1
|
Rahman ML, Bonnard AA, Wang F, Ruaud L, Guimiot F, Li Y, Defer I, Wang Y, Marchand V, Motorin Y, Yao B, Drunat S, Ghalei H. New ZNHIT3 Variants Disrupting snoRNP Assembly Cause Prenatal PEHO Syndrome with Isolated Hydrops. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.26.24312490. [PMID: 39252897 PMCID: PMC11383450 DOI: 10.1101/2024.08.26.24312490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
ZNHIT3 (zinc finger HIT type containing protein 3) is an evolutionarily conserved protein required for ribosome biogenesis by mediating the assembly of small nucleolar RNAs (snoRNAs) of class C/D into ribonucleoprotein complexes (snoRNPs). Missense mutations in the gene encoding ZNHIT3 protein have been previously reported to cause PEHO syndrome, a severe neurodevelopmental disorder typically presenting after birth. We discuss here the case of two fetuses from a single family who presented with isolated hydrops during the early second trimester of pregnancy, resulting in intrauterine demise. Autopsy revealed no associated malformation. Through whole-genome quartet analysis, we identified two novel variants within the ZNHIT3 gene, both inherited from healthy parents and occurring as compound heterozygotes in both fetuses. The c.40T>C p.Cys14Arg variant originated from the father, while the c.251_254delAAGA variant was of maternal origin. Analysis of the variants in human cell culture models reveals that both variants reduce cell growth, albeit to different extents, and impact the protein's stability and function in distinct ways. The c.251_254delAAGA results in production of a stable form of ZNHIT3 that lacks a domain required for mediating snoRNP biogenesis, whereas the c.40T>C p.Cys14Arg variation behaves similarly to the previously described PEHO-associated ZNHIT3 variants that destabilize the protein. Interestingly, both variations lead to a marked decrease in specific box C/D snoRNA levels, reduced rRNA levels and cellular translation. Analysis of rRNA methylation pattern in fetus samples reveals distinct sites of hypo 2'-O-methylation. RNA-seq analysis of undifferentiated and differentiated SHSY5Y cells transfected with the ZNHIT3 variants reveals differential expression of a set of genes, many of which are associated with developmental processes and RNA binding compared to cells expressing wild-type ZNHIT3. In summary, this work extends the phenotype of PEHO syndrome to include antenatal manifestations and describe the molecular defects induced by two novel ZNHIT3 variants.
Collapse
Affiliation(s)
- Md Lutfur Rahman
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Adeline A. Bonnard
- Département de Génétique, Hôpital Robert Debré, Assistance Publique des Hôpitaux de Paris (AP-HP), Paris, France
- INSERM UMR 1131, Saint-Louis Research Institute, Paris University, Paris, France
| | - Feng Wang
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Lyse Ruaud
- Département de Génétique, Hôpital Robert Debré, Assistance Publique des Hôpitaux de Paris (AP-HP), Paris, France
- INSERM UMR 1141, Paris-Cité University, NeuroDiderot, Paris, France
| | - Fabien Guimiot
- Département de Génétique, Hôpital Robert Debré, Assistance Publique des Hôpitaux de Paris (AP-HP), Paris, France
- INSERM UMR 1141, Paris-Cité University, NeuroDiderot, Paris, France
| | - Yangping Li
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Ines Defer
- Département de Génétique, Hôpital Robert Debré, Assistance Publique des Hôpitaux de Paris (AP-HP), Paris, France
- INSERM UMR 1131, Saint-Louis Research Institute, Paris University, Paris, France
| | - Yilin Wang
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Virginie Marchand
- Université de Lorraine, SMP IBSLor, Biopôle, 9 Avenue de la Forêt de Haye, Vandoeuvre-les-Nancy, France
| | - Yuri Motorin
- Université de Lorraine, UMR7365 IMoPA, CNRS, Biopôle, 9 Avenue de la Forêt de Haye, Vandoeuvre-les-Nancy, France
| | - Bing Yao
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Séverine Drunat
- Département de Génétique, Hôpital Robert Debré, Assistance Publique des Hôpitaux de Paris (AP-HP), Paris, France
- INSERM UMR 1141, Paris-Cité University, NeuroDiderot, Paris, France
| | - Homa Ghalei
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
2
|
Lebedenko OO, Sekhar A, Skrynnikov NR. Order/Disorder Transitions Upon Protein Binding: A Unifying Perspective. Proteins 2024. [PMID: 39158131 DOI: 10.1002/prot.26737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/11/2024] [Accepted: 07/30/2024] [Indexed: 08/20/2024]
Abstract
When two proteins bind to each other, this process is often accompanied by a change in their structural states (from disordered to ordered or vice versa). As it turns out, there are 10 distinct possibilities for such binding-related order/disorder transitions. Out of this number, seven scenarios have been experimentally observed, while another three remain hitherto unreported. As an example, we discuss the so-called mutual synergistic folding, whereby two disordered proteins come together to form a fully structured complex. Our bioinformatics analysis of the Protein Databank found potential new examples of this remarkable binding mechanism.
Collapse
Affiliation(s)
- Olga O Lebedenko
- Laboratory of Biomolecular NMR, St. Petersburg State University, St. Petersburg, Russia
| | - Ashok Sekhar
- Molecular Biophysics Unit, Indian Institute of Science Bangalore, Bengaluru, India
| | - Nikolai R Skrynnikov
- Laboratory of Biomolecular NMR, St. Petersburg State University, St. Petersburg, Russia
- Department of Chemistry, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
3
|
Brakta S, Du Q, Chorich LP, Hawkins ZA, Sullivan ME, Ko EK, Kim HG, Knight J, Taylor HS, Friez M, Phillips JA, Layman LC. Heterozygous ZNHIT3 variants within the 17q12 recurrent deletion region are associated with Mayer-Rokitansky-Kuster Hauser (MRKH) syndrome. Mol Cell Endocrinol 2024; 589:112237. [PMID: 38599276 DOI: 10.1016/j.mce.2024.112237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/12/2024]
Abstract
The molecular basis of mullerian aplasia, also known as Mayer-Rokitansky-Kuster Hauser (MRKH) or congenital absence of the uterus and vagina, is largely unknown. We applied a multifaceted genetic approach to studying the pathogenesis of MRKH including exome sequencing of trios and duos, genome sequencing of families, qPCR, RT-PCR, and Sanger sequencing to detect intragenic deletions, insertions, splice variants, single nucleotide variants, and rearrangements in 132 persons with MRKH. We identified two heterozygous variants in ZNHIT3 localized to a commonly involved CNV region at chromosome 17q12 in two different families with MRKH. One is a frameshift, truncating variant that is predicted to interfere with steroid hormone binding of the LxxLL sequence of the C-terminal region. The second variant is a double missense/stopgain variant. Both variants impair protein expression in vitro. In addition, four more probands with MRKH harbored the stopgain variant without the nearby missense variant. In total, 6/132 (4.5%) of patients studied, including five with associated anomalies (type 2 MRKH), had ZNHIT3 variants that impair function in vitro. Our findings implicate ZNHIT3 as an important gene associated with MRKH within the 17q12 CNV region.
Collapse
Affiliation(s)
- Soumia Brakta
- Section of Reproductive Endocrine, Infertility, & Genetics, Department of Obstetrics & Gynecology, Medical College of Georgia at Augusta University, Augusta, GA, USA.
| | - Quansheng Du
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Lynn P Chorich
- Section of Reproductive Endocrine, Infertility, & Genetics, Department of Obstetrics & Gynecology, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Zoe A Hawkins
- Section of Reproductive Endocrine, Infertility, & Genetics, Department of Obstetrics & Gynecology, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | | | - Eun Kyung Ko
- University of Pennsylvania, Philadelphia, PA, USA
| | - Hyung-Goo Kim
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - James Knight
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA; Yale Center for Genome Analysis, Yale University, New Haven, CT, USA
| | - Hugh S Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA
| | | | - John A Phillips
- Division of Medical Genetics and Genomic Medicine, Department of Pediatrics, Vanderbilt University, Nashville, TN, USA
| | - Lawrence C Layman
- Section of Reproductive Endocrine, Infertility, & Genetics, Department of Obstetrics & Gynecology, Medical College of Georgia at Augusta University, Augusta, GA, USA; Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA; Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA, USA
| |
Collapse
|
4
|
Sun W, Zhao P, Hu S, Zhao Z, Liu B, Yang X, Yang J, Fu Z, Li S, Yu W. NUFIP1-engineered exosomes derived from hUMSCs regulate apoptosis and neurological injury induced by propofol in newborn rats. Neurotoxicology 2024; 102:81-95. [PMID: 38599287 DOI: 10.1016/j.neuro.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/05/2024] [Accepted: 04/07/2024] [Indexed: 04/12/2024]
Abstract
BACKGROUND Propofol can increase neurotoxicity in infants but the precise mechanism is still unknown. Our previous study revealed that nuclear FMR1 interacting protein 1 (NUFIP1), a specific ribophagy receptor, can alleviate T cell apoptosis in sepsis. Yet, the effect of NUFIP1-engineered exosomes elicited from human umbilical cord blood mesenchymal stem cells (hUMSCs) on nerve injury induced by propofol remains unclear. This study intended to investigate the effect of NUFIP1-engineered exosomes on propofol-induced nerve damage in neonatal rats. METHODS Firstly, NUFIP1-engineered exosomes were extracted from hUMSCs serum and their identification was conducted using transmission electron microscopy (TEM), Flow NanoAnalyzer, quantitative real-time polymerase chain reaction (qRT-PCR), and western blot (WB). Subsequently, the optimal exposure duration and concentration of propofol induced apoptosis were determined in SH-SY5Y cell line using WB. Following this, we co-cultured the NUFIP1-engineered exosomes in the knockdown group (NUFIP1-KD) and overexpression group (NUFIP1-OE) with SH-SY5Y cells and assessed their effects on the apoptosis of SH-SY5Y cells using terminal-deoxynucleotidyl transferase mediated nick end labeling (TUNEL) assay, Hoechst 33258 staining, WB, and flow cytometry, respectively. Finally, NUFIP1-engineered exosomes were intraperitoneally injected into neonatal rats, and their effects on the learning and memory ability of neonatal rats were observed through the righting reflex and Morris water maze (MWM) test. Hippocampi were extracted from different groups for hematoxylin-eosin (HE) staining, immunohistochemistry, immunofluorescence, and WB to observe their effects on apoptosis in neonatal rats. RESULTS TEM, Flow NanoAnalyzer, qRT-PCR, and WB analyses confirmed that the exosomes extracted from hUMSCs serum exhibited the expected morphology, diameter, surface markers, and expression of target genes. This confirmed the successful construction of NUFIP1-KD and NUFIP1-OE-engineered exosomes. Optimal exposure duration and concentration of propofol were determined to be 24 hours and 100 µg/ml, respectively. Co-culture of NUFIP1 engineered exosomes and SH-SY5Y cells resulted in significant up-regulation of pro-apoptotic proteins Bax and c-Caspase-3 in the KD group, while anti-apoptotic protein Bcl-2 was significantly decreased. The OE group showed the opposite trend. TUNEL apoptosis assay, Hoechst 33258 staining, and flow cytometry yielded consistent results. Animal experiments demonstrated that intraperitoneal injection of NUFIP1-KD engineered exosomes prolonged the righting reflex recovery time of newborn rats, and MWM tests revealed a significant diminution in the time and number of newborn rats entering the platform. HE staining, immunohistochemistry, immunofluorescence, and WB results also indicated a significant enhancement in apoptosis in this group. Conversely, the experimental results of neonatal rats in the OE group revealed a certain degree of anti-apoptotic effect. CONCLUSIONS NUFIP1-engineered exosomes from hUMSCs have the potential to regulate nerve cell apoptosis and mitigate neurological injury induced by propofol in neonatal rats. Targeting NUFIP1 may hold great significance in ameliorating propofol-induced nerve injury.
Collapse
Affiliation(s)
- Wen Sun
- The First Central Clinical School, Tianjin Medical University, Tianjin, China; Department of Anesthesiology, the Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Pengyue Zhao
- Department of General Surgery, First Medical Center of the Chinese PLA General Hospital, Beijing, China
| | - Shidong Hu
- Department of General Surgery, First Medical Center of the Chinese PLA General Hospital, Beijing, China
| | - Zhenting Zhao
- College of Life Science, Xinyang Normal University, Xinyang, China
| | - Boyan Liu
- Department of General Surgery, First Medical Center of the Chinese PLA General Hospital, Beijing, China
| | - Xingpeng Yang
- Department of General Surgery, First Medical Center of the Chinese PLA General Hospital, Beijing, China
| | - Jiaqi Yang
- Department of General Surgery, First Medical Center of the Chinese PLA General Hospital, Beijing, China
| | - Ze Fu
- Department of General Surgery, First Medical Center of the Chinese PLA General Hospital, Beijing, China
| | - Songyan Li
- Department of General Surgery, First Medical Center of the Chinese PLA General Hospital, Beijing, China.
| | - Wenli Yu
- The First Central Clinical School, Tianjin Medical University, Tianjin, China; Department of Anesthesiology, Tianjin First Central Hospital, Tianjin, China.
| |
Collapse
|
5
|
Rothé B, Ikawa Y, Zhang Z, Katoh TA, Kajikawa E, Minegishi K, Xiaorei S, Fortier S, Dal Peraro M, Hamada H, Constam DB. Bicc1 ribonucleoprotein complexes specifying organ laterality are licensed by ANKS6-induced structural remodeling of associated ANKS3. PLoS Biol 2023; 21:e3002302. [PMID: 37733651 PMCID: PMC10513324 DOI: 10.1371/journal.pbio.3002302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 08/17/2023] [Indexed: 09/23/2023] Open
Abstract
Organ laterality of vertebrates is specified by accelerated asymmetric decay of Dand5 mRNA mediated by Bicaudal-C1 (Bicc1) on the left side, but whether binding of this or any other mRNA to Bicc1 can be regulated is unknown. Here, we found that a CRISPR-engineered truncation in ankyrin and sterile alpha motif (SAM)-containing 3 (ANKS3) leads to symmetric mRNA decay mediated by the Bicc1-interacting Dand5 3' UTR. AlphaFold structure predictions of protein complexes and their biochemical validation by in vitro reconstitution reveal a novel interaction of the C-terminal coiled coil domain of ANKS3 with Bicc1 that inhibits binding of target mRNAs, depending on the conformation of ANKS3 and its regulation by ANKS6. The dual regulation of RNA binding by mutually opposing structured protein domains in this multivalent protein network emerges as a novel mechanism linking associated laterality defects and possibly other ciliopathies to perturbed dynamics in Bicc1 ribonucleoparticle (RNP) formation.
Collapse
Affiliation(s)
- Benjamin Rothé
- Ecole Polytechnique Fédérale de Lausanne (EPFL) SV ISREC, Lausanne, Switzerland
| | - Yayoi Ikawa
- Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Zhidian Zhang
- Ecole Polytechnique Fédérale de Lausanne (EPFL) SV IBI, Lausanne, Switzerland
| | - Takanobu A. Katoh
- Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Eriko Kajikawa
- Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Katsura Minegishi
- Department of Molecular Therapy, National Institutes of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| | - Sai Xiaorei
- Department of Molecular Therapy, National Institutes of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| | - Simon Fortier
- Ecole Polytechnique Fédérale de Lausanne (EPFL) SV ISREC, Lausanne, Switzerland
| | - Matteo Dal Peraro
- Ecole Polytechnique Fédérale de Lausanne (EPFL) SV IBI, Lausanne, Switzerland
| | - Hiroshi Hamada
- Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Daniel B. Constam
- Ecole Polytechnique Fédérale de Lausanne (EPFL) SV ISREC, Lausanne, Switzerland
| |
Collapse
|
6
|
Webster SF, Ghalei H. Maturation of small nucleolar RNAs: from production to function. RNA Biol 2023; 20:715-736. [PMID: 37796118 PMCID: PMC10557570 DOI: 10.1080/15476286.2023.2254540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2023] [Indexed: 10/06/2023] Open
Abstract
Small Nucleolar RNAs (snoRNAs) are an abundant group of non-coding RNAs with well-defined roles in ribosomal RNA processing, folding and chemical modification. Besides their classic roles in ribosome biogenesis, snoRNAs are also implicated in several other cellular activities including regulation of splicing, transcription, RNA editing, cellular trafficking, and miRNA-like functions. Mature snoRNAs must undergo a series of processing steps tightly regulated by transiently associating factors and coordinated with other cellular processes including transcription and splicing. In addition to their mature forms, snoRNAs can contribute to gene expression regulation through their derivatives and degradation products. Here, we review the current knowledge on mechanisms of snoRNA maturation, including the different pathways of processing, and the regulatory mechanisms that control snoRNA levels and complex assembly. We also discuss the significance of studying snoRNA maturation, highlight the gaps in the current knowledge and suggest directions for future research in this area.
Collapse
Affiliation(s)
- Sarah F. Webster
- Biochemistry, Cell, and Developmental Biology Graduate Program, Emory University, Atlanta, Georgia, USA
- Department of Biochemistry, Emory University, Atlanta, Georgia, USA
| | - Homa Ghalei
- Department of Biochemistry, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
7
|
The Role of Hsp90-R2TP in Macromolecular Complex Assembly and Stabilization. Biomolecules 2022; 12:biom12081045. [PMID: 36008939 PMCID: PMC9406135 DOI: 10.3390/biom12081045] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 01/27/2023] Open
Abstract
Hsp90 is a ubiquitous molecular chaperone involved in many cell signaling pathways, and its interactions with specific chaperones and cochaperones determines which client proteins to fold. Hsp90 has been shown to be involved in the promotion and maintenance of proper protein complex assembly either alone or in association with other chaperones such as the R2TP chaperone complex. Hsp90-R2TP acts through several mechanisms, such as by controlling the transcription of protein complex subunits, stabilizing protein subcomplexes before their incorporation into the entire complex, and by recruiting adaptors that facilitate complex assembly. Despite its many roles in protein complex assembly, detailed mechanisms of how Hsp90-R2TP assembles protein complexes have yet to be determined, with most findings restricted to proteomic analyses and in vitro interactions. This review will discuss our current understanding of the function of Hsp90-R2TP in the assembly, stabilization, and activity of the following seven classes of protein complexes: L7Ae snoRNPs, spliceosome snRNPs, RNA polymerases, PIKKs, MRN, TSC, and axonemal dynein arms.
Collapse
|
8
|
Dreggors-Walker RE, Cohen LN, Khoshnevis S, Marchand V, Motorin Y, Ghalei H. Studies of mutations of assembly factor Hit 1 in budding yeast suggest translation defects as the molecular basis for PEHO syndrome. J Biol Chem 2022; 298:102261. [PMID: 35843310 PMCID: PMC9418376 DOI: 10.1016/j.jbc.2022.102261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 11/28/2022] Open
Abstract
Regulation of protein synthesis is critical for control of gene expression in all cells. Ribosomes are ribonucleoprotein machines responsible for translating cellular proteins. Defects in ribosome production, function, or regulation are detrimental to the cell and cause human diseases, such as progressive encephalopathy with edema, hypsarrhythmia, and optic atrophy (PEHO) syndrome. PEHO syndrome is a devastating neurodevelopmental disorder caused by mutations in the ZNHIT3 gene, which encodes an evolutionarily conserved nuclear protein. The precise mechanisms by which ZNHIT3 mutations lead to PEHO syndrome are currently unclear. Studies of the human zinc finger HIT-type containing protein 3 homolog in budding yeast (Hit1) revealed that this protein is critical for formation of small nucleolar ribonucleoprotein complexes that are required for rRNA processing and 2′-O-methylation. Here, we use budding yeast as a model system to reveal the basis for the molecular pathogenesis of PEHO syndrome. We show that missense mutations modeling those found in PEHO syndrome patients cause a decrease in steady-state Hit1 protein levels, a significant reduction of box C/D snoRNA levels, and subsequent defects in rRNA processing and altered cellular translation. Using RiboMethSeq analysis of rRNAs isolated from actively translating ribosomes, we reveal site-specific changes in the rRNA modification pattern of PEHO syndrome mutant yeast cells. Our data suggest that PEHO syndrome is a ribosomopathy and reveal potential new aspects of the molecular basis of this disease in translation dysregulation.
Collapse
Affiliation(s)
- R Elizabeth Dreggors-Walker
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322, USA; Graduate Program in Biochemistry, Cell and Developmental Biology (BCDB), Emory University, Atlanta, Georgia 30322, USA
| | - Lauren N Cohen
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Sohail Khoshnevis
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Virginie Marchand
- Université de Lorraine, UAR2008/US40 IBSLor, CNRS-INSERM, Biopôle, 9 Avenue de la Forêt de Haye, 54505 Vandoeuvre-les-Nancy, France
| | - Yuri Motorin
- Université de Lorraine, UMR7365 IMoPA, CNRS- Biopôle, 9 Avenue de la Forêt de Haye, 54505 Vandoeuvre-les-Nancy, France
| | - Homa Ghalei
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| |
Collapse
|
9
|
Chagot ME, Boutilliat A, Kriznik A, Quinternet M. Structural Analysis of the Plasmodial Proteins ZNHIT3 and NUFIP1 Provides Insights into the Selectivity of a Conserved Interaction. Biochemistry 2022; 61:479-493. [PMID: 35315277 DOI: 10.1021/acs.biochem.1c00792] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Malaria is a widespread and lethal disease caused by the Plasmodium parasites that can infect human beings through Anopheles mosquitoes. For that reason, the biology of Plasmodium needs to be studied to develop antimalarial treatments. By determining the three-dimensional structures of macromolecules, structural biology helps to understand the function of proteins and can reveal how interactions occur between biological partners. Here, we studied the ZNHIT3 and NUFIP1 proteins from Plasmodium falciparum, two proteins tightly linked to the ribosome biology. Due to their important functions in post-translational modifications of ribosomal RNAs and in ribophagy, these proteins participate in the survival of cells. In this study, we solved the three-dimensional structure of a thermally stable and species-dependent complex between fragments of these proteins. Our results were compared to the AlphaFold predictions, which motivated the study of the free ZNHIT3 fragment that binds NUFIP1. We showed that the latter fragment multimerized in vitro but also had the inner ability to change its conformation to escape the solvent exposition of key hydrophobic residues involved in the interaction with NUFIP1. Our data could open the gate to selective drug discovery processes involving these two proteins.
Collapse
Affiliation(s)
| | | | - Alexandre Kriznik
- Université de Lorraine, CNRS, IMoPA, F-54000 Nancy, France.,Université de Lorraine, CNRS, INSERM, IBSLor, F-54000 Nancy, France
| | - Marc Quinternet
- Université de Lorraine, CNRS, INSERM, IBSLor, F-54000 Nancy, France
| |
Collapse
|
10
|
Shen A, Wu M, Liu L, Chen Y, Chen X, Zhuang M, Xie Q, Cheng Y, Li J, Shen Z, Wei L, Chu J, Sferra TJ, Zhang X, Xu N, Li L, Peng J, Chen F. Targeting NUFIP1 Suppresses Growth and Induces Senescence of Colorectal Cancer Cells. Front Oncol 2021; 11:681425. [PMID: 34367967 PMCID: PMC8343530 DOI: 10.3389/fonc.2021.681425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/05/2021] [Indexed: 12/01/2022] Open
Abstract
NUFIP1 is an RNA-binding protein that interacts with fragile X mental retardation protein (FMRP) in the messenger ribonucleoprotein particle (mRNP). We previously showed that NUFIP1 was upregulated in colorectal cancer (CRC), but how the protein may contribute to the disease and patient prognosis is unknown. Here we combine database analysis, microarray, quantitative PCR, and immunohistochemistry of patients' samples to confirm our previous findings on NUFIP1 overexpression in CRC, and to reveal that increased expression of NUFIP1 in CRC tissues correlated with worse overall, recurrence-free, event-free and disease-free survival in patients, as well as with more advanced CRC clinicopathological stage. Loss of function analysis demonstrated that NUFIP1 knockdown suppressed cell growth in vitro and in vivo, inhibited cell viability and survival, and induced cell cycle arrest and apoptosis in vitro, as well as up-regulated Bax and down-regulated Bcl-2 protein expression. In addition, as a natural anticancer triterpene from various fruits and vegetables, ursolic acid (UA) treatment suppressed cell proliferation, down-regulated NUFIP1 protein expression, and further enhanced the effects of NUFIP1 knockdown in CRC cells in vitro. NUFIP1 knockdown up-regulated the expression of 136 proteins, down-regulated the expression of 41 proteins, and enriched multiple signaling pathways including the senescence-associated heterochromatin foci (SAHF) pathway. Furthermore, NUFIP1 knockdown enhanced the expression of senescence-associated-β-galactosidase (SA-β-gal), the SAHF markers HP1γ and trimethylation (H3k9me3), and the senescence-related protein HMGA2, as well as both p53 and its downstream p21 protein expression. Our findings suggest that NUFIP1 is overexpressed in CRC and correlates with disease progression and poor patient survival. NUFIP1 may exert oncogenic effects partly by altering senescence. UA may show potential to treat CRC by down-regulating NUFIP1.
Collapse
Affiliation(s)
- Aling Shen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Meizhu Wu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Liya Liu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Youqin Chen
- Department of Pediatrics, Case Western Reserve University School of Medicine, Rainbow Babies and Children’s Hospital, Cleveland, OH, United States
| | - Xiaoping Chen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Mingkai Zhuang
- Department of Gastroenterology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Qiurong Xie
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Ying Cheng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jiapeng Li
- Department of Physical Education, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Zhiqing Shen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Lihui Wei
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jianfeng Chu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Thomas J. Sferra
- Department of Pediatrics, Case Western Reserve University School of Medicine, Rainbow Babies and Children’s Hospital, Cleveland, OH, United States
| | - Xiuli Zhang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Nanhui Xu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Li Li
- Department of Health Management, Fujian Provincial Hospital, Shengli Clinical College of Fujian Medical University, Fuzhou, China
| | - Jun Peng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Fenglin Chen
- Department of Gastroenterology, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
11
|
Baldini L, Charpentier B, Labialle S. Emerging Data on the Diversity of Molecular Mechanisms Involving C/D snoRNAs. Noncoding RNA 2021; 7:ncrna7020030. [PMID: 34066559 PMCID: PMC8162545 DOI: 10.3390/ncrna7020030] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 12/15/2022] Open
Abstract
Box C/D small nucleolar RNAs (C/D snoRNAs) represent an ancient family of small non-coding RNAs that are classically viewed as housekeeping guides for the 2′-O-methylation of ribosomal RNA in Archaea and Eukaryotes. However, an extensive set of studies now argues that they are involved in mechanisms that go well beyond this function. Here, we present these pieces of evidence in light of the current comprehension of the molecular mechanisms that control C/D snoRNA expression and function. From this inventory emerges that an accurate description of these activities at a molecular level is required to let the snoRNA field enter in a second age of maturity.
Collapse
Affiliation(s)
| | - Bruno Charpentier
- Correspondence: (B.C.); (S.L.); Tel.: +33-3-72-74-66-27 (B.C.); +33-3-72-74-66-51 (S.L.)
| | - Stéphane Labialle
- Correspondence: (B.C.); (S.L.); Tel.: +33-3-72-74-66-27 (B.C.); +33-3-72-74-66-51 (S.L.)
| |
Collapse
|
12
|
The box C/D snoRNP assembly factor Bcd1 interacts with the histone chaperone Rtt106 and controls its transcription dependent activity. Nat Commun 2021; 12:1859. [PMID: 33767140 PMCID: PMC7994586 DOI: 10.1038/s41467-021-22077-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 02/26/2021] [Indexed: 12/25/2022] Open
Abstract
Biogenesis of eukaryotic box C/D small nucleolar ribonucleoproteins initiates co-transcriptionally and requires the action of the assembly machinery including the Hsp90/R2TP complex, the Rsa1p:Hit1p heterodimer and the Bcd1 protein. We present genetic interactions between the Rsa1p-encoding gene and genes involved in chromatin organization including RTT106 that codes for the H3-H4 histone chaperone Rtt106p controlling H3K56ac deposition. We show that Bcd1p binds Rtt106p and controls its transcription-dependent recruitment by reducing its association with RNA polymerase II, modulating H3K56ac levels at gene body. We reveal the 3D structures of the free and Rtt106p-bound forms of Bcd1p using nuclear magnetic resonance and X-ray crystallography. The interaction is also studied by a combination of biophysical and proteomic techniques. Bcd1p interacts with a region that is distinct from the interaction interface between the histone chaperone and histone H3. Our results are evidence for a protein interaction interface for Rtt106p that controls its transcription-associated activity. Biogenesis of small nucleolar RNAs ribonucleoproteins (snoRNPs) requires dedicated assembly machinery. Here, the authors show that a subset of snoRNP assembly factors interacts, genetically or directly, with factors modulating chromatin architecture, suggesting a link between ribosome formation and chromatin functions.
Collapse
|
13
|
Abel Y, Paiva ACF, Bizarro J, Chagot ME, Santo PE, Robert MC, Quinternet M, Vandermoere F, Sousa PMF, Fort P, Charpentier B, Manival X, Bandeiras TM, Bertrand E, Verheggen C. NOPCHAP1 is a PAQosome cofactor that helps loading NOP58 on RUVBL1/2 during box C/D snoRNP biogenesis. Nucleic Acids Res 2021; 49:1094-1113. [PMID: 33367824 PMCID: PMC7826282 DOI: 10.1093/nar/gkaa1226] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 11/13/2020] [Accepted: 12/11/2020] [Indexed: 12/15/2022] Open
Abstract
The PAQosome is a large complex composed of the HSP90/R2TP chaperone and a prefoldin-like module. It promotes the biogenesis of cellular machineries but it is unclear how it discriminates closely related client proteins. Among the main PAQosome clients are C/D snoRNPs and in particular their core protein NOP58. Using NOP58 mutants and proteomic experiments, we identify different assembly intermediates and show that C12ORF45, which we rename NOPCHAP1, acts as a bridge between NOP58 and PAQosome. NOPCHAP1 makes direct physical interactions with the CC-NOP domain of NOP58 and domain II of RUVBL1/2 AAA+ ATPases. Interestingly, NOPCHAP1 interaction with RUVBL1/2 is disrupted upon ATP binding. Moreover, while it robustly binds both yeast and human NOP58, it makes little interactions with NOP56 and PRPF31, two other closely related CC-NOP proteins. Expression of NOP58, but not NOP56 or PRPF31, is decreased in NOPCHAP1 KO cells. We propose that NOPCHAP1 is a client-loading PAQosome cofactor that selects NOP58 to promote box C/D snoRNP assembly.
Collapse
Affiliation(s)
- Yoann Abel
- IGMM, CNRS, Univ Montpellier, Montpellier, France.,Equipe labellisée Ligue Nationale Contre le Cancer, Montpellier, France.,IGH, CNRS, Univ Montpellier, Montpellier, France
| | - Ana C F Paiva
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras, 2781-901, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, 2780-157, Portugal
| | - Jonathan Bizarro
- IGMM, CNRS, Univ Montpellier, Montpellier, France.,Equipe labellisée Ligue Nationale Contre le Cancer, Montpellier, France
| | | | - Paulo E Santo
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras, 2781-901, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, 2780-157, Portugal
| | - Marie-Cécile Robert
- IGMM, CNRS, Univ Montpellier, Montpellier, France.,Equipe labellisée Ligue Nationale Contre le Cancer, Montpellier, France.,IGH, CNRS, Univ Montpellier, Montpellier, France
| | - Marc Quinternet
- Université de Lorraine, CNRS, INSERM, IBSLor, Biophysics and Structural Biology Core Facility, F-54000, Nancy, France
| | | | - Pedro M F Sousa
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras, 2781-901, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, 2780-157, Portugal
| | | | | | - Xavier Manival
- Université de Lorraine, CNRS, IMoPA, F-54000 Nancy, France
| | - Tiago M Bandeiras
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras, 2781-901, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, 2780-157, Portugal
| | - Edouard Bertrand
- IGMM, CNRS, Univ Montpellier, Montpellier, France.,Equipe labellisée Ligue Nationale Contre le Cancer, Montpellier, France.,IGH, CNRS, Univ Montpellier, Montpellier, France
| | - Céline Verheggen
- IGMM, CNRS, Univ Montpellier, Montpellier, France.,Equipe labellisée Ligue Nationale Contre le Cancer, Montpellier, France.,IGH, CNRS, Univ Montpellier, Montpellier, France
| |
Collapse
|
14
|
Sabaie H, Ahangar NK, Ghafouri-Fard S, Taheri M, Rezazadeh M. Clinical and genetic features of PEHO and PEHO-Like syndromes: A scoping review. Biomed Pharmacother 2020; 131:110793. [PMID: 33152950 DOI: 10.1016/j.biopha.2020.110793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/09/2020] [Accepted: 09/19/2020] [Indexed: 01/15/2023] Open
Abstract
Progressive encephalopathy with edema, hypsarrhythmia, and optic atrophy (PEHO) syndrome is a genetic neurological condition characterized by extreme cerebellar atrophy. PEHO-Like syndrome is comparable to PEHO syndrome, with the exception that there is no typical neuro-radiologic or neuro-ophthalmic findings. PEHO spectrum disorders are highly clinically and genetically heterogeneous, and this has challenged their diagnosis. This scoping review aims to summarize and discuss common clinical and genetic features of these syndromes to help future researches. This study was performed according to a six-stage methodology structure and PRISMA guideline. A systematic search of seven databases was performed to find eligible publications prior to June 2020. Articles screening and data extraction were independently performed by two reviewers and quantitative and qualitative analyses were conducted. Thirty-eight articles were identified that fulfill the inclusion criteria. Cerebellar atrophy was the main clinical difference between the two groups but data on optic atrophy and infantile spasms/hypsarrhythmia were not consistent with the previously essential diagnostic criteria. Genetic analysis was performed in several studies, leading to identification of pathogenic variants in different genes that caused these conditions due to different mechanisms. Genetic studies could revolutionize the diagnosis process and our understanding of the etiology of this challenging group of patients by providing targeted sequencing panels and exome- or genome-scale studies in the future.
Collapse
Affiliation(s)
- Hani Sabaie
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Noora Karim Ahangar
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Maryam Rezazadeh
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
15
|
Yang Z, Wang J, Huang L, Lilley DMJ, Ye K. Functional organization of box C/D RNA-guided RNA methyltransferase. Nucleic Acids Res 2020; 48:5094-5105. [PMID: 32297938 PMCID: PMC7229835 DOI: 10.1093/nar/gkaa247] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/29/2020] [Accepted: 04/01/2020] [Indexed: 11/14/2022] Open
Abstract
Box C/D RNA protein complexes (RNPs) catalyze site-specific 2'-O-methylation of RNA with specificity determined by guide RNAs. In eukaryotic C/D RNP, the paralogous Nop58 and Nop56 proteins specifically associate with terminal C/D and internal C'/D' motifs of guide RNAs, respectively. We have reconstituted active C/D RNPs with recombinant proteins of the thermophilic yeast Chaetomium thermophilum. Nop58 and Nop56 could not distinguish between the two C/D motifs in the reconstituted enzyme, suggesting that the assembly specificity is imposed by trans-acting factors in vivo. The two C/D motifs are functionally independent and halfmer C/D RNAs can also guide site-specific methylation. Extensive pairing between C/D RNA and substrate is inhibitory to modification for both yeast and archaeal C/D RNPs. N6-methylated adenine at box D/D' interferes with the function of the coupled guide. Our data show that all C/D RNPs share the same functional organization and mechanism of action and provide insight into the assembly specificity of eukaryotic C/D RNPs.
Collapse
Affiliation(s)
- Zuxiao Yang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,Institute of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang 050017, Hebei, China
| | - Jiayin Wang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Huang
- Cancer Research UK Nucleic Acid Structure Research Group, The University of Dundee, Dundee, UK
| | - David M J Lilley
- Cancer Research UK Nucleic Acid Structure Research Group, The University of Dundee, Dundee, UK
| | - Keqiong Ye
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
16
|
Chagot ME, Quinternet M, Jacquemin C, Manival X, Gardiennet C. Box C/D snoRNPs: solid-state NMR fingerprint of an early-stage 50 kDa assembly intermediate. BIOMOLECULAR NMR ASSIGNMENTS 2020; 14:131-140. [PMID: 32030621 DOI: 10.1007/s12104-020-09933-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 01/26/2020] [Indexed: 06/10/2023]
Abstract
Many cellular functions rely on stable protein-only or protein-RNA complexes. Deciphering their assembly mechanism is a key question in cell biology. We here focus on box C/D small nucleolar ribonucleoproteins involved in ribosome biogenesis. The mature particles contain four core proteins and a guide RNA. Despite their relatively simple composition, these particles don't self-assemble in eukaryote and the production of a native and functional particle requires a large number of transient other proteins, called assembly factors. We present here 13C and 15N solid-state NMR assignment of yeast 126-residue core protein Snu13 in the context of its 50 kDa pre-complex with assembly factors Rsa1p:Hit1p. In this sample, only one third of the protein is labelled, leading to a low sensitivity. We could nevertheless obtain assignment data for 91% of the residues. Secondary structure derived from our assignments shows that Snu13p overall structure is maintained in the context of the complex. Chemical shift perturbations are analysed to evaluate Snu13p conformational changes and interaction interface upon binding to its partner proteins. While indirect perturbations are observed in the hydrophobic core, we find other good candidate residues belonging to the interaction interface. We describe the role of some Snu13p N-terminal and C-terminal residues, not identified in previous structural studies. These preliminary results will serve as a basis for future interaction studies, especially by adding RNA, to decipher box C/D snoRNP particles assembly pathway.
Collapse
Affiliation(s)
- Marie-Eve Chagot
- IMoPA, UMR 7365 CNRS, Université de Lorraine, Campus Biologie Santé, Nancy, France
| | - Marc Quinternet
- UMS-2008 IBSLor Université de Lorraine, CNRS, INSERM, Nancy, France
| | - Clémence Jacquemin
- IMoPA, UMR 7365 CNRS, Université de Lorraine, Campus Biologie Santé, Nancy, France
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Xavier Manival
- IMoPA, UMR 7365 CNRS, Université de Lorraine, Campus Biologie Santé, Nancy, France.
| | - Carole Gardiennet
- CRM2, UMR 7036 CNRS, Université de Lorraine, Faculté des Sciences et Technologies, Nancy, France.
| |
Collapse
|
17
|
Yeast R2TP Interacts with Extended Termini of Client Protein Nop58p. Sci Rep 2019; 9:20228. [PMID: 31882871 PMCID: PMC6934851 DOI: 10.1038/s41598-019-56712-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 11/13/2019] [Indexed: 01/15/2023] Open
Abstract
The AAA + ATPase R2TP complex facilitates assembly of a number of ribonucleoprotein particles (RNPs). Although the architecture of R2TP is known, its molecular basis for acting upon multiple RNPs remains unknown. In yeast, the core subunit of the box C/D small nucleolar RNPs, Nop58p, is the target for R2TP function. In the recently observed U3 box C/D snoRNP as part of the 90 S small subunit processome, the unfolded regions of Nop58p are observed to form extensive interactions, suggesting a possible role of R2TP in stabilizing the unfolded region of Nop58p prior to its assembly. Here, we analyze the interaction between R2TP and a Maltose Binding Protein (MBP)-fused Nop58p by biophysical and yeast genetics methods. We present evidence that R2TP interacts largely with the unfolded termini of Nop58p. Our results suggest a general mechanism for R2TP to impart specificity by recognizing unfolded regions in its clients.
Collapse
|
18
|
Khoshnevis S, Dreggors RE, Hoffmann TFR, Ghalei H. A conserved Bcd1 interaction essential for box C/D snoRNP biogenesis. J Biol Chem 2019; 294:18360-18371. [PMID: 31537647 DOI: 10.1074/jbc.ra119.010222] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/17/2019] [Indexed: 12/22/2022] Open
Abstract
Precise modification and processing of rRNAs are required for the production of ribosomes and accurate translation of proteins. Small nucleolar ribonucleoproteins (snoRNPs) guide the folding, modification, and processing of rRNAs and are thus critical for all eukaryotic cells. Bcd1, an essential zinc finger HIT protein functionally conserved in eukaryotes, has been implicated as an early regulator for biogenesis of box C/D snoRNPs and controls steady-state levels of box C/D snoRNAs through an unknown mechanism. Using a combination of genetic and biochemical approaches, here we found a conserved N-terminal motif in Bcd1 from Saccharomyces cerevisiae that is required for interactions with box C/D snoRNAs and the core snoRNP protein, Snu13. We show that both the Bcd1-snoRNA and Bcd1-Snu13 interactions are critical for snoRNP assembly and ribosome biogenesis. Our results provide mechanistic insight into Bcd1 interactions that likely control the early steps of snoRNP maturation and contribute to the essential role of this protein in maintaining the steady-state levels of snoRNAs in the cell.
Collapse
Affiliation(s)
- Sohail Khoshnevis
- Department of Biology, Emory University, Atlanta, Georgia 30322; Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - R Elizabeth Dreggors
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322; Graduate Program in Biochemistry, Cell and Developmental Biology (BCDB), Emory University, Atlanta, Georgia 30322
| | - Tobias F R Hoffmann
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Homa Ghalei
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322; Graduate Program in Biochemistry, Cell and Developmental Biology (BCDB), Emory University, Atlanta, Georgia 30322.
| |
Collapse
|
19
|
Paul A, Tiotiu D, Bragantini B, Marty H, Charpentier B, Massenet S, Labialle S. Bcd1p controls RNA loading of the core protein Nop58 during C/D box snoRNP biogenesis. RNA (NEW YORK, N.Y.) 2019; 25:496-506. [PMID: 30700579 PMCID: PMC6426285 DOI: 10.1261/rna.067967.118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 01/29/2019] [Indexed: 06/09/2023]
Abstract
Biogenesis of eukaryotic box C/D small nucleolar ribonucleoproteins (C/D snoRNPs) is guided by conserved trans-acting factors that act collectively to assemble the core proteins SNU13/Snu13, NOP58/Nop58, NOP56/Nop56, FBL/Nop1, and box C/D small nucleolar RNAs (C/D snoRNAs), in human and in yeast, respectively. This finely elaborated process involves the sequential interplay of snoRNP-related proteins and RNA through the formation of transient pre-RNP complexes. BCD1/Bcd1 protein is essential for yeast cell growth and for the specific accumulation of box C/D snoRNAs. In this work, chromatin, RNA, and protein immunoprecipitation assays revealed the ordered loading of several snoRNP-related proteins on immature and mature snoRNA species. Our results identify Bcd1p as an assembly factor of C/D snoRNP biogenesis that is likely recruited cotranscriptionally and that directs the loading of the core protein Nop58 on RNA.
Collapse
Affiliation(s)
- Arnaud Paul
- Université de Lorraine, CNRS, IMoPA, F-54000 Nancy, France
| | - Decebal Tiotiu
- Université de Lorraine, CNRS, IMoPA, F-54000 Nancy, France
| | | | - Hélène Marty
- Université de Lorraine, CNRS, IMoPA, F-54000 Nancy, France
| | | | | | | |
Collapse
|
20
|
The yeast C/D box snoRNA U14 adopts a "weak" K-turn like conformation recognized by the Snu13 core protein in solution. Biochimie 2019; 164:70-82. [PMID: 30914254 DOI: 10.1016/j.biochi.2019.03.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/20/2019] [Indexed: 01/09/2023]
Abstract
Non-coding RNAs associate with proteins to form ribonucleoproteins (RNPs), such as ribosome, box C/D snoRNPs, H/ACA snoRNPs, ribonuclease P, telomerase and spliceosome to ensure cell viability. The assembly of these RNA-protein complexes relies on the ability of the RNA to adopt the correct bound conformation. K-turn motifs represent ubiquitous binding platform for proteins found in several cellular environment. This structural motif has an internal three-nucleotide bulge flanked on its 3' side by a G•A/A•G tandem pairs followed by one or two non-Watson-Crick pairs, and on its 5' side by a classical RNA helix. This peculiar arrangement induces a strong curvature of the phosphodiester backbone, which makes it conducive to multiple tertiary interactions. SNU13/Snu13p (Human/Yeast) binds specifically the U14 C/D box snoRNA K-turn sequence motif. This event is the prerequisite to promote the assembly of the RNP, which contains NOP58/Nop58 and NOP56/Nop56 core proteins and the 2'-O-methyl-transferase, Fibrillarin/Nop1p. The U14 small nucleolar RNA is a conserved non-coding RNA found in yeast and vertebrates required for the pre-rRNA maturation and ribose methylation. Here, we report the solution structure of the free U14 snoRNA K-turn motif (kt-U14) as determined by Nuclear Magnetic Resonance. We demonstrate that a major fraction of free kt-U14 adopts a pre-folded conformation similar to protein bound K-turn, even in the absence of divalent ions. In contrast to the kt-U4 or tyrS RNA, kt-U14 displays a sharp bent in the phosphodiester backbone. The U•U and G•A tandem base pairs are formed through weak hydrogen bonds. Finally, we show that the structure of kt-U14 is stabilized upon Snu13p binding. The structure of the free U14 RNA is the first reference example for the canonical motifs of the C/D box snoRNA family.
Collapse
|
21
|
Delorme-Axford E, Klionsky DJ. On the edge of degradation: Autophagy regulation by RNA decay. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 10:e1522. [PMID: 30560575 DOI: 10.1002/wrna.1522] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 11/21/2018] [Accepted: 11/27/2018] [Indexed: 12/21/2022]
Abstract
Cells must dynamically adapt to altered environmental conditions, particularly during times of stress, to ensure their ability to function effectively and survive. The macroautophagy/autophagy pathway is highly conserved across eukaryotic cells and promotes cell survival during stressful conditions. In general, basal autophagy occurs at a low level to sustain cellular homeostasis and metabolism. However, autophagy is robustly upregulated in response to nutrient deprivation, pathogen infection and increased accumulation of potentially toxic protein aggregates and superfluous organelles. Within the cell, RNA decay maintains quality control to remove aberrant transcripts and regulate appropriate levels of gene expression. Recent evidence has identified components of the cellular mRNA decay machinery as novel regulators of autophagy. Here, we review current findings that demonstrate how autophagy is modulated through RNA decay. This article is categorized under: RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms RNA Turnover and Surveillance > Regulation of RNA Stability.
Collapse
Affiliation(s)
| | - Daniel J Klionsky
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
22
|
Lynham J, Houry WA. The Multiple Functions of the PAQosome: An R2TP- and URI1 Prefoldin-Based Chaperone Complex. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1106:37-72. [DOI: 10.1007/978-3-030-00737-9_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
23
|
Wyant GA, Abu-Remaileh M, Frenkel EM, Laqtom NN, Dharamdasani V, Lewis CA, Chan SH, Heinze I, Ori A, Sabatini DM. NUFIP1 is a ribosome receptor for starvation-induced ribophagy. Science 2018; 360:751-758. [PMID: 29700228 DOI: 10.1126/science.aar2663] [Citation(s) in RCA: 242] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 03/19/2018] [Indexed: 12/11/2022]
Abstract
The lysosome degrades and recycles macromolecules, signals to the master growth regulator mTORC1 [mechanistic target of rapamycin (mTOR) complex 1], and is associated with human disease. We performed quantitative proteomic analyses of rapidly isolated lysosomes and found that nutrient levels and mTOR dynamically modulate the lysosomal proteome. Upon mTORC1 inhibition, NUFIP1 (nuclear fragile X mental retardation-interacting protein 1) redistributes from the nucleus to autophagosomes and lysosomes. Upon these conditions, NUFIP1 interacts with ribosomes and delivers them to autophagosomes by directly binding to microtubule-associated proteins 1A/1B light chain 3B (LC3B). The starvation-induced degradation of ribosomes via autophagy (ribophagy) depends on the capacity of NUFIP1 to bind LC3B and promotes cell survival. We propose that NUFIP1 is a receptor for the selective autophagy of ribosomes.
Collapse
Affiliation(s)
- Gregory A Wyant
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Monther Abu-Remaileh
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Evgeni M Frenkel
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Nouf N Laqtom
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Vimisha Dharamdasani
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Caroline A Lewis
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Sze Ham Chan
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Ivonne Heinze
- Leibniz Institute on Aging-Fritz Lipmann Institute, 07745 Jena, Germany
| | - Alessandro Ori
- Leibniz Institute on Aging-Fritz Lipmann Institute, 07745 Jena, Germany.
| | - David M Sabatini
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA. .,Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| |
Collapse
|
24
|
Miz1 Controls Schwann Cell Proliferation via H3K36 me2 Demethylase Kdm8 to Prevent Peripheral Nerve Demyelination. J Neurosci 2017; 38:858-877. [PMID: 29217679 DOI: 10.1523/jneurosci.0843-17.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 11/15/2017] [Accepted: 11/17/2017] [Indexed: 12/21/2022] Open
Abstract
Schwann cell differentiation and myelination depends on chromatin remodeling, histone acetylation, and methylation, which all affect Schwann cell proliferation. We previously reported that the deletion of the POZ (POxvirus and Zinc finger) domain of the transcription factor Miz1 (Myc-interacting zinc finger protein; encoded by Zbtb17) in mouse Schwann cells (Miz1ΔPOZ) causes a neuropathy at 90 d after birth [postnatal day (P) 90], with a subsequent spontaneous regeneration. Here we show that RNA sequencing from Miz1ΔPOZ and control animals at P30 revealed a set of upregulated genes with a strong correlation to cell-cycle regulation. Consistently, a subset of Schwann cells did not exit the cell cycle as observed in control animals and the growth fraction increased over time. From the RNAseq gene list, two direct Miz1 target genes were identified, one of which encodes the histone H3K36me2 demethylase Kdm8. We show that the expression of Kdm8 is repressed by Miz1 and that its release in Miz1ΔPOZ cells induces a decrease of H3K36me2, especially in deregulated cell-cycle-related genes. The linkage between elevated Kdm8 expression, hypomethylation of H3K36 at cell-cycle-relevant genes, and the subsequent re-entering of adult Schwann cells into the cell cycle suggests that the release of Kdm8 repression in the absence of a functional Miz1 is a central issue in the development of the Miz1ΔPOZ phenotype.SIGNIFICANCE STATEMENT The deletion of the Miz1 (Myc-interacting zinc finger protein 1) POZ (POxvirus and Zinc finger) domain in Schwann cells causes a neuropathy. Here we report sustained Schwann cell proliferation caused by an increased expression of the direct Miz1 target gene Kdm8, encoding a H3K36me2 demethylase. Hence, the demethylation of H3K36 is linked to the pathogenesis of a neuropathy.
Collapse
|
25
|
Anttonen AK, Laari A, Kousi M, Yang YJ, Jääskeläinen T, Somer M, Siintola E, Jakkula E, Muona M, Tegelberg S, Lönnqvist T, Pihko H, Valanne L, Paetau A, Lun MP, Hästbacka J, Kopra O, Joensuu T, Katsanis N, Lehtinen MK, Palvimo JJ, Lehesjoki AE. ZNHIT3 is defective in PEHO syndrome, a severe encephalopathy with cerebellar granule neuron loss. Brain 2017; 140:1267-1279. [PMID: 28335020 DOI: 10.1093/brain/awx040] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 01/06/2017] [Indexed: 11/12/2022] Open
Abstract
Progressive encephalopathy with oedema, hypsarrhythmia, and optic atrophy (PEHO) syndrome is an early childhood onset, severe autosomal recessive encephalopathy characterized by extreme cerebellar atrophy due to almost total granule neuron loss. By combining homozygosity mapping in Finnish families with Sanger sequencing of positional candidate genes and with exome sequencing a homozygous missense substitution of leucine for serine at codon 31 in ZNHIT3 was identified as the primary cause of PEHO syndrome. ZNHIT3 encodes a nuclear zinc finger protein previously implicated in transcriptional regulation and in small nucleolar ribonucleoprotein particle assembly and thus possibly to pre-ribosomal RNA processing. The identified mutation affects a highly conserved amino acid residue in the zinc finger domain of ZNHIT3. Both knockdown and genome editing of znhit3 in zebrafish embryos recapitulate the patients' cerebellar defects, microcephaly and oedema. These phenotypes are rescued by wild-type, but not mutant human ZNHIT3 mRNA, suggesting that the patient missense substitution causes disease through a loss-of-function mechanism. Transfection of cell lines with ZNHIT3 expression vectors showed that the PEHO syndrome mutant protein is unstable. Immunohistochemical analysis of mouse cerebellar tissue demonstrated ZNHIT3 to be expressed in proliferating granule cell precursors, in proliferating and post-mitotic granule cells, and in Purkinje cells. Knockdown of Znhit3 in cultured mouse granule neurons and ex vivo cerebellar slices indicate that ZNHIT3 is indispensable for granule neuron survival and migration, consistent with the zebrafish findings and patient neuropathology. These results suggest that loss-of-function of a nuclear regulator protein underlies PEHO syndrome and imply that establishment of its spatiotemporal interaction targets will be the basis for developing therapeutic approaches and for improved understanding of cerebellar development.
Collapse
Affiliation(s)
- Anna-Kaisa Anttonen
- The Folkhälsan Institute of Genetics, Haartmaninkatu 8, 00290 Helsinki, Finland.,Neuroscience Center, University of Helsinki, Viikinkaari 4, 00790 Helsinki, Finland.,Research Programs Unit, Molecular Neurology, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland.,Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, Haartmaninkatu 8, 00290 Helsinki, Finland
| | - Anni Laari
- The Folkhälsan Institute of Genetics, Haartmaninkatu 8, 00290 Helsinki, Finland.,Neuroscience Center, University of Helsinki, Viikinkaari 4, 00790 Helsinki, Finland.,Research Programs Unit, Molecular Neurology, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland
| | - Maria Kousi
- Center for Human Disease Modeling, Duke University Medical Center, Carmichael Building, 300 North Duke Street, Suite 48-118, Durham, NC 27701, USA
| | - Yawei J Yang
- Division of Genetics, Howard Hughes Medical Institute.,Institute for Molecular Medicine Finland, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland.,Department of Pediatric Neurology, Children's Hospital, University of Helsinki and Helsinki University Hospital, Lastenlinnantie 2, 00290 Helsinki, Finland
| | - Tiina Jääskeläinen
- Institute of Biomedicine, University of Eastern Finland, Yliopistonranta 1, 70210 Kuopio, Finland.,Institute of Dentistry, University of Eastern Finland, Yliopistonranta 1, 70210 Kuopio, Finland
| | - Mirja Somer
- The Norio Centre, The Rinnekoti Foundation, Kornetintie 8, 00380 Helsinki, Finland
| | - Eija Siintola
- The Folkhälsan Institute of Genetics, Haartmaninkatu 8, 00290 Helsinki, Finland.,Neuroscience Center, University of Helsinki, Viikinkaari 4, 00790 Helsinki, Finland
| | - Eveliina Jakkula
- Institute for Molecular Medicine Finland, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland
| | - Mikko Muona
- The Folkhälsan Institute of Genetics, Haartmaninkatu 8, 00290 Helsinki, Finland.,Neuroscience Center, University of Helsinki, Viikinkaari 4, 00790 Helsinki, Finland.,Research Programs Unit, Molecular Neurology, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland.,Institute for Molecular Medicine Finland, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland
| | - Saara Tegelberg
- The Folkhälsan Institute of Genetics, Haartmaninkatu 8, 00290 Helsinki, Finland.,Neuroscience Center, University of Helsinki, Viikinkaari 4, 00790 Helsinki, Finland.,Research Programs Unit, Molecular Neurology, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland
| | - Tuula Lönnqvist
- Department of Pediatric Neurology, Children's Hospital, University of Helsinki and Helsinki University Hospital, Lastenlinnantie 2, 00290 Helsinki, Finland
| | - Helena Pihko
- Department of Pediatric Neurology, Children's Hospital, University of Helsinki and Helsinki University Hospital, Lastenlinnantie 2, 00290 Helsinki, Finland
| | - Leena Valanne
- Department of Radiology, HUS Medical Imaging Center, Haartmaninkatu 4, 00290 Helsinki, Finland
| | - Anders Paetau
- Department of Pathology, Helsinki University Hospital, Haartmaninkatu 3, 00290 Helsinki, Finland
| | - Melody P Lun
- Department of Pathology, Boston Children's Hospital, BCH 3108, 300 Longwood Ave., Boston, MA 02115, USA.,Department of Pathology and Laboratory Medicine, Boston University School of Medicine, 670 Albany Street, Boston, MA 02118, USA
| | - Johanna Hästbacka
- The Folkhälsan Institute of Genetics, Haartmaninkatu 8, 00290 Helsinki, Finland.,Department of Pediatrics, Children's Hospital, University of Helsinki and Helsinki University Hospital, Stenbäckinkatu 11, 00290 Helsinki, Finland
| | - Outi Kopra
- The Folkhälsan Institute of Genetics, Haartmaninkatu 8, 00290 Helsinki, Finland.,Neuroscience Center, University of Helsinki, Viikinkaari 4, 00790 Helsinki, Finland.,Research Programs Unit, Molecular Neurology, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland
| | - Tarja Joensuu
- The Folkhälsan Institute of Genetics, Haartmaninkatu 8, 00290 Helsinki, Finland.,Neuroscience Center, University of Helsinki, Viikinkaari 4, 00790 Helsinki, Finland.,Research Programs Unit, Molecular Neurology, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland
| | - Nicholas Katsanis
- Center for Human Disease Modeling, Duke University Medical Center, Carmichael Building, 300 North Duke Street, Suite 48-118, Durham, NC 27701, USA
| | - Maria K Lehtinen
- Department of Pathology, Boston Children's Hospital, BCH 3108, 300 Longwood Ave., Boston, MA 02115, USA
| | - Jorma J Palvimo
- Institute of Biomedicine, University of Eastern Finland, Yliopistonranta 1, 70210 Kuopio, Finland
| | - Anna-Elina Lehesjoki
- The Folkhälsan Institute of Genetics, Haartmaninkatu 8, 00290 Helsinki, Finland.,Neuroscience Center, University of Helsinki, Viikinkaari 4, 00790 Helsinki, Finland.,Research Programs Unit, Molecular Neurology, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland
| |
Collapse
|
26
|
de Los Santos-Velázquez AI, de Oya IG, Manzano-López J, Monje-Casas F. Late rDNA Condensation Ensures Timely Cdc14 Release and Coordination of Mitotic Exit Signaling with Nucleolar Segregation. Curr Biol 2017; 27:3248-3263.e5. [PMID: 29056450 DOI: 10.1016/j.cub.2017.09.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 08/16/2017] [Accepted: 09/13/2017] [Indexed: 12/28/2022]
Abstract
The nucleolus plays a pivotal role in multiple key cellular processes. An illustrative example is the regulation of mitotic exit in Saccharomyces cerevisiae through the nucleolar sequestration of the Cdc14 phosphatase. The peculiar structure of the nucleolus, however, has also its drawbacks. The repetitive nature of the rDNA gives rise to cohesion-independent linkages whose resolution in budding yeast requires the Cdc14-dependent inhibition of rRNA transcription, which facilitates condensin accessibility to this locus. Thus, the rDNA condenses and segregates later than most other yeast genomic regions. Here, we show that defective function of a small nucleolar ribonucleoprotein particle (snoRNP) assembly factor facilitates condensin accessibility to the rDNA and induces nucleolar hyper-condensation. Interestingly, this increased compaction of the nucleolus interferes with the proper release of Cdc14 from this organelle. This observation provides an explanation for the delayed rDNA condensation in budding yeast, which is necessary to efficiently coordinate timely Cdc14 release and mitotic exit with nucleolar compaction and segregation.
Collapse
Affiliation(s)
- Ana Isabel de Los Santos-Velázquez
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Spanish National Research Council (CSIC), University of Seville, and University Pablo de Olavide, Avda. Américo Vespucio 24, 41092 Sevilla, Spain
| | - Inés G de Oya
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Spanish National Research Council (CSIC), University of Seville, and University Pablo de Olavide, Avda. Américo Vespucio 24, 41092 Sevilla, Spain
| | - Javier Manzano-López
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Spanish National Research Council (CSIC), University of Seville, and University Pablo de Olavide, Avda. Américo Vespucio 24, 41092 Sevilla, Spain
| | - Fernando Monje-Casas
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Spanish National Research Council (CSIC), University of Seville, and University Pablo de Olavide, Avda. Américo Vespucio 24, 41092 Sevilla, Spain.
| |
Collapse
|
27
|
Rothé B, Manival X, Rolland N, Charron C, Senty-Ségault V, Branlant C, Charpentier B. Implication of the box C/D snoRNP assembly factor Rsa1p in U3 snoRNP assembly. Nucleic Acids Res 2017; 45:7455-7473. [PMID: 28505348 PMCID: PMC5499572 DOI: 10.1093/nar/gkx424] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 05/02/2017] [Indexed: 01/23/2023] Open
Abstract
The U3 box C/D snoRNA is one key element of 90S pre-ribosome. It contains a 5΄ domain pairing with pre-rRNA and the U3B/C and U3C΄/D motifs for U3 packaging into a unique small nucleolar ribonucleoprotein particle (snoRNP). The RNA-binding protein Snu13/SNU13 nucleates on U3B/C the assembly of box C/D proteins Nop1p/FBL and Nop56p/NOP56, and the U3-specific protein Rrp9p/U3-55K. Snu13p/SNU13 has a much lower affinity for U3C΄/D but nevertheless forms on this motif an RNP with box C/D proteins Nop1p/FBL and Nop58p/NOP58. In this study, we characterized the influence of the RNP assembly protein Rsa1 in the early steps of U3 snoRNP biogenesis in yeast and we propose a refined model of U3 snoRNP biogenesis. While recombinant Snu13p enhances the binding of Rrp9p to U3B/C, we observed that Rsa1p has no effect on this activity but forms with Snu13p and Rrp9p a U3B/C pre-RNP. In contrast, we found that Rsa1p enhances Snu13p binding on U3C΄/D. RNA footprinting experiments indicate that this positive effect most likely occurs by direct contacts of Rsa1p with the U3 snoRNA 5΄ domain. In light of the recent U3 snoRNP cryo-EM structures, our data suggest that Rsa1p has a dual role by also preventing formation of a pre-mature functional U3 RNP.
Collapse
Affiliation(s)
- Benjamin Rothé
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), UMR 7365 CNRS Université de Lorraine, Biopôle, Campus Biologie Santé, 9 avenue de la forêt de Haye, BP 20199, 54505 Vandœuvre-lès-Nancy, France
| | - Xavier Manival
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), UMR 7365 CNRS Université de Lorraine, Biopôle, Campus Biologie Santé, 9 avenue de la forêt de Haye, BP 20199, 54505 Vandœuvre-lès-Nancy, France
| | - Nicolas Rolland
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), UMR 7365 CNRS Université de Lorraine, Biopôle, Campus Biologie Santé, 9 avenue de la forêt de Haye, BP 20199, 54505 Vandœuvre-lès-Nancy, France
| | - Christophe Charron
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), UMR 7365 CNRS Université de Lorraine, Biopôle, Campus Biologie Santé, 9 avenue de la forêt de Haye, BP 20199, 54505 Vandœuvre-lès-Nancy, France
| | - Véronique Senty-Ségault
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), UMR 7365 CNRS Université de Lorraine, Biopôle, Campus Biologie Santé, 9 avenue de la forêt de Haye, BP 20199, 54505 Vandœuvre-lès-Nancy, France
| | - Christiane Branlant
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), UMR 7365 CNRS Université de Lorraine, Biopôle, Campus Biologie Santé, 9 avenue de la forêt de Haye, BP 20199, 54505 Vandœuvre-lès-Nancy, France
| | - Bruno Charpentier
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), UMR 7365 CNRS Université de Lorraine, Biopôle, Campus Biologie Santé, 9 avenue de la forêt de Haye, BP 20199, 54505 Vandœuvre-lès-Nancy, France
| |
Collapse
|
28
|
Tian S, Yu G, He H, Zhao Y, Liu P, Marshall AG, Demeler B, Stagg SM, Li H. Pih1p-Tah1p Puts a Lid on Hexameric AAA+ ATPases Rvb1/2p. Structure 2017; 25:1519-1529.e4. [PMID: 28919439 PMCID: PMC6625358 DOI: 10.1016/j.str.2017.08.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 06/11/2017] [Accepted: 08/07/2017] [Indexed: 11/21/2022]
Abstract
The Saccharomyces cerevisiae (Sc) R2TP complex affords an Hsp90-mediated and nucleotide-driven chaperone activity to proteins of small ribonucleoprotein particles (snoRNPs). The current lack of structural information on the ScR2TP complex, however, prevents a mechanistic understanding of this biological process. We characterized the structure of the ScR2TP complex made up of two AAA+ ATPases, Rvb1/2p, and two Hsp90 binding proteins, Tah1p and Pih1p, and its interaction with the snoRNP protein Nop58p by a combination of analytical ultracentrifugation, isothermal titration calorimetry, chemical crosslinking, hydrogen-deuterium exchange, and cryoelectron microscopy methods. We find that Pih1p-Tah1p interacts with Rvb1/2p cooperatively through the nucleotide-sensitive domain of Rvb1/2p. Nop58p further binds Pih1p-Tahp1 on top of the dome-shaped R2TP. Consequently, nucleotide binding releases Pih1p-Tah1p from Rvb1/2p, which offers a mechanism for nucleotide-driven binding and release of snoRNP intermediates.
Collapse
Affiliation(s)
- Shaoxiong Tian
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA
| | - Ge Yu
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA
| | - Huan He
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| | - Yu Zhao
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| | - Peilu Liu
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA
| | - Alan G Marshall
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA; Ion Cyclotron Resonance Program, The National High Magnetic Field Laboratory, Tallahassee, FL 32310, USA
| | - Borries Demeler
- Department of Biochemistry, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Scott M Stagg
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA; Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| | - Hong Li
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA; Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|
29
|
Massenet S, Bertrand E, Verheggen C. Assembly and trafficking of box C/D and H/ACA snoRNPs. RNA Biol 2017; 14:680-692. [PMID: 27715451 PMCID: PMC5519232 DOI: 10.1080/15476286.2016.1243646] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/09/2016] [Accepted: 09/27/2016] [Indexed: 12/23/2022] Open
Abstract
Box C/D and box H/ACA snoRNAs are abundant non-coding RNAs that localize in the nucleolus and mostly function as guides for nucleotide modifications. While a large pool of snoRNAs modifies rRNAs, an increasing number of snoRNAs could also potentially target mRNAs. ScaRNAs belong to a family of specific RNAs that localize in Cajal bodies and that are structurally similar to snoRNAs. Most scaRNAs are involved in snRNA modification, while telomerase RNA, which contains H/ACA motifs, functions in telomeric DNA synthesis. In this review, we describe how box C/D and H/ACA snoRNAs are processed and assembled with core proteins to form functional RNP particles. Their biogenesis involve several transport factors that first direct pre-snoRNPs to Cajal bodies, where some processing steps are believed to take place, and then to nucleoli. Assembly of core proteins involves the HSP90/R2TP chaperone-cochaperone system for both box C/D and H/ACA RNAs, but also several factors specific for each family. These assembly factors chaperone unassembled core proteins, regulate the formation and disassembly of pre-snoRNP intermediates, and control the activity of immature particles. The AAA+ ATPase RUVBL1 and RUVBL2 belong to the R2TP co-chaperones and play essential roles in snoRNP biogenesis, as well as in the formation of other macro-molecular complexes. Despite intensive research, their mechanisms of action are still incompletely understood.
Collapse
Affiliation(s)
- Séverine Massenet
- Ingénierie Moléculaire et Physiopathologie Articulaire, UMR 7365 CNRS, 9 Avenue de la forêt de Haye, 54505 Vandoeuvre-les-Nancy Cedex, France, Université de Lorraine, Campus Biologie –Santé, CS 50184, 54505 Vandoeuvre-les-Nancy Cedex, France
| | - Edouard Bertrand
- Institut de Génétique Moléculaire de Montpellier, UMR 5535 CNRS, 1919 route de Mende, 34293 Montpellier cedex 5, France, Université de Montpellier, 163 rue Auguste Broussonnet, 34090 Montpellier, France
| | - Céline Verheggen
- Institut de Génétique Moléculaire de Montpellier, UMR 5535 CNRS, 1919 route de Mende, 34293 Montpellier cedex 5, France, Université de Montpellier, 163 rue Auguste Broussonnet, 34090 Montpellier, France
| |
Collapse
|
30
|
Cloutier P, Poitras C, Durand M, Hekmat O, Fiola-Masson É, Bouchard A, Faubert D, Chabot B, Coulombe B. R2TP/Prefoldin-like component RUVBL1/RUVBL2 directly interacts with ZNHIT2 to regulate assembly of U5 small nuclear ribonucleoprotein. Nat Commun 2017; 8:15615. [PMID: 28561026 PMCID: PMC5460035 DOI: 10.1038/ncomms15615] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 04/12/2017] [Indexed: 01/11/2023] Open
Abstract
The R2TP/Prefoldin-like (R2TP/PFDL) complex has emerged as a cochaperone complex involved in the assembly of a number of critical protein complexes including snoRNPs, nuclear RNA polymerases and PIKK-containing complexes. Here we report on the use of multiple target affinity purification coupled to mass spectrometry to identify two additional complexes that interact with R2TP/PFDL: the TSC1–TSC2 complex and the U5 small nuclear ribonucleoprotein (snRNP). The interaction between R2TP/PFDL and the U5 snRNP is mostly mediated by the previously uncharacterized factor ZNHIT2. A more general function for the zinc-finger HIT domain in binding RUVBL2 is exposed. Disruption of ZNHIT2 and RUVBL2 expression impacts the protein composition of the U5 snRNP suggesting a function for these proteins in promoting the assembly of the ribonucleoprotein. A possible implication of R2TP/PFDL as a major effector of stress-, energy- and nutrient-sensing pathways that regulate anabolic processes through the regulation of its chaperoning activity is discussed. The R2TP/Prefoldin-like cochaperone complex is involved in the assembly of a number of protein complexes. Here the authors provide evidence that RUVBL1/RUVBL2, subunits of that cochaperone complex, directly interact with ZNHIT2 to regulate assembly of U5 small ribonucleoprotein.
Collapse
Affiliation(s)
- Philippe Cloutier
- Translational Proteomics Laboratory, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, Quebec, Canada H2W 1R7
| | - Christian Poitras
- Translational Proteomics Laboratory, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, Quebec, Canada H2W 1R7
| | - Mathieu Durand
- Laboratory of Functional Genomics, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada J1E 4K8
| | - Omid Hekmat
- Translational Proteomics Laboratory, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, Quebec, Canada H2W 1R7
| | - Émilie Fiola-Masson
- Translational Proteomics Laboratory, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, Quebec, Canada H2W 1R7
| | - Annie Bouchard
- Translational Proteomics Laboratory, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, Quebec, Canada H2W 1R7
| | - Denis Faubert
- Translational Proteomics Laboratory, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, Quebec, Canada H2W 1R7
| | - Benoit Chabot
- Laboratory of Functional Genomics, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada J1E 4K8.,Département de Microbiologie et d'Infectiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada J1E 4K8
| | - Benoit Coulombe
- Translational Proteomics Laboratory, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, Quebec, Canada H2W 1R7.,Département de Biochimie, Université de Montréal, Montreal, Quebec, Canada H3T 1J4
| |
Collapse
|
31
|
Specchia V, D'Attis S, Puricella A, Bozzetti MP. dFmr1 Plays Roles in Small RNA Pathways of Drosophila melanogaster. Int J Mol Sci 2017; 18:ijms18051066. [PMID: 28509881 PMCID: PMC5454977 DOI: 10.3390/ijms18051066] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/09/2017] [Accepted: 05/10/2017] [Indexed: 11/16/2022] Open
Abstract
Fragile-X syndrome is the most common form of inherited mental retardation accompanied by other phenotypes, including macroorchidism. The disorder originates with mutations in the Fmr1 gene coding for the FMRP protein, which, with its paralogs FXR1 and FXR2, constitute a well-conserved family of RNA-binding proteins. Drosophila melanogaster is a good model for the syndrome because it has a unique fragile X-related gene: dFmr1. Recently, in addition to its confirmed role in the miRNA pathway, a function for dFmr1 in the piRNA pathway, operating in Drosophila gonads, has been established. In this review we report a summary of the piRNA pathways occurring in gonads with a special emphasis on the relationship between the piRNA genes and the crystal-Stellate system; we also analyze the roles of dFmr1 in the Drosophila gonads, exploring their genetic and biochemical interactions to reveal some unexpected connections.
Collapse
Affiliation(s)
- Valeria Specchia
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali (DiSTeBA)-University of Salento, 73100 Lecce, Italy.
| | - Simona D'Attis
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali (DiSTeBA)-University of Salento, 73100 Lecce, Italy.
| | - Antonietta Puricella
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali (DiSTeBA)-University of Salento, 73100 Lecce, Italy.
| | - Maria Pia Bozzetti
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali (DiSTeBA)-University of Salento, 73100 Lecce, Italy.
| |
Collapse
|
32
|
Affiliation(s)
- Céline Verheggen
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, Montpellier, France
| | - Bérengère Pradet-Balade
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, Montpellier, France
| | - Edouard Bertrand
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, Montpellier, France
| |
Collapse
|
33
|
Quinternet M, Chagot ME, Rothé B, Tiotiu D, Charpentier B, Manival X. Structural Features of the Box C/D snoRNP Pre-assembly Process Are Conserved through Species. Structure 2016; 24:1693-1706. [PMID: 27594683 DOI: 10.1016/j.str.2016.07.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 07/21/2016] [Accepted: 07/22/2016] [Indexed: 11/15/2022]
Abstract
Box C/D small nucleolar ribonucleoparticles (snoRNPs) support 2'-O-methylation of several target RNAs. They share a common set of four core proteins (SNU13, NOP58, NOP56, and FBL) that are assembled on different guide small nucleolar RNAs. Assembly of these entities involves additional protein factors that are absent in the mature active particle. In this context, the platform protein NUFIP1/Rsa1 establishes direct and simultaneous contacts with core proteins and with the components of the assembly machinery. Here, we solve the nuclear magnetic resonance (NMR) structure of a complex resulting from interaction between protein fragments of human NUFIP1 and its cofactor ZNHIT3, and emphasize their imbrication. Using yeast two-hybrid and complementation assays, protein co-expression, isothermal titration calorimetry, and NMR, we demonstrate that yeast and human complexes involving NUFIP1/Rsa1p, ZNHIT3/Hit1p, and SNU13/Snu13p share strong structural similarities, suggesting that the initial steps of the box C/D snoRNP assembly process are conserved among species.
Collapse
Affiliation(s)
- Marc Quinternet
- FR CNRS-3209 Bioingénierie Moléculaire, Cellulaire et Thérapeutique (BMCT), CNRS, Université de Lorraine, Biopôle, Campus Biologie-Santé, CS 50184, 54505 Vandœuvre-lès-Nancy Cedex, France
| | - Marie-Eve Chagot
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), UMR 7365 CNRS-Université de Lorraine, Biopôle, Campus Biologie Santé, 9 Avenue de la forêt de Haye, CS 50184, 54505 Vandœuvre-lès-Nancy, France
| | - Benjamin Rothé
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), UMR 7365 CNRS-Université de Lorraine, Biopôle, Campus Biologie Santé, 9 Avenue de la forêt de Haye, CS 50184, 54505 Vandœuvre-lès-Nancy, France; Ecole polytechnique fédérale de Lausanne (EPFL) SV ISREC, Station 19, 1015 Lausanne, Switzerland
| | - Decebal Tiotiu
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), UMR 7365 CNRS-Université de Lorraine, Biopôle, Campus Biologie Santé, 9 Avenue de la forêt de Haye, CS 50184, 54505 Vandœuvre-lès-Nancy, France
| | - Bruno Charpentier
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), UMR 7365 CNRS-Université de Lorraine, Biopôle, Campus Biologie Santé, 9 Avenue de la forêt de Haye, CS 50184, 54505 Vandœuvre-lès-Nancy, France
| | - Xavier Manival
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), UMR 7365 CNRS-Université de Lorraine, Biopôle, Campus Biologie Santé, 9 Avenue de la forêt de Haye, CS 50184, 54505 Vandœuvre-lès-Nancy, France.
| |
Collapse
|
34
|
Bragantini B, Tiotiu D, Rothé B, Saliou JM, Marty H, Cianférani S, Charpentier B, Quinternet M, Manival X. Functional and Structural Insights of the Zinc-Finger HIT protein family members Involved in Box C/D snoRNP Biogenesis. J Mol Biol 2016; 428:2488-2506. [DOI: 10.1016/j.jmb.2016.04.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 04/20/2016] [Accepted: 04/23/2016] [Indexed: 11/29/2022]
|
35
|
Paci A, Liu PXH, Zhang L, Zhao R. The Proteasome Subunit Rpn8 Interacts with the Small Nucleolar RNA Protein (snoRNP) Assembly Protein Pih1 and Mediates Its Ubiquitin-independent Degradation in Saccharomyces cerevisiae. J Biol Chem 2016; 291:11761-75. [PMID: 27053109 DOI: 10.1074/jbc.m115.702043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Indexed: 11/06/2022] Open
Abstract
Pih1 is a scaffold protein of the Rvb1-Rvb2-Tah1-Pih1 (R2TP) protein complex, which is conserved in fungi and animals. The chaperone-like activity of the R2TP complex has been implicated in the assembly of multiple protein complexes, such as the small nucleolar RNA protein complex. However, the mechanism of the R2TP complex activity in vivo and the assembly of the complex itself are still largely unknown. Pih1 is an unstable protein and tends to aggregate when expressed alone. The C-terminal fragment of Pih1 contains multiple destabilization factors and acts as a degron when fused to other proteins. In this study, we investigated Pih1 interactors and identified a specific interaction between Pih1 and the proteasome subunit Rpn8 in yeast Saccharomyces cerevisiae when HSP90 co-chaperone Tah1 is depleted. By analyzing truncation mutants, we identified that the C-terminal 30 amino acids of Rpn8 are sufficient for the binding to Pih1 C terminus. With in vitro and in vivo degradation assays, we showed that the Pih1 C-terminal fragment Pih1(282-344) is able to induce a ubiquitin-independent degradation of GFP. Additionally, we demonstrated that truncation of the Rpn8 C-terminal disordered region does not affect proteasome assembly but specifically inhibits the degradation of the GFP-Pih1(282-344) fusion protein in vivo and Pih1 in vitro We propose that Pih1 is a ubiquitin-independent proteasome substrate, and the direct interaction with Rpn8 C terminus mediates its proteasomal degradation.
Collapse
Affiliation(s)
- Alexandr Paci
- From the Department of Biological Sciences, University of Toronto, Toronto, Ontario M1C 1A4, Canada
| | - Peter X H Liu
- From the Department of Biological Sciences, University of Toronto, Toronto, Ontario M1C 1A4, Canada
| | - Lingjie Zhang
- From the Department of Biological Sciences, University of Toronto, Toronto, Ontario M1C 1A4, Canada
| | - Rongmin Zhao
- From the Department of Biological Sciences, University of Toronto, Toronto, Ontario M1C 1A4, Canada
| |
Collapse
|
36
|
Bizarro J, Dodré M, Huttin A, Charpentier B, Schlotter F, Branlant C, Verheggen C, Massenet S, Bertrand E. NUFIP and the HSP90/R2TP chaperone bind the SMN complex and facilitate assembly of U4-specific proteins. Nucleic Acids Res 2015; 43:8973-89. [PMID: 26275778 PMCID: PMC4605303 DOI: 10.1093/nar/gkv809] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 07/27/2015] [Indexed: 12/17/2022] Open
Abstract
The Sm proteins are loaded on snRNAs by the SMN complex, but how snRNP-specific proteins are assembled remains poorly characterized. U4 snRNP and box C/D snoRNPs have structural similarities. They both contain the 15.5K and proteins with NOP domains (PRP31 for U4, NOP56/58 for snoRNPs). Biogenesis of box C/D snoRNPs involves NUFIP and the HSP90/R2TP chaperone system and here, we explore the function of this machinery in U4 RNP assembly. We show that yeast Prp31 interacts with several components of the NUFIP/R2TP machinery, and that these interactions are separable from each other. In human cells, PRP31 mutants that fail to stably associate with U4 snRNA still interact with components of the NUFIP/R2TP system, indicating that these interactions precede binding of PRP31 to U4 snRNA. Knock-down of NUFIP leads to mislocalization of PRP31 and decreased association with U4. Moreover, NUFIP is associated with the SMN complex through direct interactions with Gemin3 and Gemin6. Altogether, our data suggest a model in which the NUFIP/R2TP system is connected with the SMN complex and facilitates assembly of U4 snRNP-specific proteins.
Collapse
Affiliation(s)
- Jonathan Bizarro
- Equipe labélisée Ligue contre le Cancer, Institut de Génétique Moléculaire de Montpellier, IGMM-UMR 5535 du CNRS-Université de Montpellier, 1919, route de Mende, 34293 Montpellier Cedex 5, France
| | - Maxime Dodré
- Ingénierie Moléculaire et Physiopathologie Articulaire, UMR 7365 CNRS-Université de Lorraine, Biopôle de l'Université de Lorraine, avenue de la forêt de Haye, BP 184, 54505 Vandoeuvre-les-Nancy Cedex, France
| | - Alexandra Huttin
- Ingénierie Moléculaire et Physiopathologie Articulaire, UMR 7365 CNRS-Université de Lorraine, Biopôle de l'Université de Lorraine, avenue de la forêt de Haye, BP 184, 54505 Vandoeuvre-les-Nancy Cedex, France
| | - Bruno Charpentier
- Ingénierie Moléculaire et Physiopathologie Articulaire, UMR 7365 CNRS-Université de Lorraine, Biopôle de l'Université de Lorraine, avenue de la forêt de Haye, BP 184, 54505 Vandoeuvre-les-Nancy Cedex, France
| | - Florence Schlotter
- Ingénierie Moléculaire et Physiopathologie Articulaire, UMR 7365 CNRS-Université de Lorraine, Biopôle de l'Université de Lorraine, avenue de la forêt de Haye, BP 184, 54505 Vandoeuvre-les-Nancy Cedex, France
| | - Christiane Branlant
- Ingénierie Moléculaire et Physiopathologie Articulaire, UMR 7365 CNRS-Université de Lorraine, Biopôle de l'Université de Lorraine, avenue de la forêt de Haye, BP 184, 54505 Vandoeuvre-les-Nancy Cedex, France
| | - Céline Verheggen
- Equipe labélisée Ligue contre le Cancer, Institut de Génétique Moléculaire de Montpellier, IGMM-UMR 5535 du CNRS-Université de Montpellier, 1919, route de Mende, 34293 Montpellier Cedex 5, France
| | - Séverine Massenet
- Ingénierie Moléculaire et Physiopathologie Articulaire, UMR 7365 CNRS-Université de Lorraine, Biopôle de l'Université de Lorraine, avenue de la forêt de Haye, BP 184, 54505 Vandoeuvre-les-Nancy Cedex, France
| | - Edouard Bertrand
- Equipe labélisée Ligue contre le Cancer, Institut de Génétique Moléculaire de Montpellier, IGMM-UMR 5535 du CNRS-Université de Montpellier, 1919, route de Mende, 34293 Montpellier Cedex 5, France
| |
Collapse
|
37
|
Quinternet M, Rothé B, Barbier M, Bobo C, Saliou JM, Jacquemin C, Back R, Chagot ME, Cianférani S, Meyer P, Branlant C, Charpentier B, Manival X. Structure/Function Analysis of Protein-Protein Interactions Developed by the Yeast Pih1 Platform Protein and Its Partners in Box C/D snoRNP Assembly. J Mol Biol 2015. [PMID: 26210662 DOI: 10.1016/j.jmb.2015.07.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In eukaryotes, nucleotide post-transcriptional modifications in RNAs play an essential role in cell proliferation by contributing to pre-ribosomal RNA processing, ribosome assembly and activity. Box C/D small nucleolar ribonucleoparticles catalyze site-specific 2'-O-methylation of riboses, one of the most prevalent RNA modifications. They contain one guide RNA and four core proteins and their in vivo assembly requires numerous factors including (HUMAN/Yeast) BCD1/Bcd1p, NUFIP1/Rsa1p, ZNHIT3/Hit1p, the R2TP complex composed of protein PIH1D1/Pih1p and RPAP3/Tah1p that bridges the R2TP complex to the HSP90/Hsp82 chaperone and two AAA+ ATPases. We show that Tah1p can stabilize Pih1p in the absence of Hsp82 activity during the stationary phase of growth and consequently that the Tah1p:Pih1p interaction is sufficient for Pih1p stability. This prompted us to establish the solution structure of the Tah1p:Pih1p complex by NMR. The C-terminal tail S93-S111 of Tah1p snakes along Pih1p264-344 folded in a CS domain to form two intermolecular β-sheets and one covering loop. However, a thorough inspection of the NMR and crystal structures revealed structural differences that may be of functional importance. In addition, our NMR and isothermal titration calorimetry data revealed the formation of direct contacts between Pih1p257-344 and the Hsp82MC domain in the presence of Tah1p. By co-expression in Escherichia coli, we demonstrate that Pih1p has two other direct partners, the Rsa1p assembly factor and the Nop58p core protein, and in vivo and in vitro experiments mapped the required binding domains. Our data suggest that these two interactions are mutually exclusive. The implication of this finding for box C/D small nucleolar ribonucleoparticle assembly is discussed.
Collapse
Affiliation(s)
- Marc Quinternet
- FR 3209 CNRS-Université de Lorraine, Bioingénierie Moléculaire, Cellulaire et Thérapeutique, Biopôle, Campus Biologie-Santé, CS 50184, 54505 Vandœuvre-lès-Nancy Cedex, France
| | - Benjamin Rothé
- Ingénierie Moléculaire et Physiopathologie Articulaire, UMR 7365 CNRS-Université de Lorraine, Biopôle, Campus Biologie Santé, 9 Avenue de la Forêt de Haye, CS 50184, 54505 Vandœuvre-lès-Nancy Cedex, France
| | - Muriel Barbier
- Ingénierie Moléculaire et Physiopathologie Articulaire, UMR 7365 CNRS-Université de Lorraine, Biopôle, Campus Biologie Santé, 9 Avenue de la Forêt de Haye, CS 50184, 54505 Vandœuvre-lès-Nancy Cedex, France
| | - Claude Bobo
- Ingénierie Moléculaire et Physiopathologie Articulaire, UMR 7365 CNRS-Université de Lorraine, Biopôle, Campus Biologie Santé, 9 Avenue de la Forêt de Haye, CS 50184, 54505 Vandœuvre-lès-Nancy Cedex, France
| | - Jean-Michel Saliou
- BioOrganic Mass Spectrometry Laboratory, IPHC-DSA, UMR 7178 Université de Strasbourg-CNRS, 25 rue Becquerel, 67087 Strasbourg, France
| | - Clémence Jacquemin
- Ingénierie Moléculaire et Physiopathologie Articulaire, UMR 7365 CNRS-Université de Lorraine, Biopôle, Campus Biologie Santé, 9 Avenue de la Forêt de Haye, CS 50184, 54505 Vandœuvre-lès-Nancy Cedex, France
| | - Régis Back
- Ingénierie Moléculaire et Physiopathologie Articulaire, UMR 7365 CNRS-Université de Lorraine, Biopôle, Campus Biologie Santé, 9 Avenue de la Forêt de Haye, CS 50184, 54505 Vandœuvre-lès-Nancy Cedex, France
| | - Marie-Eve Chagot
- Ingénierie Moléculaire et Physiopathologie Articulaire, UMR 7365 CNRS-Université de Lorraine, Biopôle, Campus Biologie Santé, 9 Avenue de la Forêt de Haye, CS 50184, 54505 Vandœuvre-lès-Nancy Cedex, France
| | - Sarah Cianférani
- BioOrganic Mass Spectrometry Laboratory, IPHC-DSA, UMR 7178 Université de Strasbourg-CNRS, 25 rue Becquerel, 67087 Strasbourg, France
| | - Philippe Meyer
- Sorbonne Universités, UPMC University Paris 6, CNRS, UMR 8226, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Christiane Branlant
- Ingénierie Moléculaire et Physiopathologie Articulaire, UMR 7365 CNRS-Université de Lorraine, Biopôle, Campus Biologie Santé, 9 Avenue de la Forêt de Haye, CS 50184, 54505 Vandœuvre-lès-Nancy Cedex, France
| | - Bruno Charpentier
- Ingénierie Moléculaire et Physiopathologie Articulaire, UMR 7365 CNRS-Université de Lorraine, Biopôle, Campus Biologie Santé, 9 Avenue de la Forêt de Haye, CS 50184, 54505 Vandœuvre-lès-Nancy Cedex, France
| | - Xavier Manival
- Ingénierie Moléculaire et Physiopathologie Articulaire, UMR 7365 CNRS-Université de Lorraine, Biopôle, Campus Biologie Santé, 9 Avenue de la Forêt de Haye, CS 50184, 54505 Vandœuvre-lès-Nancy Cedex, France.
| |
Collapse
|
38
|
Matias PM, Baek SH, Bandeiras TM, Dutta A, Houry WA, Llorca O, Rosenbaum J. The AAA+ proteins Pontin and Reptin enter adult age: from understanding their basic biology to the identification of selective inhibitors. Front Mol Biosci 2015; 2:17. [PMID: 25988184 PMCID: PMC4428354 DOI: 10.3389/fmolb.2015.00017] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Accepted: 04/19/2015] [Indexed: 11/13/2022] Open
Abstract
Pontin and Reptin are related partner proteins belonging to the AAA+ (ATPases Associated with various cellular Activities) family. They are implicated in multiple and seemingly unrelated processes encompassing the regulation of gene transcription, the remodeling of chromatin, DNA damage sensing and repair, and the assembly of protein and ribonucleoprotein complexes, among others. The 2nd International Workshop on Pontin and Reptin took place at the Instituto de Tecnologia Química e Biológica António Xavier in Oeiras, Portugal on October 10-12, 2014, and reported significant new advances on the mechanisms of action of these two AAA+ ATPases. The major points under discussion were related to the mechanisms through which these proteins regulate gene transcription, their roles as co-chaperones, and their involvement in pathophysiology, especially in cancer and ciliary biology and disease. Finally, they may become anticancer drug targets since small chemical inhibitors were shown to produce anti-tumor effects in animal models.
Collapse
Affiliation(s)
- Pedro M Matias
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa Oeiras, Portugal ; Instituto de Biologia Experimental e Tecnológica Oeiras, Portugal
| | - Sung Hee Baek
- Creative Research Initiative Center for Chromatin Dynamics, School of Biological Sciences, Seoul National University Seoul, South Korea
| | | | - Anindya Dutta
- Department of Biochemistry and Molecular Genetics, University of Virginia Charlottesville, VA, USA
| | - Walid A Houry
- Department of Biochemistry, University of Toronto Toronto, ON, Canada
| | - Oscar Llorca
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (Spanish National Research Council, CSIC) Madrid, Spain
| | - Jean Rosenbaum
- INSERM, U1053 Bordeaux, France ; Groupe de Recherches pour l'Etude du Foie, Université de Bordeaux Bordeaux, France
| |
Collapse
|
39
|
Prieto MB, Georg RC, Gonzales-Zubiate FA, Luz JS, Oliveira CC. Nop17 is a key R2TP factor for the assembly and maturation of box C/D snoRNP complex. BMC Mol Biol 2015; 16:7. [PMID: 25888478 PMCID: PMC4377001 DOI: 10.1186/s12867-015-0037-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 02/24/2015] [Indexed: 11/24/2022] Open
Abstract
Background Box C/D snoRNPs are responsible for rRNA methylation and processing, and are formed by snoRNAs and four conserved proteins, Nop1, Nop56, Nop58 and Snu13. The snoRNP assembly is a stepwise process, involving other protein complexes, among which the R2TP and Hsp90 chaperone. Nop17, also known as Pih1, has been shown to be a constituent of the R2TP (Rvb1, Rvb2, Tah1, Pih1) and to participate in box C/D snoRNP assembly by its interaction with Nop58. The molecular function of Nop17, however, has not yet been described. Results To shed light on the role played by Nop17 in the maturation of snoRNP, here we analyzed the interactions domains of Nop58 – Nop17 – Tah1 and the importance of ATP to the interaction between Nop17 and the ATPase Rvb1/2. Conclusions Based on the results shown here, we propose a model for the assembly of box C/D snoRNP, according to which R2TP complex is important for reducing the affinity of Nop58 for snoRNA, and for the binding of the other snoRNP subunits. Electronic supplementary material The online version of this article (doi:10.1186/s12867-015-0037-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marcela B Prieto
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000, São Paulo, SP, Brazil.
| | - Raphaela C Georg
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000, São Paulo, SP, Brazil. .,Present address: Department of Biochemistry and Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Brazil.
| | - Fernando A Gonzales-Zubiate
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000, São Paulo, SP, Brazil.
| | - Juliana S Luz
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000, São Paulo, SP, Brazil. .,Present address: Department of Biological Sciences, School of Pharmacy, São Paulo State University, Araraquara, Brazil.
| | - Carla C Oliveira
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000, São Paulo, SP, Brazil.
| |
Collapse
|