1
|
Roesmann F, Müller L, Klaassen K, Heß S, Widera M. Interferon-Regulated Expression of Cellular Splicing Factors Modulates Multiple Levels of HIV-1 Gene Expression and Replication. Viruses 2024; 16:938. [PMID: 38932230 PMCID: PMC11209495 DOI: 10.3390/v16060938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Type I interferons (IFN-Is) are pivotal in innate immunity against human immunodeficiency virus I (HIV-1) by eliciting the expression of IFN-stimulated genes (ISGs), which encompass potent host restriction factors. While ISGs restrict the viral replication within the host cell by targeting various stages of the viral life cycle, the lesser-known IFN-repressed genes (IRepGs), including RNA-binding proteins (RBPs), affect the viral replication by altering the expression of the host dependency factors that are essential for efficient HIV-1 gene expression. Both the host restriction and dependency factors determine the viral replication efficiency; however, the understanding of the IRepGs implicated in HIV-1 infection remains greatly limited at present. This review provides a comprehensive overview of the current understanding regarding the impact of the RNA-binding protein families, specifically the two families of splicing-associated proteins SRSF and hnRNP, on HIV-1 gene expression and viral replication. Since the recent findings show specifically that SRSF1 and hnRNP A0 are regulated by IFN-I in various cell lines and primary cells, including intestinal lamina propria mononuclear cells (LPMCs) and peripheral blood mononuclear cells (PBMCs), we particularly discuss their role in the context of the innate immunity affecting HIV-1 replication.
Collapse
Affiliation(s)
- Fabian Roesmann
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, Paul-Ehrlich-Str. 40, 60596 Frankfurt am Main, Germany
| | - Lisa Müller
- Institute of Virology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Katleen Klaassen
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, Paul-Ehrlich-Str. 40, 60596 Frankfurt am Main, Germany
| | - Stefanie Heß
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, Paul-Ehrlich-Str. 40, 60596 Frankfurt am Main, Germany
| | - Marek Widera
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, Paul-Ehrlich-Str. 40, 60596 Frankfurt am Main, Germany
| |
Collapse
|
2
|
Kramárek M, Souček P, Réblová K, Grodecká L, Freiberger T. Splicing analysis of STAT3 tandem donor suggests non-canonical binding registers for U1 and U6 snRNAs. Nucleic Acids Res 2024; 52:5959-5974. [PMID: 38426935 PMCID: PMC11162779 DOI: 10.1093/nar/gkae147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 02/02/2024] [Accepted: 02/16/2024] [Indexed: 03/02/2024] Open
Abstract
Tandem donor splice sites (5'ss) are unique regions with at least two GU dinucleotides serving as splicing cleavage sites. The Δ3 tandem 5'ss are a specific subclass of 5'ss separated by 3 nucleotides which can affect protein function by inserting/deleting a single amino acid. One 5'ss is typically preferred, yet factors governing particular 5'ss choice are not fully understood. A highly conserved exon 21 of the STAT3 gene was chosen as a model to study Δ3 tandem 5'ss splicing mechanisms. Based on multiple lines of experimental evidence, endogenous U1 snRNA most likely binds only to the upstream 5'ss. However, the downstream 5'ss is used preferentially, and the splice site choice is not dependent on the exact U1 snRNA binding position. Downstream 5'ss usage was sensitive to exact nucleotide composition and dependent on the presence of downstream regulatory region. The downstream 5'ss usage could be best explained by two novel interactions with endogenous U6 snRNA. U6 snRNA enables the downstream 5'ss usage in STAT3 exon 21 by two mechanisms: (i) binding in a novel non-canonical register and (ii) establishing extended Watson-Crick base pairing with the downstream regulatory region. This study suggests that U6:5'ss interaction is more flexible than previously thought.
Collapse
Affiliation(s)
- Michal Kramárek
- Centre for Cardiovascular Surgery and Transplantation, 656 91 Brno, Czech Republic
- Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
| | - Přemysl Souček
- Centre for Cardiovascular Surgery and Transplantation, 656 91 Brno, Czech Republic
- Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
| | - Kamila Réblová
- Centre of Molecular Biology and Genetics, University Hospital and Masaryk University, Brno, Czech Republic
| | - Lucie Kajan Grodecká
- Centre for Cardiovascular Surgery and Transplantation, 656 91 Brno, Czech Republic
| | - Tomáš Freiberger
- Centre for Cardiovascular Surgery and Transplantation, 656 91 Brno, Czech Republic
- Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
| |
Collapse
|
3
|
Sanoguera-Miralles L, Llinares-Burguet I, Bueno-Martínez E, Ramadane-Morchadi L, Stuani C, Valenzuela-Palomo A, García-Álvarez A, Pérez-Segura P, Buratti E, de la Hoya M, Velasco-Sampedro EA. Comprehensive splicing analysis of the alternatively spliced CHEK2 exons 8 and 10 reveals three enhancer/silencer-rich regions and 38 spliceogenic variants. J Pathol 2024; 262:395-409. [PMID: 38332730 DOI: 10.1002/path.6243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/26/2023] [Accepted: 11/28/2023] [Indexed: 02/10/2024]
Abstract
Splicing is controlled by a large set of regulatory elements (SREs) including splicing enhancers and silencers, which are involved in exon recognition. Variants at these motifs may dysregulate splicing and trigger loss-of-function transcripts associated with disease. Our goal here was to study the alternatively spliced exons 8 and 10 of the breast cancer susceptibility gene CHEK2. For this purpose, we used a previously published minigene with exons 6-10 that produced the expected minigene full-length transcript and replicated the naturally occurring events of exon 8 [Δ(E8)] and exon 10 [Δ(E10)] skipping. We then introduced 12 internal microdeletions of exons 8 and 10 by mutagenesis in order to map SRE-rich intervals by splicing assays in MCF-7 cells. We identified three minimal (10-, 11-, 15-nt) regions essential for exon recognition: c.863_877del [ex8, Δ(E8): 75%] and c.1073_1083del and c.1083_1092del [ex10, Δ(E10): 97% and 62%, respectively]. Then 87 variants found within these intervals were introduced into the wild-type minigene and tested functionally. Thirty-eight of them (44%) impaired splicing, four of which (c.883G>A, c.883G>T, c.884A>T, and c.1080G>T) induced negligible amounts (<5%) of the minigene full-length transcript. Another six variants (c.886G>A, c.886G>T, c.1075G>A, c.1075G>T, c.1076A>T, and c.1078G>T) showed significantly strong impacts (20-50% of the minigene full-length transcript). Thirty-three of the 38 spliceogenic variants were annotated as missense, three as nonsense, and two as synonymous, underlying the fact that any exonic change is capable of disrupting splicing. Moreover, c.883G>A, c.883G>T, and c.884A>T were classified as pathogenic/likely pathogenic variants according to ACMG/AMP (American College of Medical Genetics and Genomics/Association for Molecular Pathology)-based criteria. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Lara Sanoguera-Miralles
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Consejo Superior de Investigaciones Científicas - Universidad de Valladolid (CSIC-UVa), Valladolid, Spain
| | - Inés Llinares-Burguet
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Consejo Superior de Investigaciones Científicas - Universidad de Valladolid (CSIC-UVa), Valladolid, Spain
| | - Elena Bueno-Martínez
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Consejo Superior de Investigaciones Científicas - Universidad de Valladolid (CSIC-UVa), Valladolid, Spain
| | - Lobna Ramadane-Morchadi
- Molecular Oncology Laboratory CIBERONC, Hospital Clínico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), Madrid, Spain
| | - Cristiana Stuani
- Molecular Pathology Lab. International Centre of Genetic Engineering and Biotechnology, Trieste, Italy
| | - Alberto Valenzuela-Palomo
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Consejo Superior de Investigaciones Científicas - Universidad de Valladolid (CSIC-UVa), Valladolid, Spain
| | - Alicia García-Álvarez
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Consejo Superior de Investigaciones Científicas - Universidad de Valladolid (CSIC-UVa), Valladolid, Spain
| | - Pedro Pérez-Segura
- Molecular Oncology Laboratory CIBERONC, Hospital Clínico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), Madrid, Spain
| | - Emanuele Buratti
- Molecular Pathology Lab. International Centre of Genetic Engineering and Biotechnology, Trieste, Italy
| | - Miguel de la Hoya
- Molecular Oncology Laboratory CIBERONC, Hospital Clínico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), Madrid, Spain
| | - Eladio A Velasco-Sampedro
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Consejo Superior de Investigaciones Científicas - Universidad de Valladolid (CSIC-UVa), Valladolid, Spain
| |
Collapse
|
4
|
Zhang H, Xin M, Lin L, Chen C, Balestra D, Ding Q. Pleiotropic effects of different exonic nucleotide changes at the same position contribute to hemophilia B phenotypic variation. J Thromb Haemost 2024; 22:975-989. [PMID: 38184202 DOI: 10.1016/j.jtha.2023.12.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/29/2023] [Accepted: 12/29/2023] [Indexed: 01/08/2024]
Abstract
BACKGROUND The disease-causing effects of genetic variations often depend on their location within a gene. Exonic changes generally lead to alterations in protein production, secretion, activity, or clearance. However, owing to the overlap between proteins and splicing codes, missense variants can also affect messenger RNA splicing, thus adding a layer of complexity and influencing disease phenotypes. OBJECTIVES To extensively characterize a panel of 13 exonic variants in the F9 gene occurring at 6 different factor IX positions and associated with varying severities of hemophilia B (HB). METHODS Computational predictions, splicing analysis, and recombinant factor IX assays were exploited to characterize F9 variants. RESULTS We demonstrated that 5 (38%) of 13 selected F9 exonic variants have pleiotropic effects. Although bioinformatic approaches accurately classified effects, extensive experimental assays were required to elucidate and deepen the molecular mechanisms underlying the pleiotropic effects. Importantly, their characterization was instrumental in developing tailored RNA therapeutics based on engineered U7 small nuclear RNA to mask cryptic splice sites and compensatory U1 small nuclear RNA to enhance exon definition. CONCLUSION Overall, albeit a multitool bioinformatic approach suggested the molecular effects of multiple HB variants, the deep investigation of molecular mechanisms revealed insights into the HB phenotype-genotype relationship, enabling accurate classification of HB variants. Importantly, knowledge of molecular mechanisms allowed the development of tailored RNA therapeutics, which can also be translated to other genetic diseases.
Collapse
Affiliation(s)
- Huayang Zhang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Min Xin
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Liya Lin
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Changming Chen
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Dario Balestra
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.
| | - Qiulan Ding
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Collaborative Innovation Center of Hematology, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
5
|
Spangsberg Petersen US, Dembic M, Martínez-Pizarro A, Richard E, Holm LL, Havelund JF, Doktor TK, Larsen MR, Færgeman NJ, Desviat LR, Andresen BS. Regulating PCCA gene expression by modulation of pseudoexon splicing patterns to rescue enzyme activity in propionic acidemia. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102101. [PMID: 38204914 PMCID: PMC10776996 DOI: 10.1016/j.omtn.2023.102101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/08/2023] [Indexed: 01/12/2024]
Abstract
Pseudoexons are nonfunctional intronic sequences that can be activated by deep-intronic sequence variation. Activation increases pseudoexon inclusion in mRNA and interferes with normal gene expression. The PCCA c.1285-1416A>G variation activates a pseudoexon and causes the severe metabolic disorder propionic acidemia by deficiency of the propionyl-CoA carboxylase enzyme encoded by PCCA and PCCB. We characterized this pathogenic pseudoexon activation event in detail and identified hnRNP A1 to be important for normal repression. The PCCA c.1285-1416A>G variation disrupts an hnRNP A1-binding splicing silencer and simultaneously creates a splicing enhancer. We demonstrate that blocking this region of regulation with splice-switching antisense oligonucleotides restores normal splicing and rescues enzyme activity in patient fibroblasts and in a cellular model created by CRISPR gene editing. Interestingly, the PCCA pseudoexon offers an unexploited potential to upregulate gene expression because healthy tissues show relatively high inclusion levels. By blocking inclusion of the nonactivated wild-type pseudoexon, we can increase both PCCA and PCCB protein levels, which increases the activity of the heterododecameric enzyme. Surprisingly, we can increase enzyme activity from residual levels in not only patient fibroblasts harboring PCCA missense variants but also those harboring PCCB missense variants. This is a potential treatment strategy for propionic acidemia.
Collapse
Affiliation(s)
- Ulrika Simone Spangsberg Petersen
- Department of Biochemistry and Molecular Biology and the Villum Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense M, Denmark
| | - Maja Dembic
- Department of Biochemistry and Molecular Biology and the Villum Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense M, Denmark
- Department of Clinical Genetics, Odense University Hospital, 5000 Odense C, Denmark
- Department of Mathematics and Computer Science, University of Southern Denmark, 5230 Odense M, Denmark
| | - Ainhoa Martínez-Pizarro
- Centro de Biología Molecular Severo Ochoa, UAM-CSIC, CEDEM, CIBERER, IdiPaz, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Eva Richard
- Centro de Biología Molecular Severo Ochoa, UAM-CSIC, CEDEM, CIBERER, IdiPaz, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Lise Lolle Holm
- Department of Biochemistry and Molecular Biology and the Villum Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense M, Denmark
| | - Jesper Foged Havelund
- Department of Biochemistry and Molecular Biology and the Villum Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense M, Denmark
| | - Thomas Koed Doktor
- Department of Biochemistry and Molecular Biology and the Villum Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense M, Denmark
| | - Martin Røssel Larsen
- Department of Biochemistry and Molecular Biology and the Villum Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense M, Denmark
| | - Nils J. Færgeman
- Department of Biochemistry and Molecular Biology and the Villum Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense M, Denmark
| | - Lourdes Ruiz Desviat
- Centro de Biología Molecular Severo Ochoa, UAM-CSIC, CEDEM, CIBERER, IdiPaz, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Brage Storstein Andresen
- Department of Biochemistry and Molecular Biology and the Villum Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense M, Denmark
| |
Collapse
|
6
|
Wu K, Bu F, Wu Y, Zhang G, Wang X, He S, Liu MF, Chen R, Yuan H. Exploring noncoding variants in genetic diseases: from detection to functional insights. J Genet Genomics 2024; 51:111-132. [PMID: 38181897 DOI: 10.1016/j.jgg.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/26/2023] [Accepted: 01/01/2024] [Indexed: 01/07/2024]
Abstract
Previous studies on genetic diseases predominantly focused on protein-coding variations, overlooking the vast noncoding regions in the human genome. The development of high-throughput sequencing technologies and functional genomics tools has enabled the systematic identification of functional noncoding variants. These variants can impact gene expression, regulation, and chromatin conformation, thereby contributing to disease pathogenesis. Understanding the mechanisms that underlie the impact of noncoding variants on genetic diseases is indispensable for the development of precisely targeted therapies and the implementation of personalized medicine strategies. The intricacies of noncoding regions introduce a multitude of challenges and research opportunities. In this review, we introduce a spectrum of noncoding variants involved in genetic diseases, along with research strategies and advanced technologies for their precise identification and in-depth understanding of the complexity of the noncoding genome. We will delve into the research challenges and propose potential solutions for unraveling the genetic basis of rare and complex diseases.
Collapse
Affiliation(s)
- Ke Wu
- Institute of Rare Diseases, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Fengxiao Bu
- Institute of Rare Diseases, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Yang Wu
- Institute of Rare Diseases, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Gen Zhang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Xin Wang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| | - Shunmin He
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mo-Fang Liu
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China; State Key Laboratory of Molecular Biology, State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Runsheng Chen
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Huijun Yuan
- Institute of Rare Diseases, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
7
|
Weber AI, Parthasarathy S, Borisova E, Epifanova E, Preußner M, Rusanova A, Ambrozkiewicz MC, Bessa P, Newman A, Müller L, Schaal H, Heyd F, Tarabykin V. Srsf1 and Elavl1 act antagonistically on neuronal fate choice in the developing neocortex by controlling TrkC receptor isoform expression. Nucleic Acids Res 2023; 51:10218-10237. [PMID: 37697438 PMCID: PMC10602877 DOI: 10.1093/nar/gkad703] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 07/24/2023] [Accepted: 08/15/2023] [Indexed: 09/13/2023] Open
Abstract
The seat of higher-order cognitive abilities in mammals, the neocortex, is a complex structure, organized in several layers. The different subtypes of principal neurons are distributed in precise ratios and at specific positions in these layers and are generated by the same neural progenitor cells (NPCs), steered by a spatially and temporally specified combination of molecular cues that are incompletely understood. Recently, we discovered that an alternatively spliced isoform of the TrkC receptor lacking the kinase domain, TrkC-T1, is a determinant of the corticofugal projection neuron (CFuPN) fate. Here, we show that the finely tuned balance between TrkC-T1 and the better known, kinase domain-containing isoform, TrkC-TK+, is cell type-specific in the developing cortex and established through the antagonistic actions of two RNA-binding proteins, Srsf1 and Elavl1. Moreover, our data show that Srsf1 promotes the CFuPN fate and Elavl1 promotes the callosal projection neuron (CPN) fate in vivo via regulating the distinct ratios of TrkC-T1 to TrkC-TK+. Taken together, we connect spatio-temporal expression of Srsf1 and Elavl1 in the developing neocortex with the regulation of TrkC alternative splicing and transcript stability and neuronal fate choice, thus adding to the mechanistic and functional understanding of alternative splicing in vivo.
Collapse
Affiliation(s)
- A Ioana Weber
- Charité Universitätsmedizin Berlin, Institute of Cell Biology and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Takustr. 6, 14195, Berlin, Germany
| | - Srinivas Parthasarathy
- Charité Universitätsmedizin Berlin, Institute of Cell Biology and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany
| | - Ekaterina Borisova
- Charité Universitätsmedizin Berlin, Institute of Cell Biology and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634009, Tomsk, Russia
| | - Ekaterina Epifanova
- Charité Universitätsmedizin Berlin, Institute of Cell Biology and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany
| | - Marco Preußner
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Takustr. 6, 14195, Berlin, Germany
| | - Alexandra Rusanova
- Charité Universitätsmedizin Berlin, Institute of Cell Biology and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634009, Tomsk, Russia
| | - Mateusz C Ambrozkiewicz
- Charité Universitätsmedizin Berlin, Institute of Cell Biology and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany
| | - Paraskevi Bessa
- Charité Universitätsmedizin Berlin, Institute of Cell Biology and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany
| | - Andrew G Newman
- Charité Universitätsmedizin Berlin, Institute of Cell Biology and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany
| | - Lisa Müller
- Heinrich Heine Universität Düsseldorf, Institute of Virology, Medical Faculty, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Heiner Schaal
- Heinrich Heine Universität Düsseldorf, Institute of Virology, Medical Faculty, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Florian Heyd
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Takustr. 6, 14195, Berlin, Germany
| | - Victor Tarabykin
- Charité Universitätsmedizin Berlin, Institute of Cell Biology and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 603950, Nizhny Novgorod Oblast, Russia
| |
Collapse
|
8
|
Lin BC, Katneni U, Jankowska KI, Meyer D, Kimchi-Sarfaty C. In silico methods for predicting functional synonymous variants. Genome Biol 2023; 24:126. [PMID: 37217943 PMCID: PMC10204308 DOI: 10.1186/s13059-023-02966-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 05/10/2023] [Indexed: 05/24/2023] Open
Abstract
Single nucleotide variants (SNVs) contribute to human genomic diversity. Synonymous SNVs are previously considered to be "silent," but mounting evidence has revealed that these variants can cause RNA and protein changes and are implicated in over 85 human diseases and cancers. Recent improvements in computational platforms have led to the development of numerous machine-learning tools, which can be used to advance synonymous SNV research. In this review, we discuss tools that should be used to investigate synonymous variants. We provide supportive examples from seminal studies that demonstrate how these tools have driven new discoveries of functional synonymous SNVs.
Collapse
Affiliation(s)
- Brian C Lin
- Hemostasis Branch 1, Division of Hemostasis, Office of Plasma Protein Therapeutics CMC, Office of Therapeutic Products, Center for Biologics Evaluation and Research, US FDA, Silver Spring, MD, USA
| | - Upendra Katneni
- Hemostasis Branch 1, Division of Hemostasis, Office of Plasma Protein Therapeutics CMC, Office of Therapeutic Products, Center for Biologics Evaluation and Research, US FDA, Silver Spring, MD, USA
| | - Katarzyna I Jankowska
- Hemostasis Branch 1, Division of Hemostasis, Office of Plasma Protein Therapeutics CMC, Office of Therapeutic Products, Center for Biologics Evaluation and Research, US FDA, Silver Spring, MD, USA
| | - Douglas Meyer
- Hemostasis Branch 1, Division of Hemostasis, Office of Plasma Protein Therapeutics CMC, Office of Therapeutic Products, Center for Biologics Evaluation and Research, US FDA, Silver Spring, MD, USA
| | - Chava Kimchi-Sarfaty
- Hemostasis Branch 1, Division of Hemostasis, Office of Plasma Protein Therapeutics CMC, Office of Therapeutic Products, Center for Biologics Evaluation and Research, US FDA, Silver Spring, MD, USA.
| |
Collapse
|
9
|
Canson DM, O’Mara TA, Spurdle AB, Glubb DM. Splicing annotation of endometrial cancer GWAS risk loci reveals potentially causal variants and supports a role for NF1 and SKAP1 as susceptibility genes. HGG ADVANCES 2023; 4:100185. [PMID: 36908940 PMCID: PMC9996439 DOI: 10.1016/j.xhgg.2023.100185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Alternative splicing contributes to cancer development. Indeed, splicing analysis of cancer genome-wide association study (GWAS) risk variants has revealed likely causal variants. To systematically assess GWAS variants for splicing effects, we developed a prioritization workflow using a combination of splicing prediction tools, alternative transcript isoforms, and splicing quantitative trait locus (sQTL) annotations. Application of this workflow to candidate causal variants from 16 endometrial cancer GWAS risk loci highlighted single-nucleotide polymorphisms (SNPs) that were predicted to upregulate alternative transcripts. For two variants, sQTL data supported the predicted impact on splicing. At the 17q11.2 locus, the protective allele for rs7502834 was associated with increased splicing of an exon in a NF1 alternative transcript encoding a truncated protein in adipose tissue and is consistent with an endometrial cancer transcriptome-wide association study (TWAS) finding in adipose tissue. Notably, NF1 haploinsufficiency is protective for obesity, a well-established risk factor for endometrial cancer. At the 17q21.32 locus, the rs2278868 risk allele was predicted to upregulate a SKAP1 transcript that is subject to nonsense-mediated decay, concordant with a corresponding sQTL in lymphocytes. This is consistent with a TWAS finding that indicates decreased SKAP1 expression in blood increases endometrial cancer risk. As SKAP1 is involved in T cell immune responses, decreased SKAP1 expression may impact endometrial tumor immunosurveillance. In summary, our analysis has identified potentially causal endometrial cancer GWAS risk variants with plausible biological mechanisms and provides a splicing annotation workflow to aid interpretation of other GWAS datasets.
Collapse
Affiliation(s)
- Daffodil M. Canson
- Population Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4006, Australia
| | - Tracy A. O’Mara
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4006, Australia
- Cancer Research Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Amanda B. Spurdle
- Population Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4006, Australia
| | - Dylan M. Glubb
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4006, Australia
- Cancer Research Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| |
Collapse
|
10
|
Barbosa P, Savisaar R, Carmo-Fonseca M, Fonseca A. Computational prediction of human deep intronic variation. Gigascience 2022; 12:giad085. [PMID: 37878682 PMCID: PMC10599398 DOI: 10.1093/gigascience/giad085] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/07/2023] [Accepted: 09/20/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND The adoption of whole-genome sequencing in genetic screens has facilitated the detection of genetic variation in the intronic regions of genes, far from annotated splice sites. However, selecting an appropriate computational tool to discriminate functionally relevant genetic variants from those with no effect is challenging, particularly for deep intronic regions where independent benchmarks are scarce. RESULTS In this study, we have provided an overview of the computational methods available and the extent to which they can be used to analyze deep intronic variation. We leveraged diverse datasets to extensively evaluate tool performance across different intronic regions, distinguishing between variants that are expected to disrupt splicing through different molecular mechanisms. Notably, we compared the performance of SpliceAI, a widely used sequence-based deep learning model, with that of more recent methods that extend its original implementation. We observed considerable differences in tool performance depending on the region considered, with variants generating cryptic splice sites being better predicted than those that potentially affect splicing regulatory elements. Finally, we devised a novel quantitative assessment of tool interpretability and found that tools providing mechanistic explanations of their predictions are often correct with respect to the ground - information, but the use of these tools results in decreased predictive power when compared to black box methods. CONCLUSIONS Our findings translate into practical recommendations for tool usage and provide a reference framework for applying prediction tools in deep intronic regions, enabling more informed decision-making by practitioners.
Collapse
Affiliation(s)
- Pedro Barbosa
- LASIGE, Departamento de Informática, Faculdade de Ciências, Universidade de Lisboa, 1749-016,, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisboa, Portugal
| | | | - Maria Carmo-Fonseca
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisboa, Portugal
| | - Alcides Fonseca
- LASIGE, Departamento de Informática, Faculdade de Ciências, Universidade de Lisboa, 1749-016,, Lisboa, Portugal
| |
Collapse
|
11
|
Leman R, Parfait B, Vidaud D, Girodon E, Pacot L, Le Gac G, Ka C, Ferec C, Fichou Y, Quesnelle C, Aucouturier C, Muller E, Vaur D, Castera L, Boulouard F, Ricou A, Tubeuf H, Soukarieh O, Gaildrat P, Riant F, Guillaud‐Bataille M, Caputo SM, Caux‐Moncoutier V, Boutry‐Kryza N, Bonnet‐Dorion F, Schultz I, Rossing M, Quenez O, Goldenberg L, Harter V, Parsons MT, Spurdle AB, Frébourg T, Martins A, Houdayer C, Krieger S. SPiP: Splicing Prediction Pipeline, a machine learning tool for massive detection of exonic and intronic variant effects on mRNA splicing. Hum Mutat 2022; 43:2308-2323. [PMID: 36273432 PMCID: PMC10946553 DOI: 10.1002/humu.24491] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 10/06/2022] [Accepted: 10/18/2022] [Indexed: 01/25/2023]
Abstract
Modeling splicing is essential for tackling the challenge of variant interpretation as each nucleotide variation can be pathogenic by affecting pre-mRNA splicing via disruption/creation of splicing motifs such as 5'/3' splice sites, branch sites, or splicing regulatory elements. Unfortunately, most in silico tools focus on a specific type of splicing motif, which is why we developed the Splicing Prediction Pipeline (SPiP) to perform, in one single bioinformatic analysis based on a machine learning approach, a comprehensive assessment of the variant effect on different splicing motifs. We gathered a curated set of 4616 variants scattered all along the sequence of 227 genes, with their corresponding splicing studies. The Bayesian analysis provided us with the number of control variants, that is, variants without impact on splicing, to mimic the deluge of variants from high-throughput sequencing data. Results show that SPiP can deal with the diversity of splicing alterations, with 83.13% sensitivity and 99% specificity to detect spliceogenic variants. Overall performance as measured by area under the receiving operator curve was 0.986, better than SpliceAI and SQUIRLS (0.965 and 0.766) for the same data set. SPiP lends itself to a unique suite for comprehensive prediction of spliceogenicity in the genomic medicine era. SPiP is available at: https://sourceforge.net/projects/splicing-prediction-pipeline/.
Collapse
Affiliation(s)
- Raphaël Leman
- Laboratoire de Biologie et Génétique du CancerCentre François BaclesseCaenFrance
- Inserm U1245, UNIROUEN, FHU‐G4 génomiqueNormandie UniversitéRouenFrance
- UNICAENNormandie UniversitéCaenFrance
| | - Béatrice Parfait
- Service de Génétique et Biologie Moléculaires, APHP, HUPCHôpital CochinParisFrance
| | - Dominique Vidaud
- Service de Génétique et Biologie Moléculaires, APHP, HUPCHôpital CochinParisFrance
| | - Emmanuelle Girodon
- Service de Génétique et Biologie Moléculaires, APHP, HUPCHôpital CochinParisFrance
| | - Laurence Pacot
- Service de Génétique et Biologie Moléculaires, APHP, HUPCHôpital CochinParisFrance
| | - Gérald Le Gac
- Inserm UMR1078, Genetics, Functional Genomics and BiotechnologyUniversité de Bretagne OccidentaleBrestFrance
| | - Chandran Ka
- Inserm UMR1078, Genetics, Functional Genomics and BiotechnologyUniversité de Bretagne OccidentaleBrestFrance
| | - Claude Ferec
- Inserm UMR1078, Genetics, Functional Genomics and BiotechnologyUniversité de Bretagne OccidentaleBrestFrance
| | - Yann Fichou
- Inserm UMR1078, Genetics, Functional Genomics and BiotechnologyUniversité de Bretagne OccidentaleBrestFrance
| | - Céline Quesnelle
- Laboratoire de Biologie et Génétique du CancerCentre François BaclesseCaenFrance
| | - Camille Aucouturier
- Laboratoire de Biologie et Génétique du CancerCentre François BaclesseCaenFrance
- Inserm U1245, UNIROUEN, FHU‐G4 génomiqueNormandie UniversitéRouenFrance
| | - Etienne Muller
- Laboratoire de Biologie et Génétique du CancerCentre François BaclesseCaenFrance
| | - Dominique Vaur
- Laboratoire de Biologie et Génétique du CancerCentre François BaclesseCaenFrance
- Inserm U1245, UNIROUEN, FHU‐G4 génomiqueNormandie UniversitéRouenFrance
| | - Laurent Castera
- Laboratoire de Biologie et Génétique du CancerCentre François BaclesseCaenFrance
- Inserm U1245, UNIROUEN, FHU‐G4 génomiqueNormandie UniversitéRouenFrance
| | - Flavie Boulouard
- Laboratoire de Biologie et Génétique du CancerCentre François BaclesseCaenFrance
- Inserm U1245, UNIROUEN, FHU‐G4 génomiqueNormandie UniversitéRouenFrance
| | - Agathe Ricou
- Laboratoire de Biologie et Génétique du CancerCentre François BaclesseCaenFrance
- Inserm U1245, UNIROUEN, FHU‐G4 génomiqueNormandie UniversitéRouenFrance
| | - Hélène Tubeuf
- Inserm U1245, UNIROUEN, FHU‐G4 génomiqueNormandie UniversitéRouenFrance
- Integrative BiosoftwareRouenFrance
| | - Omar Soukarieh
- Inserm U1245, UNIROUEN, FHU‐G4 génomiqueNormandie UniversitéRouenFrance
| | | | - Florence Riant
- Laboratoire de Génétique, AP‐HPGH Saint‐Louis‐Lariboisière‐Fernand WidalParisFrance
| | | | - Sandrine M. Caputo
- Department of Genetics, Institut CurieParis Sciences Lettres Research UniversityParisFrance
| | | | - Nadia Boutry‐Kryza
- Unité Mixte de Génétique Constitutionnelle des Cancers FréquentsHospices Civils de LyonLyonFrance
| | - Françoise Bonnet‐Dorion
- Departement de Biopathologie Unité de Génétique ConstitutionnelleInstitut Bergonie—INSERM U1218BordeauxFrance
| | - Ines Schultz
- Laboratoire d'OncogénétiqueCentre Paul StraussStrasbourgFrance
| | - Maria Rossing
- Centre for Genomic Medicine, RigshospitaletUniversity of CopenhagenCopenhagenDenmark
| | - Olivier Quenez
- Inserm U1245, UNIROUEN, FHU‐G4 génomiqueNormandie UniversitéRouenFrance
| | - Louis Goldenberg
- Inserm U1245, UNIROUEN, FHU‐G4 génomiqueNormandie UniversitéRouenFrance
| | - Valentin Harter
- Department of BiostatisticsBaclesse Unicancer CenterCaenFrance
| | - Michael T. Parsons
- Department of Genetics and Computational BiologyQIMR Berghofer Medical Research InstituteHerstonQueenslandAustralia
| | - Amanda B. Spurdle
- Department of Genetics and Computational BiologyQIMR Berghofer Medical Research InstituteHerstonQueenslandAustralia
| | - Thierry Frébourg
- Inserm U1245, UNIROUEN, FHU‐G4 génomiqueNormandie UniversitéRouenFrance
- Department of geneticsRouen University HospitalRouenFrance
| | - Alexandra Martins
- Inserm U1245, UNIROUEN, FHU‐G4 génomiqueNormandie UniversitéRouenFrance
| | - Claude Houdayer
- Inserm U1245, UNIROUEN, FHU‐G4 génomiqueNormandie UniversitéRouenFrance
- Department of geneticsRouen University HospitalRouenFrance
| | - Sophie Krieger
- Laboratoire de Biologie et Génétique du CancerCentre François BaclesseCaenFrance
- Inserm U1245, UNIROUEN, FHU‐G4 génomiqueNormandie UniversitéRouenFrance
- UNICAENNormandie UniversitéCaenFrance
| |
Collapse
|
12
|
Cormier MJ, Pedersen BS, Bayrak-Toydemir P, Quinlan AR. Combining genetic constraint with predictions of alternative splicing to prioritize deleterious splicing in rare disease studies. BMC Bioinformatics 2022; 23:482. [PMID: 36376793 PMCID: PMC9664736 DOI: 10.1186/s12859-022-05041-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Despite numerous molecular and computational advances, roughly half of patients with a rare disease remain undiagnosed after exome or genome sequencing. A particularly challenging barrier to diagnosis is identifying variants that cause deleterious alternative splicing at intronic or exonic loci outside of canonical donor or acceptor splice sites. RESULTS Several existing tools predict the likelihood that a genetic variant causes alternative splicing. We sought to extend such methods by developing a new metric that aids in discerning whether a genetic variant leads to deleterious alternative splicing. Our metric combines genetic variation in the Genome Aggregate Database with alternative splicing predictions from SpliceAI to compare observed and expected levels of splice-altering genetic variation. We infer genic regions with significantly less splice-altering variation than expected to be constrained. The resulting model of regional splicing constraint captures differential splicing constraint across gene and exon categories, and the most constrained genic regions are enriched for pathogenic splice-altering variants. Building from this model, we developed ConSpliceML. This ensemble machine learning approach combines regional splicing constraint with multiple per-nucleotide alternative splicing scores to guide the prediction of deleterious splicing variants in protein-coding genes. ConSpliceML more accurately distinguishes deleterious and benign splicing variants than state-of-the-art splicing prediction methods, especially in "cryptic" splicing regions beyond canonical donor or acceptor splice sites. CONCLUSION Integrating a model of genetic constraint with annotations from existing alternative splicing tools allows ConSpliceML to prioritize potentially deleterious splice-altering variants in studies of rare human diseases.
Collapse
Affiliation(s)
- Michael J Cormier
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
- Utah Center for Genetic Discovery, University of Utah, Salt Lake City, UT, USA
| | - Brent S Pedersen
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
- Utah Center for Genetic Discovery, University of Utah, Salt Lake City, UT, USA
| | | | - Aaron R Quinlan
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA.
- Utah Center for Genetic Discovery, University of Utah, Salt Lake City, UT, USA.
- Department of Biomedical Informatics, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
13
|
Familial history and prevalence of BRCA1, BRCA2 and TP53 pathogenic variants in HBOC Brazilian patients from a public healthcare service. Sci Rep 2022; 12:18629. [PMID: 36329109 PMCID: PMC9633799 DOI: 10.1038/s41598-022-23012-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
Several studies have demonstrated the cost-effectiveness of genetic testing for surveillance and treatment of carriers of germline pathogenic variants associated with hereditary breast/ovarian cancer syndrome (HBOC). In Brazil, seventy percent of the population is assisted by the public Unified Health System (SUS), where genetic testing is still unavailable. And few studies were performed regarding the prevalence of HBOC pathogenic variants in this context. Here, we estimated the prevalence of germline pathogenic variants in BRCA1, BRCA2 and TP53 genes in Brazilian patients suspected of HBOC and referred to public healthcare service. Predictive power of risk prediction models for detecting mutation carriers was also evaluated. We found that 41 out of 257 tested patients (15.9%) were carriers of pathogenic variants in the analyzed genes. Most frequent pathogenic variant was the founder Brazilian mutation TP53 c.1010G > A (p.Arg337His), adding to the accumulated evidence that supports inclusion of TP53 in routine testing of Brazilian HBOC patients. Surprisingly, BRCA1 c.5266dupC (p.Gln1756fs), a frequently reported pathogenic variant in Brazilian HBOC patients, was not observed. Regarding the use of predictive models, we found that familial history of cancer might be used to improve selection or prioritization of patients for genetic testing, especially in a context of limited resources.
Collapse
|
14
|
Müller L, Ptok J, Nisar A, Antemann J, Grothmann R, Hillebrand F, Brillen AL, Ritchie A, Theiss S, Schaal H. Modeling splicing outcome by combining 5'ss strength and splicing regulatory elements. Nucleic Acids Res 2022; 50:8834-8851. [PMID: 35947702 PMCID: PMC9410876 DOI: 10.1093/nar/gkac663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 06/23/2022] [Accepted: 07/27/2022] [Indexed: 12/24/2022] Open
Abstract
Correct pre-mRNA processing in higher eukaryotes vastly depends on splice site recognition. Beyond conserved 5'ss and 3'ss motifs, splicing regulatory elements (SREs) play a pivotal role in this recognition process. Here, we present in silico designed sequences with arbitrary a priori prescribed splicing regulatory HEXplorer properties that can be concatenated to arbitrary length without changing their regulatory properties. We experimentally validated in silico predictions in a massively parallel splicing reporter assay on more than 3000 sequences and exemplarily identified some SRE binding proteins. Aiming at a unified 'functional splice site strength' encompassing both U1 snRNA complementarity and impact from neighboring SREs, we developed a novel RNA-seq based 5'ss usage landscape, mapping the competition of pairs of high confidence 5'ss and neighboring exonic GT sites along HBond and HEXplorer score coordinate axes on human fibroblast and endothelium transcriptome datasets. These RNA-seq data served as basis for a logistic 5'ss usage prediction model, which greatly improved discrimination between strong but unused exonic GT sites and annotated highly used 5'ss. Our 5'ss usage landscape offers a unified view on 5'ss and SRE neighborhood impact on splice site recognition, and may contribute to improved mutation assessment in human genetics.
Collapse
Affiliation(s)
| | | | - Azlan Nisar
- Institute of Virology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany,Institute for Bioinformatics and Chemoinformatics, Westphalian University of Applied Sciences, August-Schmidt-Ring 10, Recklinghausen 45665, Germany
| | - Jennifer Antemann
- Institute of Virology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Ramona Grothmann
- Institute of Virology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Frank Hillebrand
- Institute of Virology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Anna-Lena Brillen
- Institute of Virology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Anastasia Ritchie
- Institute of Virology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | | | - Heiner Schaal
- To whom correspondence should be addressed. Tel: +49 211 81 12393; Fax: +49 211 81 10856;
| |
Collapse
|
15
|
Holcomb DD, Jankowska KI, Hernandez N, Laurie K, Kames J, Hamasaki-Katagiri N, Komar AA, DiCuccio M, Kimchi-Sarfaty C. Protocol to identify host-viral protein interactions between coagulation-related proteins and their genetic variants with SARS-CoV-2 proteins. STAR Protoc 2022; 3:101648. [PMID: 36052345 PMCID: PMC9345850 DOI: 10.1016/j.xpro.2022.101648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Here, we describe a bioinformatics pipeline that evaluates the interactions between coagulation-related proteins and genetic variants with SARS-CoV-2 proteins. This pipeline searches for host proteins that may bind to viral protein and identifies and scores the protein genetic variants to predict the disease pathogenesis in specific subpopulations. Additionally, it is able to find structurally similar motifs and identify potential binding sites within the host-viral protein complexes to unveil viral impact on regulated biological processes and/or host-protein impact on viral invasion or reproduction. For complete details on the use and execution of this protocol, please refer to Holcomb et al. (2021).
Collapse
Affiliation(s)
- David D. Holcomb
- Center for Biologics Evaluation and Research, Office of Tissues and Advanced Therapies, Division of Plasma Protein Therapeutics, Food and Drug Administration, Silver Spring, MD, USA,Corresponding author
| | - Katarzyna I. Jankowska
- Center for Biologics Evaluation and Research, Office of Tissues and Advanced Therapies, Division of Plasma Protein Therapeutics, Food and Drug Administration, Silver Spring, MD, USA
| | - Nancy Hernandez
- Center for Biologics Evaluation and Research, Office of Tissues and Advanced Therapies, Division of Plasma Protein Therapeutics, Food and Drug Administration, Silver Spring, MD, USA
| | - Kyle Laurie
- Center for Biologics Evaluation and Research, Office of Tissues and Advanced Therapies, Division of Plasma Protein Therapeutics, Food and Drug Administration, Silver Spring, MD, USA
| | - Jacob Kames
- Center for Biologics Evaluation and Research, Office of Tissues and Advanced Therapies, Division of Plasma Protein Therapeutics, Food and Drug Administration, Silver Spring, MD, USA
| | - Nobuko Hamasaki-Katagiri
- Center for Biologics Evaluation and Research, Office of Tissues and Advanced Therapies, Division of Plasma Protein Therapeutics, Food and Drug Administration, Silver Spring, MD, USA
| | - Anton A. Komar
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH, USA
| | - Michael DiCuccio
- National Center of Biotechnology Information, National Institutes of Health, Bethesda, MD, USA
| | - Chava Kimchi-Sarfaty
- Center for Biologics Evaluation and Research, Office of Tissues and Advanced Therapies, Division of Plasma Protein Therapeutics, Food and Drug Administration, Silver Spring, MD, USA,Corresponding author
| |
Collapse
|
16
|
Splicing mutations in the CFTR gene as therapeutic targets. Gene Ther 2022; 29:399-406. [PMID: 35650428 PMCID: PMC9385490 DOI: 10.1038/s41434-022-00347-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 05/07/2022] [Accepted: 05/12/2022] [Indexed: 11/08/2022]
Abstract
The marketing approval, about ten years ago, of the first disease modulator for patients with cystic fibrosis harboring specific CFTR genotypes (~5% of all patients) brought new hope for their treatment. To date, several therapeutic strategies have been approved and the number of CFTR mutations targeted by therapeutic agents is increasing. Although these drugs do not reverse the existing disease, they help to increase the median life expectancy. However, on the basis of their CFTR genotype, ~10% of patients presently do not qualify for any of the currently available CFTR modulator therapies, particularly patients with splicing mutations (~12% of the reported CFTR mutations). Efforts are currently made to develop therapeutic agents that target disease-causing CFTR variants that affect splicing. This highlights the need to fully identify them by scanning non-coding regions and systematically determine their functional consequences. In this review, we present some examples of CFTR alterations that affect splicing events and the different therapeutic options that are currently developed and tested for splice switching.
Collapse
|
17
|
Müller L, Moskorz W, Brillen AL, Hillebrand F, Ostermann PN, Kiel N, Walotka L, Ptok J, Timm J, Lübke N, Schaal H. Altered HIV-1 mRNA Splicing Due to Drug-Resistance-Associated Mutations in Exon 2/2b. Int J Mol Sci 2021; 23:ijms23010156. [PMID: 35008581 PMCID: PMC8745674 DOI: 10.3390/ijms23010156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/18/2021] [Accepted: 12/22/2021] [Indexed: 12/02/2022] Open
Abstract
The underlying molecular mechanism and their general effect on the replication capacity of HIV 1 drug-resistance-associated mutations is often poorly understood. To elucidate the effect of two such mutations located in a region with a high density of spicing regulatory elements on the HIV-1-splicing outcome, bioinformatic predictions were combined with transfection and infection experiments. Results show that the previously described R263K drug-resistance-associated integrase mutation has additionally a severe effect on the ESE2b splicing regulatory element (SRE) in exon 2b, which causes loss of SD2b recognition. This was confirmed by an R263R silent mutation with a similar predicted effect on the exon 2b SRE. In contrast, a V260I mutation and its silent counterpart with a lower effect on ESS2b did not exhibit any differences in the splicing pattern. Since HIV-1 highly relies on a balanced splicing reaction, changes in the splicing outcome can contribute to changes in viral replication and might add to the effect of escape mutations toward antiviral drugs. Thus, a classification of mutations purely addressing proteins is insufficient.
Collapse
|
18
|
Petersen USS, Doktor TK, Andresen BS. Pseudoexon activation in disease by non-splice site deep intronic sequence variation - wild type pseudoexons constitute high-risk sites in the human genome. Hum Mutat 2021; 43:103-127. [PMID: 34837434 DOI: 10.1002/humu.24306] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 11/02/2021] [Accepted: 11/06/2021] [Indexed: 12/27/2022]
Abstract
Accuracy of pre-messenger RNA (pre-mRNA) splicing is crucial for normal gene expression. Complex regulation supports the spliceosomal distinction between authentic exons and the many seemingly functional splice sites delimiting pseudoexons. Pseudoexons are nonfunctional intronic sequences that can be activated for aberrant inclusion in mRNA, which may cause disease. Pseudoexon activation is very challenging to predict, in particular when activation occurs by sequence variants that alter the splicing regulatory environment without directly affecting splice sites. As pseudoexon inclusion often evades detection due to activation of nonsense-mediated mRNA decay, and because conventional diagnostic procedures miss deep intronic sequence variation, pseudoexon activation is a heavily underreported disease mechanism. Pseudoexon characteristics have mainly been studied based on in silico predicted sequences. Moreover, because recognition of sequence variants that create or strengthen splice sites is possible by comparison with well-established consensus sequences, this type of pseudoexon activation is by far the most frequently reported. Here we review all known human disease-associated pseudoexons that carry functional splice sites and are activated by deep intronic sequence variants located outside splice site sequences. We delineate common characteristics that make this type of wild type pseudoexons distinct high-risk sites in the human genome.
Collapse
Affiliation(s)
- Ulrika S S Petersen
- Department of Biochemistry and Molecular Biology and the Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense M, Denmark
| | - Thomas K Doktor
- Department of Biochemistry and Molecular Biology and the Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense M, Denmark
| | - Brage S Andresen
- Department of Biochemistry and Molecular Biology and the Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense M, Denmark
| |
Collapse
|
19
|
Riolo G, Cantara S, Ricci C. What's Wrong in a Jump? Prediction and Validation of Splice Site Variants. Methods Protoc 2021; 4:62. [PMID: 34564308 PMCID: PMC8482176 DOI: 10.3390/mps4030062] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/27/2021] [Accepted: 09/03/2021] [Indexed: 02/07/2023] Open
Abstract
Alternative splicing (AS) is a crucial process to enhance gene expression driving organism development. Interestingly, more than 95% of human genes undergo AS, producing multiple protein isoforms from the same transcript. Any alteration (e.g., nucleotide substitutions, insertions, and deletions) involving consensus splicing regulatory sequences in a specific gene may result in the production of aberrant and not properly working proteins. In this review, we introduce the key steps of splicing mechanism and describe all different types of genomic variants affecting this process (splicing variants in acceptor/donor sites or branch point or polypyrimidine tract, exonic, and deep intronic changes). Then, we provide an updated approach to improve splice variants detection. First, we review the main computational tools, including the recent Machine Learning-based algorithms, for the prediction of splice site variants, in order to characterize how a genomic variant interferes with splicing process. Next, we report the experimental methods to validate the predictive analyses are defined, distinguishing between methods testing RNA (transcriptomics analysis) or proteins (proteomics experiments). For both prediction and validation steps, benefits and weaknesses of each tool/procedure are accurately reported, as well as suggestions on which approaches are more suitable in diagnostic rather than in clinical research.
Collapse
Affiliation(s)
| | | | - Claudia Ricci
- Department of Medical, Surgical and Neurological Sciences, University of Siena, 53100 Siena, Italy; (G.R.); (S.C.)
| |
Collapse
|
20
|
Abstract
After human immunodeficiency virus type 1 (HIV-1) was identified in the early 1980s, intensive work began to understand the molecular basis of HIV-1 gene expression. Subgenomic HIV-1 RNA regions, spread throughout the viral genome, were described to have a negative impact on the nuclear export of some viral transcripts. Those studies revealed an intrinsic RNA code as a new form of nuclear export regulation. Since such regulatory regions were later also identified in other viruses, as well as in cellular genes, it can be assumed that, during evolution, viruses took advantage of them to achieve more sophisticated replication mechanisms. Here, we review HIV-1 cis-acting repressive sequences that have been identified, and we discuss their possible underlying mechanisms and importance. Additionally, we show how current bioinformatic tools might allow more predictive approaches to identify and investigate them.
Collapse
|
21
|
An artificial neural network approach integrating plasma proteomics and genetic data identifies PLXNA4 as a new susceptibility locus for pulmonary embolism. Sci Rep 2021; 11:14015. [PMID: 34234248 PMCID: PMC8263618 DOI: 10.1038/s41598-021-93390-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/21/2021] [Indexed: 02/06/2023] Open
Abstract
Venous thromboembolism is the third common cardiovascular disease and is composed of two entities, deep vein thrombosis (DVT) and its potential fatal form, pulmonary embolism (PE). While PE is observed in ~ 40% of patients with documented DVT, there is limited biomarkers that can help identifying patients at high PE risk. To fill this need, we implemented a two hidden-layers artificial neural networks (ANN) on 376 antibodies and 19 biological traits measured in the plasma of 1388 DVT patients, with or without PE, of the MARTHA study. We used the LIME algorithm to obtain a linear approximate of the resulting ANN prediction model. As MARTHA patients were typed for genotyping DNA arrays, a genome wide association study (GWAS) was conducted on the LIME estimate. Detected single nucleotide polymorphisms (SNPs) were tested for association with PE risk in MARTHA. Main findings were replicated in the EOVT study composed of 143 PE patients and 196 DVT only patients. The derived ANN model for PE achieved an accuracy of 0.89 and 0.79 in our training and testing sets, respectively. A GWAS on the LIME approximate identified a strong statistical association peak (rs1424597: p = 5.3 × 10-7) at the PLXNA4 locus. Homozygote carriers for the rs1424597-A allele were then more frequently observed in PE than in DVT patients from the MARTHA (2% vs. 0.4%, p = 0.005) and the EOVT (3% vs. 0%, p = 0.013) studies. In a sample of 112 COVID-19 patients known to have endotheliopathy leading to acute lung injury and an increased risk of PE, decreased PLXNA4 levels were associated (p = 0.025) with worsened respiratory function. Using an original integrated proteomics and genetics strategy, we identified PLXNA4 as a new susceptibility gene for PE whose exact role now needs to be further elucidated.
Collapse
|
22
|
Moles-Fernández A, Domènech-Vivó J, Tenés A, Balmaña J, Diez O, Gutiérrez-Enríquez S. Role of Splicing Regulatory Elements and In Silico Tools Usage in the Identification of Deep Intronic Splicing Variants in Hereditary Breast/Ovarian Cancer Genes. Cancers (Basel) 2021; 13:cancers13133341. [PMID: 34283047 PMCID: PMC8268271 DOI: 10.3390/cancers13133341] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 11/30/2022] Open
Abstract
Simple Summary There is a significant percentage of hereditary breast and ovarian cancer (HBOC) cases that remain undiagnosed, because no pathogenic variant is detected through massively parallel sequencing of coding exons and exon-intron boundaries of high-moderate susceptibility risk genes. Deep intronic regions may contain variants affecting RNA splicing, leading ultimately to disease, and hence they may explain several cases where the genetic cause of HBOC is unknown. This study aims to characterize intronic regions to identify a landscape of “exonizable” zones and test the efficiency of two in silico tools to detect deep intronic variants affecting the mRNA splicing process. Abstract The contribution of deep intronic splice-altering variants to hereditary breast and ovarian cancer (HBOC) is unknown. Current computational in silico tools to predict spliceogenic variants leading to pseudoexons have limited efficiency. We assessed the performance of the SpliceAI tool combined with ESRseq scores to identify spliceogenic deep intronic variants by affecting cryptic sites or splicing regulatory elements (SREs) using literature and experimental datasets. Our results with 233 published deep intronic variants showed that SpliceAI, with a 0.05 threshold, predicts spliceogenic deep intronic variants affecting cryptic splice sites, but is less effective in detecting those affecting SREs. Next, we characterized the SRE profiles using ESRseq, showing that pseudoexons are significantly enriched in SRE-enhancers compared to adjacent intronic regions. Although the combination of SpliceAI with ESRseq scores (considering ∆ESRseq and SRE landscape) showed higher sensitivity, the global performance did not improve because of the higher number of false positives. The combination of both tools was tested in a tumor RNA dataset with 207 intronic variants disrupting splicing, showing a sensitivity of 86%. Following the pipeline, five spliceogenic deep intronic variants were experimentally identified from 33 variants in HBOC genes. Overall, our results provide a framework to detect deep intronic variants disrupting splicing.
Collapse
Affiliation(s)
- Alejandro Moles-Fernández
- Hereditary Cancer Genetics Group, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain; (A.M.-F.); (J.D.-V.); (J.B.)
| | - Joanna Domènech-Vivó
- Hereditary Cancer Genetics Group, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain; (A.M.-F.); (J.D.-V.); (J.B.)
| | - Anna Tenés
- Area of Clinical and Molecular Genetics, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain;
| | - Judith Balmaña
- Hereditary Cancer Genetics Group, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain; (A.M.-F.); (J.D.-V.); (J.B.)
- Medical Oncology Department, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| | - Orland Diez
- Hereditary Cancer Genetics Group, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain; (A.M.-F.); (J.D.-V.); (J.B.)
- Area of Clinical and Molecular Genetics, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain;
- Correspondence: (O.D.); (S.G.-E.)
| | - Sara Gutiérrez-Enríquez
- Hereditary Cancer Genetics Group, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain; (A.M.-F.); (J.D.-V.); (J.B.)
- Correspondence: (O.D.); (S.G.-E.)
| |
Collapse
|
23
|
Bueno-Martínez E, Sanoguera-Miralles L, Valenzuela-Palomo A, Lorca V, Gómez-Sanz A, Carvalho S, Allen J, Infante M, Pérez-Segura P, Lázaro C, Easton DF, Devilee P, Vreeswijk MPG, de la Hoya M, Velasco EA. RAD51D Aberrant Splicing in Breast Cancer: Identification of Splicing Regulatory Elements and Minigene-Based Evaluation of 53 DNA Variants. Cancers (Basel) 2021; 13:2845. [PMID: 34200360 PMCID: PMC8201001 DOI: 10.3390/cancers13112845] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 12/18/2022] Open
Abstract
RAD51D loss-of-function variants increase lifetime risk of breast and ovarian cancer. Splicing disruption is a frequent pathogenic mechanism associated with variants in susceptibility genes. Herein, we have assessed the splicing and clinical impact of splice-site and exonic splicing enhancer (ESE) variants identified through the study of ~113,000 women of the BRIDGES cohort. A RAD51D minigene with exons 2-9 was constructed in splicing vector pSAD. Eleven BRIDGES splice-site variants (selected by MaxEntScan) were introduced into the minigene by site-directed mutagenesis and tested in MCF-7 cells. The 11 variants disrupted splicing, collectively generating 25 different aberrant transcripts. All variants but one produced negligible levels (<3.4%) of the full-length (FL) transcript. In addition, ESE elements of the alternative exon 3 were mapped by testing four overlapping exonic microdeletions (≥30-bp), revealing an ESE-rich interval (c.202_235del) with critical sequences for exon 3 recognition that might have been affected by germline variants. Next, 26 BRIDGES variants and 16 artificial exon 3 single-nucleotide substitutions were also assayed. Thirty variants impaired splicing with variable amounts (0-65.1%) of the FL transcript, although only c.202G>A demonstrated a complete aberrant splicing pattern without the FL transcript. On the other hand, c.214T>C increased efficiency of exon 3 recognition, so only the FL transcript was detected (100%). In conclusion, 41 RAD51D spliceogenic variants (28 of which were from the BRIDGES cohort) were identified by minigene assays. We show that minigene-based mapping of ESEs is a powerful approach for identifying ESE hotspots and ESE-disrupting variants. Finally, we have classified nine variants as likely pathogenic according to ACMG/AMP-based guidelines, highlighting the complex relationship between splicing alterations and variant interpretation.
Collapse
Affiliation(s)
- Elena Bueno-Martínez
- Splicing and Genetic Susceptibility to Cancer Laboratory, Unidad de Excelencia Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC-UVa), 47003 Valladolid, Spain; (E.B.-M.); (L.S.-M.); (A.V.-P.)
| | - Lara Sanoguera-Miralles
- Splicing and Genetic Susceptibility to Cancer Laboratory, Unidad de Excelencia Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC-UVa), 47003 Valladolid, Spain; (E.B.-M.); (L.S.-M.); (A.V.-P.)
| | - Alberto Valenzuela-Palomo
- Splicing and Genetic Susceptibility to Cancer Laboratory, Unidad de Excelencia Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC-UVa), 47003 Valladolid, Spain; (E.B.-M.); (L.S.-M.); (A.V.-P.)
| | - Víctor Lorca
- Molecular Oncology Laboratory CIBERONC, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), Hospital Clinico San Carlos, 28040 Madrid, Spain; (V.L.); (A.G.-S.); (P.P.-S.)
| | - Alicia Gómez-Sanz
- Molecular Oncology Laboratory CIBERONC, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), Hospital Clinico San Carlos, 28040 Madrid, Spain; (V.L.); (A.G.-S.); (P.P.-S.)
| | - Sara Carvalho
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK; (S.C.); (J.A.); (D.F.E.)
| | - Jamie Allen
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK; (S.C.); (J.A.); (D.F.E.)
| | - Mar Infante
- Cancer Genetics, Unidad de Excelencia Instituto de Biología y Genética Molecular (CSIC-UVa), 47003 Valladolid, Spain;
| | - Pedro Pérez-Segura
- Molecular Oncology Laboratory CIBERONC, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), Hospital Clinico San Carlos, 28040 Madrid, Spain; (V.L.); (A.G.-S.); (P.P.-S.)
| | - Conxi Lázaro
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL and CIBERONC, 08908 Hospitalet de Llobregat, Spain;
| | - Douglas F. Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK; (S.C.); (J.A.); (D.F.E.)
| | - Peter Devilee
- Department of Human Genetics, Leiden University Medical Center, 2300RC Leiden, The Netherlands; (P.D.); (M.P.G.V.)
| | - Maaike P. G. Vreeswijk
- Department of Human Genetics, Leiden University Medical Center, 2300RC Leiden, The Netherlands; (P.D.); (M.P.G.V.)
| | - Miguel de la Hoya
- Molecular Oncology Laboratory CIBERONC, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), Hospital Clinico San Carlos, 28040 Madrid, Spain; (V.L.); (A.G.-S.); (P.P.-S.)
| | - Eladio A. Velasco
- Splicing and Genetic Susceptibility to Cancer Laboratory, Unidad de Excelencia Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC-UVa), 47003 Valladolid, Spain; (E.B.-M.); (L.S.-M.); (A.V.-P.)
| |
Collapse
|
24
|
Ptok J, Müller L, Ostermann PN, Ritchie A, Dilthey AT, Theiss S, Schaal H. Modifying splice site usage with ModCon: Maintaining the genetic code while changing the underlying mRNP code. Comput Struct Biotechnol J 2021; 19:3069-3076. [PMID: 34136105 PMCID: PMC8178101 DOI: 10.1016/j.csbj.2021.05.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/14/2021] [Accepted: 05/20/2021] [Indexed: 11/22/2022] Open
Abstract
Codon degeneracy of amino acid sequences permits an additional “mRNP code” layer underlying the genetic code that is related to RNA processing. In pre-mRNA splicing, splice site usage is determined by both intrinsic strength and sequence context providing RNA binding sites for splicing regulatory proteins. In this study, we systematically examined modification of splicing regulatory properties in the neighborhood of a GT site, i.e. potential splice site, without altering the encoded amino acids. We quantified the splicing regulatory properties of the neighborhood around a potential splice site by its Splice Site HEXplorer Weight (SSHW) based on the HEXplorer score algorithm. To systematically modify GT site neighborhoods, either minimizing or maximizing their SSHW, we designed the novel stochastic optimization algorithm ModCon that applies a genetic algorithm with stochastic crossover, insertion and random mutation elements supplemented by a heuristic sliding window approach. To assess the achievable range in SSHW in human splice donors without altering the encoded amino acids, we applied ModCon to a set of 1000 randomly selected Ensembl annotated human splice donor sites, achieving substantial and accurate changes in SSHW. Using ModCon optimization, we successfully switched splice donor usage in a splice site competition reporter containing coding sequences from FANCA, FANCB or BRCA2, while retaining their amino acid coding information. The ModCon algorithm and its R package implementation can assist in reporter design by either introducing novel splice sites, silencing accidental, undesired splice sites, and by generally modifying the entire mRNP code while maintaining the genetic code.
Collapse
Key Words
- A, adenine
- F1, filial sequence 1
- G, guanine
- GA, genetic algorithm
- HBS, HBond score
- HBond score
- HEXplorer score
- HZEI, HEXplorer score
- P1, parental sequence 1
- SA, splice acceptor
- SD, splice donor
- SR proteins, serine- and arginine-rich proteins
- SRP, splicing regulatory protein
- SSHW, splice site HEXplorer weight
- SW, sliding window
- Splice donor
- Splicing regulatory proteins
- Splicing reporter
- T, thymine
- eGFP, enhanced green fluorescent protein
- hnRNP, heterogeneous nuclear ribonucleoproteins
- nt, nucleotides
- pre-mRNA splicing
- pre-mRNA, precursor messenger RNA
- snRNA, small nuclear RNA
Collapse
Affiliation(s)
- Johannes Ptok
- Institute of Virology, Medical Faculty, Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Lisa Müller
- Institute of Virology, Medical Faculty, Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Philipp Niklas Ostermann
- Institute of Virology, Medical Faculty, Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Anastasia Ritchie
- Institute of Virology, Medical Faculty, Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Alexander T Dilthey
- Institute of Medical Statistics and Computational Biology, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Stephan Theiss
- Institute of Virology, Medical Faculty, Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Heiner Schaal
- Institute of Virology, Medical Faculty, Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany
| |
Collapse
|
25
|
Hotspot exons are common targets of splicing perturbations. Nat Commun 2021; 12:2756. [PMID: 33980843 PMCID: PMC8115636 DOI: 10.1038/s41467-021-22780-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/24/2021] [Indexed: 11/08/2022] Open
Abstract
High-throughput splicing assays have demonstrated that many exonic variants can disrupt splicing; however, splice-disrupting variants distribute non-uniformly across genes. We propose the existence of exons that are particularly susceptible to splice-disrupting variants, which we refer to as hotspot exons. Hotspot exons are also more susceptible to splicing perturbation through drug treatment and knock-down of RNA-binding proteins. We develop a classifier for exonic splice-disrupting variants and use it to infer hotspot exons. We estimate that 1400 exons in the human genome are hotspots. Using panels of splicing reporters, we demonstrate how the ability of an exon to tolerate a mutation is inversely proportional to the strength of its neighboring splice sites. Splicing-disrupting mutations are linked to diseases. By employing a machine learning approach, the authors show that certain exons, termed hotspot exons, are enriched for splicing-disruption variants and susceptible to splicing perturbations.
Collapse
|
26
|
Functional Analysis of the PCCA and PCCB Gene Variants Predicted to Affect Splicing. Int J Mol Sci 2021; 22:ijms22084154. [PMID: 33923806 PMCID: PMC8073151 DOI: 10.3390/ijms22084154] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/29/2021] [Accepted: 04/12/2021] [Indexed: 12/03/2022] Open
Abstract
It is estimated that up to one-third of all variants causing inherited diseases affect splicing; however, their deleterious effects and roles in disease pathogenesis are often not fully characterized. Given their prevalence and the development of various antisense-based splice-modulating approaches, pathogenic splicing variants have become an important object of genomic medicine. To improve the accuracy of variant interpretation in public mutation repositories, we applied the minigene splicing assay to study the effects of 24 variants that were predicted to affect normal splicing in the genes associated with propionic acidemia (PA)—PCCA and PCCB. As a result, 13 variants (including one missense and two synonymous variants) demonstrated a significant alteration of splicing with the predicted deleterious effect at the protein level and were characterized as spliceogenic loss-of-function variants. The analysis of the available data for the studied variants and application of the American College of Medical Genetics and the Association for Molecular Pathology (ACMG/AMP) guidelines allowed us to precisely classify five of the variants and change the pathogenic status of nine. Using the example of the PA genes, we demonstrated the utility of the minigene splicing assay in the fast and effective assessment of the spliceogenic effect for identified variants and highlight the necessity of their standardized classification.
Collapse
|
27
|
Holcomb D, Alexaki A, Hernandez N, Hunt R, Laurie K, Kames J, Hamasaki-Katagiri N, Komar AA, DiCuccio M, Kimchi-Sarfaty C. Gene variants of coagulation related proteins that interact with SARS-CoV-2. PLoS Comput Biol 2021; 17:e1008805. [PMID: 33730015 PMCID: PMC8007013 DOI: 10.1371/journal.pcbi.1008805] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 03/29/2021] [Accepted: 02/15/2021] [Indexed: 12/30/2022] Open
Abstract
Thrombosis is a recognized complication of Coronavirus disease of 2019 (COVID-19) and is often associated with poor prognosis. There is a well-recognized link between coagulation and inflammation, however, the extent of thrombotic events associated with COVID-19 warrants further investigation. Poly(A) Binding Protein Cytoplasmic 4 (PABPC4), Serine/Cysteine Proteinase Inhibitor Clade G Member 1 (SERPING1) and Vitamin K epOxide Reductase Complex subunit 1 (VKORC1), which are all proteins linked to coagulation, have been shown to interact with SARS proteins. We computationally examined the interaction of these with SARS-CoV-2 proteins and, in the case of VKORC1, we describe its binding to ORF7a in detail. We examined the occurrence of variants of each of these proteins across populations and interrogated their potential contribution to COVID-19 severity. Potential mechanisms, by which some of these variants may contribute to disease, are proposed. Some of these variants are prevalent in minority groups that are disproportionally affected by severe COVID-19. Therefore, we are proposing that further investigation around these variants may lead to better understanding of disease pathogenesis in minority groups and more informed therapeutic approaches.
Collapse
Affiliation(s)
- David Holcomb
- Center for Biologics Evaluation and Research, Office of Tissues and Advanced Therapies, Division of Plasma Protein Therapeutics, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Aikaterini Alexaki
- Center for Biologics Evaluation and Research, Office of Tissues and Advanced Therapies, Division of Plasma Protein Therapeutics, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Nancy Hernandez
- Center for Biologics Evaluation and Research, Office of Tissues and Advanced Therapies, Division of Plasma Protein Therapeutics, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Ryan Hunt
- Center for Biologics Evaluation and Research, Office of Tissues and Advanced Therapies, Division of Plasma Protein Therapeutics, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Kyle Laurie
- Center for Biologics Evaluation and Research, Office of Tissues and Advanced Therapies, Division of Plasma Protein Therapeutics, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Jacob Kames
- Center for Biologics Evaluation and Research, Office of Tissues and Advanced Therapies, Division of Plasma Protein Therapeutics, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Nobuko Hamasaki-Katagiri
- Center for Biologics Evaluation and Research, Office of Tissues and Advanced Therapies, Division of Plasma Protein Therapeutics, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Anton A. Komar
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, Ohio, United States of America
| | - Michael DiCuccio
- National Center of Biotechnology Information, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Chava Kimchi-Sarfaty
- Center for Biologics Evaluation and Research, Office of Tissues and Advanced Therapies, Division of Plasma Protein Therapeutics, Food and Drug Administration, Silver Spring, Maryland, United States of America
| |
Collapse
|
28
|
Saint-Martin C, Cauchois-Le Mière M, Rex E, Soukarieh O, Arnoux JB, Buratti J, Bouvet D, Frébourg T, Gaildrat P, Shyng SL, Bellanné-Chantelot C, Martins A. Functional characterization of ABCC8 variants of unknown significance based on bioinformatics predictions, splicing assays, and protein analyses: Benefits for the accurate diagnosis of congenital hyperinsulinism. Hum Mutat 2021; 42:408-420. [PMID: 33410562 DOI: 10.1002/humu.24164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 12/06/2020] [Accepted: 12/31/2020] [Indexed: 12/20/2022]
Abstract
ABCC8 encodes the SUR1 subunit of the β-cell ATP-sensitive potassium channel whose loss of function causes congenital hyperinsulinism (CHI). Molecular diagnosis is critical for optimal management of CHI patients. Unfortunately, assessing the impact of ABCC8 variants on RNA splicing remains very challenging as this gene is poorly expressed in leukocytes. Here, we performed bioinformatics analysis and cell-based minigene assays to assess the impact on splicing of 13 ABCC8 variants identified in 20 CHI patients. Next, channel properties of SUR1 proteins expected to originate from minigene-detected in-frame splicing defects were analyzed after ectopic expression in COSm6 cells. Out of the analyzed variants, seven induced out-of-frame splicing defects and were therefore classified as recessive pathogenic, whereas two led to skipping of in-frame exons. Channel functional analysis of the latter demonstrated their pathogenicity. Interestingly, the common rs757110 SNP increased exon skipping in our system suggesting that it may act as a disease modifier factor. Our strategy allowed determining the pathogenicity of all selected ABCC8 variants, and CHI-inheritance pattern for 16 out of the 20 patients. This study highlights the value of combining RNA and protein functional approaches in variant interpretation and reveals the minigene splicing assay as a new tool for CHI molecular diagnostics.
Collapse
Affiliation(s)
- Cécile Saint-Martin
- Department of Genetics, AP-HP Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
| | - Marine Cauchois-Le Mière
- Inserm U1245, UFR de Médecine et Pharmacie, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, Rouen, France.,Department of Genetics, University Hospital, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Emily Rex
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, USA
| | - Omar Soukarieh
- Inserm U1245, UFR de Médecine et Pharmacie, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Jean-Baptiste Arnoux
- Department of Inherited Metabolic Disease, Necker-Enfants Malades University Hospital, AP-HP, Paris, France
| | - Julien Buratti
- Department of Genetics, AP-HP Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
| | - Delphine Bouvet
- Department of Genetics, AP-HP Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
| | - Thierry Frébourg
- Inserm U1245, UFR de Médecine et Pharmacie, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, Rouen, France.,Department of Genetics, University Hospital, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Pascaline Gaildrat
- Inserm U1245, UFR de Médecine et Pharmacie, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Show-Ling Shyng
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, USA
| | | | - Alexandra Martins
- Inserm U1245, UFR de Médecine et Pharmacie, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| |
Collapse
|
29
|
Splicing mutations in inherited retinal diseases. Prog Retin Eye Res 2021. [DOI: 10.1016/j.preteyeres.2020.100874
expr 921883647 + 833887994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
30
|
Martin N, Bergougnoux A, Baatallah N, Chevalier B, Varilh J, Baux D, Costes B, Fanen P, Raynal C, Sermet-Gaudelus I, Girodon E, Taulan-Cadars M, Hinzpeter A. Exon identity influences splicing induced by exonic variants and in silico prediction efficacy. J Cyst Fibros 2020; 20:464-472. [PMID: 33341408 DOI: 10.1016/j.jcf.2020.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 09/22/2020] [Accepted: 12/03/2020] [Indexed: 01/09/2023]
Abstract
BACKGROUND Minigenes and in silico prediction tools are commonly used to assess the impact on splicing of CFTR variants. Exon skipping is often neglected though it could impact the efficacy of targeted therapies. The aim of the study was to identify exon skipping associated with CFTR variants and to evaluate in silico predictions of seven freely available software. METHODS CFTR basal exon skipping was evaluated on endogenous mRNA extracted from non-CF nasal cells and on two CFTR minigene banks. In silico tools and minigene systems were used to evaluate the impact of CFTR exonic variants on exon skipping. RESULTS Data showed that out of 65 CFTR variants tested, 26 enhanced exon skipping and that in silico prediction efficacy was of 50%-66%. Some in silico tools presented predictions with a bias towards the occurrence of splicing events while others presented a bias towards the absence of splicing events (non-detection including true negatives and false negatives). Classification of exons depending on their basal exon skipping level increased prediction rates up to 80%. CONCLUSION This study indicates that taking basal exon skipping into account could orientate the choice of the in silico tools to improve prediction rates. It also highlights the need to validate effects using in vitro assays or mRNA studies in patients. Eventually, it shows that variant-guided therapy should also target exon skipping associated with variants.
Collapse
Affiliation(s)
- Natacha Martin
- INSERM, U955, Institut de Recherche Henri Mondor, IMRB, Créteil, France
| | - Anne Bergougnoux
- CHU de Montpellier, Laboratoire de Génétique Moléculaire, Montpellier, France; Université de Montpellier, Laboratoire de Génétique de Maladies Rares, EA7402 Montpellier, France
| | - Nesrine Baatallah
- INSERM U1151, Institut Necker Enfants Malades, INEM, Paris, France; Université Paris Descartes, Paris, France
| | - Benoit Chevalier
- INSERM U1151, Institut Necker Enfants Malades, INEM, Paris, France; Université Paris Descartes, Paris, France
| | - Jessica Varilh
- Université de Montpellier, Laboratoire de Génétique de Maladies Rares, EA7402 Montpellier, France
| | - David Baux
- CHU de Montpellier, Laboratoire de Génétique Moléculaire, Montpellier, France; Université de Montpellier, Laboratoire de Génétique de Maladies Rares, EA7402 Montpellier, France
| | - Bruno Costes
- INSERM, U955, Institut de Recherche Henri Mondor, IMRB, Créteil, France
| | - Pascale Fanen
- INSERM, U955, Institut de Recherche Henri Mondor, IMRB, Créteil, France; Department of Genetics, GH Henri Mondor, APHP, Créteil, France
| | - Caroline Raynal
- CHU de Montpellier, Laboratoire de Génétique Moléculaire, Montpellier, France; Université de Montpellier, Laboratoire de Génétique de Maladies Rares, EA7402 Montpellier, France
| | - Isabelle Sermet-Gaudelus
- INSERM U1151, Institut Necker Enfants Malades, INEM, Paris, France; Université Paris Descartes, Paris, France
| | - Emmanuelle Girodon
- INSERM U1151, Institut Necker Enfants Malades, INEM, Paris, France; Laboratoire de Génétique et Biologie Moléculaires, Hôpital Cochin, APHP Centre-Université de Paris, Paris, France
| | - Magali Taulan-Cadars
- Université de Montpellier, Laboratoire de Génétique de Maladies Rares, EA7402 Montpellier, France.
| | - Alexandre Hinzpeter
- INSERM U1151, Institut Necker Enfants Malades, INEM, Paris, France; Université Paris Descartes, Paris, France.
| |
Collapse
|
31
|
Hoser SM, Hoffmann A, Meindl A, Gamper M, Fallmann J, Bernhart SH, Müller L, Ploner M, Misslinger M, Kremser L, Lindner H, Geley S, Schaal H, Stadler PF, Huettenhofer A. Intronic tRNAs of mitochondrial origin regulate constitutive and alternative splicing. Genome Biol 2020; 21:299. [PMID: 33292386 PMCID: PMC7722341 DOI: 10.1186/s13059-020-02199-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 11/09/2020] [Indexed: 02/19/2023] Open
Abstract
BACKGROUND The presence of nuclear mitochondrial DNA (numtDNA) has been reported within several nuclear genomes. Next to mitochondrial protein-coding genes, numtDNA sequences also encode for mitochondrial tRNA genes. However, the biological roles of numtDNA remain elusive. RESULTS Employing in silico analysis, we identify 281 mitochondrial tRNA homologs in the human genome, which we term nimtRNAs (nuclear intronic mitochondrial-derived tRNAs), being contained within introns of 76 nuclear host genes. Despite base changes in nimtRNAs when compared to their mtRNA homologs, a canonical tRNA cloverleaf structure is maintained. To address potential functions of intronic nimtRNAs, we insert them into introns of constitutive and alternative splicing reporters and demonstrate that nimtRNAs promote pre-mRNA splicing, dependent on the number and positioning of nimtRNA genes and splice site recognition efficiency. A mutational analysis reveals that the nimtRNA cloverleaf structure is required for the observed splicing increase. Utilizing a CRISPR/Cas9 approach, we show that a partial deletion of a single endogenous nimtRNALys within intron 28 of the PPFIBP1 gene decreases inclusion of the downstream-located exon 29 of the PPFIBP1 mRNA. By employing a pull-down approach followed by mass spectrometry, a 3'-splice site-associated protein network is identified, including KHDRBS1, which we show directly interacts with nimtRNATyr by an electrophoretic mobility shift assay. CONCLUSIONS We propose that nimtRNAs, along with associated protein factors, can act as a novel class of intronic splicing regulatory elements in the human genome by participating in the regulation of splicing.
Collapse
Affiliation(s)
- Simon M Hoser
- Division of Genomics and RNomics, Biocenter, Medical University of Innsbruck, 6020, Innsbruck, Austria.
| | - Anne Hoffmann
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Philipp-Rosenthal-Str. 27, 04103, Leipzig, Germany
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics, Leipzig University, 04107, Leipzig, Germany
| | - Andreas Meindl
- Division of Genomics and RNomics, Biocenter, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Maximilian Gamper
- Division of Genomics and RNomics, Biocenter, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Jörg Fallmann
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics, Leipzig University, 04107, Leipzig, Germany
| | - Stephan H Bernhart
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics, Leipzig University, 04107, Leipzig, Germany
| | - Lisa Müller
- Institute for Virology, Medical Faculty Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Melanie Ploner
- Division of Genomics and RNomics, Biocenter, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Matthias Misslinger
- Division of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Leopold Kremser
- Division of Clinical Biochemistry, Protein Micro-Analysis Facility, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Herbert Lindner
- Division of Clinical Biochemistry, Protein Micro-Analysis Facility, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Stephan Geley
- Institute of Pathophysiology, Biocenter, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Heiner Schaal
- Institute for Virology, Medical Faculty Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Peter F Stadler
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics, Leipzig University, 04107, Leipzig, Germany
- Max Planck Institute for Mathematics in the Sciences, Inselstraße 22, 04103, Leipzig, Germany
| | - Alexander Huettenhofer
- Division of Genomics and RNomics, Biocenter, Medical University of Innsbruck, 6020, Innsbruck, Austria.
| |
Collapse
|
32
|
Le Tertre M, Ka C, Raud L, Berlivet I, Gourlaouen I, Richard G, Uguen K, Chen JM, Férec C, Fichou Y, Le Gac G. Splicing analysis of SLC40A1 missense variations and contribution to hemochromatosis type 4 phenotypes. Blood Cells Mol Dis 2020; 87:102527. [PMID: 33341511 DOI: 10.1016/j.bcmd.2020.102527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 02/09/2023]
Abstract
Hemochromatosis type 4, or ferroportin disease, is considered as the second leading cause of primary iron overload after HFE-related hemochromatosis. The disease, which is predominantly associated with missense variations in the SLC40A1 gene, is characterized by wide clinical heterogeneity. We tested the possibility that some of the reported missense mutations, despite their positions within exons, cause splicing defects. Fifty-eight genetic variants were selected from the literature based on two criteria: a precise description of the nucleotide change and individual evidence of iron overload. The selected variants were investigated by different in silico prediction tools and prioritized for midigene splicing assays. Of the 15 variations tested in vitro, only two were associated with splicing changes. We confirm that the c.1402G>A transition (p.Gly468Ser) disrupts the exon 7 donor site, leading to the use of an exonic cryptic splicing site and the generation of a truncated reading frame. We observed, for the first time, that the p.Gly468Ser substitution has no effect on the ferroportin iron export function. We demonstrate alternative splicing of exon 5 in different cell lines and show that the c.430A>G (p.Asn144Asp) variant promotes exon 5 inclusion. This could be part of a gain-of-function mechanism. We conclude that splicing mutations rarely contribute to hemochromatosis type 4 phenotypes. An in-depth investigation of exon 5 auxiliary splicing sequences may help to elucidate the mechanism by which splicing regulatory proteins regulate the production of the full length SLC40A1 transcript and to clarify its physiological importance.
Collapse
Affiliation(s)
- Marlène Le Tertre
- Univ Brest, Inserm, EFS, UMR1078, GGB, F-29200, France; CHRU de Brest, Service de Génétique Médicale et Biologie de la Reproduction, Laboratoire de Génétique Moléculaire et Histocompatibilité, F-29200, France
| | - Chandran Ka
- Univ Brest, Inserm, EFS, UMR1078, GGB, F-29200, France; CHRU de Brest, Service de Génétique Médicale et Biologie de la Reproduction, Laboratoire de Génétique Moléculaire et Histocompatibilité, F-29200, France; Laboratory of Excellence GR-Ex, F-75015, France
| | - Loann Raud
- Univ Brest, Inserm, EFS, UMR1078, GGB, F-29200, France; Association Gaétan Saleün, F-29200, France
| | | | - Isabelle Gourlaouen
- Univ Brest, Inserm, EFS, UMR1078, GGB, F-29200, France; Laboratory of Excellence GR-Ex, F-75015, France
| | | | - Kévin Uguen
- Univ Brest, Inserm, EFS, UMR1078, GGB, F-29200, France; CHRU de Brest, Service de Génétique Médicale et Biologie de la Reproduction, Laboratoire de Génétique Moléculaire et Histocompatibilité, F-29200, France
| | - Jian-Min Chen
- Univ Brest, Inserm, EFS, UMR1078, GGB, F-29200, France
| | - Claude Férec
- Univ Brest, Inserm, EFS, UMR1078, GGB, F-29200, France; CHRU de Brest, Service de Génétique Médicale et Biologie de la Reproduction, Laboratoire de Génétique Moléculaire et Histocompatibilité, F-29200, France; Association Gaétan Saleün, F-29200, France
| | - Yann Fichou
- Univ Brest, Inserm, EFS, UMR1078, GGB, F-29200, France; Laboratory of Excellence GR-Ex, F-75015, France
| | - Gérald Le Gac
- Univ Brest, Inserm, EFS, UMR1078, GGB, F-29200, France; CHRU de Brest, Service de Génétique Médicale et Biologie de la Reproduction, Laboratoire de Génétique Moléculaire et Histocompatibilité, F-29200, France; Laboratory of Excellence GR-Ex, F-75015, France.
| |
Collapse
|
33
|
Ptok J, Theiss S, Schaal H. VarCon: An R Package for Retrieving Neighboring Nucleotides of an SNV. Cancer Inform 2020; 19:1176935120976399. [PMID: 33281441 PMCID: PMC7691889 DOI: 10.1177/1176935120976399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/01/2020] [Indexed: 11/24/2022] Open
Abstract
Reporting of a single nucleotide variant (SNV) follows the Sequence Variant Nomenclature
(http://varnomen.hgvs.org/), using an unambiguous numbering scheme specific
for coding and noncoding DNA. However, the corresponding sequence neighborhood of a given
SNV, which is required to assess its impact on splicing regulation, is not easily
accessible from this nomenclature. Providing fast and easy access to this neighborhood
just from a given SNV reference, the novel tool VarCon combines information of the Ensembl
human reference genome and the corresponding transcript table for accurate retrieval.
VarCon also displays splice site scores (HBond and MaxEnt scores) and HEXplorer profiles
of an SNV neighborhood, reflecting position-dependent splice enhancing and silencing
properties.
Collapse
Affiliation(s)
- Johannes Ptok
- Institute of Virology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Stephan Theiss
- Institute of Virology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Heiner Schaal
- Institute of Virology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
34
|
Humphrey S, Kerr A, Rattray M, Dive C, Miller CJ. A model of k-mer surprisal to quantify local sequence information content surrounding splice regions. PeerJ 2020; 8:e10063. [PMID: 33194378 PMCID: PMC7648452 DOI: 10.7717/peerj.10063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 09/08/2020] [Indexed: 12/22/2022] Open
Abstract
Molecular sequences carry information. Analysis of sequence conservation between homologous loci is a proven approach with which to explore the information content of molecular sequences. This is often done using multiple sequence alignments to support comparisons between homologous loci. These methods therefore rely on sufficient underlying sequence similarity with which to construct a representative alignment. Here we describe a method using a formal metric of information, surprisal, to analyse biological sub-sequences without alignment constraints. We applied our model to the genomes of five different species to reveal similar patterns across a panel of eukaryotes. As the surprisal of a sub-sequence is inversely proportional to its occurrence within the genome, the optimal size of the sub-sequences was selected for each species under consideration. With the model optimized, we found a strong correlation between surprisal and CG dinucleotide usage. The utility of our model was tested by examining the sequences of genes known to undergo splicing. We demonstrate that our model can identify biological features of interest such as known donor and acceptor sites. Analysis across all annotated coding exon junctions in Homo sapiens reveals the information content of coding exons to be greater than the surrounding intron regions, a consequence of increased suppression of the CG dinucleotide in intronic space. Sequences within coding regions proximal to exon junctions exhibited novel patterns within DNA and coding mRNA that are not a function of the encoded amino acid sequence. Our findings are consistent with the presence of secondary information encoding features such as DNA and RNA binding sites, multiplexed through the coding sequence and independent of the information required to define the corresponding amino-acid sequence. We conclude that surprisal provides a complementary methodology with which to locate regions of interest in the genome, particularly in situations that lack an appropriate multiple sequence alignment.
Collapse
Affiliation(s)
- Sam Humphrey
- CRUK Manchester Institute Cancer Biomarker Centre, The University of Manchester, Manchester, United Kingdom
- CRUK Manchester Institute, CRUK Lung Cancer Centre of Excellence, Manchester, United Kingdom
| | - Alastair Kerr
- CRUK Manchester Institute Cancer Biomarker Centre, The University of Manchester, Manchester, United Kingdom
- CRUK Manchester Institute, CRUK Lung Cancer Centre of Excellence, Manchester, United Kingdom
| | - Magnus Rattray
- Division of Informatics, Imaging and Data Sciences, University of Manchester, Manchester, United Kingdom
| | - Caroline Dive
- CRUK Manchester Institute Cancer Biomarker Centre, The University of Manchester, Manchester, United Kingdom
- CRUK Manchester Institute, CRUK Lung Cancer Centre of Excellence, Manchester, United Kingdom
| | - Crispin J. Miller
- Computational Biology Group, CRUK Beatson Institute, Glasgow, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
35
|
Holcomb D, Alexaki A, Hernandez N, Laurie K, Kames J, Hamasaki-Katagiri N, Komar AA, DiCuccio M, Kimchi-Sarfaty C. Potential impact on coagulopathy of gene variants of coagulation related proteins that interact with SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 32935103 DOI: 10.1101/2020.09.08.272328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Thrombosis has been one of the complications of the Coronavirus disease of 2019 (COVID-19), often associated with poor prognosis. There is a well-recognized link between coagulation and inflammation, however, the extent of thrombotic events associated with COVID-19 warrants further investigation. Poly(A) Binding Protein Cytoplasmic 4 (PABPC4), Serine/Cysteine Proteinase Inhibitor Clade G Member 1 (SERPING1) and Vitamin K epOxide Reductase Complex subunit 1 (VKORC1), which are all proteins linked to coagulation, have been shown to interact with SARS proteins. We computationally examined the interaction of these with SARS-CoV-2 proteins and, in the case of VKORC1, we describe its binding to ORF7a in detail. We examined the occurrence of variants of each of these proteins across populations and interrogated their potential contribution to COVID-19 severity. Potential mechanisms by which some of these variants may contribute to disease are proposed. Some of these variants are prevalent in minority groups that are disproportionally affected by severe COVID-19. Therefore, we are proposing that further investigation around these variants may lead to better understanding of disease pathogenesis in minority groups and more informed therapeutic approaches. Author summary Increased blood clotting, especially in the lungs, is a common complication of COVID-19. Infectious diseases cause inflammation which in turn can contribute to increased blood clotting. However, the extent of clot formation that is seen in the lungs of COVID-19 patients suggests that there may be a more direct link. We identified three human proteins that are involved indirectly in the blood clotting cascade and have been shown to interact with proteins of SARS virus, which is closely related to the novel coronavirus. We examined computationally the interaction of these human proteins with the viral proteins. We looked for genetic variants of these proteins and examined how these variants are distributed across populations. We investigated whether variants of these genes could impact severity of COVID-19. Further investigation around these variants may provide clues for the pathogenesis of COVID-19 particularly in minority groups.
Collapse
|
36
|
JMJD6 Regulates Splicing of Its Own Gene Resulting in Alternatively Spliced Isoforms with Different Nuclear Targets. Int J Mol Sci 2020; 21:ijms21186618. [PMID: 32927736 PMCID: PMC7555845 DOI: 10.3390/ijms21186618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/03/2020] [Accepted: 09/08/2020] [Indexed: 12/17/2022] Open
Abstract
Jumonji-domain-containing protein 6 (JMJD6) is a Fe(II) and 2-oxogluterate (2OG) dependent oxygenase involved in gene regulation through post-translationally modifying nuclear proteins. It is highly expressed in many cancer types and linked to tumor progression and metastasis. Four alternatively-spliced jmjd6 transcripts were annotated. Here, we focus on the two most abundantly expressed ones, which we call jmjd6-2 and jmjd6-Ex5. TCGA SpliceSeq data revealed a significant decrease of jmjd6-Ex5 transcripts in patients and postmortem tissue of several tumors. The two protein isoforms are distinguished by their C-terminal sequences, which include a serine-rich region (polyS-domain) in JMJD6-2 that is not present in JMJD6-Ex5. Immunoprecipitation followed by LC-MS/MS for JMJD6-Ex5 shows that different sets of proteins interact with JMJD6-2 and JMJD6-Ex5 with only a few overlaps. In particular, we found TFIIF-associating CTD phosphatase (FCP1), proteins of the survival of motor neurons (SMN) complex, heterogeneous nuclear ribonucleoproteins (hnRNPs) and upstream binding factor (UBF) to interact with JMJD6-Ex5. Like JMJD6-2, both UBF and FCP1 comprise a polyS-domain. The polyS domain of JMJD6-2 might block the interaction with polyS-domains of other proteins. In contrast, JMJD6-2 interacts with many SR-like proteins with arginine/serine-rich (RS)-domains, including several splicing factors. In an HIV-based splicing reporter assay, co-expression of JMJD6-2 inhibited exon inclusion, whereas JMJD6-Ex5 did not have any effect. Furthermore, the silencing of jmjd6 by siRNAs favored jmjd6-Ex5 transcripts, suggesting that JMJD6 controls splicing of its own pre-mRNA. The distinct molecular properties of JMJD6-2 and JMJD6-Ex5 open a lead into the functional implications of the variations of their relative abundance in tumors.
Collapse
|
37
|
Kováčová T, Souček P, Hujová P, Freiberger T, Grodecká L. Splicing Enhancers at Intron-Exon Borders Participate in Acceptor Splice Sites Recognition. Int J Mol Sci 2020; 21:ijms21186553. [PMID: 32911621 PMCID: PMC7554774 DOI: 10.3390/ijms21186553] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/05/2020] [Accepted: 09/06/2020] [Indexed: 02/07/2023] Open
Abstract
Acceptor splice site recognition (3′ splice site: 3′ss) is a fundamental step in precursor messenger RNA (pre-mRNA) splicing. Generally, the U2 small nuclear ribonucleoprotein (snRNP) auxiliary factor (U2AF) heterodimer recognizes the 3′ss, of which U2AF35 has a dual function: (i) It binds to the intron–exon border of some 3′ss and (ii) mediates enhancer-binding splicing activators’ interactions with the spliceosome. Alternative mechanisms for 3′ss recognition have been suggested, yet they are still not thoroughly understood. Here, we analyzed 3′ss recognition where the intron–exon border is bound by a ubiquitous splicing regulator SRSF1. Using the minigene analysis of two model exons and their mutants, BRCA2 exon 12 and VARS2 exon 17, we showed that the exon inclusion correlated much better with the predicted SRSF1 affinity than 3′ss quality, which were assessed using the Catalog of Inferred Sequence Binding Preferences of RNA binding proteins (CISBP-RNA) database and maximum entropy algorithm (MaxEnt) predictor and the U2AF35 consensus matrix, respectively. RNA affinity purification proved SRSF1 binding to the model 3′ss. On the other hand, knockdown experiments revealed that U2AF35 also plays a role in these exons’ inclusion. Most probably, both factors stochastically bind the 3′ss, supporting exon recognition, more apparently in VARS2 exon 17. Identifying splicing activators as 3′ss recognition factors is crucial for both a basic understanding of splicing regulation and human genetic diagnostics when assessing variants’ effects on splicing.
Collapse
Affiliation(s)
- Tatiana Kováčová
- Molecular Genetics Laboratory, Centre for Cardiovascular Surgery and Transplantation, 656 91 Brno, Czech Republic; (T.K.); (P.S.); (P.H.); (T.F.)
- Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
| | - Přemysl Souček
- Molecular Genetics Laboratory, Centre for Cardiovascular Surgery and Transplantation, 656 91 Brno, Czech Republic; (T.K.); (P.S.); (P.H.); (T.F.)
- Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
| | - Pavla Hujová
- Molecular Genetics Laboratory, Centre for Cardiovascular Surgery and Transplantation, 656 91 Brno, Czech Republic; (T.K.); (P.S.); (P.H.); (T.F.)
- Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
| | - Tomáš Freiberger
- Molecular Genetics Laboratory, Centre for Cardiovascular Surgery and Transplantation, 656 91 Brno, Czech Republic; (T.K.); (P.S.); (P.H.); (T.F.)
- Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
| | - Lucie Grodecká
- Molecular Genetics Laboratory, Centre for Cardiovascular Surgery and Transplantation, 656 91 Brno, Czech Republic; (T.K.); (P.S.); (P.H.); (T.F.)
- Correspondence:
| |
Collapse
|
38
|
Tubeuf H, Charbonnier C, Soukarieh O, Blavier A, Lefebvre A, Dauchel H, Frebourg T, Gaildrat P, Martins A. Large-scale comparative evaluation of user-friendly tools for predicting variant-induced alterations of splicing regulatory elements. Hum Mutat 2020; 41:1811-1829. [PMID: 32741062 DOI: 10.1002/humu.24091] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 07/11/2020] [Accepted: 07/26/2020] [Indexed: 12/20/2022]
Abstract
Discriminating which nucleotide variants cause disease or contribute to phenotypic traits remains a major challenge in human genetics. In theory, any intragenic variant can potentially affect RNA splicing by altering splicing regulatory elements (SREs). However, these alterations are often ignored mainly because pioneer SRE predictors have proved inefficient. Here, we report the first large-scale comparative evaluation of four user-friendly SRE-dedicated algorithms (QUEPASA, HEXplorer, SPANR, and HAL) tested both as standalone tools and in multiple combined ways based on two independent benchmark datasets adding up to >1,300 exonic variants studied at the messenger RNA level and mapping to 89 different disease-causing genes. These methods display good predictive power, based on decision thresholds derived from the receiver operating characteristics curve analyses, with QUEPASA and HAL having the best accuracies either as standalone or in combination. Still, overall there was a tight race between the four predictors, suggesting that all methods may be of use. Additionally, QUEPASA and HEXplorer may be beneficial as well for predicting variant-induced creation of pseudoexons deep within introns. Our study highlights the potential of SRE predictors as filtering tools for identifying disease-causing candidates among the plethora of variants detected by high-throughput DNA sequencing and provides guidance for their use in genomic medicine settings.
Collapse
Affiliation(s)
- Hélène Tubeuf
- Inserm U1245, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, Rouen, France.,Interactive Biosoftware, Rouen, France
| | - Camille Charbonnier
- Inserm U1245, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Omar Soukarieh
- Inserm U1245, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | | | - Arnaud Lefebvre
- Computer Science, Information Processing and Systems Laboratory, UNIROUEN, Normandie University, Mont-Saint-Aignan, France
| | - Hélène Dauchel
- Computer Science, Information Processing and Systems Laboratory, UNIROUEN, Normandie University, Mont-Saint-Aignan, France
| | - Thierry Frebourg
- Inserm U1245, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, Rouen, France.,Department of Genetics, University Hospital, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Pascaline Gaildrat
- Inserm U1245, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Alexandra Martins
- Inserm U1245, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| |
Collapse
|
39
|
Erkelenz S, Poschmann G, Ptok J, Müller L, Schaal H. Profiling of cis- and trans-acting factors supporting noncanonical splice site activation. RNA Biol 2020; 18:118-130. [PMID: 32693676 DOI: 10.1080/15476286.2020.1798111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Recently, by combining transcriptomics with functional splicing reporter assays we were able to identify GT > GC > TT as the three highest ranked dinucleotides of human 5' splice sites (5'ss). Here, we have extended our investigations to the proteomic characterization of nuclear proteins that bind to canonical and noncanonical 5'ss. Surprisingly, we found that U1 snRNP binding to functional 5'ss sequences prevented components of the DNA damage response (DDR) from binding to the RNA, suggesting a close link between spliceosome arrangement and genome stability. We demonstrate that all tested noncanonical 5'ss sequences are bona-fide targets of the U2-type spliceosome and are bound by U1 snRNP, including U1-C, in the presence of splicing enhancers. The quantity of precipitated U1-C protein was similar for all noncanonical 5'ss dinucleotides, so that the highly different 5'ss usage was likely due to a later step after early U1 snRNP binding. In addition, we show that an internal GT at positions +5/+6 can be advantageous for splicing at position +1 of noncanonical splice sites. Likewise, and in agreement with previous observations, splicing inactive U1 snRNP binding sites could serve as splicing enhancers, which may also explain the higher abundance of U1 snRNPs compared to other U snRNPs. Finally, we observe that an arginine-serine (RS)-rich domain recruitment to stem loop I of the U1 snRNA is functionally sufficient to promote exon-definition and upstream 3'ss activation.
Collapse
Affiliation(s)
- Steffen Erkelenz
- Institute of Virology, Medical Faculty, Heinrich Heine University Düsseldorf , Düsseldorf, Germany.,Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne , Cologne, Germany
| | - Gereon Poschmann
- Molecular Proteomics Laboratory, BMFZ, Universitätsklinikum Düsseldorf , Düsseldorf, Germany
| | - Johannes Ptok
- Institute of Virology, Medical Faculty, Heinrich Heine University Düsseldorf , Düsseldorf, Germany
| | - Lisa Müller
- Institute of Virology, Medical Faculty, Heinrich Heine University Düsseldorf , Düsseldorf, Germany
| | - Heiner Schaal
- Institute of Virology, Medical Faculty, Heinrich Heine University Düsseldorf , Düsseldorf, Germany
| |
Collapse
|
40
|
Canson D, Glubb D, Spurdle AB. Variant effect on splicing regulatory elements, branchpoint usage, and pseudoexonization: Strategies to enhance bioinformatic prediction using hereditary cancer genes as exemplars. Hum Mutat 2020; 41:1705-1721. [PMID: 32623769 DOI: 10.1002/humu.24074] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 06/26/2020] [Accepted: 07/02/2020] [Indexed: 12/15/2022]
Abstract
It is possible to estimate the prior probability of pathogenicity for germline disease gene variants based on bioinformatic prediction of variant effect/s. However, routinely used approaches have likely led to the underestimation and underreporting of variants located outside donor and acceptor splice site motifs that affect messenger RNA (mRNA) processing. This review presents information about hereditary cancer gene germline variants, outside native splice sites, with experimentally validated splicing effects. We list 95 exonic variants that impact splicing regulatory elements (SREs) in BRCA1, BRCA2, MLH1, MSH2, MSH6, and PMS2. We utilized a pre-existing large-scale BRCA1 functional data set to map functional SREs, and assess the relative performance of different tools to predict effects of 283 variants on such elements. We also describe rare examples of intronic variants that impact branchpoint (BP) sites and create pseudoexons. We discuss the challenges in predicting variant effect on BP site usage and pseudoexonization, and suggest strategies to improve the bioinformatic prioritization of such variants for experimental validation. Importantly, our review and analysis highlights the value of considering impact of variants outside donor and acceptor motifs on mRNA splicing and disease causation.
Collapse
Affiliation(s)
- Daffodil Canson
- Genetics and Computational Biology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Dylan Glubb
- Genetics and Computational Biology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Amanda B Spurdle
- Genetics and Computational Biology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
41
|
Tubeuf H, Caputo SM, Sullivan T, Rondeaux J, Krieger S, Caux-Moncoutier V, Hauchard J, Castelain G, Fiévet A, Meulemans L, Révillion F, Léoné M, Boutry-Kryza N, Delnatte C, Guillaud-Bataille M, Cleveland L, Reid S, Southon E, Soukarieh O, Drouet A, Di Giacomo D, Vezain M, Bonnet-Dorion F, Bourdon V, Larbre H, Muller D, Pujol P, Vaz F, Audebert-Bellanger S, Colas C, Venat-Bouvet L, Solano AR, Stoppa-Lyonnet D, Houdayer C, Frebourg T, Gaildrat P, Sharan SK, Martins A. Calibration of Pathogenicity Due to Variant-Induced Leaky Splicing Defects by Using BRCA2 Exon 3 as a Model System. Cancer Res 2020; 80:3593-3605. [PMID: 32641407 DOI: 10.1158/0008-5472.can-20-0895] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/14/2020] [Accepted: 07/02/2020] [Indexed: 12/25/2022]
Abstract
BRCA2 is a clinically actionable gene implicated in breast and ovarian cancer predisposition that has become a high priority target for improving the classification of variants of unknown significance (VUS). Among all BRCA2 VUS, those causing partial/leaky splicing defects are the most challenging to classify because the minimal level of full-length (FL) transcripts required for normal function remains to be established. Here, we explored BRCA2 exon 3 (BRCA2e3) as a model for calibrating variant-induced spliceogenicity and estimating thresholds for BRCA2 haploinsufficiency. In silico predictions, minigene splicing assays, patients' RNA analyses, a mouse embryonic stem cell (mESC) complementation assay and retrieval of patient-related information were combined to determine the minimal requirement of FL BRCA2 transcripts. Of 100 BRCA2e3 variants tested in the minigene assay, 64 were found to be spliceogenic, causing mild to severe RNA defects. Splicing defects were also confirmed in patients' RNA when available. Analysis of a neutral leaky variant (c.231T>G) showed that a reduction of approximately 60% of FL BRCA2 transcripts from a mutant allele does not cause any increase in cancer risk. Moreover, data obtained from mESCs suggest that variants causing a decline in FL BRCA2 with approximately 30% of wild-type are not pathogenic, given that mESCs are fully viable and resistant to DNA-damaging agents in those conditions. In contrast, mESCs producing lower relative amounts of FL BRCA2 exhibited either null or hypomorphic phenotypes. Overall, our findings are likely to have broader implications on the interpretation of BRCA2 variants affecting the splicing pattern of other essential exons. SIGNIFICANCE: These findings demonstrate that BRCA2 tumor suppressor function tolerates substantial reduction in full-length transcripts, helping to determine the pathogenicity of BRCA2 leaky splicing variants, some of which may not increase cancer risk.
Collapse
Affiliation(s)
- Hélène Tubeuf
- Inserm U1245, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, Rouen, France.,Interactive Biosoftware, Rouen, France
| | - Sandrine M Caputo
- Department of Genetics, Institut Curie, Paris, France.,PSL Research University, Paris, France
| | - Teresa Sullivan
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland
| | - Julie Rondeaux
- Inserm U1245, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Sophie Krieger
- Inserm U1245, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, Rouen, France.,Laboratory of Cancer Biology and Genetics, Centre François Baclesse, Caen, France - Normandie University, UNICAEN, Caen, France
| | | | - Julie Hauchard
- Inserm U1245, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Gaia Castelain
- Inserm U1245, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Alice Fiévet
- Department of Genetics, Institut Curie, Paris, France.,INSERM U830, University Paris Descartes, Paris, France.,Service Génétique des Tumeurs, Gustave Roussy, Villejuif, France
| | - Laëtitia Meulemans
- Inserm U1245, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | | | | | | | | | | | - Linda Cleveland
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland
| | - Susan Reid
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland
| | - Eileen Southon
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland
| | - Omar Soukarieh
- Inserm U1245, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Aurélie Drouet
- Inserm U1245, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Daniela Di Giacomo
- Inserm U1245, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Myriam Vezain
- Inserm U1245, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | | | - Violaine Bourdon
- Department of Genetics, Institut Paoli-Calmettes, Marseille, France
| | - Hélène Larbre
- Laboratoire d'Oncogénétique Moléculaire, Institut Godinot, Reims, France
| | - Danièle Muller
- Unité d'Oncogénétique, Centre Paul Strauss, Strasbourg, France
| | - Pascal Pujol
- Unité d'Oncogénétique, CHU Arnaud de Villeneuve, Montpellier, France
| | - Fátima Vaz
- Breast Cancer Risk Evaluation Clinic, Portuguese Institute of Oncology of Lisbon, Lisbon, Portugal
| | | | - Chrystelle Colas
- Department of Genetics, Institut Curie, Paris, France.,PSL Research University, Paris, France
| | | | - Angela R Solano
- Genotipificacion y Cancer Hereditario, Departmento de Analisis Clinicos, Centro de Educacion Medica e Investigaciones Clinicas (CEMIC), Ciudad Autonoma de Buenos Aires, Argentina
| | - Dominique Stoppa-Lyonnet
- Department of Genetics, Institut Curie, Paris, France.,INSERM U830, University Paris Descartes, Paris, France
| | - Claude Houdayer
- Inserm U1245, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, Rouen, France.,Department of Genetics, University Hospital, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Thierry Frebourg
- Inserm U1245, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, Rouen, France.,Department of Genetics, University Hospital, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Pascaline Gaildrat
- Inserm U1245, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Shyam K Sharan
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland
| | - Alexandra Martins
- Inserm U1245, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, Rouen, France.
| |
Collapse
|
42
|
Splicing mutations in inherited retinal diseases. Prog Retin Eye Res 2020; 80:100874. [PMID: 32553897 DOI: 10.1016/j.preteyeres.2020.100874] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 05/30/2020] [Accepted: 05/31/2020] [Indexed: 12/15/2022]
Abstract
Mutations which induce aberrant transcript splicing represent a distinct class of disease-causing genetic variants in retinal disease genes. Such mutations may either weaken or erase regular splice sites or create novel splice sites which alter exon recognition. While mutations affecting the canonical GU-AG dinucleotides at the splice donor and splice acceptor site are highly predictive to cause a splicing defect, other variants in the vicinity of the canonical splice sites or those affecting additional cis-acting regulatory sequences within exons or introns are much more difficult to assess or even to recognize and require additional experimental validation. Splicing mutations are unique in that the actual outcome for the transcript (e.g. exon skipping, pseudoexon inclusion, intron retention) and the encoded protein can be quite different depending on the individual mutation. In this article, we present an overview on the current knowledge about and impact of splicing mutations in inherited retinal diseases. We introduce the most common sub-classes of splicing mutations including examples from our own work and others and discuss current strategies for the identification and validation of splicing mutations, as well as therapeutic approaches, open questions, and future perspectives in this field of research.
Collapse
|
43
|
Rong S, Buerer L, Rhine CL, Wang J, Cygan KJ, Fairbrother WG. Mutational bias and the protein code shape the evolution of splicing enhancers. Nat Commun 2020; 11:2845. [PMID: 32504065 PMCID: PMC7275064 DOI: 10.1038/s41467-020-16673-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/28/2020] [Indexed: 02/06/2023] Open
Abstract
Exonic splicing enhancers (ESEs) are enriched in exons relative to introns and bind splicing activators. This study considers a fundamental question of co-evolution: How did ESE motifs become enriched in exons prior to the evolution of ESE recognition? We hypothesize that the high exon to intron motif ratios necessary for ESE function were created by mutational bias coupled with purifying selection on the protein code. These two forces retain certain coding motifs in exons while passively depleting them from introns. Through the use of simulations, genomic analyses, and high throughput splicing assays, we confirm the key predictions of this hypothesis, including an overlap between protein and splicing information in ESEs. We discuss the implications of mutational bias as an evolutionary driver in other cis-regulatory systems. Splicing is regulated by cis-acting elements in pre-mRNAs such as exonic or intronic splicing enhancers and silencers. Here the authors show that exonic splicing enhancers are enriched in exons compared to introns due to mutational bias coupled with purifying selection on the protein code.
Collapse
Affiliation(s)
- Stephen Rong
- Center for Computational Molecular Biology, Brown University, Providence, RI, 02912, USA.,Ecology and Evolutionary Biology, Brown University, Providence, RI, 02912, USA
| | - Luke Buerer
- Center for Computational Molecular Biology, Brown University, Providence, RI, 02912, USA
| | - Christy L Rhine
- Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, 02912, USA
| | - Jing Wang
- Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, 02912, USA
| | - Kamil J Cygan
- Center for Computational Molecular Biology, Brown University, Providence, RI, 02912, USA.,Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, 02912, USA
| | - William G Fairbrother
- Center for Computational Molecular Biology, Brown University, Providence, RI, 02912, USA. .,Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, 02912, USA. .,Hassenfeld Child Health Innovation Institute of Brown University, Providence, RI, 02912, USA.
| |
Collapse
|
44
|
Ribeiro M, Furtado M, Martins S, Carvalho T, Carmo-Fonseca M. RNA Splicing Defects in Hypertrophic Cardiomyopathy: Implications for Diagnosis and Therapy. Int J Mol Sci 2020; 21:ijms21041329. [PMID: 32079122 PMCID: PMC7072897 DOI: 10.3390/ijms21041329] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/10/2020] [Accepted: 02/13/2020] [Indexed: 12/27/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM), the most common inherited heart disease, is predominantly caused by mutations in genes that encode sarcomere-associated proteins. Effective gene-based diagnosis is critical for the accurate clinical management of patients and their family members. However, the introduction of high-throughput DNA sequencing approaches for clinical diagnostics has vastly expanded the number of variants of uncertain significance, leading to many inconclusive results that limit the clinical utility of genetic testing. More recently, developments in RNA analysis have been improving diagnostic outcomes by identifying new variants that interfere with splicing. This review summarizes recent discoveries of RNA mis-splicing in HCM and provides an overview of research that aims to apply the concept of RNA therapeutics to HCM.
Collapse
Affiliation(s)
- Marta Ribeiro
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av Prof Egas Moniz, Edificio Egas Moniz, 1649-028 Lisboa, Portugal; (M.R.); (M.F.); (S.M.); (T.C.)
- Department of Bioengineering and iBB–Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Marta Furtado
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av Prof Egas Moniz, Edificio Egas Moniz, 1649-028 Lisboa, Portugal; (M.R.); (M.F.); (S.M.); (T.C.)
| | - Sandra Martins
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av Prof Egas Moniz, Edificio Egas Moniz, 1649-028 Lisboa, Portugal; (M.R.); (M.F.); (S.M.); (T.C.)
| | - Teresa Carvalho
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av Prof Egas Moniz, Edificio Egas Moniz, 1649-028 Lisboa, Portugal; (M.R.); (M.F.); (S.M.); (T.C.)
| | - Maria Carmo-Fonseca
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av Prof Egas Moniz, Edificio Egas Moniz, 1649-028 Lisboa, Portugal; (M.R.); (M.F.); (S.M.); (T.C.)
- Correspondence:
| |
Collapse
|
45
|
Skittrall JP, Ingemarsdotter CK, Gog JR, Lever AML. A scale-free analysis of the HIV-1 genome demonstrates multiple conserved regions of structural and functional importance. PLoS Comput Biol 2019; 15:e1007345. [PMID: 31545786 PMCID: PMC6791557 DOI: 10.1371/journal.pcbi.1007345] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/14/2019] [Accepted: 08/19/2019] [Indexed: 12/22/2022] Open
Abstract
HIV-1 replicates via a low-fidelity polymerase with a high mutation rate; strong conservation of individual nucleotides is highly indicative of the presence of critical structural or functional properties. Identifying such conservation can reveal novel insights into viral behaviour. We analysed 3651 publicly available sequences for the presence of nucleic acid conservation beyond that required by amino acid constraints, using a novel scale-free method that identifies regions of outlying score together with a codon scoring algorithm. Sequences with outlying score were further analysed using an algorithm for producing local RNA folds whilst accounting for alignment properties. 11 different conserved regions were identified, some corresponding to well-known cis-acting functions of the HIV-1 genome but also others whose conservation has not previously been noted. We identify rational causes for many of these, including cis functions, possible additional reading frame usage, a plausible mechanism by which the central polypurine tract primes second-strand DNA synthesis and a conformational stabilising function of a region at the 5' end of env.
Collapse
Affiliation(s)
- Jordan P. Skittrall
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Carin K. Ingemarsdotter
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Julia R. Gog
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Centre for Mathematical Sciences, Cambridge, United Kingdom
| | - Andrew M. L. Lever
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
46
|
Rhine CL, Neil C, Glidden DT, Cygan KJ, Fredericks AM, Wang J, Walton NA, Fairbrother WG. Future directions for high-throughput splicing assays in precision medicine. Hum Mutat 2019; 40:1225-1234. [PMID: 31297895 DOI: 10.1002/humu.23866] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 07/02/2019] [Accepted: 07/06/2019] [Indexed: 11/12/2022]
Abstract
Classification of variants of unknown significance is a challenging technical problem in clinical genetics. As up to one-third of disease-causing mutations are thought to affect pre-mRNA splicing, it is important to accurately classify splicing mutations in patient sequencing data. Several consortia and healthcare systems have conducted large-scale patient sequencing studies, which discover novel variants faster than they can be classified. Here, we compare the advantages and limitations of several high-throughput splicing assays aimed at mitigating this bottleneck, and describe a data set of ~5,000 variants that we analyzed using our Massively Parallel Splicing Assay (MaPSy). The Critical Assessment of Genome Interpretation group (CAGI) organized a challenge, in which participants submitted machine learning models to predict the splicing effects of variants in this data set. We discuss the winning submission of the challenge (MMSplice) which outperformed existing software. Finally, we highlight methods to overcome the limitations of MaPSy and similar assays, such as tissue-specific splicing, the effect of surrounding sequence context, classifying intronic variants, synthesizing large exons, and amplifying complex libraries of minigene species. Further development of these assays will greatly benefit the field of clinical genetics, which lack high-throughput methods for variant interpretation.
Collapse
Affiliation(s)
- Christy L Rhine
- Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island
| | - Christopher Neil
- Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island
| | - David T Glidden
- Center for Computational Molecular Biology, Brown University, Providence, Rhode Island
| | - Kamil J Cygan
- Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island.,Center for Computational Molecular Biology, Brown University, Providence, Rhode Island
| | - Alger M Fredericks
- Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island
| | - Jing Wang
- Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island
| | - Nephi A Walton
- Genomic Medicine Institute, Geisinger, Danville, Pennsylvania
| | - William G Fairbrother
- Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island.,Center for Computational Molecular Biology, Brown University, Providence, Rhode Island.,Hassenfeld Child Health Innovation Institute of Brown University, Providence, Rhode Island
| |
Collapse
|
47
|
Katneni UK, Liss A, Holcomb D, Katagiri NH, Hunt R, Bar H, Ismail A, Komar AA, Kimchi‐Sarfaty C. Splicing dysregulation contributes to the pathogenicity of several F9 exonic point variants. Mol Genet Genomic Med 2019; 7:e840. [PMID: 31257730 PMCID: PMC6687662 DOI: 10.1002/mgg3.840] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 06/10/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Pre-mRNA splicing is a complex process requiring the identification of donor site, acceptor site, and branch point site with an adjacent polypyrimidine tract sequence. Splicing is regulated by splicing regulatory elements (SREs) with both enhancer and suppressor functions. Variants located in exonic regions can impact splicing through dysregulation of native splice sites, SREs, and cryptic splice site activation. While splicing dysregulation is considered primary disease-inducing mechanism of synonymous variants, its contribution toward disease phenotype of non-synonymous variants is underappreciated. METHODS In this study, we analyzed 415 disease-causing and 120 neutral F9 exonic point variants including both synonymous and non-synonymous for their effect on splicing using a series of in silico splice site prediction tools, SRE prediction tools, and in vitro minigene assays. RESULTS The use of splice site and SRE prediction tools in tandem provided better prediction but were not always in agreement with the minigene assays. The net effect of splicing dysregulation caused by variants was context dependent. Minigene assays revealed that perturbed splicing can be found. CONCLUSION Synonymous variants primarily cause disease phenotype via splicing dysregulation while additional mechanisms such as translation rate also play an important role. Splicing dysregulation is likely to contribute to the disease phenotype of several non-synonymous variants.
Collapse
Affiliation(s)
- Upendra K. Katneni
- Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation & ResearchUS FDASilver SpringMaryland
| | - Aaron Liss
- Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation & ResearchUS FDASilver SpringMaryland
| | - David Holcomb
- Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation & ResearchUS FDASilver SpringMaryland
| | - Nobuko H. Katagiri
- Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation & ResearchUS FDASilver SpringMaryland
| | - Ryan Hunt
- Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation & ResearchUS FDASilver SpringMaryland
| | - Haim Bar
- Department of StatisticsUniversity of ConnecticutStorrsConnecticut
| | - Amra Ismail
- Department of Biological, Geological and Environmental Sciences, Center for Gene Regulation in Health and DiseaseCleveland State UniversityClevelandOhio
| | - Anton A. Komar
- Department of Biological, Geological and Environmental Sciences, Center for Gene Regulation in Health and DiseaseCleveland State UniversityClevelandOhio
| | - Chava Kimchi‐Sarfaty
- Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation & ResearchUS FDASilver SpringMaryland
| |
Collapse
|
48
|
Goina E, Musco L, Dardis A, Buratti E. Assessment of the functional impact on the pre-mRNA splicing process of 28 nucleotide variants associated with Pompe disease in GAA exon 2 and their recovery using antisense technology. Hum Mutat 2019; 40:2121-2130. [PMID: 31301153 DOI: 10.1002/humu.23867] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 12/11/2022]
Abstract
Glycogen storage disease II (GSDII), also called Pompe disease, is an autosomal recessive inherited disease caused by a defect in glycogen metabolism due to the deficiency of the enzyme acid alpha-glucosidase (GAA) responsible for its degradation. So far, more than 500 sequence variants of the GAA gene have been reported but their possible involvement on the pre-messenger RNA splicing mechanism has not been extensively studied. In this work, we have investigated, by an in vitro functional assay, all putative splicing variants within GAA exon 2 and flanking introns. Our results show that many variants falling in the canonical splice site or the exon can induce GAA exon 2 skipping. In these cases, therefore, therapeutic strategies aimed at restoring protein folding of partially active mutated GAA proteins might not be sufficient. Regarding this issue, we have tested the effect of antisense oligonucleotides (AMOs) that were previously shown capable of rescuing splicing misregulation caused by the common c.-32-13T>G variant associated with the childhood/adult phenotype of GSDII. Interestingly, our results show that these AMOs are also quite effective in rescuing the splicing impairment of several exonic splicing variants, thus widening the potential use of these effectors for GSDII treatment.
Collapse
Affiliation(s)
- Elisa Goina
- Molecular Pathology, International Institute for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Lorena Musco
- Molecular Pathology, International Institute for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Andrea Dardis
- Regional Coordinator Centre for Rare Diseases, Academic Hospital Santa Maria della Misericordia, Udine, Italy
| | - Emanuele Buratti
- Molecular Pathology, International Institute for Genetic Engineering and Biotechnology, Trieste, Italy
| |
Collapse
|
49
|
Souček P, Réblová K, Kramárek M, Radová L, Grymová T, Hujová P, Kováčová T, Lexa M, Grodecká L, Freiberger T. High-throughput analysis revealed mutations' diverging effects on SMN1 exon 7 splicing. RNA Biol 2019; 16:1364-1376. [PMID: 31213135 DOI: 10.1080/15476286.2019.1630796] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Splicing-affecting mutations can disrupt gene function by altering the transcript assembly. To ascertain splicing dysregulation principles, we modified a minigene assay for the parallel high-throughput evaluation of different mutations by next-generation sequencing. In our model system, all exonic and six intronic positions of the SMN1 gene's exon 7 were mutated to all possible nucleotide variants, which amounted to 180 unique single-nucleotide mutants and 470 double mutants. The mutations resulted in a wide range of splicing aberrations. Exonic splicing-affecting mutations resulted either in substantial exon skipping, supposedly driven by predicted exonic splicing silencer or cryptic donor splice site (5'ss) and de novo 5'ss strengthening and use. On the other hand, a single disruption of exonic splicing enhancer was not sufficient to cause major exon skipping, suggesting these elements can be substituted during exon recognition. While disrupting the acceptor splice site led only to exon skipping, some 5'ss mutations potentiated the use of three different cryptic 5'ss. Generally, single mutations supporting cryptic 5'ss use displayed better pre-mRNA/U1 snRNA duplex stability and increased splicing regulatory element strength across the original 5'ss. Analyzing double mutants supported the predominating splicing regulatory elements' effect, but U1 snRNA binding could contribute to the global balance of splicing isoforms. Based on these findings, we suggest that creating a new splicing enhancer across the mutated 5'ss can be one of the main factors driving cryptic 5'ss use.
Collapse
Affiliation(s)
- Přemysl Souček
- Medical Genomics RG, Central European Institute of Technology, Masaryk University , Brno , Czech Republic.,Molecular Genetics Laboratory, Centre for Cardiovascular Surgery and Transplantation , Brno , Czech Republic
| | - Kamila Réblová
- Medical Genomics RG, Central European Institute of Technology, Masaryk University , Brno , Czech Republic
| | - Michal Kramárek
- Molecular Genetics Laboratory, Centre for Cardiovascular Surgery and Transplantation , Brno , Czech Republic
| | - Lenka Radová
- Medical Genomics RG, Central European Institute of Technology, Masaryk University , Brno , Czech Republic
| | - Tereza Grymová
- Molecular Genetics Laboratory, Centre for Cardiovascular Surgery and Transplantation , Brno , Czech Republic
| | - Pavla Hujová
- Molecular Genetics Laboratory, Centre for Cardiovascular Surgery and Transplantation , Brno , Czech Republic
| | - Tatiana Kováčová
- Medical Genomics RG, Central European Institute of Technology, Masaryk University , Brno , Czech Republic
| | - Matej Lexa
- Faculty of Informatics, Masaryk University , Brno , Czech Republic
| | - Lucie Grodecká
- Molecular Genetics Laboratory, Centre for Cardiovascular Surgery and Transplantation , Brno , Czech Republic
| | - Tomáš Freiberger
- Medical Genomics RG, Central European Institute of Technology, Masaryk University , Brno , Czech Republic.,Molecular Genetics Laboratory, Centre for Cardiovascular Surgery and Transplantation , Brno , Czech Republic.,Faculty of Medicine, Masaryk University , Brno , Czech Republic
| |
Collapse
|
50
|
Ptok J, Müller L, Theiss S, Schaal H. Context matters: Regulation of splice donor usage. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:194391. [PMID: 31202784 DOI: 10.1016/j.bbagrm.2019.06.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/07/2019] [Accepted: 06/09/2019] [Indexed: 11/16/2022]
Abstract
Elaborate research on splicing, starting in the late seventies, evolved from the discovery that 5' splice sites are recognized by their complementarity to U1 snRNA towards the realization that RNA duplex formation cannot be the sole basis for 5'ss selection. Rather, their recognition is highly influenced by a number of context factors including transcript architecture as well as splicing regulatory elements (SREs) in the splice site neighborhood. In particular, proximal binding of splicing regulatory proteins highly influences splicing outcome. The importance of SRE integrity especially becomes evident in the light of human pathogenic mutations where single nucleotide changes in SREs can severely affect the resulting transcripts. Bioinformatics tools nowadays greatly assist in the computational evaluation of 5'ss, their neighborhood and the impact of pathogenic mutations. Although predictions are already quite robust, computational evaluation of the splicing regulatory landscape still faces challenges to increase future reliability. This article is part of a Special Issue entitled: RNA structure and splicing regulation edited by Francisco Baralle, Ravindra Singh and Stefan Stamm.
Collapse
Affiliation(s)
- Johannes Ptok
- Institute of Virology, Medical Faculty, Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Lisa Müller
- Institute of Virology, Medical Faculty, Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Stephan Theiss
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Heiner Schaal
- Institute of Virology, Medical Faculty, Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany.
| |
Collapse
|