1
|
Jin SW, Seong Y, Yoon D, Kwon YS, Song H. Dissolution of ribonucleoprotein condensates by the embryonic stem cell protein L1TD1. Nucleic Acids Res 2024; 52:3310-3326. [PMID: 38165001 PMCID: PMC11014241 DOI: 10.1093/nar/gkad1244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 11/22/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024] Open
Abstract
L1TD1 is a cytoplasmic RNA-binding protein specifically expressed in pluripotent stem cells and, unlike its mouse ortholog, is essential for the maintenance of stemness in human cells. Although L1TD1 is the only known protein-coding gene domesticated from a LINE-1 (L1) retroelement, the functional legacy of its ancestral protein, ORF1p of L1, and how it is manifested in L1TD1 are still unknown. Here, we determined RNAs associated with L1TD1 and found that, like ORF1p, L1TD1 binds L1 RNAs and localizes to high-density ribonucleoprotein (RNP) condensates. Unexpectedly, L1TD1 enhanced the translation of a subset of mRNAs enriched in the condensates. L1TD1 depletion promoted the formation of stress granules in embryonic stem cells. In HeLa cells, ectopically expressed L1TD1 facilitated the dissolution of stress granules and granules formed by pathological mutations of TDP-43 and FUS. The glutamate-rich domain and the ORF1-homology domain of L1TD1 facilitated dispersal of the RNPs and induced autophagy, respectively. These results provide insights into how L1TD1 regulates gene expression in pluripotent stem cells. We propose that the ability of L1TD1 to dissolve stress granules may provide novel opportunities for treatment of neurodegenerative diseases caused by disturbed stress granule dynamics.
Collapse
Affiliation(s)
- Sang Woo Jin
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Youngmo Seong
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Dayoung Yoon
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Young-Soo Kwon
- Department of Integrative Bioscience & Biotechnology, Sejong University, Seoul 05006, Republic of Korea
| | - Hoseok Song
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
2
|
LIN28B inhibition sensitizes cells to p53-restoring PPI therapy through unleashed translational suppression. Oncogenesis 2022; 11:37. [PMID: 35780125 PMCID: PMC9250532 DOI: 10.1038/s41389-022-00412-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 11/17/2022] Open
Abstract
p53 is the most highly mutated tumor suppressor across multiple types of human cancers. The level and function of p53 are fine-tuned through multifaced mechanisms in which the protein–protein interaction between p53 and MDM2 is considered as a major circuit. Recent studies suggest therapeutic strategy attempts to restore p53 function by small molecule inhibitors targeting p53–MDM2 interaction can be a promising direction in treating cancers with wild-type or functional p53. Currently, clinical tests of the p53–MDM2 protein–protein interaction inhibitors (PPIs) are underway. However, it remains elusive about the biomarkers that may predict the therapeutic responses to those inhibitors. Here we report that RNA-binding protein LIN28B directly regulates p53 through binding to the 5′΄ untranslated region of p53 mRNA and blocks its translation by competing with a translation enhancer protein, ribosomal protein L26 (RPL26). This regulatory mechanism of LIN28B does not involve let-7 maturation or the canonical protein turnover pathway of p53. Furthermore, we show that inhibition of LIN28B unleashes the translational suppression of p53 through RPL26, and leads to enhanced sensitivities of cancer cells to inhibitors of p53–MDM2 interaction. Together, we demonstrate a competitive regulatory mechanism of p53 by LIN28B, which has important implications in developing biomarkers to the therapies aiming to reinstate p53 function.
Collapse
|
3
|
Yu NK, McClatchy DB, Diedrich JK, Romero S, Choi JH, Martínez-Bartolomé S, Delahunty CM, Muotri AR, Yates JR. Interactome analysis illustrates diverse gene regulatory processes associated with LIN28A in human iPS cell-derived neural progenitor cells. iScience 2021; 24:103321. [PMID: 34816099 PMCID: PMC8593586 DOI: 10.1016/j.isci.2021.103321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 09/07/2021] [Accepted: 10/19/2021] [Indexed: 12/02/2022] Open
Abstract
A single protein can be multifaceted depending on the cellular contexts and interacting molecules. LIN28A is an RNA-binding protein that governs developmental timing, cellular proliferation, differentiation, stem cell pluripotency, and metabolism. In addition to its best-known roles in microRNA biogenesis, diverse molecular roles have been recognized. In the nervous system, LIN28A is known to play critical roles in proliferation and differentiation of neural progenitor cells (NPCs). We profiled the endogenous LIN28A-interacting proteins in NPCs differentiated from human induced pluripotent stem (iPS) cells using immunoprecipitation and liquid chromatography-tandem mass spectrometry. We identified over 500 LIN28A-interacting proteins, including 156 RNA-independent interactors. Functions of these proteins span a wide range of gene regulatory processes. Prompted by the interactome data, we revealed that LIN28A may impact the subcellular distribution of its interactors and stress granule formation upon oxidative stress. Overall, our analysis opens multiple avenues for elaborating molecular roles and characteristics of LIN28A.
Collapse
Affiliation(s)
- Nam-Kyung Yu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Daniel B. McClatchy
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jolene K. Diedrich
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sarah Romero
- Department of Pediatrics/Rady Children’s Hospital San Diego, Department of Cellular & Molecular Medicine, School of Medicine, University of California, San Diego, San Diego, CA 92037, USA
| | - Jun-Hyeok Choi
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | | | - Claire M. Delahunty
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Alysson R. Muotri
- Department of Pediatrics/Rady Children’s Hospital San Diego, Department of Cellular & Molecular Medicine, School of Medicine, University of California, San Diego, San Diego, CA 92037, USA
- Stem Cell Program, Center for Academic Research and Training in Anthropogeny (CARTA), Archealization Center (ArchC), Kavli Institute for Brain and Mind, La Jolla, CA 92037, USA
| | - John R. Yates
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
4
|
Saba JA, Liakath-Ali K, Green R, Watt FM. Translational control of stem cell function. Nat Rev Mol Cell Biol 2021; 22:671-690. [PMID: 34272502 DOI: 10.1038/s41580-021-00386-2] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2021] [Indexed: 12/22/2022]
Abstract
Stem cells are characterized by their ability to self-renew and differentiate into many different cell types. Research has focused primarily on how these processes are regulated at a transcriptional level. However, recent studies have indicated that stem cell behaviour is strongly coupled to the regulation of protein synthesis by the ribosome. In this Review, we discuss how different translation mechanisms control the function of adult and embryonic stem cells. Stem cells are characterized by low global translation rates despite high levels of ribosome biogenesis. The maintenance of pluripotency, the commitment to a specific cell fate and the switch to cell differentiation depend on the tight regulation of protein synthesis and ribosome biogenesis. Translation regulatory mechanisms that impact on stem cell function include mTOR signalling, ribosome levels, and mRNA and tRNA features and amounts. Understanding these mechanisms important for stem cell self-renewal and differentiation may also guide our understanding of cancer grade and metastasis.
Collapse
Affiliation(s)
- James A Saba
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kifayathullah Liakath-Ali
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Rachel Green
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Fiona M Watt
- King's College London Centre for Stem Cells and Regenerative Medicine, Guy's Hospital, London, UK.
| |
Collapse
|
5
|
Osborne JK, Kinney MA, Han A, Akinnola KE, Yermalovich AV, Vo LT, Pearson DS, Sousa PM, Ratanasirintrawoot S, Tsanov KM, Barragan J, North TE, Metzger RJ, Daley GQ. Lin28 paralogs regulate lung branching morphogenesis. Cell Rep 2021; 36:109408. [PMID: 34289374 PMCID: PMC8371695 DOI: 10.1016/j.celrep.2021.109408] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 03/11/2021] [Accepted: 06/25/2021] [Indexed: 12/18/2022] Open
Abstract
The molecular mechanisms that govern the choreographed timing of organ development remain poorly understood. Our investigation of the role of the Lin28a and Lin28b paralogs during the developmental process of branching morphogenesis establishes that dysregulation of Lin28a/b leads to abnormal branching morphogenesis in the lung and other tissues. Additionally, we find that the Lin28 paralogs, which regulate post-transcriptional processing of both mRNAs and microRNAs (miRNAs), predominantly control mRNAs during the initial phases of lung organogenesis. Target mRNAs include Sox2, Sox9, and Etv5, which coordinate lung development and differentiation. Moreover, we find that functional interactions between Lin28a and Sox9 are capable of bypassing branching defects in Lin28a/b mutant lungs. Here, we identify Lin28a and Lin28b as regulators of early embryonic lung development, highlighting the importance of the timing of post-transcriptional regulation of both miRNAs and mRNAs at distinct stages of organogenesis. The timing of organogenesis is poorly understood. Here, Osborne et al. show that the Lin28 paralogs (Lin28a and Lin28b) regulate branching morphogenesis in a let-7-independent manner by directly binding to the mRNAs of Sox2, Sox9, and Etv5 to enhance their post-transcriptional processing.
Collapse
Affiliation(s)
- Jihan K Osborne
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Melissa A Kinney
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Areum Han
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Kemi E Akinnola
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Alena V Yermalovich
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Linda T Vo
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Daniel S Pearson
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Patricia M Sousa
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital Boston, MA 02115, USA
| | - Sutheera Ratanasirintrawoot
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Kaloyan M Tsanov
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Jessica Barragan
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital Boston, MA 02115, USA
| | - Trista E North
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital Boston, MA 02115, USA
| | - Ross J Metzger
- Department of Pediatrics (Cardiology), Stanford University School of Medicine, Stanford, CA 94305, USA
| | - George Q Daley
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
6
|
Dong M, Mallet Gauthier È, Fournier M, Melichar HJ. Developing the right tools for the job: Lin28 regulation of early life T-cell development and function. FEBS J 2021; 289:4416-4429. [PMID: 34077615 DOI: 10.1111/febs.16045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/29/2021] [Accepted: 06/01/2021] [Indexed: 12/14/2022]
Abstract
T cells comprise a functionally heterogeneous cell population that has important roles in the immune system. While T cells are broadly considered to be a component of the antigen-specific adaptive immune response, certain T-cell subsets display innate-like effector characteristics whereas others perform immunosuppressive functions. These functionally diverse T-cell populations preferentially arise at different stages of ontogeny and are tailored to the immunological priorities of the organism over time. Many differences in early life versus adult T-cell phenotypes can be attributed to the cell-intrinsic properties of the distinct progenitors that seed the thymus throughout development. It is becoming clear that Lin28, an evolutionarily conserved, heterochronic RNA-binding protein that is differentially expressed among early life and adult hematopoietic progenitor cells, plays a substantial role in influencing early T-cell development and function. Here, we discuss the mechanisms by which Lin28 shapes the T-cell landscape to protect the developing fetus and newborn. Manipulation of the Lin28 gene regulatory network is being considered as one means of improving hematopoietic stem cell transplant outcomes; as such, understanding the impact of Lin28 on T-cell function is of clinical relevance.
Collapse
Affiliation(s)
- Mengqi Dong
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Center, Montréal, QC, Canada.,Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, QC, Canada
| | - Ève Mallet Gauthier
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Center, Montréal, QC, Canada.,Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, QC, Canada
| | - Marilaine Fournier
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Center, Montréal, QC, Canada
| | - Heather J Melichar
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Center, Montréal, QC, Canada.,Département de médecine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
7
|
Identification of RNA-binding proteins that partner with Lin28a to regulate Dnmt3a expression. Sci Rep 2021; 11:2345. [PMID: 33504840 PMCID: PMC7841167 DOI: 10.1038/s41598-021-81429-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 01/06/2021] [Indexed: 12/28/2022] Open
Abstract
Lin28 is an evolutionary conserved RNA-binding protein that plays important roles during embryonic development and tumorigenesis. It regulates gene expression through two different post-transcriptional mechanisms. The first one is based on the regulation of miRNA biogenesis, in particular that of the let-7 family, whose expression is suppressed by Lin28. Thus, loss of Lin28 leads to the upregulation of mRNAs that are targets of let-7 species. The second mechanism is based on the direct interaction of Lin28 with a large number of mRNAs, which results in the regulation of their translation. This second mechanism remains poorly understood. To address this issue, we purified high molecular weight complexes containing Lin28a in mouse embryonic stem cells (ESCs). Numerous proteins, co-purified with Lin28a, were identified by proteomic procedures and tested for their possible role in Lin28a-dependent regulation of the mRNA encoding DNA methyltransferase 3a (Dnmt3a). The results show that Lin28a activity is dependent on many proteins, including three helicases and four RNA-binding proteins. The suppression of four of these proteins, namely Ddx3x, Hnrnph1, Hnrnpu or Syncrip, interferes with the binding of Lin28a to the Dnmt3a mRNA, thus suggesting that they are part of an oligomeric ribonucleoprotein complex that is necessary for Lin28a activity.
Collapse
|
8
|
Crippa S, Ancey PB, Vazquez J, Angelino P, Rougemont AL, Guettier C, Zoete V, Delorenzi M, Michielin O, Meylan E. Mutant CTNNB1 and histological heterogeneity define metabolic subtypes of hepatoblastoma. EMBO Mol Med 2018; 9:1589-1604. [PMID: 28923827 PMCID: PMC5666308 DOI: 10.15252/emmm.201707814] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hepatoblastoma is the most common malignant pediatric liver cancer. Histological evaluation of tumor biopsies is used to distinguish among the different subtypes of hepatoblastoma, with fetal and embryonal representing the two main epithelial components. With frequent CTNNB1 mutations, hepatoblastoma is a Wnt/β‐catenin‐driven malignancy. Considering that Wnt activation has been associated with tumor metabolic reprogramming, we characterized the metabolic profile of cells from hepatoblastoma and compared it to cells from hepatocellular carcinoma. First, we demonstrated that glucose transporter GLUT3 is a direct TCF4/β‐catenin target gene. RNA sequencing enabled to identify molecular and metabolic features specific to hepatoblastoma and revealed that several glycolytic enzymes are overexpressed in embryonal‐like compared to fetal‐like tumor cells. This led us to implement successfully three biomarkers to distinguish embryonal from fetal components by immunohistochemistry from a large panel of human hepatoblastoma samples. Functional analyses demonstrated that embryonal‐like hepatoblastoma cells are highly glycolytic and sensitive to hexokinase‐1 silencing. Altogether, our findings reveal a new, metabolic classification of human hepatoblastoma, with potential future implications for patients’ diagnosis and treatment.
Collapse
Affiliation(s)
- Stefania Crippa
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Pierre-Benoit Ancey
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Jessica Vazquez
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Paolo Angelino
- Bioinformatics Core Facility, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Anne-Laure Rougemont
- Division of Clinical Pathology, Geneva University Hospitals, Geneva, Switzerland
| | - Catherine Guettier
- Department of Pathology, Hôpital Bicêtre, HUPS, Assistance Publique-Hôpitaux de Paris, INSERM U1193, Faculté de Médecine, Université Paris Sud, Paris, France
| | - Vincent Zoete
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Mauro Delorenzi
- Bioinformatics Core Facility, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland.,Ludwig Center for Cancer Research and Department of Oncology, University of Lausanne, Lausanne, Switzerland
| | | | - Etienne Meylan
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
9
|
Li M, Han Y, Zhou H, Li X, Lin C, Zhang E, Chi X, Hu J, Xu H. Transmembrane protein 170B is a novel breast tumorigenesis suppressor gene that inhibits the Wnt/β-catenin pathway. Cell Death Dis 2018; 9:91. [PMID: 29367600 PMCID: PMC5833782 DOI: 10.1038/s41419-017-0128-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 11/03/2017] [Accepted: 11/06/2017] [Indexed: 02/06/2023]
Abstract
The identification of specific drug targets guides the development of precise cancer treatments. Compared with oncogenes, tumor suppressor genes have been poorly studied in the treatment of breast cancer. We integrate the microRNA expression array from GEO (Gene Expression Omnibus) and TCGA (The Cancer Genome Atlas) databases in clinical breast cancer tissues, and find that miR-27a is significantly upregulated and correlated with poor survival outcome and tumor progression. Transmembrane protein 170B (TMEM170B), a new functional target of miR-27a, is identified via target prediction and experimental validation, suppressing breast cancer proliferation, metastasis, and tumorigenesis. Furthermore, TMEM170B overexpression promotes cytoplasmic β-catenin phosphorylation, resulting in the inhibition of β-catenin stabilization, reduction of nuclear β-catenin levels and downstream targets expression. Clinically, TMEM170B or β-catenin expression is significantly correlated with overall survival ratio in breast cancer patients. Thus, these results highlight TMEM170B as a novel tumor suppressor target in association with the β-catenin pathway, which may provide a new therapeutic approach for human breast cancer therapy.
Collapse
Affiliation(s)
- Mengwei Li
- The Engineering Research Center of Peptide Drug Discovery and Development, China Pharmaceutical University, Nanjing, 210009, China.,State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China
| | - Yanzhen Han
- The Engineering Research Center of Peptide Drug Discovery and Development, China Pharmaceutical University, Nanjing, 210009, China.,State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China
| | - Haoze Zhou
- The Engineering Research Center of Peptide Drug Discovery and Development, China Pharmaceutical University, Nanjing, 210009, China.,State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China
| | - Xin Li
- The Engineering Research Center of Peptide Drug Discovery and Development, China Pharmaceutical University, Nanjing, 210009, China.,State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China
| | - Chenyu Lin
- The Engineering Research Center of Peptide Drug Discovery and Development, China Pharmaceutical University, Nanjing, 210009, China.,State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China
| | - Erhao Zhang
- The Engineering Research Center of Peptide Drug Discovery and Development, China Pharmaceutical University, Nanjing, 210009, China.,State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiaowei Chi
- The Engineering Research Center of Peptide Drug Discovery and Development, China Pharmaceutical University, Nanjing, 210009, China.,State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China
| | - Jialiang Hu
- The Engineering Research Center of Peptide Drug Discovery and Development, China Pharmaceutical University, Nanjing, 210009, China. .,State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China.
| | - Hanmei Xu
- The Engineering Research Center of Peptide Drug Discovery and Development, China Pharmaceutical University, Nanjing, 210009, China. .,State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
10
|
Sun X, Jiang S, Liu J, Wang H, Zhang Y, Tang SC, Wang J, Du N, Xu C, Wang C, Qin S, Zhang J, Liu D, Zhang Y, Li X, Wang J, Dong J, Wang X, Xu S, Tao Z, Xu F, Zhou J, Wang T, Ren H. MiR-208a stimulates the cocktail of SOX2 and β-catenin to inhibit the let-7 induction of self-renewal repression of breast cancer stem cells and formed miR208a/let-7 feedback loop via LIN28 and DICER1. Oncotarget 2016; 6:32944-54. [PMID: 26460550 PMCID: PMC4741741 DOI: 10.18632/oncotarget.5079] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 07/28/2015] [Indexed: 12/23/2022] Open
Abstract
MiR-208a stimulates cardiomyocyte hypertrophy, fibrosis and β-MHC (β-myosin heavy chain) expression, being involved in cardiovascular diseases. Although miR-208a is known to play a role in cardiovascular diseases, its role in cancer and cancer stem cells (CSCs) remains uncertain. We identified an inverse relationship between miR-208a and let-7a in breast cancer specimens, and found that SOX2, β-catenin and LIN28 are highly expressed in patients with advanced breast cancer opposed to lesser grades. Further, we isolated ALDH1+ CSCs from ZR75–1 and MDA-MB-231 (MM-231) breast cancer cell lines to test the role of miR-208a in breast CSCs (BrCSCs). Our studies showed that overexpression of miR-208a in these cells strongly promoted the proportion of ALDH1+ BrCSCs and continuously stimulated the self-renewal ability of BrCSCs. By using siRNAs of SOX2 and/or β-catenin, we found that miR-208a increased LIN28 through stimulation of both SOX2 and β-catenin. The knockdown of either SOX2 or β-catenin only partially attenuated the functions of miR-208a. Let-7a expression was strongly inhibited in miR-208a overexpressed cancer cells, which was achieved by miR-208a induction of LIN28, and the restoration of let-7a significantly inhibited the miR-208a induction of the number of ALDH1+ cells, inhibiting the propagations of BrCSCs. In let-7a overexpressed ZR75–1 and MM-231 cells, DICER1 activity was significantly inhibited with decreased miR-208a. Let-7a failed to decrease miR-208a expression in ZR75–1 and MM-231 cells with DICER1 knockdown. Our research revealed the mechanisms through which miR-208a functioned in breast cancer and BrCSCs, and identified the miR-208a-SOX2/β-catenin-LIN28-let-7a-DICER1 regulatory feedback loop in regulations of stem cells renewal.
Collapse
Affiliation(s)
- Xin Sun
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China
| | - Shiwen Jiang
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325027, China
| | - Jian Liu
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China
| | - Huangzhen Wang
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China
| | - Yiwen Zhang
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China
| | - Shou-Ching Tang
- Breast Cancer Program and Interdisciplinary Translational Research Team, Georgia Regents University Cancer Center, Augusta, Georgia, 30912, United States.,Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Jichang Wang
- Neurosurgery Department of the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China
| | - Ning Du
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China
| | - Chongwen Xu
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China
| | - Chenguang Wang
- Institute of Radiation Medicine, the Chinese Academy of Medical Sciences, Nankai District, Tianjing 300192, China
| | - Sida Qin
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China
| | - Jia Zhang
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China
| | - Dapeng Liu
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China
| | - Yunfeng Zhang
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China
| | - Xiaojun Li
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China
| | - Jiansheng Wang
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China
| | - Jun Dong
- Department of Orthopaedics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China
| | - Xin Wang
- Department of Gastroenterology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China
| | - Shaohua Xu
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204, China
| | - Zhen Tao
- Department of Radiation Oncology, Tianjin Cancer Institute and Hospital Affiliated to Tianjin Medical University, Tianjin, 300060, China
| | - Fei Xu
- Department of Radiation Oncology, Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
| | - Jie Zhou
- Department of Breast Oncology, Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, 510182, China
| | - Tao Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Hong Ren
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China
| |
Collapse
|
11
|
LIN28A Modulates Splicing and Gene Expression Programs in Breast Cancer Cells. Mol Cell Biol 2015; 35:3225-43. [PMID: 26149387 DOI: 10.1128/mcb.00426-15] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 06/26/2015] [Indexed: 12/22/2022] Open
Abstract
LIN28 is an evolutionarily conserved RNA-binding protein with critical functions in developmental timing and cancer. However, the molecular mechanisms underlying LIN28's oncogenic properties are yet to be described. RNA-protein immunoprecipitation coupled with genome-wide sequencing (RIP-Seq) analysis revealed significant LIN28 binding within 843 mRNAs in breast cancer cells. Many of the LIN28-bound mRNAs are implicated in the regulation of RNA and cell metabolism. We identify heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1), a protein with multiple roles in mRNA metabolism, as a LIN28-interacting partner. Subsequently, we used a custom computational method to identify differentially spliced gene isoforms in LIN28 and hnRNP A1 small interfering RNA (siRNA)-treated cells. The results reveal that these proteins regulate alternative splicing and steady-state mRNA expression of genes implicated in aspects of breast cancer biology. Notably, cells lacking LIN28 undergo significant isoform switching of the ENAH gene, resulting in a decrease in the expression of the ENAH exon 11a isoform. The expression of ENAH isoform 11a has been shown to be elevated in breast cancers that express HER2. Intriguingly, analysis of publicly available array data from the Cancer Genome Atlas (TCGA) reveals that LIN28 expression in the HER2 subtype is significantly different from that in other breast cancer subtypes. Collectively, our data suggest that LIN28 may regulate splicing and gene expression programs that drive breast cancer subtype phenotypes.
Collapse
|
12
|
Sheng JD, Lei L, Wang AP. Role of Lin28A/B subtypes in apoptosis of hepatocellular carcinoma cells. Shijie Huaren Xiaohua Zazhi 2014; 22:3891-3897. [DOI: 10.11569/wcjd.v22.i26.3891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To explore the role of Lin28A/B subtypes in apoptosis of hepatocellular carcinoma (HCC) cells, and to analyze the mechanism of action of Lin28A/B in tumorigenesis of HCC.
METHODS: The mRNA and protein expression of Lin28A/B in HCC cells was detected by real-time PCR and Western blot. After siRNAs targeting Lin28A/B were transfected into HCC cells, the expression of Lin28A/B was detected by real-time PCR and Western blot, cell proliferation was assessed by MTT assay, and cell apoptosis was analyzed by FACS.
RESULTS: Real-time PCR showed that the expression of Lin28A/B mRNAs was up-regulated in HCC cells (P < 0.05; P < 0.01), and the up-regulation of Lin28B was more significant than that of Lin28A. Transfection of Lin28A/B siRNAs decreased the expression of Lin28A/B in HCC cells (P < 0.05). MTT assay revealed that Lin28A and Lin28B siRNAs significantly inhibited HCC cell proliferation (P < 0.05; P < 0.01) and promoted cell apoptosis (P < 0.05; P < 0.01). The effect of Lin28B siRNA on cell proliferation and apoptosis was stronger than that of Lin28A siRNA (P < 0.05).
CONCLUSION: Both Lin28A/B take part in the tumorigenesis of HCC. Lin28B may play a major role in HCC tumorigenesis, while Lin28A may play a subordinate role.
Collapse
|
13
|
Sequencing of Captive Target Transcripts Identifies the Network of Regulated Genes and Functions of Primate-Specific miR-522. Cell Rep 2014; 8:1225-39. [DOI: 10.1016/j.celrep.2014.07.023] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 05/07/2014] [Accepted: 07/16/2014] [Indexed: 11/22/2022] Open
|