008-2018] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Indexed: 12/17/2022]
Abstract
CRISPR-Cas systems provide bacteria and archaea with adaptive immunity against invasion by bacteriophages and other mobile genetic elements. Short fragments of invader DNA are stored as immunological memories within CRISPR (clustered regularly interspaced short palindromic repeat) arrays in the host chromosome. These arrays provide a template for RNA molecules that can guide CRISPR-associated (Cas) proteins to specifically neutralize viruses upon subsequent infection. Over the past 10 years, our understanding of CRISPR-Cas systems has benefited greatly from a number of model organisms. In particular, the study of several members of the Gram-negative Enterobacteriaceae family, especially Escherichia coli and Pectobacterium atrosepticum, have provided significant insights into the mechanisms of CRISPR-Cas immunity. In this review, we provide an overview of CRISPR-Cas systems present in members of the Enterobacteriaceae. We also detail the current mechanistic understanding of the type I-E and type I-F CRISPR-Cas systems that are commonly found in enterobacteria. Finally, we discuss how phages can escape or inactivate CRISPR-Cas systems and the measures bacteria can enact to counter these types of events.
Collapse
Affiliation(s)
- Chaoyou Xue
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA
- Present address: Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY
| | - Dipali G Sashital
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA
| |
Collapse
|
18
|
Jackson SA, Birkholz N, Malone LM, Fineran PC. Imprecise Spacer Acquisition Generates CRISPR-Cas Immune Diversity through Primed Adaptation. Cell Host Microbe 2019; 25:250-260.e4. [PMID: 30661951 DOI: 10.1016/j.chom.2018.12.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/18/2018] [Accepted: 12/14/2018] [Indexed: 02/08/2023]
Abstract
Many prokaryotes possess CRISPR-Cas adaptive immune systems to defend against viruses and invading mobile genetic elements. CRISPR-Cas immunity relies on genetic memories, termed spacers, for sequence-specific recognition of infections. The diversity of spacers within host populations is important for immune resilience, but we have limited understanding of how CRISPR diversity is generated. Type I CRISPR-Cas systems use existing spacers to enhance the acquisition of new spacers through primed CRISPR adaptation (priming). Here, we present a pathway to priming that is stimulated by imprecisely acquired (slipped) spacers. Slipped spacers are less effective for immunity but increase priming compared with canonical spacers. The benefits of slipping depend on the relative rates of phage mutation and adaptation during defense. We propose that slipped spacers provide a route to increase population-level spacer diversity that pre-empts phage escape mutant proliferation and that the trade-off between adaptation and immunity is important in diverse CRISPR-Cas systems.
Collapse
Affiliation(s)
- Simon A Jackson
- Department of Microbiology and Immunology, University of Otago, Dunedin 9054, New Zealand.
| | - Nils Birkholz
- Department of Microbiology and Immunology, University of Otago, Dunedin 9054, New Zealand
| | - Lucía M Malone
- Department of Microbiology and Immunology, University of Otago, Dunedin 9054, New Zealand
| | - Peter C Fineran
- Department of Microbiology and Immunology, University of Otago, Dunedin 9054, New Zealand.
| |
Collapse
|
19
|
Avoidance of Trinucleotide Corresponding to Consensus Protospacer Adjacent Motif Controls the Efficiency of Prespacer Selection during Primed Adaptation. mBio 2018; 9:mBio.02169-18. [PMID: 30514784 PMCID: PMC6282206 DOI: 10.1128/mbio.02169-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Adaptive immunity of prokaryotes depends on acquisition of foreign DNA fragments into CRISPR arrays as spacers followed by destruction of foreign DNA by CRISPR interference machinery. Different fragments are acquired into CRISPR arrays with widely different efficiencies, but the factors responsible are not known. We analyzed the frequency of spacers acquired during primed adaptation in an E. coli CRISPR array and found that AAG motif was depleted from highly acquired spacers. AAG is also a consensus protospacer adjacent motif (PAM) that must be present upstream from the target of the CRISPR spacer for its efficient destruction by the interference machinery. These results are important because they provide new information on the mechanism of primed spacer acquisition. They add to other previous evidence in the field that pointed out to a “directionality” in the capture of new spacers. Our data strongly suggest that the recognition of an AAG PAM by the interference machinery components prior to spacer capture occludes downstream AAG sequences, thus preventing their recognition by the adaptation machinery. CRISPR DNA arrays of unique spacers separated by identical repeats ensure prokaryotic immunity through specific targeting of foreign nucleic acids complementary to spacers. New spacers are acquired into a CRISPR array in a process of CRISPR adaptation. Selection of foreign DNA fragments to be integrated into CRISPR arrays relies on PAM (protospacer adjacent motif) recognition, as only those spacers will be functional against invaders. However, acquisition of different PAM-associated spacers proceeds with markedly different efficiency from the same DNA. Here, we used a combination of bioinformatics and experimental approaches to understand factors affecting the efficiency of acquisition of spacers by the Escherichia coli type I-E CRISPR-Cas system, for which two modes of CRISPR adaptation have been described: naive and primed. We found that during primed adaptation, efficiency of spacer acquisition is strongly negatively affected by the presence of an AAG trinucleotide—a consensus PAM—within the sequence being selected. No such trend is observed during naive adaptation. The results are consistent with a unidirectional spacer selection process during primed adaptation and provide a specific signature for identification of spacers acquired through primed adaptation in natural populations.
Collapse
|
20
|
Künne T, Zhu Y, da Silva F, Konstantinides N, McKenzie RE, Jackson RN, Brouns S. Role of nucleotide identity in effective CRISPR target escape mutations. Nucleic Acids Res 2018; 46:10395-10404. [PMID: 30107450 PMCID: PMC6212716 DOI: 10.1093/nar/gky687] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/16/2018] [Accepted: 08/10/2018] [Indexed: 12/26/2022] Open
Abstract
Prokaryotes use primed CRISPR adaptation to update their memory bank of spacers against invading genetic elements that have escaped CRISPR interference through mutations in their protospacer target site. We previously observed a trend that nucleotide-dependent mismatches between crRNA and the protospacer strongly influence the efficiency of primed CRISPR adaptation. Here we show that guanine-substitutions in the target strand of the protospacer are highly detrimental to CRISPR interference and interference-dependent priming, while cytosine-substitutions are more readily tolerated. Furthermore, we show that this effect is based on strongly decreased binding affinity of the effector complex Cascade for guanine-mismatched targets, while cytosine-mismatched targets only minimally affect target DNA binding. Structural modeling of Cascade-bound targets with mismatches shows that steric clashes of mismatched guanines lead to unfavorable conformations of the RNA-DNA duplex. This effect has strong implications for the natural selection of target site mutations that lead to effective escape from type I CRISPR-Cas systems.
Collapse
MESH Headings
- Base Pairing
- Base Sequence
- CRISPR-Associated Proteins/genetics
- CRISPR-Associated Proteins/metabolism
- CRISPR-Cas Systems
- Clustered Regularly Interspaced Short Palindromic Repeats
- Cytosine/chemistry
- Cytosine/metabolism
- DNA Helicases/genetics
- DNA Helicases/metabolism
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Bacterial/metabolism
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Escherichia coli Proteins/genetics
- Escherichia coli Proteins/metabolism
- Guanine/chemistry
- Guanine/metabolism
- Mutation
- Plasmids/chemistry
- Plasmids/metabolism
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Guide, CRISPR-Cas Systems/chemistry
- RNA, Guide, CRISPR-Cas Systems/genetics
- RNA, Guide, CRISPR-Cas Systems/metabolism
Collapse
Affiliation(s)
- Tim Künne
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- Laboratory of Food Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Yifan Zhu
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Fausia da Silva
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Nico Konstantinides
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Rebecca E McKenzie
- Kavli Institute of Nanoscience, Department of Bionanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Ryan N Jackson
- Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, UT, USA
| | - Stan JJ Brouns
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- Kavli Institute of Nanoscience, Department of Bionanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
21
|
Shiimori M, Garrett SC, Graveley BR, Terns MP. Cas4 Nucleases Define the PAM, Length, and Orientation of DNA Fragments Integrated at CRISPR Loci. Mol Cell 2018; 70:814-824.e6. [PMID: 29883605 DOI: 10.1016/j.molcel.2018.05.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 04/27/2018] [Accepted: 05/01/2018] [Indexed: 11/24/2022]
Abstract
To achieve adaptive and heritable immunity against viruses and other mobile genetic elements, CRISPR-Cas systems must capture and store short DNA fragments (spacers) from these foreign elements into host genomic CRISPR arrays. This process is catalyzed by conserved Cas1/Cas2 integration complexes, but the specific roles of another highly conserved protein linked to spacer acquisition, the Cas4 nuclease, are just now emerging. Here, we show that two Cas4 nucleases (Cas4-1 and Cas4-2) play critical roles in CRISPR spacer acquisition in Pyrococcus furiosus. The nuclease activities of both Cas4 proteins are required to process protospacers to the correct size. Cas4-1 specifies the upstream PAM (protospacer adjacent motif), while Cas4-2 specifies the conserved downstream motif. Both Cas4 proteins ensure CRISPR spacer integration in a defined orientation leading to CRISPR immunity. Collectively, these findings provide in vivo evidence for critical roles of Cas4 nucleases in protospacer generation and functional spacer integration at CRISPR arrays.
Collapse
Affiliation(s)
- Masami Shiimori
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Sandra C Garrett
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, UConn Stem Cell Institute, UConn Health, Farmington, CT 06030, USA
| | - Brenton R Graveley
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, UConn Stem Cell Institute, UConn Health, Farmington, CT 06030, USA.
| | - Michael P Terns
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA; Department of Genetics, University of Georgia, Athens, GA 30602, USA; Department of Microbiology, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
22
|
Hille F, Richter H, Wong SP, Bratovič M, Ressel S, Charpentier E. The Biology of CRISPR-Cas: Backward and Forward. Cell 2018. [DOI: 10.1016/j.cell.2017.11.032] [Citation(s) in RCA: 333] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
23
|
Abstract
The adaptation phase of CRISPR-Cas immunity depends on the precise integration of short segments of foreign DNA (spacers) into a specific genomic location within the CRISPR locus by the Cas1-Cas2 integration complex. Although off-target spacer integration outside of canonical CRISPR arrays has been described in vitro, no evidence of non-specific integration activity has been found in vivo. Here, we show that non-canonical off-target integrations can occur within bacterial chromosomes at locations that resemble the native CRISPR locus by characterizing hundreds of off-target integration locations within Escherichia coli. Considering whether such promiscuous Cas1-Cas2 activity could have an evolutionary role through the genesis of neo-CRISPR loci, we combed existing CRISPR databases and available genomes for evidence of off-target integration activity. This search uncovered several putative instances of naturally occurring off-target spacer integration events within the genomes of Yersinia pestis and Sulfolobus islandicus. These results are important in understanding alternative routes to CRISPR array genesis and evolution, as well as in the use of spacer acquisition in technological applications.
Collapse
|
24
|
Spontaneous CRISPR loci generation in vivo by non-canonical spacer integration. Nat Microbiol 2018; 3:310-318. [PMID: 29379209 DOI: 10.1038/s41564-017-0097-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 12/11/2017] [Indexed: 01/09/2023]
Abstract
The adaptation phase of CRISPR-Cas immunity depends on the precise integration of short segments of foreign DNA (spacers) into a specific genomic location within the CRISPR locus by the Cas1-Cas2 integration complex. Although off-target spacer integration outside of canonical CRISPR arrays has been described in vitro, no evidence of non-specific integration activity has been found in vivo. Here, we show that non-canonical off-target integrations can occur within bacterial chromosomes at locations that resemble the native CRISPR locus by characterizing hundreds of off-target integration locations within Escherichia coli. Considering whether such promiscuous Cas1-Cas2 activity could have an evolutionary role through the genesis of neo-CRISPR loci, we combed existing CRISPR databases and available genomes for evidence of off-target integration activity. This search uncovered several putative instances of naturally occurring off-target spacer integration events within the genomes of Yersinia pestis and Sulfolobus islandicus. These results are important in understanding alternative routes to CRISPR array genesis and evolution, as well as in the use of spacer acquisition in technological applications.
Collapse
|
25
|
Abstract
We report the whole-genome sequence of a new Escherichia coli temperate phage, Ayreon, comprising a linear double-stranded DNA (dsDNA) genome of 44,708 bp.
Collapse
|
26
|
Strotskaya A, Savitskaya E, Metlitskaya A, Morozova N, Datsenko KA, Semenova E, Severinov K. The action of Escherichia coli CRISPR-Cas system on lytic bacteriophages with different lifestyles and development strategies. Nucleic Acids Res 2017; 45:1946-1957. [PMID: 28130424 PMCID: PMC5389539 DOI: 10.1093/nar/gkx042] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 01/17/2017] [Indexed: 12/22/2022] Open
Abstract
CRISPR-Cas systems provide prokaryotes with adaptive defense against bacteriophage infections. Given an enormous variety of strategies used by phages to overcome their hosts, one can expect that the efficiency of protective action of CRISPR-Cas systems against different viruses should vary. Here, we created a collection of Escherichia coli strains with type I-E CRISPR-Cas system targeting various positions in the genomes of bacteriophages λ, T5, T7, T4 and R1-37 and investigated the ability of these strains to resist the infection and acquire additional CRISPR spacers from the infecting phage. We find that the efficiency of CRISPR-Cas targeting by the host is determined by phage life style, the positions of the targeted protospacer within the genome, and the state of phage DNA. The results also suggest that during infection by lytic phages that are susceptible to CRISPR interference, CRISPR-Cas does not act as a true immunity system that saves the infected cell but rather enforces an abortive infection pathway leading to infected cell death with no phage progeny release.
Collapse
Affiliation(s)
- Alexandra Strotskaya
- Skolkovo Institute of Science and Technology, Moscow, Russia.,Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia.,Waksman Institute of Microbiology, Piscataway, NJ, USA
| | - Ekaterina Savitskaya
- Skolkovo Institute of Science and Technology, Moscow, Russia.,Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | | | - Natalia Morozova
- Peter the Great St. Petersburg State Polytechnic University, St. Petersburg, Russia
| | | | | | - Konstantin Severinov
- Skolkovo Institute of Science and Technology, Moscow, Russia.,Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia.,Waksman Institute of Microbiology, Piscataway, NJ, USA.,Peter the Great St. Petersburg State Polytechnic University, St. Petersburg, Russia
| |
Collapse
|
27
|
Rao C, Chin D, Ensminger AW. Priming in a permissive type I-C CRISPR-Cas system reveals distinct dynamics of spacer acquisition and loss. RNA (NEW YORK, N.Y.) 2017; 23:1525-1538. [PMID: 28724535 PMCID: PMC5602111 DOI: 10.1261/rna.062083.117] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 07/08/2017] [Indexed: 06/07/2023]
Abstract
CRISPR-Cas is a bacterial and archaeal adaptive immune system that uses short, invader-derived sequences termed spacers to target invasive nucleic acids. Upon recognition of previously encountered invaders, the system can stimulate secondary spacer acquisitions, a process known as primed adaptation. Previous studies of primed adaptation have been complicated by intrinsically high interference efficiency of most systems against bona fide targets. As such, most primed adaptation to date has been studied within the context of imperfect sequence complementarity between spacers and targets. Here, we take advantage of a native type I-C CRISPR-Cas system in Legionella pneumophila that displays robust primed adaptation even within the context of a perfectly matched target. Using next-generation sequencing to survey acquired spacers, we observe strand bias and positional preference that are consistent with a 3'-5' translocation of the adaptation machinery. We show that spacer acquisition happens in a wide range of frequencies across the plasmid, including a remarkable hotspot that predominates irrespective of the priming strand. We systematically characterize protospacer sequence constraints in both adaptation and interference and reveal extensive flexibilities regarding the protospacer adjacent motif in both processes. Lastly, in a strain with a genetically truncated CRISPR array, we observe increased interference efficiency, which, when coupled with forced maintenance of a targeted plasmid, provides a useful experimental system to study spacer loss. Based on these observations, we propose that the Legionella pneumophila type I-C system represents a powerful model to study primed adaptation and the interplay between CRISPR interference and adaptation.
Collapse
Affiliation(s)
- Chitong Rao
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1M1, Canada
| | - Denny Chin
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1M1, Canada
| | - Alexander W Ensminger
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1M1, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5G 1M1, Canada
- Public Health Ontario, Toronto, Ontario M5G 1M1, Canada
| |
Collapse
|
28
|
Li M, Gong L, Zhao D, Zhou J, Xiang H. The spacer size of I-B CRISPR is modulated by the terminal sequence of the protospacer. Nucleic Acids Res 2017; 45:4642-4654. [PMID: 28379481 PMCID: PMC5416893 DOI: 10.1093/nar/gkx229] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 03/25/2017] [Indexed: 12/29/2022] Open
Abstract
Prokaryotes memorize invader information by incorporating alien DNA as spacers into CRISPR arrays. Although the spacer size has been suggested to be predefined by the architecture of the acquisition complex, there is usually an unexpected heterogeneity. Here, we explored the causes of this heterogeneity in Haloarcula hispanica I-B CRISPR. High-throughput sequencing following adaptation assays demonstrated significant size variation among 37 957 new spacers, which appeared to be sequence-dependent. Consistently, the third nucleotide at the spacer 3΄-end (PAM-distal end) showed an evident bias for cytosine and mutating this cytosine in the protospacer sequence could change the final spacer size. In addition, slippage of the 5΄-end (PAM-end), which contributed to most of the observed PAM (protospacer adjacent motif) inaccuracy, also tended to change the spacer size. We propose that both ends of the PAM-protospacer sequence should exhibit nucleotide selectivity (with different stringencies), which fine-tunes the structural ruler, to a certain extent, to specify the spacer size.
Collapse
Affiliation(s)
- Ming Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Luyao Gong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dahe Zhao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jian Zhou
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hua Xiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
29
|
Musharova O, Klimuk E, Datsenko KA, Metlitskaya A, Logacheva M, Semenova E, Severinov K, Savitskaya E. Spacer-length DNA intermediates are associated with Cas1 in cells undergoing primed CRISPR adaptation. Nucleic Acids Res 2017; 45:3297-3307. [PMID: 28204574 PMCID: PMC5389516 DOI: 10.1093/nar/gkx097] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 02/06/2017] [Indexed: 01/16/2023] Open
Abstract
During primed CRISPR adaptation spacers are preferentially selected from DNA recognized by CRISPR interference machinery, which in the case of Type I CRISPR-Cas systems consists of CRISPR RNA (crRNA) bound effector Cascade complex that locates complementary targets, and Cas3 executor nuclease/helicase. A complex of Cas1 and Cas2 proteins is capable of inserting new spacers in the CRISPR array. Here, we show that in Escherichia coli cells undergoing primed adaptation, spacer-sized fragments of foreign DNA are associated with Cas1. Based on sensitivity to digestion with nucleases, the associated DNA is not in a standard double-stranded state. Spacer-sized fragments are cut from one strand of foreign DNA in Cas1- and Cas3-dependent manner. These fragments are generated from much longer S1-nuclease sensitive fragments of foreign DNA that require Cas3 for their production. We propose that in the course of CRISPR interference Cas3 generates fragments of foreign DNA that are recognized by the Cas1-Cas2 adaptation complex, which excises spacer-sized fragments and channels them for insertion into CRISPR array.
Collapse
Affiliation(s)
- Olga Musharova
- Skolkovo Institute of Science and Technology, Skolkovo 143025, Russia.,Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia.,Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
| | - Evgeny Klimuk
- Skolkovo Institute of Science and Technology, Skolkovo 143025, Russia.,Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
| | - Kirill A Datsenko
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | | | - Maria Logacheva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Ekaterina Semenova
- Waksman Institute, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Konstantin Severinov
- Skolkovo Institute of Science and Technology, Skolkovo 143025, Russia.,Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia.,Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia.,Waksman Institute, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Ekaterina Savitskaya
- Skolkovo Institute of Science and Technology, Skolkovo 143025, Russia.,Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
| |
Collapse
|
30
|
Silas S, Lucas-Elio P, Jackson SA, Aroca-Crevillén A, Hansen LL, Fineran PC, Fire AZ, Sánchez-Amat A. Type III CRISPR-Cas systems can provide redundancy to counteract viral escape from type I systems. eLife 2017; 6:27601. [PMID: 28826484 PMCID: PMC5576922 DOI: 10.7554/elife.27601] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 08/07/2017] [Indexed: 12/26/2022] Open
Abstract
CRISPR-Cas-mediated defense utilizes information stored as spacers in CRISPR arrays to defend against genetic invaders. We define the mode of target interference and role in antiviral defense for two CRISPR-Cas systems in Marinomonas mediterranea. One system (type I-F) targets DNA. A second system (type III-B) is broadly capable of acquiring spacers in either orientation from RNA and DNA, and exhibits transcription-dependent DNA interference. Examining resistance to phages isolated from Mediterranean seagrass meadows, we found that the type III-B machinery co-opts type I-F CRISPR-RNAs. Sequencing and infectivity assessments of related bacterial and phage strains suggests an ‘arms race’ in which phage escape from the type I-F system can be overcome through use of type I-F spacers by a horizontally-acquired type III-B system. We propose that the phage-host arms race can drive selection for horizontal uptake and maintenance of promiscuous type III interference modules that supplement existing host type I CRISPR-Cas systems.
Collapse
Affiliation(s)
- Sukrit Silas
- Department of Pathology, Stanford University, Stanford, United States.,Department of Chemical and Systems Biology, Stanford University, Stanford, United States
| | - Patricia Lucas-Elio
- Department of Genetics and Microbiology, Universidad de Murcia, Murcia, Spain
| | - Simon A Jackson
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | | | - Loren L Hansen
- Department of Pathology, Stanford University, Stanford, United States
| | - Peter C Fineran
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand.,Bio-Protection Research Centre, University of Otago, Dunedin, New Zealand
| | - Andrew Z Fire
- Department of Pathology, Stanford University, Stanford, United States
| | | |
Collapse
|
31
|
Fu BXH, Wainberg M, Kundaje A, Fire AZ. High-Throughput Characterization of Cascade type I-E CRISPR Guide Efficacy Reveals Unexpected PAM Diversity and Target Sequence Preferences. Genetics 2017; 206:1727-1738. [PMID: 28634160 PMCID: PMC5560783 DOI: 10.1534/genetics.117.202580] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 05/29/2017] [Indexed: 12/18/2022] Open
Abstract
Interactions between Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR) RNAs and CRISPR-associated (Cas) proteins form an RNA-guided adaptive immune system in prokaryotes. The adaptive immune system utilizes segments of the genetic material of invasive foreign elements in the CRISPR locus. The loci are transcribed and processed to produce small CRISPR RNAs (crRNAs), with degradation of invading genetic material directed by a combination of complementarity between RNA and DNA and in some cases recognition of adjacent motifs called PAMs (Protospacer Adjacent Motifs). Here we describe a general, high-throughput procedure to test the efficacy of thousands of targets, applying this to the Escherichia coli type I-E Cascade (CRISPR-associated complex for antiviral defense) system. These studies were followed with reciprocal experiments in which the consequence of CRISPR activity was survival in the presence of a lytic phage. From the combined analysis of the Cascade system, we found that (i) type I-E Cascade PAM recognition is more expansive than previously reported, with at least 22 distinct PAMs, with many of the noncanonical PAMs having CRISPR-interference abilities similar to the canonical PAMs; (ii) PAM positioning appears precise, with no evidence for tolerance to PAM slippage in interference; and (iii) while increased guanine-cytosine (GC) content in the spacer is associated with higher CRISPR-interference efficiency, high GC content (>62.5%) decreases CRISPR-interference efficiency. Our findings provide a comprehensive functional profile of Cascade type I-E interference requirements and a method to assay spacer efficacy that can be applied to other CRISPR-Cas systems.
Collapse
Affiliation(s)
- Becky Xu Hua Fu
- Department of Genetics, Stanford University School of Medicine, California 94305
| | - Michael Wainberg
- Department of Computer Science, Stanford University, California 94305
| | - Anshul Kundaje
- Department of Genetics, Stanford University School of Medicine, California 94305
- Department of Computer Science, Stanford University, California 94305
| | - Andrew Z Fire
- Department of Genetics, Stanford University School of Medicine, California 94305
- Department of Pathology, Stanford University School of Medicine, California 94305
| |
Collapse
|
32
|
Shipman SL, Nivala J, Macklis JD, Church GM. CRISPR-Cas encoding of a digital movie into the genomes of a population of living bacteria. Nature 2017; 547:345-349. [PMID: 28700573 PMCID: PMC5842791 DOI: 10.1038/nature23017] [Citation(s) in RCA: 171] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 06/02/2017] [Indexed: 02/06/2023]
Abstract
DNA is an excellent medium for archiving data. Recent efforts have illustrated the potential for information storage in DNA using synthesized oligonucleotides assembled in vitro. A relatively unexplored avenue of information storage in DNA is the ability to write information into the genome of a living cell by the addition of nucleotides over time. Using the Cas1-Cas2 integrase, the CRISPR-Cas microbial immune system stores the nucleotide content of invading viruses to confer adaptive immunity. When harnessed, this system has the potential to write arbitrary information into the genome. Here we use the CRISPR-Cas system to encode the pixel values of black and white images and a short movie into the genomes of a population of living bacteria. In doing so, we push the technical limits of this information storage system and optimize strategies to minimize those limitations. We also uncover underlying principles of the CRISPR-Cas adaptation system, including sequence determinants of spacer acquisition that are relevant for understanding both the basic biology of bacterial adaptation and its technological applications. This work demonstrates that this system can capture and stably store practical amounts of real data within the genomes of populations of living cells.
Collapse
Affiliation(s)
- Seth L Shipman
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
- Department of Stem Cell and Regenerative Biology, Center for Brain Science, and Harvard Stem Cell Institute, Harvard University, Bauer Laboratory 103, Cambridge, MA 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA
| | - Jeff Nivala
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA
| | - Jeffrey D Macklis
- Department of Stem Cell and Regenerative Biology, Center for Brain Science, and Harvard Stem Cell Institute, Harvard University, Bauer Laboratory 103, Cambridge, MA 02138, USA
| | - George M Church
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
33
|
Jackson SA, McKenzie RE, Fagerlund RD, Kieper SN, Fineran PC, Brouns SJJ. CRISPR-Cas: Adapting to change. Science 2017; 356:356/6333/eaal5056. [PMID: 28385959 DOI: 10.1126/science.aal5056] [Citation(s) in RCA: 274] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bacteria and archaea are engaged in a constant arms race to defend against the ever-present threats of viruses and invasion by mobile genetic elements. The most flexible weapons in the prokaryotic defense arsenal are the CRISPR-Cas adaptive immune systems. These systems are capable of selective identification and neutralization of foreign DNA and/or RNA. CRISPR-Cas systems rely on stored genetic memories to facilitate target recognition. Thus, to keep pace with a changing pool of hostile invaders, the CRISPR memory banks must be regularly updated with new information through a process termed CRISPR adaptation. In this Review, we outline the recent advances in our understanding of the molecular mechanisms governing CRISPR adaptation. Specifically, the conserved protein machinery Cas1-Cas2 is the cornerstone of adaptive immunity in a range of diverse CRISPR-Cas systems.
Collapse
Affiliation(s)
- Simon A Jackson
- Department of Microbiology and Immunology, University of Otago, Post Office Box 56, Dunedin 9054, New Zealand
| | - Rebecca E McKenzie
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, Netherlands
| | - Robert D Fagerlund
- Department of Microbiology and Immunology, University of Otago, Post Office Box 56, Dunedin 9054, New Zealand
| | - Sebastian N Kieper
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, Netherlands
| | - Peter C Fineran
- Department of Microbiology and Immunology, University of Otago, Post Office Box 56, Dunedin 9054, New Zealand. .,Bio-Protection Research Centre, University of Otago, Post Office Box 56, Dunedin 9054, New Zealand
| | - Stan J J Brouns
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, Netherlands. .,Laboratory of Microbiology, Wageningen University, Wageningen, Netherlands
| |
Collapse
|
34
|
Savitskaya E, Lopatina A, Medvedeva S, Kapustin M, Shmakov S, Tikhonov A, Artamonova II, Logacheva M, Severinov K. Dynamics of Escherichia coli type I-E CRISPR spacers over 42 000 years. Mol Ecol 2017; 26:2019-2026. [PMID: 27997045 PMCID: PMC5851898 DOI: 10.1111/mec.13961] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/29/2016] [Accepted: 12/05/2016] [Indexed: 01/14/2023]
Abstract
CRISPR-Cas are nucleic acid-based prokaryotic immune systems. CRISPR arrays accumulate spacers from foreign DNA and provide resistance to mobile genetic elements containing identical or similar sequences. Thus, the set of spacers present in a given bacterium can be regarded as a record of encounters of its ancestors with genetic invaders. Such records should be specific for different lineages and change with time, as earlier acquired spacers get obsolete and are lost. Here, we studied type I-E CRISPR spacers of Escherichia coli from extinct pachyderm. We find that many spacers recovered from intestines of a 42 000-year-old mammoth match spacers of present-day E. coli. Present-day CRISPR arrays can be reconstructed from palaeo sequences, indicating that the order of spacers has also been preserved. The results suggest that E. coli CRISPR arrays were not subject to intensive change through adaptive acquisition during this time.
Collapse
Affiliation(s)
- Ekaterina Savitskaya
- Skolkovo Institute of Science and Technology, Skolkovo, Russia
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Anna Lopatina
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Sofia Medvedeva
- Skolkovo Institute of Science and Technology, Skolkovo, Russia
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | | | - Sergey Shmakov
- Skolkovo Institute of Science and Technology, Skolkovo, Russia
| | - Alexey Tikhonov
- Zoological Institute, Russian Academy of Sciences, St. Petersburg, Russia
- Institute of Applied Ecology of the North, North-Eastern Federal University, Yakutsk, Russia
| | - Irena I. Artamonova
- N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- A.A. Kharkevich Institute of Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| | | | - Konstantin Severinov
- Skolkovo Institute of Science and Technology, Skolkovo, Russia
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Waksman Institute of Microbiology, Rutgers, the State University of New Jersey, Piscataway, NJ, USA
| |
Collapse
|
35
|
Hynes AP, Lemay ML, Trudel L, Deveau H, Frenette M, Tremblay DM, Moineau S. Detecting natural adaptation of the Streptococcus thermophilus CRISPR-Cas systems in research and classroom settings. Nat Protoc 2017; 12:547-565. [PMID: 28207002 DOI: 10.1038/nprot.2016.186] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
CRISPR (clustered regularly interspaced short palindromic repeats)-Cas systems have been adapted into a powerful genome-editing tool. The basis for the flexibility of the tool lies in the adaptive nature of CRISPR-Cas as a bacterial immune system. Here, we describe a protocol to experimentally demonstrate the adaptive nature of this bacterial immune system by challenging the model organism for the study of CRISPR adaptation, Streptococcus thermophilus, with phages in order to detect natural CRISPR immunization. A bacterial culture is challenged with lytic phages, the surviving cells are screened by PCR for expansion of their CRISPR array and the newly acquired specificities are mapped to the genome of the phage. Furthermore, we offer three variants of the assay to (i) promote adaptation by challenging the system using defective viruses, (ii) challenge the system using plasmids to generate plasmid-resistant strains and (iii) bias the system to obtain natural immunity against a specifically targeted DNA sequence. The core protocol and its variants serve as a means to explore CRISPR adaptation, discover new CRISPR-Cas systems and generate bacterial strains that are resistant to phages or refractory to undesired genes or plasmids. In addition, the core protocol has served in teaching laboratories at the undergraduate level, demonstrating both its robust nature and educational value. Carrying out the core protocol takes 4 h of hands-on time over 7 d. Unlike sequence-based methods for detecting natural CRISPR adaptation, this phage-challenge-based approach results in the isolation of CRISPR-immune bacteria for downstream characterization and use.
Collapse
Affiliation(s)
- Alexander P Hynes
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec, Québec, Canada.,Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec, Québec, Canada
| | - Marie-Laurence Lemay
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec, Québec, Canada.,Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec, Québec, Canada
| | - Luc Trudel
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec, Québec, Canada
| | - Hélène Deveau
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec, Québec, Canada
| | - Michel Frenette
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec, Québec, Canada.,Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec, Québec, Canada
| | - Denise M Tremblay
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec, Québec, Canada.,Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec, Québec, Canada.,Félix d'Hérelle Reference Center for Bacterial Viruses, Faculté de médecine dentaire, Université Laval, Québec, Québec, Canada
| | - Sylvain Moineau
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec, Québec, Canada.,Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec, Québec, Canada.,Félix d'Hérelle Reference Center for Bacterial Viruses, Faculté de médecine dentaire, Université Laval, Québec, Québec, Canada
| |
Collapse
|
36
|
Heussler GE, Miller JL, Price CE, Collins AJ, O'Toole GA. Requirements for Pseudomonas aeruginosa Type I-F CRISPR-Cas Adaptation Determined Using a Biofilm Enrichment Assay. J Bacteriol 2016; 198:3080-3090. [PMID: 27573013 PMCID: PMC5075037 DOI: 10.1128/jb.00458-16] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 08/22/2016] [Indexed: 01/01/2023] Open
Abstract
CRISPR (clustered regularly interspaced short palindromic repeat)-Cas (CRISPR-associated protein) systems are diverse and found in many archaea and bacteria. These systems have mainly been characterized as adaptive immune systems able to protect against invading mobile genetic elements, including viruses. The first step in this protection is acquisition of spacer sequences from the invader DNA and incorporation of those sequences into the CRISPR array, termed CRISPR adaptation. Progress in understanding the mechanisms and requirements of CRISPR adaptation has largely been accomplished using overexpression of cas genes or plasmid loss assays; little work has focused on endogenous CRISPR-acquired immunity from viral predation. Here, we developed a new biofilm-based assay system to enrich for Pseudomonas aeruginosa strains with new spacer acquisition. We used this assay to demonstrate that P. aeruginosa rapidly acquires spacers protective against DMS3vir, an engineered lytic variant of the Mu-like bacteriophage DMS3, through primed CRISPR adaptation from spacers present in the native CRISPR2 array. We found that for the P. aeruginosa type I-F system, the cas1 gene is required for CRISPR adaptation, recG contributes to (but is not required for) primed CRISPR adaptation, recD is dispensable for primed CRISPR adaptation, and finally, the ability of a putative priming spacer to prime can vary considerably depending on the specific sequences of the spacer. IMPORTANCE Our understanding of CRISPR adaptation has expanded largely through experiments in type I CRISPR systems using plasmid loss assays, mutants of Escherichia coli, or cas1-cas2 overexpression systems, but there has been little focus on studying the adaptation of endogenous systems protecting against a lytic bacteriophage. Here we describe a biofilm system that allows P. aeruginosa to rapidly gain spacers protective against a lytic bacteriophage. This approach has allowed us to probe the requirements for CRISPR adaptation in the endogenous type I-F system of P. aeruginosa Our data suggest that CRISPR-acquired immunity in a biofilm may be one reason that many P. aeruginosa strains maintain a CRISPR-Cas system.
Collapse
Affiliation(s)
- Gary E Heussler
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Jon L Miller
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Courtney E Price
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Alan J Collins
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - George A O'Toole
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
37
|
Kuznedelov K, Mekler V, Lemak S, Tokmina-Lukaszewska M, Datsenko KA, Jain I, Savitskaya E, Mallon J, Shmakov S, Bothner B, Bailey S, Yakunin AF, Severinov K, Semenova E. Altered stoichiometry Escherichia coli Cascade complexes with shortened CRISPR RNA spacers are capable of interference and primed adaptation. Nucleic Acids Res 2016; 44:10849-10861. [PMID: 27738137 PMCID: PMC5159557 DOI: 10.1093/nar/gkw914] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 09/29/2016] [Accepted: 10/03/2016] [Indexed: 12/26/2022] Open
Abstract
The Escherichia coli type I-E CRISPR-Cas system Cascade effector is a multisubunit complex that binds CRISPR RNA (crRNA). Through its 32-nucleotide spacer sequence, Cascade-bound crRNA recognizes protospacers in foreign DNA, causing its destruction during CRISPR interference or acquisition of additional spacers in CRISPR array during primed CRISPR adaptation. Within Cascade, the crRNA spacer interacts with a hexamer of Cas7 subunits. We show that crRNAs with a spacer length reduced to 14 nucleotides cause primed adaptation, while crRNAs with spacer lengths of more than 20 nucleotides cause both primed adaptation and target interference in vivo. Shortened crRNAs assemble into altered-stoichiometry Cascade effector complexes containing less than the normal amount of Cas7 subunits. The results show that Cascade assembly is driven by crRNA and suggest that multisubunit type I CRISPR effectors may have evolved from much simpler ancestral complexes.
Collapse
Affiliation(s)
- Konstantin Kuznedelov
- Waksman Institute of Microbiology, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Vladimir Mekler
- Waksman Institute of Microbiology, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Sofia Lemak
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | | | - Kirill A Datsenko
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Ishita Jain
- Waksman Institute of Microbiology, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Ekaterina Savitskaya
- Skolkovo Institute of Science and Technology, Skolkovo 143025, Russia.,Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
| | - John Mallon
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Sergey Shmakov
- Skolkovo Institute of Science and Technology, Skolkovo 143025, Russia.,NCBI, NLM, NIH, Bethesda, MD 20894, USA
| | - Brian Bothner
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Scott Bailey
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Alexander F Yakunin
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Konstantin Severinov
- Waksman Institute of Microbiology, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA .,Skolkovo Institute of Science and Technology, Skolkovo 143025, Russia.,Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia.,Peter the Great St Petersburg State Polytechnic University, St. Petersburg, 195251, Russia
| | - Ekaterina Semenova
- Waksman Institute of Microbiology, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
38
|
Interference-driven spacer acquisition is dominant over naive and primed adaptation in a native CRISPR-Cas system. Nat Commun 2016; 7:12853. [PMID: 27694798 PMCID: PMC5059440 DOI: 10.1038/ncomms12853] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 08/08/2016] [Indexed: 12/20/2022] Open
Abstract
CRISPR–Cas systems provide bacteria with adaptive immunity against foreign nucleic acids by acquiring short, invader-derived sequences called spacers. Here, we use high-throughput sequencing to analyse millions of spacer acquisition events in wild-type populations of Pectobacterium atrosepticum. Plasmids not previously encountered, or plasmids that had escaped CRISPR–Cas targeting via point mutation, are used to provoke naive or primed spacer acquisition, respectively. The origin, location and order of spacer acquisition show that spacer selection through priming initiates near the site of CRISPR–Cas recognition (the protospacer), but on the displaced strand, and is consistent with 3′–5′ translocation of the Cas1:Cas2-3 acquisition machinery. Newly acquired spacers determine the location and strand specificity of subsequent spacers and demonstrate that interference-driven spacer acquisition (‘targeted acquisition') is a major contributor to adaptation in type I-F CRISPR–Cas systems. Finally, we show that acquisition of self-targeting spacers is occurring at a constant rate in wild-type cells and can be triggered by foreign DNA with similarity to the bacterial chromosome. Prokaryotic CRISPR-Cas systems provide adaptive immunity against foreign nucleic acids by acquiring short, invader-derived sequences called spacers. Here, Staals et al. analyse millions of such events in a native CRISPR-Cas system, showing that newly acquired spacers provoke additional rounds of spacer acquisition.
Collapse
|
39
|
Severinov K, Ispolatov I, Semenova E. The Influence of Copy-Number of Targeted Extrachromosomal Genetic Elements on the Outcome of CRISPR-Cas Defense. Front Mol Biosci 2016; 3:45. [PMID: 27630990 PMCID: PMC5005344 DOI: 10.3389/fmolb.2016.00045] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 08/16/2016] [Indexed: 12/26/2022] Open
Abstract
Prokaryotic type I CRISPR-Cas systems respond to the presence of mobile genetic elements such as plasmids and phages in two different ways. CRISPR interference efficiently destroys foreign DNA harboring protospacers fully matching CRISPR RNA spacers. In contrast, even a single mismatch between a spacer and a protospacer can render CRISPR interference ineffective but causes primed adaptation-efficient and specific acquisition of additional spacers from foreign DNA into the CRISPR array of the host. It has been proposed that the interference and primed adaptation pathways are mediated by structurally different complexes formed by the effector Cascade complex on matching and mismatched protospacers. Here, we present experimental evidence and present a simple mathematical model that shows that when plasmid copy number maintenance/phage genome replication is taken into account, the two apparently different outcomes of the CRISPR-Cas response can be accounted for by just one kind of effector complex on both targets. The results underscore the importance of consideration of targeted genome biology when considering consequences of CRISPR-Cas systems action.
Collapse
Affiliation(s)
- Konstantin Severinov
- Skolkovo Institute of Science and TechnologySkolkovo, Russia
- Waksman Institute of Microbiology, Rutgers, The State University of New JerseyPiscataway, NJ, USA
- Institute of Molecular Genetics, Russian Academy of SciencesMoscow, Russia
| | - Iaroslav Ispolatov
- Skolkovo Institute of Science and TechnologySkolkovo, Russia
- Department of Physics, University of Santiago de ChileSantiago, Chile
| | - Ekaterina Semenova
- Waksman Institute of Microbiology, Rutgers, The State University of New JerseyPiscataway, NJ, USA
| |
Collapse
|
40
|
Künne T, Kieper SN, Bannenberg JW, Vogel AIM, Miellet WR, Klein M, Depken M, Suarez-Diez M, Brouns SJJ. Cas3-Derived Target DNA Degradation Fragments Fuel Primed CRISPR Adaptation. Mol Cell 2016; 63:852-64. [PMID: 27546790 DOI: 10.1016/j.molcel.2016.07.011] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 07/01/2016] [Accepted: 07/15/2016] [Indexed: 11/16/2022]
Abstract
Prokaryotes use a mechanism called priming to update their CRISPR immunological memory to rapidly counter revisiting, mutated viruses, and plasmids. Here we have determined how new spacers are produced and selected for integration into the CRISPR array during priming. We show that Cas3 couples CRISPR interference to adaptation by producing DNA breakdown products that fuel the spacer integration process in a two-step, PAM-associated manner. The helicase-nuclease Cas3 pre-processes target DNA into fragments of about 30-100 nt enriched for thymine-stretches in their 3' ends. The Cas1-2 complex further processes these fragments and integrates them sequence-specifically into CRISPR repeats by coupling of a 3' cytosine of the fragment. Our results highlight that the selection of PAM-compliant spacers during priming is enhanced by the combined sequence specificities of Cas3 and the Cas1-2 complex, leading to an increased propensity of integrating functional CTT-containing spacers.
Collapse
Affiliation(s)
- Tim Künne
- Laboratory of Microbiology, Wageningen University, 6708 WE Wageningen, the Netherlands
| | - Sebastian N Kieper
- Laboratory of Microbiology, Wageningen University, 6708 WE Wageningen, the Netherlands
| | - Jasper W Bannenberg
- Laboratory of Microbiology, Wageningen University, 6708 WE Wageningen, the Netherlands
| | - Anne I M Vogel
- Laboratory of Microbiology, Wageningen University, 6708 WE Wageningen, the Netherlands
| | - Willem R Miellet
- Laboratory of Microbiology, Wageningen University, 6708 WE Wageningen, the Netherlands
| | - Misha Klein
- Kavli Institute of Nanoscience and Department of BioNanoscience, Delft University of Technology, 2629 HZ, Delft, the Netherlands
| | - Martin Depken
- Kavli Institute of Nanoscience and Department of BioNanoscience, Delft University of Technology, 2629 HZ, Delft, the Netherlands
| | - Maria Suarez-Diez
- Laboratory of Systems and Synthetic Biology, Wageningen University, 6708 WE Wageningen, the Netherlands
| | - Stan J J Brouns
- Laboratory of Microbiology, Wageningen University, 6708 WE Wageningen, the Netherlands; Kavli Institute of Nanoscience and Department of BioNanoscience, Delft University of Technology, 2629 HZ, Delft, the Netherlands.
| |
Collapse
|
41
|
Highly efficient primed spacer acquisition from targets destroyed by the Escherichia coli type I-E CRISPR-Cas interfering complex. Proc Natl Acad Sci U S A 2016; 113:7626-31. [PMID: 27325762 DOI: 10.1073/pnas.1602639113] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Prokaryotic clustered regularly interspaced short palindromic repeat (CRISPR)-CRISPR associated (Cas) immunity relies on adaptive acquisition of spacers-short fragments of foreign DNA. For the type I-E CRISPR-Cas system from Escherichia coli, efficient "primed" adaptation requires Cas effector proteins and a CRISPR RNA (crRNA) whose spacer partially matches a segment (protospacer) in target DNA. Primed adaptation leads to selective acquisition of additional spacers from DNA molecules recognized by the effector-crRNA complex. When the crRNA spacer fully matches a protospacer, CRISPR interference-that is, target destruction without acquisition of additional spacers-is observed. We show here that when the rate of degradation of DNA with fully and partially matching crRNA targets is made equal, fully matching protospacers stimulate primed adaptation much more efficiently than partially matching ones. The result indicates that different functional outcomes of CRISPR-Cas response to two kinds of protospacers are not caused by different structures formed by the effector-crRNA complex but are due to the more rapid destruction of targets with fully matching protospacers.
Collapse
|
42
|
Shipman SL, Nivala J, Macklis JD, Church GM. Molecular recordings by directed CRISPR spacer acquisition. Science 2016; 353:aaf1175. [PMID: 27284167 DOI: 10.1126/science.aaf1175] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 05/22/2016] [Indexed: 01/15/2023]
Abstract
The ability to write a stable record of identified molecular events into a specific genomic locus would enable the examination of long cellular histories and have many applications, ranging from developmental biology to synthetic devices. We show that the type I-E CRISPR (clustered regularly interspaced short palindromic repeats)-Cas system of Escherichia coli can mediate acquisition of defined pieces of synthetic DNA. We harnessed this feature to generate records of specific DNA sequences into a population of bacterial genomes. We then applied directed evolution so as to alter the recognition of a protospacer adjacent motif by the Cas1-Cas2 complex, which enabled recording in two modes simultaneously. We used this system to reveal aspects of spacer acquisition, fundamental to the CRISPR-Cas adaptation process. These results lay the foundations of a multimodal intracellular recording device.
Collapse
Affiliation(s)
- Seth L Shipman
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA. Department of Stem Cell and Regenerative Biology, Center for Brain Science, and Harvard Stem Cell Institute, Harvard University, Bauer Laboratory 103, Cambridge, MA 02138, USA. Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA
| | - Jeff Nivala
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA. Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA
| | - Jeffrey D Macklis
- Department of Stem Cell and Regenerative Biology, Center for Brain Science, and Harvard Stem Cell Institute, Harvard University, Bauer Laboratory 103, Cambridge, MA 02138, USA
| | - George M Church
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA. Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
43
|
Wright AV, Nuñez JK, Doudna JA. Biology and Applications of CRISPR Systems: Harnessing Nature's Toolbox for Genome Engineering. Cell 2016; 164:29-44. [PMID: 26771484 DOI: 10.1016/j.cell.2015.12.035] [Citation(s) in RCA: 706] [Impact Index Per Article: 78.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Indexed: 12/26/2022]
Abstract
Bacteria and archaea possess a range of defense mechanisms to combat plasmids and viral infections. Unique among these are the CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR associated) systems, which provide adaptive immunity against foreign nucleic acids. CRISPR systems function by acquiring genetic records of invaders to facilitate robust interference upon reinfection. In this Review, we discuss recent advances in understanding the diverse mechanisms by which Cas proteins respond to foreign nucleic acids and how these systems have been harnessed for precision genome manipulation in a wide array of organisms.
Collapse
Affiliation(s)
- Addison V Wright
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - James K Nuñez
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jennifer A Doudna
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute HHMI, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA; Center for RNA Systems Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Innovative Genomics Initiative, University of California, Berkeley, Berkeley, CA 94720, USA; Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
44
|
Lopatina A, Medvedeva S, Shmakov S, Logacheva MD, Krylenkov V, Severinov K. Metagenomic Analysis of Bacterial Communities of Antarctic Surface Snow. Front Microbiol 2016; 7:398. [PMID: 27064693 PMCID: PMC4814470 DOI: 10.3389/fmicb.2016.00398] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 03/14/2016] [Indexed: 11/23/2022] Open
Abstract
The diversity of bacteria present in surface snow around four Russian stations in Eastern Antarctica was studied by high throughput sequencing of amplified 16S rRNA gene fragments and shotgun metagenomic sequencing. Considerable class- and genus-level variation between the samples was revealed indicating a presence of inter-site diversity of bacteria in Antarctic snow. Flavobacterium was a major genus in one sampling site and was also detected in other sites. The diversity of flavobacterial type II-C CRISPR spacers in the samples was investigated by metagenome sequencing. Thousands of unique spacers were revealed with less than 35% overlap between the sampling sites, indicating an enormous natural variety of flavobacterial CRISPR spacers and, by extension, high level of adaptive activity of the corresponding CRISPR-Cas system. None of the spacers matched known spacers of flavobacterial isolates from the Northern hemisphere. Moreover, the percentage of spacers with matches with Antarctic metagenomic sequences obtained in this work was significantly higher than with sequences from much larger publically available environmental metagenomic database. The results indicate that despite the overall very high level of diversity, Antarctic Flavobacteria comprise a separate pool that experiences pressures from mobile genetic elements different from those present in other parts of the world. The results also establish analysis of metagenomic CRISPR spacer content as a powerful tool to study bacterial populations diversity.
Collapse
Affiliation(s)
- Anna Lopatina
- Department of Molecular Genetics of Cell, Institute of Molecular Genetics, Russian Academy of SciencesMoscow, Russia; Department of Molecular Genetics of Microorganisms, Institute of Gene Biology, Russian Academy of SciencesMoscow, Russia; Research Complex of "Nanobiotechnology", Saint-Petersburg State Polytechnical UniversitySaint-Petersburg, Russia
| | - Sofia Medvedeva
- Department of Molecular Genetics of Microorganisms, Institute of Gene Biology, Russian Academy of SciencesMoscow, Russia; Center for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute of Science and TechnologySkolkovo, Russia
| | - Sergey Shmakov
- Center for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute of Science and Technology Skolkovo, Russia
| | - Maria D Logacheva
- Belozersky Institute of Physico-Chemical Biology, Moscow State University Moscow, Russia
| | - Vjacheslav Krylenkov
- Department of Botany, Saint-Petersburg State University Saint-Petersburg, Russia
| | - Konstantin Severinov
- Department of Molecular Genetics of Cell, Institute of Molecular Genetics, Russian Academy of SciencesMoscow, Russia; Research Complex of "Nanobiotechnology", Saint-Petersburg State Polytechnical UniversitySaint-Petersburg, Russia; Center for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute of Science and TechnologySkolkovo, Russia
| |
Collapse
|
45
|
|
46
|
Qiu Y, Wang S, Chen Z, Guo Y, Song Y. An Active Type I-E CRISPR-Cas System Identified in Streptomyces avermitilis. PLoS One 2016; 11:e0149533. [PMID: 26901661 PMCID: PMC4762764 DOI: 10.1371/journal.pone.0149533] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/02/2016] [Indexed: 01/21/2023] Open
Abstract
CRISPR-Cas systems, the small RNA-dependent immune systems, are widely distributed in prokaryotes. However, only a small proportion of CRISPR-Cas systems have been identified to be active in bacteria. In this work, a naturally active type I-E CRISPR-Cas system was found in Streptomyces avermitilis. The system shares many common genetic features with the type I-E system of Escherichia coli, and meanwhile shows unique characteristics. It not only degrades plasmid DNA with target protospacers, but also acquires new spacers from the target plasmid DNA. The naive features of spacer acquisition in the type I-E system of S. avermitilis were investigated and a completely conserved PAM 5'-AAG-3' was identified. Spacer acquisition displayed differential strand bias upstream and downstream of the priming spacer, and irregular integrations of new spacers were observed. In addition, introduction of this system into host conferred phage resistance to some extent. This study will give new insights into adaptation mechanism of the type I-E systems in vivo, and meanwhile provide theoretical foundation for applying this system on the genetic modification of S. avermitilis.
Collapse
Affiliation(s)
- Yi Qiu
- Department of Microbiology, College of Biological Sciences, China Agricultural University, Beijing, PR China
| | - Shiwei Wang
- Department of Microbiology, College of Biological Sciences, China Agricultural University, Beijing, PR China
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China
| | - Zhi Chen
- Department of Microbiology, College of Biological Sciences, China Agricultural University, Beijing, PR China
| | - Yajie Guo
- Department of Microbiology, College of Biological Sciences, China Agricultural University, Beijing, PR China
| | - Yuan Song
- Department of Microbiology, College of Biological Sciences, China Agricultural University, Beijing, PR China
| |
Collapse
|
47
|
Abstract
Since the first demonstration that CRISPR-Cas systems provide bacteria and archaea with adaptive immunity against phages and plasmids, numerous studies have yielded key insights into the molecular mechanisms governing how these systems attack and degrade foreign DNA. However, the molecular mechanisms underlying the adaptation stage, in which new immunological memory is formed, have until recently represented a major unresolved question. In this Progress article, we discuss recent discoveries that have shown both how foreign DNA is identified by the CRISPR-Cas adaptation machinery and the molecular basis for its integration into the chromosome to form an immunological memory. Furthermore, we describe the roles of each of the specific CRISPR-Cas components that are involved in memory formation, and consider current models for their evolutionary origin.
Collapse
|
48
|
Vorontsova D, Datsenko KA, Medvedeva S, Bondy-Denomy J, Savitskaya EE, Pougach K, Logacheva M, Wiedenheft B, Davidson AR, Severinov K, Semenova E. Foreign DNA acquisition by the I-F CRISPR-Cas system requires all components of the interference machinery. Nucleic Acids Res 2015; 43:10848-60. [PMID: 26586803 PMCID: PMC4678832 DOI: 10.1093/nar/gkv1261] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 11/02/2015] [Indexed: 12/11/2022] Open
Abstract
CRISPR immunity depends on acquisition of fragments of foreign DNA into CRISPR arrays. For type I-E CRISPR–Cas systems two modes of spacer acquisition, naïve and primed adaptation, were described. Naïve adaptation requires just two most conserved Cas1 and Cas2 proteins; it leads to spacer acquisition from both foreign and bacterial DNA and results in multiple spacers incapable of immune response. Primed adaptation requires all Cas proteins and a CRISPR RNA recognizing a partially matching target. It leads to selective acquisition of spacers from DNA molecules recognized by priming CRISPR RNA, with most spacers capable of protecting the host. Here, we studied spacer acquisition by a type I-F CRISPR–Cas system. We observe both naïve and primed adaptation. Both processes require not just Cas1 and Cas2, but also intact Csy complex and CRISPR RNA. Primed adaptation shows a gradient of acquisition efficiency as a function of distance from the priming site and a strand bias that is consistent with existence of single-stranded adaption intermediates. The results provide new insights into the mechanism of spacer acquisition and illustrate surprising mechanistic diversity of related CRISPR–Cas systems.
Collapse
Affiliation(s)
- Daria Vorontsova
- Skolkovo Institute of Science and Technology, Skolkovo, Russia Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia Waksman Institute of Microbiology, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Kirill A Datsenko
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Sofia Medvedeva
- Skolkovo Institute of Science and Technology, Skolkovo, Russia Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Joseph Bondy-Denomy
- Department of Molecular Genetics and Department of Biochemistry, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Ekaterina E Savitskaya
- Skolkovo Institute of Science and Technology, Skolkovo, Russia Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Ksenia Pougach
- Waksman Institute of Microbiology, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | | | - Blake Wiedenheft
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Alan R Davidson
- Department of Molecular Genetics and Department of Biochemistry, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Konstantin Severinov
- Skolkovo Institute of Science and Technology, Skolkovo, Russia Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia Waksman Institute of Microbiology, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina Semenova
- Waksman Institute of Microbiology, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
49
|
Marraffini LA. CRISPR-Cas immunity in prokaryotes. Nature 2015; 526:55-61. [PMID: 26432244 DOI: 10.1038/nature15386] [Citation(s) in RCA: 549] [Impact Index Per Article: 54.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 08/07/2015] [Indexed: 12/12/2022]
Abstract
Prokaryotic organisms are threatened by a large array of viruses and have developed numerous defence strategies. Among these, only clustered, regularly interspaced short palindromic repeat (CRISPR)-Cas systems provide adaptive immunity against foreign elements. Upon viral injection, a small sequence of the viral genome, known as a spacer, is integrated into the CRISPR locus to immunize the host cell. Spacers are transcribed into small RNA guides that direct the cleavage of the viral DNA by Cas nucleases. Immunization through spacer acquisition enables a unique form of evolution whereby a population not only rapidly acquires resistance to its predators but also passes this resistance mechanism vertically to its progeny.
Collapse
Affiliation(s)
- Luciano A Marraffini
- Laboratory of Bacteriology, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| |
Collapse
|
50
|
Rollie C, Schneider S, Brinkmann AS, Bolt EL, White MF. Intrinsic sequence specificity of the Cas1 integrase directs new spacer acquisition. eLife 2015; 4. [PMID: 26284603 PMCID: PMC4574026 DOI: 10.7554/elife.08716] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 08/17/2015] [Indexed: 11/13/2022] Open
Abstract
The adaptive prokaryotic immune system CRISPR-Cas provides RNA-mediated protection from invading genetic elements. The fundamental basis of the system is the ability to capture small pieces of foreign DNA for incorporation into the genome at the CRISPR locus, a process known as Adaptation, which is dependent on the Cas1 and Cas2 proteins. We demonstrate that Cas1 catalyses an efficient trans-esterification reaction on branched DNA substrates, which represents the reverse- or disintegration reaction. Cas1 from both Escherichia coli and Sulfolobus solfataricus display sequence specific activity, with a clear preference for the nucleotides flanking the integration site at the leader-repeat 1 boundary of the CRISPR locus. Cas2 is not required for this activity and does not influence the specificity. This suggests that the inherent sequence specificity of Cas1 is a major determinant of the adaptation process.
Collapse
Affiliation(s)
- Clare Rollie
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews, United Kingdom
| | - Stefanie Schneider
- Faculty of Medicine, Institute of Cell Biology, University of Duisburg-Essen, Essen, Germany
| | - Anna Sophie Brinkmann
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Edward L Bolt
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Malcolm F White
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews, United Kingdom
| |
Collapse
|